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Abstract

Topological Data Analysis (TDA) involves techniques of an-001
alyzing the underlying structure and connectivity of data.002
However, traditional methods like persistent homology can003
be computationally demanding, motivating the development004
of neural network-based estimators capable of reducing005
computational overhead and inference time. A key barrier006
to advancing these methods is the lack of labeled 3D data007
with class distributions and diversity tailored specifically008
for supervised learning in TDA tasks. To address this, we009
introduce a novel approach for systematically generating010
labeled 3D datasets using the Repulsive Surface algorithm,011
allowing control over topological invariants, such as hole012
count. The resulting dataset offers varied geometry with013
topological labeling, making it suitable for training and014
benchmarking neural network estimators. This paper uses015
a synthetic 3D dataset to train a genus estimator network,016
created using a 3D convolutional transformer architecture.017
An observed decrease in accuracy as deformations increase018
highlights the role of not just topological complexity, but019
also geometric complexity, when training generalized esti-020
mators. This dataset fills a gap in labeled 3D datasets and021
generation for training and evaluating models and tech-022
niques for TDA.023

1. Introduction024

The shape of an object is an essential feature that can be025
used for classification. Topology is the branch of mathe-026
matics that formalizes the study of shapes through a rig-027
orous analysis of connectivity, cavities, and holes within028
an object. Topological Data Analysis (TDA), a relatively029
new field at the intersection of mathematics, computer sci-030
ence, and data science, focuses on analyzing the shape of031
data or objects [4, 7]. TDA offers powerful tools, such as032
Persistent Homology (PH), for understanding complex data033
by extracting topological features like n-dimensional holes,034
which uncover underlying patterns and relationships.035

Figure 1. A 2D slice of a sample generated using the technique
outlined in Section 3. The 2D binary image shows 6 holes across
4 disconnected objects Top: raw sample. Bottom: annotated anal-
ysis.

While Persistent Homology is a powerful tool, it has cer- 036
tain drawbacks, such as high computational cost, particu- 037
larly for large datasets. To address this, machine learning 038
techniques have been proposed and successfully applied to 039
extract topological features and signatures [3, 6, 11, 12]. 040
The underlying idea behind these studies is to bypass the 041
persistent homology computation and directly estimate or 042
predict topological invariants, such as Betti numbers and 043
genus, through neural networks to reduce computational 044
cost and gain additional insights. Additionally, neural net- 045
works have been employed in various other TDA tasks, in- 046
cluding analyzing outputs from traditional techniques like 047
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Figure 2. Random growth of interlinked genus 2 (green) and genus 3 (brown) objects using the method outlined in Sec. 3. Visualisation
performed in Blender 3.0.1. [1]

persistent homology for applications such as medical diag-048
nosis and classification [2, 13, 17].049

Approaches that bypass PH computation and directly es-050
timate topological invariants typically require large datasets051
for training and testing. The availability of such extensive052
data repositories is a major bottleneck in the further devel-053
opment of this area. Our current work addresses this issue054
by proposing a new method to synthetically generate com-055
plex and versatile labeled datasets suitable for the training056
and testing of neural networks in topological classification.057

An example of a visual approach to estimating hole058
counts in 2D data can be seen in Figure, 1. This example is059
a 2D cross-section of the 3D generation process outlined in060
Section. 3.061

Our method utilizes the Repulsive Surfaces algo-062
rithm [18] to perform homeomorphic (i.e., topology-063
preserving) deformations with randomized parameters and064
environmental constraints. This process generates a se-065
quence of 3D data with known labels through an iterative066
growth mechanism, as illustrated in Figure 8. This data gen-067
eration approach allows for:068

• Incremental complexity in the generated data, making it069
suitable for both 3D or time-series 3D tasks. This also al-070
lows the accuracy of a model to be assessed at various071
geometrically complex stages while retaining the same072
topological complexities.073

• Customizable growth configurations, allowing for adap-074
tation to various applications and styles.075

Our method fills a critical gap in accessible, topologi-076
cally labeled 3D/4D data and has been utilized to train neu-077
ral networks for TDA tasks using ‘Betti Number’ topolog-078
ical signatures (in a form we refer to as ‘genus’ in this pa-079
per, see Sec. 2). We demonstrate the efficacy of this syn-080
thetic data generation method through experiments with a081
3D Convolutional Transformer Network (3DCTN) [9]. The082
dataset used in these experiments is called the Random Grid083
Repulse Dataset, or simply ‘RG Repulse.’ Details of the084
generation process are provided in Sec. 4.085

1.1. Related Works 086

Previous studies have used a variety of datasets and output 087
structures to perform TDA on raw input data. [11] used 088
convolutional neural network architectures to estimate the 089
betti numbers of 2D/3D data. The 2D model was trained on 090
2D image data consisting of randomly placed circles with 091
randomized radii. For the 3D model, this was scaled into 092
3D with random spheres inside a 3D image. [6] scale up 093
the idea of CNN-based Betti number estimation to 4D. A 094
synthetic dataset was created that used cutouts of a solid 095
4D structure to introduce higher dimension holes. These 096
cutouts were selected from predetermined objects that were 097
randomly scaled and rotated. [15] introduces a deep learn- 098
ing model Pi-Net to estimate topological features directly 099
from images. This paper used the datasets SVHN [10], CI- 100
FAR10, and CIFAR100 [8]. SVHN (Street View House 101
Numbers) features photos of house numbers while CI- 102
FAR100 includes 100 common classes such as ‘ship’ or 103
‘dog’. [3] introduces a deep learning model RipsNet for 104
3D point cloud TDA. This study sampled point clouds from 105
the surface of the ModelNet10 dataset [16]. This is 3D mesh 106
data which comprises of 10 classes such as ‘Chair’ or ‘Bed’. 107
[19] introduces a deep learning model TopologyNet to per- 108
form 3D point cloud TDA, similarly to RipsNet. This used 109
the expanded ModelNet40 [16] which includes 40 classes 110
instead of 10. 111

A key limitation across these studies is dataset availabil- 112
ity. Datasets like CIFAR100, SVHN, and ModelNet40 con- 113
tain strong correlations between the geometrical and topo- 114
logical properties of the objects. For example, recogniz- 115
ing that an object is a ‘mug’ inherently provides informa- 116
tion about its toroidal topology. This correlation makes it 117
difficult for networks to learn topological features indepen- 118
dently of geometrical ones, potentially leading to overfit- 119
ting. Additionally, these datasets possess fewer hole counts 120
and limited topological complexity, restricting the variety 121
of topological features. Finally, the distribution of samples 122
in these datasets is optimized for object classification, not 123
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for balancing topological features like Betti numbers.124
[12] introduced the WFC Repulse dataset, which aimed125

to mitigate these limitations by generating synthetic data126
with varying topological complexity. This approach in-127
volved creating 3D scenes with multiple objects, each hav-128
ing a different genus (number of β1 holes). This method129
allowed for controlled topological complexity, which was130
used to train transformer networks for TDA.131

This paper builds upon the WFC Repulse dataset by ex-132
panding and refining the generation process. The differ-133
ences include the selection of generation parameters, envi-134
ronment generation, post-processing, data format and hole135
counts. The previous method used uniform mesh-surface136
sampling in 4096 point clouds, while the proposed method137
converts the meshes to voxel cubes to better simulate use138
cases such as medical scans or material science scans. This139
voxel data can then be treated as a volumetric cube (3D140
voxel data) or converted to a point cloud for common neural141
network architecture pipelines.142

2. Background in Topology143

In this section we will briefly recall the basic notions in144
topology that are used in TDA and then describe the stan-145
dard pipeline of Persistent Homology computation. For fur-146
ther reading see [4, 7].147

A geometric k-simplex is the convex hull of k + 1148
affinely independent points in Rd. For example, a point149
is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-150
simplex, and a tetrahedron is a 3-simplex. A subset simplex151
is called a face of the original simplex. A geometric sim-152
plicial complex is a collection of geometric simplices that153
intersect only at their common faces and are closed under154
the face relation. See Figure 3 for an example. A filtration155
or a filtered simplicial complex is a sequence of nested156
simplicial complexes indexed by a scale parameter.157
Homology, is a tool from algebraic topology to quantify the158
number of k-dimensional topological features (or holes) in159
a topological space, such as a simplicial complex. For in-160
stance, H0 the zero degree homology classes describe the161
number of connected components, H1 the one degree ho-162
mology classes describe the number of loops, and H2, the163
two dimensional homology classes quantifies voids or cav-164
ities. The ranks of these homology groups are referred to165
as Betti numbers. In particular, the Betti number βk cor-166
responds to the number of k-dimensional holes. In Fig-167
ure 3 the Betti numbers are as follows, β0 = 1, β1 =168
1, and ∀k ≥ 2, βk = 0. Table 1 shows the list of non-169
zero Betti numbers for all connected compact oriented 2-170
manifolds [14] along with other topological invariants such171
as genus g and Euler Characteristic χ = β0 − β1 + β2,172
which in this case are related as follows g = β1

2 = −χ−2
2 .173

In a standard pipeline of persistent homology compu-174
tation, a dataset, typically represented as a point cloud in175

v1 v2

v3 v4

v5

Figure 3. Example of a simplicial complex

Table 1. Genus (g), Betti numbers (βn), and Euler characteristic
(χ) of closed compact orientable surfaces.

Surface M g β0 β1 β2 χ

Sphere S2 0 1 0 1 2
Torus T 2 1 1 2 1 0
g-holed torus T 2# . . .#T 2 g 1 2g 1 2-2g

a metric space, is used to first build a filtered simplicial 176
complex which is used to construct a boundary matrix 177
which is then finally reduced in a special form to read off 178
the persistent homology. A common method for construct- 179
ing such filtered simplicial complex is the Vietoris-Rips 180
complex. This complex is formed by connecting data 181
points that lie within a certain distance from each other, 182
progressively increasing the complexity of the structure 183
as the distance threshold grows. The idea of filtration 184
is used to analyze data across multiple scales. As the 185
filtration parameter (here the distance threshold) increases, 186
new simplices are added, enabling the tracking of how 187
topological features, such as Betti numbers, emerge and 188
disappear across different scales. 189

190

3. Synthetic Data Generation 191

In a previous study, [12] created a synthetic dataset called 192
the WFC Repulse dataset using the Wave Function Collapse 193
algorithm [5] and Repulsive Surfaces algorithm [18]. This 194
study demonstrated the viability of the proposed data gener- 195
ation method for topological training and assessed the seg- 196
mentation ability of neural networks using topological sig- 197
natures. Building on that, we describe how this method has 198
been altered to produce a new RG Dataset. 199

We begin by outlining the basic steps of the data gen- 200
eration process. This process can be adapted to generate 201
various types of datasets depending on the learning task. 202

1. Seed: This step manually creates a ‘seed’ object in the 203
form of a 3D mesh with known topology. 204

2. Environment: Next, a randomly generated ‘environment’ 205
was generated to grow the seed within. This environment 206
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Figure 4. An example of a genus 5 seed.
Figure 5. An environment generated us-
ing the random grid method.

Figure 6. A synthetic genus 5 object in
mesh form with Voronoi surface displace-
ment mapping.

will act as a constraint on which the seed will grow.207

3. Scene setup: Then, the seed is randomly placed inside208
the environment using random placement and scaling.209

4. Deformations: Next, the Repulsive Surfaces algorithm is210
used increase the seeds surface area within the environ-211
mental constraint. This process deforms the seed object212
without altering its topology.213

5. Subsampling: Finally, the grown seed can be con-214
verted into a voxel or point cloud form with various215
noise/scaling applied.216

The approach outlined above was common in both the217
previous study’s WFC dataset [12] and the new RG Dataset.218
The key differences include the hole count which was raised219
from [0−3] to [0−20]. The WFC Dataset was processed to a220
point cloud format via mesh surface sampling, while the RG221
Dataset was aimed to emulate 3D pixel data such as medical222
or material science scans. This involved voxelization and223
noise additions. The environment generation method was224
also changed from the wave function collapse algorithm to225
a new random grid approach. The random grid process is226
outlined below and the Wave Function Collapse algorithm227
can be seen in Appendix 6.2. The creation of a random grid228
allowed more flexibility and control in the scale, thickness229
and density of sections and used real number parameters for230
placement and thickness over discrete tile cells.231

Now, we will explain each of the above outlined steps in232
more detail to generate the current RG Repulse dataset.233

Seed We manually created 21 seed meshes for the RG Re-234
pulse dataset. Each of these meshes has a different number235
of 1-dimensional holes (β1, genus), ranging from 0 to 20.236
See Figure 4 for an example genus 5 seed.237

Random Grid Environment A unique environment is238
generated for every grown seed in the RG dataset. As the239
seed is grown within the environment, the geometry of the240
environment will determine aspects of the grown samples.241
We start this generation by dissecting a cube with a side242

length of 20 into 53 smaller cubic chunks, each with a side 243
length of 4. Each of these smaller chunks is assigned dif- 244
ferent randomized parameters to create distinct sub-regions 245
in the environment. Having different regions will produce 246
geometric diversity as the sample in constrained in different 247
ways. These random parameters include: 248

Axis resolution: A random resolution between 2 and 4 249
is selected for each axis in the subchunk, denoted as xres, 250
yres, and zres. This produces a 3D grid of points compris- 251
ing of xres × yres × zres points for each subchuck sepa- 252
rately. 253

Connection probability: For each subchunk we assign 254
a probability P , randomly chosen between 0.15 and 0.25, 255
referred to as the edge connection probability. Adjacent 256
points are connected by edges with the probability P . This 257
creates varied density in the overall environment as different 258
subchuncks have different P s. 259

Edge thickness: For each subchunk we assign a thickness 260
T , chosen randomly between 0.4 and 0.6. Finally, we mesh 261
the 3D environment by adding rectangular prisms around 262
each edge, with thickness corresponding to the subchunks 263
assigned value of T . 264

An example of the generated environment is shown in 265
Figure 5. 266

Scene Setup Once the seed 3D mesh and the random 3D 267
grid environment are ready, we place the seed meshes inside 268
the environment. This is done by offsetting the bounding- 269
box center of the seed to the environment’s center. Then, 270
the seed is rotated randomly between 0 and 2π around each 271
axis. We perform an initial global scaling to adjust the sur- 272
face area of the seed mesh to 1, followed by an additional 273
random scaling of ±25%. We then apply another set of 274
anisotropic scaling of ±50% to each axis independently. 275

These augmented steps introduce variability to the initial 276
seed conditions, allowing for further diversity in the grown 277
samples. 278
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Figure 7. Cross-sectional slices of a genus 5 object with Voronoi mesh displacement mapping and 3 octaves of 3D Perlin noise.

Deformations In this step, we aim to induce geometric279
complexity by forcing the surface area to increase within280
randomized constrained environments. To achieve this, we281
use the Repulsive Surfaces (RS) algorithm [18]. Intuitively,282
this is similar to growing a simpler ‘seed’ mesh into a larger,283
more complex form through iterative homeomorphic defor-284
mations. Typically, the RS algorithm is used to deform a285
complex manifold into a simpler equivalent form; however,286
in our approach, we reverse this goal and use it to add more287
complexity. The algorithm works by pushing apart pairs288
of points in an attempt to maintain a uniform distribution.289
This is combined with energy minimization, which is deter-290
mined by the relationship between a points spacial distance291
and surface distance (curved surfaces have shorter pathways292
in spatial coordinates than surface coordinates), which pe-293
nalizes objects with greater variance, see [18].294

Since the generated sample is in mesh form, many295
surface mapping deformations can be applied. We used296
Blender [1] to apply a Voronoi displacement map, a method297
that subdivides a surface into regions based on proximity298
to a set of points, resulting in a distinct, organic-looking299
pattern. Voronoi is particularly useful for creating unique300
surface geometries, adding variation and breaking up the301
smoothness of the mesh. This displacement was applied302
with an intensity of 0.5 and a size of 0.1 to introduce surface303
variations, centered around the midlevel of the mesh. This304
approach was chosen to ensure each mesh has a unique, tex-305
tured appearance, though other texture maps or real-world306
images could be used depending on the desired application.307

Subsampling The final mesh, after all deformations, was308
sampled into a 3D voxel space with a 2563 resolution. We309
then generated three octaves of Perlin noise, a gradient noise310
algorithm commonly used in procedural texture generation,311
and applied them to the voxel space. Perlin noise creates312
smooth, continuous variations, which are particularly ef-313
fective for adding natural-looking randomness to the voxel314
grid. Each octave represents a layer of noise with different315
frequencies and intensities, allowing for more complex sur-316
face deformations. In this context, the scale adjusts the size317
of the noise patterns, with lower values producing larger,318
more prominent features. The threshold defines which parts319

of the noise should be considered significant enough to al- 320
ter the voxel space. The first octave using a scale of 4 and 321
threshold of 0.5 which was added to the cube. The sec- 322
ond octave using a scale of 8 and threshold of 0.55 which 323
was added to the cube. The third octave using a scale of 16 324
and threshold of 0.55 which was subtracted from the cube. 325
Afterwards, a smoothing step was performed by applying a 326
Gaussian filter to the 3D voxel data with a standard devia- 327
tion σ = 0.25 to achieve a smoother representation. These 328
noise, scale, and resolution settings are easily configurable 329
for different objectives. An example result is illustrated in 330
Figure 7. These 2D slices are cross-sections of the sample 331
shown in Figure 6. The generation time of these samples 332
can be seen in Appendix 6.3. Next, we provide the specifi- 333
cations for the final generated RG Repulse data. 334

Figure 8. Examples of complexity levels for a genus 3 sample in
the RG dataset. Each sample contains 8192 points. Complexity
levels [0 − 5] for objects of genus 10 can also be seen in Ap-
pendix 6.1

RG Dataset Specifications The 21 seed meshes, each 335
consisting of 1-dimensional holes ranging from 0 to 20, 336
were grown in unique random environments with surface 337
area increases ranging from 15–20x. Complexity levels be- 338
tween 0 and 5 were assigned at each 20% of the samples 339
overall growth. See Figure 8 for example complexity lev- 340
els. These samples were then converted into voxel cubes 341
with a 2563 resolution. Finally, the RG dataset comprises 342
6,366 training samples and 1,456 test samples. 343
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Table 2. Class (hole count) vs complexity accuracy (%) of 3DCTN (soft heatmap version).

Class 0 1 2 3 4 5

0 100.00% 93.33% 86.67% 66.67% 66.67% 60.00%
1 100.00% 80.00% 60.00% 40.00% 40.00% 20.00%
2 87.50% 68.75% 62.50% 50.00% 56.25% 43.75%
3 100.00% 60.00% 30.00% 10.00% 10.00% 10.00%
4 100.00% 92.31% 69.23% 46.15% 30.77% 38.46%
5 100.00% 94.44% 55.56% 44.44% 38.89% 44.44%
6 100.00% 81.82% 63.64% 54.55% 54.55% 54.55%
7 92.31% 84.62% 53.85% 30.77% 23.08% 23.08%
8 100.00% 100.00% 75.00% 75.00% 50.00% 75.00%
9 66.67% 66.67% 33.33% 33.33% 33.33% 16.67%

10 76.92% 84.62% 84.62% 69.23% 53.85% 46.15%
11 100.00% 100.00% 53.85% 38.46% 23.08% 15.38%
12 100.00% 100.00% 84.62% 69.23% 61.54% 46.15%
13 100.00% 100.00% 100.00% 75.00% 75.00% 58.33%
14 100.00% 100.00% 100.00% 36.36% 45.45% 36.36%
15 100.00% 100.00% 100.00% 100.00% 90.91% 72.73%
16 100.00% 100.00% 80.00% 60.00% 60.00% 50.00%
17 100.00% 100.00% 100.00% 78.57% 71.43% 71.43%
18 90.00% 100.00% 90.00% 60.00% 50.00% 30.00%
19 100.00% 100.00% 100.00% 90.91% 90.91% 81.82%
20 58.33% 66.67% 58.33% 58.33% 41.67% 41.67%

4. Experimental Results344

We used our labeled dataset ‘RG Repulse,’ generated using345
the algorithm described in the previous section, to train a346
3D Convolutional Transformer Network (3DCTN, [9]) for347
topological classification based on Betti numbers, specifi-348
cally β1. This section outlines the experimental results re-349
garding the model training and performance. The parame-350
ters used for training are detailed in Table 3.351

Results The 2563 resolution voxel cubes in the RG352
dataset were uniformly sampled into 8,192 points to gener-353
ate a sparser point cloud. This subsampling requires fewer354
computational resources than the original 16 million points.355
The 3DCTN results on the test set are shown in Table 2.356

Table 3. Training parameters

Parameter Value Parameter Value

Model 3DCTN Learning rate 0.01
Optimizer SGD Weight decay 0.0001

Point count 8192 Epoch 300

5. Discussion and Conclusion 357

The results of the RG experiment demonstrated a decrease 358
in accuracy as complexity levels increased. This suggests 359
that greater homeomorphic deformation introduces more 360
variability and challenge within the samples. Such vari- 361
ability is ideal for training neural networks for TDA tasks, 362
which are invariant to geometric differences. The diversity 363
in appearance across topologically equivalent samples can 364
help mitigate overfitting. Additionally, this dataset has po- 365
tential utility beyond machine learning models, including 366
for the evaluation of persistent homology algorithms. 367

Previous experiments [12] conducted on the WFC 368
dataset—which featured samples with lower hole counts, 369
smoother surfaces, and point cloud formats—demonstrated 370
the capability of transformers to segment data using topo- 371
logical labels. Per-point segmentation enables each object 372
within a scene to be identified, classified, and localized. 373
This is valuable because it allows for the preservation and 374
analysis of relationships between metric, geometric, and 375
topological properties such as size, volume, and shape. 376

By adjusting parameters like seeds, growth rates, sample 377
sizes, hole sizes, and post-processing techniques, we gain 378
substantial control over the appearance and properties of the 379
generated samples. This flexibility is evident in the differ- 380
ences between the WFC and RG datasets. For real-world 381
applications, this process can be tailored to replicate key 382
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aspects of actual data. Consequently, transfer learning can383
then be applied using smaller real-world datasets where af-384
ter some understanding of topological structures exists.385

Topological Data Analysis (TDA) is a rapidly growing386
field with an increasing need for labeled datasets. The data387
generation method presented in this paper aims to address388
this gap by providing data that is both rich in topological389
variety and appropriately labeled. Our experiments demon-390
strate the viability of this dataset generation technique, as391
well as the inherent challenges associated with it. Concep-392
tually, TDA presents different challenges compared to con-393
ventional classification tasks due to the significant visual394
differences between objects of the same topological class.395
This synthetic data allows researchers to explore and eval-396
uate specific topological features without interference from397
extraneous variables that may be present in real-world data.398
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6. Appendix472

6.1. Complexity levels473

This section includes figures for objects of genus 3 and474
genus 10 and their corresponding complexity levels within475
the RG dataset.476

Genus 3

Genus 10

Figure 9. Examples of complexity levels 0–5 for genus
3 and 10 in the RG dataset. Each sample contains 8192
points.

6.2. Wave Function Collapse Algorithm 477

The following is psuedo code for a tile based imple- 478
mentation of the WFC algorithm. It involves the pre- 479
determination of tiles and subsequent adjacency rules. 480

Initialize grid with uncollapsed cells;
Initialize tile set with all possible tiles and their
neighbour rules;

while there are uncollapsed cells in the grid do
Select the cell with the lowest entropy (least
number of possible tiles);

if there are multiple cells with the same entropy
then

Select one randomly;
end
Collapse the selected cell by choosing a tile
randomly from its possible tiles;
// Propagate constraints
for each neighbour of the collapsed cell do

Update the neighbour’s possible tiles based
on the neighbour rules;

if the neighbour’s possible tiles list changes
then

Mark the neighbour for further
constraint propagation;

end
end
Propagate constraints recursively until no
further changes occur;

end
if grid is fully collapsed then

return completed grid;
end
else

handle contradiction (e.g., restart or backtrack);
end

Algorithm 1: Wave Function Collapse Algorithm (Tile-
Based) [5]

6.3. RG Dataset Generation Time 481
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Table 4. Average computation time for different genus manifolds in the ‘RG Repulse’ dataset (minutes) using 24-core Intel Xeon Scalable
‘Cascade Lake’ processors. Samples were grown across multiple CPUs in parallel with each sequence being allocated 2 cores.

Genus 0-6 g0 g1 g2 g3 g4 g5 g6
Average Time (min) 117.6 51.3 76.4 96.2 139.5 150.3 175.3

Genus 7-13 g7 g8 g9 g10 g11 g12 g13
Average Time (min) 192.1 208.1 209.2 211.1 226.8 232.1 227.9

Genus 14-20 g14 g15 g16 g17 g18 g19 g20
Average Time (min) 237.6 235.7 233.5 221.9 222.8 220.6 223.83
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