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Abstract

Topological Data Analysis (TDA) involves techniques of an-
alyzing the underlying structure and connectivity of data.
However, traditional methods like persistent homology can
be computationally demanding, motivating the development
of neural network-based estimators capable of reducing
computational overhead and inference time. A key barrier
to advancing these methods is the lack of labeled 3D data
with class distributions and diversity tailored specifically
for supervised learning in TDA tasks. To address this, we
introduce a novel approach for systematically generating
labeled 3D datasets using the Repulsive Surface algorithm,
allowing control over topological invariants, such as hole
count. The resulting dataset offers varied geometry with
topological labeling, making it suitable for training and
benchmarking neural network estimators. This paper uses
a synthetic 3D dataset to train a genus estimator network,
created using a 3D convolutional transformer architecture.
An observed decrease in accuracy as deformations increase
highlights the role of not just topological complexity, but
also geometric complexity, when training generalized esti-
mators. This dataset fills a gap in labeled 3D datasets and
generation for training and evaluating models and tech-
niques for TDA.

1. Introduction

The shape of an object is an essential feature that can be
used for classification. Topology is the branch of mathe-
matics that formalizes the study of shapes through a rig-
orous analysis of connectivity, cavities, and holes within
an object. Topological Data Analysis (TDA), a relatively

Figure 1. A 2D slice of a sample generated using the technique
outlined in Sec. 3. The 2D binary image shows 6 holes across 4
disconnected objects. Top: raw sample. Bottom: annotated analy-
sis.

new field at the intersection of mathematics, computer sci-
ence, and data science, focuses on analyzing the shape of
data or objects [4, 7]. TDA offers powerful tools, such as
Persistent Homology (PH), for understanding complex data
by extracting topological features like n-dimensional holes,



Figure 2. Random growth of interlinked genus 2 (green) and genus 3 (brown) objects using the method outlined in Sec. 3. Visualisation
performed in Blender 3.0.1. [1]

which uncover underlying patterns and relationships.
While Persistent Homology is a powerful tool, it has cer-

tain drawbacks, such as high computational cost, particu-
larly for large datasets. To address this, machine learning
techniques have been proposed and successfully applied to
extract topological features and signatures [3, 6, 11, 12].
The underlying idea behind these studies is to bypass the
persistent homology computation and directly estimate or
predict topological invariants, such as Betti numbers and
genus, through neural networks to reduce computational
cost and gain additional insights. Additionally, neural net-
works have been employed in various other TDA tasks, in-
cluding analyzing outputs from traditional techniques like
persistent homology for applications such as medical diag-
nosis and classification [2, 13, 17].

Approaches that bypass PH computation and directly es-
timate topological invariants typically require large datasets
for training and testing. The availability of such extensive
data repositories is a major bottleneck in the further devel-
opment of this area. Our current work addresses this issue
by proposing a new method to synthetically generate com-
plex and versatile labeled datasets suitable for the training
and testing of neural networks in topological classification.

An example of a visual approach to estimating hole
counts in 2D data can be seen in Fig. 1. This example is
a 2D cross-section of the 3D generation process outlined in
Sec. 3.

Our method utilizes the Repulsive Surfaces algo-
rithm [18] to perform homeomorphic (i.e., topology-
preserving) deformations with randomized parameters and
environmental constraints. This process generates a se-
quence of 3D data with known labels through an iterative
growth mechanism, as illustrated in Fig. 6. This data gener-
ation approach allows for:

• Incremental complexity in the generated data, making it
suitable for both 3D or time-series 3D tasks. This also al-
lows the accuracy of a model to be assessed at various
geometrically complex stages while retaining the same

topological complexities.
• Customizable growth configurations, allowing for adap-

tation to various applications and styles.
Our method fills a critical gap in accessible, topologi-

cally labeled 3D/4D data and has been utilized to train neu-
ral networks for TDA tasks using ‘Betti Number’ topolog-
ical signatures (in a form we refer to as ‘genus’ in this pa-
per, see Sec. 2). We demonstrate the efficacy of this syn-
thetic data generation method through experiments with a
3D Convolutional Transformer Network (3DCTN) [9]. The
dataset used in these experiments is called the Random Grid
Repulse Dataset, or simply ‘RG Repulse.’ Details of the
generation process are provided in Sec. 4.

1.1. Related Works
Previous studies have used a variety of datasets and out-
put structures to perform TDA on raw input data. One
line of work has applied convolutional neural network ar-
chitectures to estimate the Betti numbers of 2D and 3D
data [11]. The 2D model was trained on image data consist-
ing of randomly placed circles with randomized radii, and
for the 3D model, this approach was scaled into 3D with
random spheres embedded in a volumetric space. The con-
cept has also been extended to 4D, where a synthetic dataset
introduced higher-dimensional holes through cutouts from
a solid 4D structure, with objects randomly scaled and ro-
tated [6].

Deep learning models have also been developed to
estimate topological features directly from images [15].
For example, Pi-Net was trained using datasets such as
SVHN [10], CIFAR10, and CIFAR100 [8]. The SVHN
dataset features photos of house numbers, while CIFAR100
includes 100 common classes such as ship’ or dog’.

Other efforts have focused on 3D point cloud TDA, with
one approach sampling point clouds from the surface of
objects in the ModelNet10 dataset [16] to train a RipsNet
model designed for topological feature extraction [3]. A
similar strategy was employed to train TopologyNet using



the expanded ModelNet40 dataset, which includes 40 object
classes instead of 10 [19].

A key limitation across these studies is dataset availabil-
ity. Datasets like CIFAR100, SVHN, and ModelNet40 con-
tain strong correlations between the geometrical and topo-
logical properties of the objects. For example, recogniz-
ing that an object is a ‘mug’ inherently provides informa-
tion about its toroidal topology. This correlation makes it
difficult for networks to learn topological features indepen-
dently of geometrical ones, potentially leading to overfit-
ting. Additionally, these datasets possess fewer hole counts
and limited topological complexity, restricting the variety
of topological features. Finally, the distribution of samples
in these datasets is optimized for object classification, not
for balancing topological features like Betti numbers.

A previous study introduced the WFC Repulse dataset
[12], which aimed to mitigate these limitations by gener-
ating synthetic data with varying topological complexity.
This approach involved creating 3D scenes with multiple
objects, each having a different genus (number of β1 holes).
This method allowed for controlled topological complexity,
which was used to train transformer networks for TDA.

This paper builds upon the WFC Repulse dataset by ex-
panding and refining the generation process. The differ-
ences include the selection of generation parameters, envi-
ronment generation, post-processing, data format and hole
counts. The previous method used uniform mesh-surface
sampling in 4096 point clouds, while the proposed method
converts the meshes to voxel cubes to better simulate use
cases such as medical scans or material science scans. This
voxel data can then be treated as a volumetric cube (3D
voxel data) or converted to a point cloud for common neural
network architecture pipelines.

2. Background in Topology
In this section we will briefly recall the basic notions in
topology that are used in TDA and then describe the stan-
dard pipeline of Persistent Homology computation. For fur-
ther reading see [4, 7].

A geometric k-simplex is the convex hull of k+1 affinely
independent points in Rd. For example, a point is a 0-
simplex, an edge is a 1-simplex, a triangle is a 2-simplex,
and a tetrahedron is a 3-simplex. A subset simplex is called
a face of the original simplex. A geometric simplicial com-
plex is a collection of geometric simplices that intersect
only at their common faces and are closed under the face
relation. See Fig. 3 for an example. A filtration or a filtered
simplicial complex is a sequence of nested simplicial com-
plexes indexed by a scale parameter.
Homology, is a tool from algebraic topology to quantify the
number of k-dimensional topological features (or holes) in
a topological space, such as a simplicial complex. For in-
stance, H0 the zero degree homology classes describe the
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Figure 3. Example of a simplicial complex

number of connected components, H1 the one degree ho-
mology classes describe the number of loops, and H2, the
two dimensional homology classes quantifies voids or cav-
ities. The ranks of these homology groups are referred to
as Betti numbers. In particular, the Betti number βk corre-
sponds to the number of k-dimensional holes. In Fig. 3 the
Betti numbers are as follows, β0 = 1, β1 = 1, and ∀k ≥
2, βk = 0. Tab. 1 shows the list of non-zero Betti numbers
for all connected compact oriented 2-manifolds [14] along
with other topological invariants such as genus g and Euler
Characteristic χ = β0 − β1 + β2, which in this case are
related as follows g = β1

2 = −χ−2
2 .

Table 1. Genus (g), Betti numbers (βn), and Euler characteristic
(χ) of closed compact orientable surfaces.

Surface M g β0 β1 β2 χ

Sphere S2 0 1 0 1 2
Torus T 2 1 1 2 1 0
g-holed torus T 2# . . .#T 2 g 1 2g 1 2-2g

In a standard pipeline of persistent homology compu-
tation, a dataset, typically represented as a point cloud in
a metric space, is used to first build a filtered simplicial
complex which is used to construct a boundary matrix
which is then finally reduced in a special form to read off
the persistent homology. A common method for construct-
ing such filtered simplicial complex is the Vietoris-Rips
complex. This complex is formed by connecting data
points that lie within a certain distance from each other,
progressively increasing the complexity of the structure
as the distance threshold grows. The idea of filtration
is used to analyze data across multiple scales. As the
filtration parameter (here the distance threshold) increases,
new simplices are added, enabling the tracking of how
topological features, such as Betti numbers, emerge and
disappear across different scales.



(a) (b) (c)

Figure 4. Process from structure to synthetic object: (a) shows a genus 5 seed structure; (b) demonstrates an environment generated using
the random grid method; and (c) displays the final genus 5 object, represented as a mesh with Voronoi surface displacement mapping.

3. Synthetic Data Generation

In a previous study, [12] created a synthetic dataset called
the WFC Repulse dataset using the Wave Function Collapse
algorithm [5] and Repulsive Surfaces algorithm [18]. This
study demonstrated the viability of the proposed data gener-
ation method for topological training and assessed the seg-
mentation ability of neural networks using topological sig-
natures. Building on that, we describe how this method has
been altered to produce a new RG Dataset.

We begin by outlining the basic steps of the data gen-
eration process. This process can be adapted to generate
various types of datasets depending on the learning task.

1. Seed: This step manually creates a ‘seed’ object in the
form of a 3D mesh with known topology.

2. Environment: Next, a randomly generated ‘environment’
was generated to grow the seed within. This environment
will act as a constraint on which the seed will grow.

3. Scene setup: Then, the seed is randomly placed inside
the environment using random placement and scaling.

4. Deformations: Next, the Repulsive Surfaces algorithm is
used increase the seeds surface area within the environ-
mental constraint. This process deforms the seed object
without altering its topology.

5. Subsampling: Finally, the grown seed can be con-
verted into a voxel or point cloud form with various
noise/scaling applied.

The approach outlined above was common in both the
previous study’s WFC dataset [12] and the new RG Dataset.
The key differences include the hole count which was raised
from [0−3] to [0−20]. The WFC Dataset was processed to a
point cloud format via mesh surface sampling, while the RG
Dataset was aimed to emulate 3D pixel data such as medical
or material science scans. This involved voxelization and
noise additions. The environment generation method was
also changed from the wave function collapse algorithm to
a new random grid approach. The random grid process is
outlined below and the Wave Function Collapse algorithm

can be seen in Appendix A.1. The creation of a random grid
allowed more flexibility and control in the scale, thickness
and density of sections and used real number parameters for
placement and thickness over discrete tile cells.

Now, we will explain each of the above outlined steps in
more detail to generate the current RG Repulse dataset.

Seed We manually created 21 seed meshes for the RG Re-
pulse dataset. Each of these meshes has a different number
of 1-dimensional holes (β1, genus), ranging from 0 to 20.
See Fig. 4a for an example genus 5 seed.

Random Grid Environment A unique environment is
generated for every grown seed in the RG dataset. As the
seed is grown within the environment, the geometry of the
environment will determine aspects of the grown samples.
We start this generation by dissecting a cube with a side
length of 20 into 53 smaller cubic chunks, each with a side
length of 4. Each of these smaller chunks is assigned dif-
ferent randomized parameters to create distinct sub-regions
in the environment. Having different regions will produce
geometric diversity as the sample in constrained in different
ways. These random parameters include:

Axis resolution: A random resolution between 2 and 4
is selected for each axis in the subchunk, denoted as xres,
yres, and zres. This produces a 3D grid of points compris-
ing xres ×yres × zres points for each subchuck separately.

Connection probability: For each subchunk we assign
a probability P , randomly chosen between 0.15 and 0.25,
referred to as the edge connection probability. Adjacent
points are connected by edges with the probability P . This
creates varied density in the overall environment as different
subchuncks have different P s.

Edge thickness: For each subchunk we assign a thickness
T , chosen randomly between 0.4 and 0.6. Finally, we mesh
the 3D environment by adding rectangular prisms around
each edge, with thickness corresponding to the subchunks
assigned value of T .



Figure 5. Cross-sectional slices of a genus 5 object with Voronoi mesh displacement mapping and 3 octaves of 3D Perlin noise.

An example of the generated environment is shown in
Fig. 4b.

Scene Setup Once the seed 3D mesh and the random 3D
grid environment are ready, we place the seed meshes inside
the environment. This is done by offsetting the bounding-
box center of the seed to the environment’s center. Then,
the seed is rotated randomly between 0 and 2π around each
axis. We perform an initial global scaling to adjust the sur-
face area of the seed mesh to 1, followed by an additional
random scaling of ±25%. We then apply another set of
anisotropic scaling of ±50% to each axis independently.

These augmented steps introduce variability to the initial
seed conditions, allowing for further diversity in the grown
samples.

Deformations In this step, we aim to induce geometric
complexity by forcing the surface area to increase within
randomized constrained environments. To achieve this, we
use the Repulsive Surfaces (RS) algorithm [18]. Intuitively,
this is similar to growing a simpler ‘seed’ mesh into a larger,
more complex form through iterative homeomorphic defor-
mations. Typically, the RS algorithm is used to deform a
complex manifold into a simpler equivalent form; however,
in our approach, we reverse this goal and use it to add more
complexity. The algorithm works by pushing apart pairs
of points in an attempt to maintain a uniform distribution.
This is combined with energy minimization, which is deter-
mined by the relationship between a points spacial distance
and surface distance (curved surfaces have shorter pathways
in spatial coordinates than surface coordinates), which pe-
nalizes objects with greater variance, see [18].

Since the generated sample is in mesh form, many
surface mapping deformations can be applied. We used
Blender [1] to apply a Voronoi displacement map, a method
that subdivides a surface into regions based on proximity
to a set of points, resulting in a distinct, organic-looking
pattern. Voronoi is particularly useful for creating unique
surface geometries, adding variation and breaking up the
smoothness of the mesh. This displacement was applied
with an intensity of 0.5 and a size of 0.1 to introduce surface
variations, centered around the midlevel of the mesh. This

approach was chosen to ensure each mesh has a unique, tex-
tured appearance, though other texture maps or real-world
images could be used depending on the desired application.

Figure 6. Examples of complexity levels for a genus 3 sample in
the RG dataset. Each sample contains 8192 points. Complexity
levels [0 − 5] for objects of genus 10 can also be seen in Ap-
pendix A.3.

Subsampling The final mesh, after all deformations, was
sampled into a 3D voxel space with a 2563 resolution. We
then generated three octaves of Perlin noise, a gradient noise
algorithm commonly used in procedural texture generation,
and applied them to the voxel space. Perlin noise creates
smooth, continuous variations, which are particularly ef-
fective for adding natural-looking randomness to the voxel
grid. Each octave represents a layer of noise with different
frequencies and intensities, allowing for more complex sur-
face deformations. In this context, the scale adjusts the size
of the noise patterns, with lower values producing larger,
more prominent features. The threshold defines which parts
of the noise should be considered significant enough to al-
ter the voxel space. The first octave using a scale of 4 and
threshold of 0.5 which was added to the cube. The sec-
ond octave using a scale of 8 and threshold of 0.55 which
was added to the cube. The third octave using a scale of 16
and threshold of 0.55 which was subtracted from the cube.
Afterwards, a smoothing step was performed by applying a
Gaussian filter to the 3D voxel data with a standard devia-
tion σ = 0.25 to achieve a smoother representation. These
noise, scale, and resolution settings are easily configurable



Table 2. Class (hole count) vs complexity accuracy (%) of 3DCTN hole count estimation.

Class 0 1 2 3 4 5

0 100.00% 93.33% 86.67% 66.67% 66.67% 60.00%
1 100.00% 80.00% 60.00% 40.00% 40.00% 20.00%
2 87.50% 68.75% 62.50% 50.00% 56.25% 43.75%
3 100.00% 60.00% 30.00% 10.00% 10.00% 10.00%
4 100.00% 92.31% 69.23% 46.15% 30.77% 38.46%
5 100.00% 94.44% 55.56% 44.44% 38.89% 44.44%
6 100.00% 81.82% 63.64% 54.55% 54.55% 54.55%
7 92.31% 84.62% 53.85% 30.77% 23.08% 23.08%
8 100.00% 100.00% 75.00% 75.00% 50.00% 75.00%
9 66.67% 66.67% 33.33% 33.33% 33.33% 16.67%

10 76.92% 84.62% 84.62% 69.23% 53.85% 46.15%
11 100.00% 100.00% 53.85% 38.46% 23.08% 15.38%
12 100.00% 100.00% 84.62% 69.23% 61.54% 46.15%
13 100.00% 100.00% 100.00% 75.00% 75.00% 58.33%
14 100.00% 100.00% 100.00% 36.36% 45.45% 36.36%
15 100.00% 100.00% 100.00% 100.00% 90.91% 72.73%
16 100.00% 100.00% 80.00% 60.00% 60.00% 50.00%
17 100.00% 100.00% 100.00% 78.57% 71.43% 71.43%
18 90.00% 100.00% 90.00% 60.00% 50.00% 30.00%
19 100.00% 100.00% 100.00% 90.91% 90.91% 81.82%
20 58.33% 66.67% 58.33% 58.33% 41.67% 41.67%

for different objectives. An example result is illustrated in
Fig. 5. These 2D slices are cross-sections of the sample
shown in Fig. 4c. The generation time of these samples can
be seen in Appendix A.2. Next, we provide the specifica-
tions for the final generated RG Repulse data.

RG Dataset Specifications The 21 seed meshes, each
consisting of 1-dimensional holes ranging from 0 to 20,
were grown in unique random environments with surface
area increases ranging from 15–20x. Complexity levels be-
tween 0 and 5 were assigned at each 20% of the samples
overall growth. See Fig. 6 for example complexity levels.
These samples were then converted into voxel cubes with
a 2563 resolution. Finally, the RG dataset comprises 6,366
training samples and 1,456 test samples.

4. Experimental Results

We used our labeled dataset ‘RG Repulse,’ generated using
the algorithm described in the previous section, to train a
3D Convolutional Transformer Network (3DCTN, [9]) for
topological classification based on Betti numbers, specifi-
cally β1. This section outlines the experimental results re-
garding the model training and performance. The parame-
ters used for training are detailed in Tab. 3.

Results The 2563 resolution voxel cubes in the RG
dataset were uniformly sampled into 8,192 points to gener-
ate a sparser point cloud. This subsampling requires fewer
computational resources than the original 16 million points.
The 3DCTN results on the test set are shown in Tab. 2.

Table 3. Training parameters

Parameter Value Parameter Value

Model 3DCTN Learning rate 0.01
Optimizer SGD Weight decay 0.0001

Point count 8192 Epoch 300

5. Discussion and Conclusion
The results of the RG experiment demonstrated a decrease
in accuracy as complexity levels increased. This suggests
that greater homeomorphic deformation introduces more
variability and challenge within the samples. Such vari-
ability is ideal for training neural networks for TDA tasks,
which are invariant to geometric differences. The diversity
in appearance across topologically equivalent samples can
help mitigate overfitting. Additionally, this dataset has po-
tential utility beyond machine learning models, including
for the evaluation of persistent homology algorithms.

Previous experiments [12] conducted on the WFC



dataset—which featured samples with lower hole counts,
smoother surfaces, and point cloud formats—demonstrated
the capability of transformers to segment data using topo-
logical labels. Per-point segmentation enables each object
within a scene to be identified, classified, and localized.
This is valuable because it allows for the preservation and
analysis of relationships between metric, geometric, and
topological properties such as size, volume, and shape.

By adjusting parameters like seeds, growth rates, sample
sizes, hole sizes, and post-processing techniques, we gain
substantial control over the appearance and properties of the
generated samples. This flexibility is evident in the differ-
ences between the WFC and RG datasets. For real-world
applications, this process can be tailored to replicate key
aspects of actual data. Consequently, transfer learning can
then be applied using smaller real-world datasets, provided
that some understanding of topological structures exists.

TDA is a rapidly growing field with an increasing need
for labeled datasets. The data generation method presented
in this paper aims to address this gap by providing data
that is both rich in topological variety and appropriately la-
beled. Our experiments demonstrate the viability of this
dataset generation technique, as well as the inherent chal-
lenges associated with it. Conceptually, TDA presents dif-
ferent challenges compared to conventional classification
tasks due to the significant visual differences between ob-
jects of the same topological class. This synthetic data al-
lows researchers to explore and evaluate specific topologi-
cal features without interference from extraneous variables
that may be present in real-world data.
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Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse, and
Frédéric Chazal. Ripsnet: a general architecture for fast
and robust estimation of the persistent homology of point
clouds. In Topological, Algebraic and Geometric Learning
Workshops 2022, pages 96–106. PMLR, 2022. 2

[4] H. Edelsbrunner and J. Harer. Computational Topology: An
Introduction. American Mathematical Society, 2010. 1, 3

[5] Maxim Gumin. Wavefunctioncollapse. GitHub repository,
2016. 4, 8

[6] Khalil M. Hannouch and Stephan Chalup. Learning to see
topological properties in 4d using convolutional neural net-
works. In Proceedings of 2nd Annual Workshop on Topol-
ogy, Algebra, and Geometry in Machine Learning (TAG-
ML), PMLR, pages 437–454, 2023. 2

[7] Allen Hatcher. Algebraic Topology. Cambridge University
Press, Cambridge, UK, 2002. 1, 3

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report 0, Uni-
versity of Toronto, Toronto, Ontario, 2009. 2

[9] Dening Lu, Qian Xie, Kyle Gao, Linlin Xu, and Jonathan Li.
3dctn: 3d convolution-transformer network for point cloud
classification. IEEE Transactions on Intelligent Transporta-
tion Systems, pages 1–12, 2022. 2, 6

[10] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning
2011, 2011. 2

[11] Rahul Paul and Stephan Chalup. Estimating betti numbers
using deep learning. In 2019 International Joint Conference
on Neural Networks (IJCNN), pages 1–7. IEEE, 2019. 2

[12] Dylan Peek, Matt Skerritt, and Stephan Chalup. Synthetic
data generation and deep learning for the topological analy-
sis of 3d data. In International Conference on Digital Image
Computing: Techniques and Applications (DICTA 2023),
pages 121–128. IEEE. arXiv:2309.16968. 2, 3, 4, 6

[13] Matteo Rucco, Lorenzo Falsetti, Damir Herman, Tanya Pet-
rossian, Emanuela Merelli, Cinzia Nitti, and Aldo Salvi. Us-
ing topological data analysis for diagnosis pulmonary em-
bolism. arXiv preprint arXiv:1409.5020, 2014. 2

[14] Herbert Seifert and William Threlfall. Lehrbuch der Topolo-
gie. Teubner, Leipzig, 1934. 3

[15] Anirudh Som, Hongjun Choi, Karthikeyan Natesan Rama-
murthy, Matthew P Buman, and Pavan Turaga. Pi-net: A
deep learning approach to extract topological persistence im-
ages. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 834–
835, 2020. 2

[16] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1912–1920, 2015. 2

[17] Takehiko Yamanashi, Mari Kajitani, Masaaki Iwata, Kait-
lyn J Crutchley, Pedro Marra, Johnny R Malicoat, Jes-
sica C Williams, Lydia R Leyden, Hailey Long, Duachee Lo,
et al. Topological data analysis (tda) enhances bispectral eeg
(bseeg) algorithm for detection of delirium. Scientific Re-
ports, 11(1):1–9, 2021. 2

[18] Chris Yu, Caleb Brakensiek, Henrik Schumacher, and
Keenan Crane. Repulsive surfaces. arXiv preprint
arXiv:2107.01664, 2021. 2, 4, 5

[19] Chi Zhou, Zhetong Dong, and Hongwei Lin. Learning per-
sistent homology of 3d point clouds. Computers & Graphics,
102:269–279, 2022. 3



A. Appendix
A.1. Wave Function Collapse Algorithm
The following is psuedo code for a tile based implementation of the WFC algorithm. It involves the pre-determination of
tiles and subsequent adjacency rules.

Initialize grid with uncollapsed cells;
Initialize tile set with all possible tiles and their neighbour rules;
while there are uncollapsed cells in the grid do

Select the cell with the lowest entropy (least number of possible tiles);
if there are multiple cells with the same entropy then

Select one randomly;
end
Collapse the selected cell by choosing a tile randomly from its possible tiles;
// Propagate constraints
for each neighbour of the collapsed cell do

Update the neighbour’s possible tiles based on the neighbour rules;
if the neighbour’s possible tiles list changes then

Mark the neighbour for further constraint propagation;
end

end
Propagate constraints recursively until no further changes occur;

end
if grid is fully collapsed then

return completed grid;
end
else

handle contradiction (e.g., restart or backtrack);
end

Algorithm 1: Wave Function Collapse Algorithm (Tile-Based) [5]

A.2. RG Dataset Generation Time

Table 4. Average computation time for different genus manifolds in the ‘RG Repulse’ dataset (minutes) using 24-core Intel Xeon Scalable
‘Cascade Lake’ processors. Samples were grown across multiple CPUs in parallel with each sequence being allocated 2 cores.

Genus 0-6 g0 g1 g2 g3 g4 g5 g6
Average Time (min) 117.6 51.3 76.4 96.2 139.5 150.3 175.3

Genus 7-13 g7 g8 g9 g10 g11 g12 g13
Average Time (min) 192.1 208.1 209.2 211.1 226.8 232.1 227.9

Genus 14-20 g14 g15 g16 g17 g18 g19 g20
Average Time (min) 237.6 235.7 233.5 221.9 222.8 220.6 223.83



A.3. Complexity levels
This section includes figures for objects of genus 3 and genus 10 and their corresponding complexity levels within the RG
dataset.

Figure 7. Examples of complexity levels 0–5 for genus 3 and 10 in the RG dataset. Each sample contains 8192 points.
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