
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SARACODER: ORCHESTRATING SEMANTIC AND
STRUCTURAL CUES FOR RESOURCE-OPTIMIZED
REPOSITORY-LEVEL CODE COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite Retrieval-Augmented Generation improving code completion, traditional
retrieval methods struggle with information redundancy and a lack of diversity
within limited context windows. To solve this, we propose a resource-optimized
retrieval augmentation method, SARACODER. It maximizes information diver-
sity and representativeness in a limited context window, significantly boosting
the accuracy and reliability of repository-level code completion. Its core Hier-
archical Feature Optimization module systematically refines candidates by dis-
tilling deep semantic relationships, pruning exact duplicates, assessing structural
similarity with a novel graph-based metric that weighs edits by their topological
importance, and reranking results to maximize both relevance and diversity. Fur-
thermore, an External-Aware Identifier Disambiguator module accurately resolves
cross-file symbol ambiguity via dependency analysis. Extensive experiments on
the challenging CrossCodeEval and RepoEval-Updated benchmarks demonstrate
that SARACODER outperforms existing baselines across multiple programming
languages and models. Our work proves that systematically refining retrieval re-
sults across multiple dimensions provides a new paradigm for building more ac-
curate and resource-optimized repository-level code completion systems.

1 INTRODUCTION

Code Large Language Models (Code LLMs) Izadi et al. (2022); Li et al. (2022b); Allal et al. (2023),
built on the Transformer architecture and trained on massive code corpora. These models compress
vast programming knowledge into hundreds of millions of parameters and have been successfully
applied in numerous real-world development scenarios, and have significantly advanced the intelli-
gence of modern software development. However, these models often only process local information
within their context window. As codebases grow and development tasks become increasingly com-
plex, this limitation becomes more pronounced. Tasks like understanding functionality and fixing
bugs often require integrating a wide range of context, such as related API definitions, dependent
modules, and type constraints. Since the models cannot perceive information outside their window,
the suggestions they generate tend to be localized, often insufficient, and inaccurate.

Retrieval-Augmented Generation (RAG) Tang et al. (2023); Zan et al. (2022); Zhang et al. (2023)
overcomes the limitations of traditional models by introducing an external knowledge retrieval
mechanism. In this framework, an efficient retriever can dynamically fetch relevant code snippets,
API documentation, or type definitions from an external codebase in real time, thereby expanding
the model’s contextual awareness. The generative model then integrates these retrieval results with
the current context to produce syntactically correct, semantically consistent, and standard-compliant
code suggestions. Retrieval-Augmented Generation is gradually becoming a foundational technol-
ogy for achieving accurate and trustworthy repository-level intelligent code completion.

However, current Retrieval-Augmented Generation (RAG) methods for code completion often have
a single-aspect information problem. Methods like GraphCoder Liu et al. (2024b) focus on retriev-
ing similar code snippets, while others like DraCo Cheng et al. (2024) prioritize cross-file context.
This narrow focus overlooks the need to combine different types of information, even though devel-
opers in real-world settings require both cross-file context for project-wide consistency and similar

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

code snippets for structural reference and efficiency. Limited resources, such as a finite context win-
dow, make the effective fusion of these different information types a critical challenge. To make
matters worse, existing similarity-based retrieval methods have three major practical flaws. (a) Mis-
leading Superficial Similarity: They often retrieve irrelevant code snippets that share surface-level
similarities, which can mislead the model and result in incorrect or ineffective suggestions. (b) Re-
dundant Retrieval Homogenization: Relying solely on similarity ranking frequently yields redun-
dant or duplicate snippets. This wastes valuable context window space and provides a homogeneous,
narrow viewpoint, hindering the model’s ability to generate innovative or superior solutions. (c) Ex-
ternal Symbol Ambiguity: These methods fail to capture essential dependencies like unreferenced
classes or architectural rules. This ambiguity can trigger a cascade of errors, including failed type
inference and mismatched signatures, compromising the correctness and reliability of the generated
code. Ultimately, these flaws not only degrade the quality of retrieved information but also exacer-
bate the challenge of a finite context window by filling the limited space with irrelevant, repetitive,
or ambiguous data, thereby compromising the generation of correct and innovative code.

(a) Misleading Surface Similarity

Question：
positive_test_data = [-3, 0, 7, 2, -1, 4]
result = count_items(positive_test_data)
print(f"The number of positive numbers in
the list is: {result}")
def count_items(items):
 count = 0
 for item in items:
 // Complete the line

Traditional retrieval case：
positive_test_data = [-3, 0, 7, 2, -1, 4]
result = count_items(positive_test_data)
print(f"The sum of numbers in the list is:
{result}")
def sum_items(items):
 count = 0
 for item in items:
 count += item
 return count

(b) Redundant Retrieval Homogenization (c) External Symbol Ambiguity

Context： // Complete the last line of the code
Map<String, String> columnNames = ... ;
for (String columnName : updateColumn) {
 String fieldName = columnNames.get(columnName);
 if (StringUtils.isNotEmpty(fieldName)) {

CLM Answer：TableFieldUtil.setFieldValue(r, fieldName, columnName);

What We Want： TableFieldUtil.getFieldMap(r.getClass());

//from TableTest.java
for (ConfigItem item : changedItems) {
 String fieldName = configMap.get(item.key());
 if (fieldName != null) {
 TableFieldUtil.setFieldValue(configObj,
fieldName, item.value());
 }
}

Retrieval case：

package com.example.service;

import com.yourcompany.util.TableFieldUtil;
....

Map<String, String> columnNames = ... ;
for (String columnName : updateColumn) {

 String fieldName = columnNames.get(columnName);
 if (StringUtils.isNotEmpty(fieldName)) {

File to complete

Traditional retrieval prompt

No information about the class methods of
TableFieldUtil in the retrieved code cases

Retrieval without
Filtering

def calculate_average(numbers):
 total = sum(numbers)
 count = len(numbers)
 return total / count

from calculate.py

from table.py

from average.py

Traditional
Retrieval Queue

... ...

... ...

from calculate.py

Our Retrieval
Queue

More computing resources

 Semantic equivalence

Retrieval with
Filtering

 Fewer computing resources

Obscure the real demands

Misuse of methods Fabricate method parametersMisleading code generation

positive_test_data = [-3, 0, 7, -1, 4]
result = count_items(positive_test_data)
print(f"The number of positive numbers in
the list is: {result}")
def count_items(items):
 count = 0
 for item in items:
 if item > 0:
 count += 1
 return count

Our retrieval case：

 Accurate code generation

Our retrieval prompt

Context： // Complete the last line of the code
Map<String, String> columnNames = ... ;
for (String columnName : updateColumn) {
 String fieldName = columnNames.get(columnName);
 if (StringUtils.isNotEmpty(fieldName)) {
//from TableTest.java
for (ConfigItem item : changedItems) {
 String fieldName = configMap.get(item.key());
 ...

Retrieval case：

External Symbols: import com.yourcompany.util.TableFieldUtil;
//public class TableFieldUtil {
//public static Map<String, Field>
getFieldMap(Class<?> clazz) {

Information About
TableFieldUtil

Correct use of methods Authentic method parameters

def calculate_average(numbers):
 total = sum(numbers)
 count = len(numbers)
 return total / count

def calculate_average(numbers):
 total = sum(numbers)
 count = len(numbers)
 return total / count

def calculate_average(numbers):
 total = sum(numbers)
 count = len(numbers)
 return total / count

Figure 1: The pitfalls of pure similarity retrieval and the highlights of SARACODER. Pink boxes il-
lustrate traditional retrieval results based purely on surface similarity, while green boxes demonstrate
results from our method SARACODER.

To address these challenges, we introduce SARACODER, a Semantic-Aware Code Retrieval frame-
work with Redundancy Reduction and Ambiguity Suppression for Repository-Level Code Comple-
tion, that leverages hierarchical resource-optimization to enhance repository-level code completion
under resource-constrained conditions. By deeply mining relationships in code snippets, remov-
ing redundancy and optimized reranking, we provide LLMs with richer, higher-quality reference
cases while minimizing context window consumption. To address misleading superficial similar-
ity, we utilize semantic alignment distillation to capture deep semantic relationships and a graph-
based structural similarity metric, which weighs editing operations by topological importance to
assess the structural proximity of candidates to the target context. To combat redundant retrieval
homogenization, we integrate MD5-based deduplication pruning and diversity-aware reranking, en-
suring relevance while maximizing diversity. Additionally, to resolve external symbol ambiguity
in repository-level code completion, we introduce an external-aware identifier disambiguator that
analyzes project-level dependencies for LLMs. Our key contributions are:

• We propose SARACODER, a hierarchical and resource-optimized retrieval-augmented code com-
pletion framework. SARACODER has redefined its code completion goal from retrieving a large
volume of relevant code to providing the most valuable information within a limited context.

• As an intelligent information filter, SARACODER upgrades code completion by moving from
surface-level code matching to intelligent decision-making based on deep semantics and project
structure. This provides LLMs with high-quality, precise information, leading to more efficient
repository-level code completion within limited contexts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• SARACODER’s design allows it to maintain suggestion quality even with a nearly full context
window. This ensures that when complementing other methods that provide different information,
it minimizes negative interference and maximizes the preservation of their content. This synergy
enables it to complement orthogonally other methods that provide cross-file context, providing a
cooperative improvements when used in combination.

2 RELATED WORK

Current Retrieval-Augmented Generation methods for repo-level code completion mainly rely on
code similarity or cross-file dependencies.

2.1 SIMILAR CODE SNIPPET RETRIEVAL FOR RAG

This approach enhances the quality of code LLM generation by retrieving semantically similar
code snippets and integrating them into prompts, mimicking the reference behaviors of program-
mers. CodeSearchNet Husain et al. (2020) pioneers large-scale code corpora construction, providing
retrieval-based completion references; CodeRetriever Li et al. (2022a) integrates pretrained models
like CodeBERT Feng et al. (2020) to enhance complex scenario handling; ReACC Lu et al. (2022)
combines vector and string-based retrieval to significantly optimize long-code processing; Graph-
Coder Liu et al. (2024b) improves code completion by using program dependencies for structured
representations, allowing coarse-to-fine retrieval for Python and Java. However, like many other
methods, its dependency analysis does not fully grasp deep semantic relationships in code. Addi-
tionally, most approaches rely too much on surface-level textual similarity. This often results in
redundant retrieved content, wasting resources.

2.2 CROSS-FILE DEPENDENCY RETRIEVAL AUGMENTATION

This method approaches code completion in complex repositories by leveraging cross-file code con-
text (e.g., dependencies, dataflow, and subsequent similar code). Inspired by Ding et al.’s Ding et al.
(2023) observation that subsequent content of high-similarity snippets effectively informs comple-
tion, it injects these snippets into prompts. COCOMIC Ding et al. (2024) dynamically fuses the con-
text of this file with the cross-file entities retrieved by CCFinder (compressed into [SUM] vectors)
through a joint attention mechanism to achieve location-aware code completion. DraCo Cheng et al.
(2024) extends this paradigm through dataflow-guided retrieval, parsing private repositories into
code entities and constructing a repository-specific context graph reflecting dependencies. DraCo re-
trieves precise contextual knowledge from this graph to generate well-structured prompts, overcom-
ing cross-file information barriers and repository-specific accuracy gaps. Current limitations include
Python-exclusive implementation with type-sensitive dependencies lacking multilingual support.

2.3 REPOSITORY-LEVEL CODE COMPLETION EVALUATION

Traditional code completion benchmarks like Chen et al. (2021); Austin et al. (2021) focus on iso-
lated snippets, but modern software development’s complexity demands a better evaluation. To
address this, specialized benchmarks such as RepoEval Zhang et al. (2023), CrossCodeEval Ding
et al. (2023), RepoBench Liu et al. (2024a), and ReccEval Cheng et al. (2024) have emerged. They
provide standardized, rigorous tests across various languages and project scales. These benchmarks
divide repository-level code completion into two scenarios. (1) In-File Completion: A high-
frequency task that uses only the current file’s context (e.g., RepoEval). (2) Cross-File Comple-
tion: A more complex task that requires understanding and completing code with dependencies on
symbols from other files (e.g., CrossCodeEval and ReccEval). This shift highlights the move from
simple, isolated tests to comprehensive evaluations that reflect real-world coding environments.

3 METHOD

As shown in Figure 2, SARACODER is a hierarchical feature-optimized retrieval-enhanced code
completion framework. Formally, given a code context Ccontext = {x1, x2, · · · , xn} and its con-
taining file path F , the task aims to predict the next statement ỹ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Repository

Hierarchical Feature Optimization

 Retrieve
code snippets

similar to
unfinished

code context

Semantic Alignment
Distillation

Redundancy-Aware
Pruning

Topological
Proximity Metric

 Diversity-Aware
Reranking

 External-Aware Identifier Disambiguator

Unfinished
code and file

path
（input）

Unfinished
Code

Context

Import
Statement

Pe
r-

ch
ar

ac
te

r
M

D
5

ha
sh

in
g

Gr
ap

hc
od

eB
ER

T
se

m
an

ti
c

fi
lt
er

p

×to
p_

k

Su
bg

ra
ph

 E
di

t
D
is
ta

nc
e(

SE
D
)

Ca
lc
ul
at

or

To
p

SE
D

El

im
in

at
io

n
Re

se
rv

e

M
M

R
Sc

or
e

Ca
lc
ul
at

io
n

Static
analysis of
the import
statement

Enhanced
prompts

Search in
identifier
symbol
table

Function
def preprocess_data(raw: list) -> list:
 """Clean and normalize raw data"""
 cleaned = [x.strip() for x in raw if x]
 mean = sum(cleaned) / len(cleaned)
 return [x/mean for x in cleaned]

Class
class TextEncoder:

def __init__(self, vocab_size=5000):
def forward(self, inputs):
def Encoder(self, inputs):

Prompt Generation

Similar
Code

Snippet

External
Symbols

Enhancement

Unfinished
Code Context

Prompt

Predicted Statement
(Output)

 Unfinished Code Processing

 Database Construction

Program slicings

Induced
graph slices

Structured
codebases

M
ak

in
g

a
re

tr
ie

va
l r

eq
ue

st

Figure 2: An illustration of SARACODER framework. (1) Database Construction. This phase
constructs a key-value codebase. This involves using a slicing algorithm to create induced graph
slices, which are then precisely mapped to source code snippets. (2) Code Retrieval. This phase
takes code context as input and retrieves similar code, then refines suggestions via Hierarchical
Feature Optimization. Concurrently, an External-Aware Identifier Disambiguator clarifies external
symbols via dependency analysis, delivering highly accurate candidates. (3) Code Generation.
This phase generates prompts by integrating outputs from code retrieval with the code completion
context. These prompts are then fed into an LLM to predict completion statements.

3.1 DATABASE AND INITIAL CANDIDATE CONSTRUCTION

To better represent code logic, we introduce a multi-level code context graph model that integrates
control flow, data dependency, and control dependency Liu et al. (2024b). This structured repre-
sentation offers enhanced generalization capabilities compared to serialization methods, enabling
more effective capture of task-relevant context and facilitating easier adaptation to other languages.
We utilize program slicing to generate precisely mapped, task-relevant subgraphs from source code
on-demand, constructing structured codebases tailored to support specific analysis tasks. When a
code completion task request occurs, we extract the Unfinished Code Context Ccontext and the Im-
port Statements I from the code file . Ccontext is then used to retrieve an initial candidate set of
top k × p 1 code snippets C via text similarity from structured codebases.

3.2 HIERARCHICAL FEATURE OPTIMIZATION (HF OP)

3.2.1 SEMANTIC ALIGNMENT DISTILLATION

Semantic alignment distillation addresses Superficial Similarity Misguidance by leveraging the
GraphcodeBERT Guo et al. (2021), a pretrained model specialized in code understanding, to cap-
ture deep semantic relationships between code snippets. First, the query code Q and candidate
set C are tokenized into subword sequences and uniformly padded or truncated to a fixed length
L = 512. Subsequently, during the feature encoding phase, a 768-dimensional semantic vector vs is
extracted for each code unit s ∈ Q ∪ C, with vector space standardized through L2 normalization.
When code repositories lack sufficient repetitive or relevant code, standard filtering methods are
too strict, often leading to zero-candidate scenarios. This scarcity of reference material then hurts
the accuracy of large language models. To fix this “one-size-fits-all” problem, we introduce a new
dynamic quantile threshold mechanism. During the dynamic filtering phase, the cosine similarity
set S = {cos(vQ, vc) | c ∈ C} is computed between the query vector vQ and all candidate vectors
vc. An adaptive threshold τ = quantile(S, 0.75) is set at the 75th percentile, outputting filtered
results CSAD = {c | cos(vQ, vc) ≥ τ}. To reduce redundant computation overhead and improve
efficiency, a caching mechanism stores encoding results for high-frequency code.

1To ensure a high-quality final candidate set of top k results, we expand the initial candidate pool to top k×
p, allowing more candidates to participate in the Hierarchical Feature Optimization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 REDUNDANCY-AWARE PRUNING

This module implements lightweight hash-based deduplication via exact text matching. Using the
MD5 algorithm Rivest (1992), it generates 128-bit hash fingerprints (single computation ≈ 0.02ms,
memory footprint 32 bytes/hash) to eliminate verbatim duplicates from candidate set CSAD with
minimal computational cost, significantly reducing downstream overhead. The module maintains
a global hash set Hseen to dynamically track processed sample fingerprints: for each candidate
c ∈ CSAD, if its MD5 hash hc /∈ Hseen, c is added to deduplicated result set CRAP and Hseen
is updated. This achieves real-time processing with O(N) time complexity. After semantic align-
ment distillation processing, the number of code snippets requiring MD5 hashing is limited and their
structure is fixed by syntactic and semantic constraints. The MD5 collision resistance (theoretical
probability ≈ 1.47 × 10−18) is sufficient for strict sensitivity. Additionally, MD5’s superior speed
and lower memory footprint provide optimal cost-performance.

3.2.3 TOPOLOGICAL PROXIMITY METRIC

At this layer, the decaying subgraph edit distance (D-SED) is introduced to measure the graph simi-
larity between the query graph Gq and the candidate graph Gc (Ranjan et al.; Zeng et al.). A higher
D-SED value indicates less similarity. We calculate D-SED for code snippets to quantify their struc-
tural similarity and retain those with the closest match.

D − SED (Gq, Gc) =
∑
op=O

γl(op) · c(op) (1)

Editing operations O are the set of operations to transform Gc to Gq , include adding, deleting, and
modifying nodes and edges. Each operation op ∈ O has a cost c(op) and a hop count l(op) from its
“core node”. For simplicity, we choose the node with the largest ID as core node. Operations closer
to the core exert greater structural influence. γ ∈ (0, 1) is an attenuation factor that reduces the cost
weight for operations farther from the core node. After computing D-SED scores for each candidate
c ∈ CRAP , we compute a composite score s as a weighted sum of text similarity (calculated during
initial candidate generation) and structural similarity (D-SED scores). Subsequently, we generate
QTPM = [(c, s), . . .], ordered in descending score s.

3.2.4 DIVERSITY-AWARE RERANKING

This module implements a variability-aware ranking model based on the Maximal Marginal Rele-
vance (MMR) Carbonell & Goldstein (2017) algorithm to maximize result diversity while preserving
relevance. It addresses homogeneity in traditional rankings through adversarial similarity calcula-
tion and dynamic weight adjustment. S contains items (c, s) ∈ QTPM that have not been selected
into Cfinal yet. Sim1 represents the relevance (si = π2 ◦ ιci(S)) of item ci to query q. Sim2 denotes
the maximum cosine similarity between ci and any item cj in the selected set Cfinal. λ is a trade-off
parameter that balances the emphasis between relevance (Sim1) and diversity (Sim2).

MMR = argmax
ci∈S

[
λ · Sim1(ci, q)− (1− λ) · max

cj∈Cfinal
Sim2(ci, cj)

]
(2)

3.3 EXTERNAL-AWARE IDENTIFIER DISAMBIGUATOR (EAID)

This module enhances knowledge through external identifier augmentation. Firstly, file-level entity
modeling parses code per file F , extracting method entities Emethod (functions/class methods with
identifier, alias, line range [lstart, lend], parameter signature, scope) and class entities Eclass (class def-
initions with identifier, alias, line range [lstart, lend], member mappings) that built in the F . After
that, it generates a structured identifier symbol table STlib = {identifier 7→ syntax features}, where
identifier corresponds to either: (1) the unique identifier of a method entity ∀e ∈ Emethod, or (2) the
unique identifier of a class entity ∀c ∈ Eclass, with the mapped syntax features containing all as-
sociated attributes for that entity. Subsequently, the dependency resolution mechanism processes all
import statements (I) within the unfinshed file. For Intra-project Cross-module Reference, this phase
retrieves complete entities (Elib) from the pre-built entity library (STlib) by determining their corre-
sponding file paths (p). These paths are constructed through decomposition of module components
derived from either dotted names (e.g., my.module.MyClass) or relative imports (e.g., from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

.sub module import MyClass), which are subsequently joined using directory separators
(/) and appended with the .py file extension. For standard and third-party libraries, the system
constructs a lightweight reference table Text = {canonical name 7→ alias} to efficiently manage
external dependencies without full entity resolution. The enhanced prompts PE = I ⊕ Elib ⊕ Text.

3.4 PROMPT GENERATION

Similar Code
Snippet

External
Symbols

Enhancement

Unfinished
Code Context

Predicted Statementembeddings = encoder.forward(processed)

Here are some relevant code fragments from other files of the repo:
--
The below code fragment can be found in:
pipeline/integration.py
--
def run_pipeline(inputs, config):
"""Run full data processing pipeline"""
cleaned = clean_inputs(inputs)
normalized = normalize(cleaned)
validated = validate(normalized)
if config['encode']:
encoded = encoder.encode(validated)
return encoded
return validated
--
Cross-file reference snippets:
--
from utils.data_processor import preprocess_data
def preprocess_data(raw: list) -> list:
"""Clean and normalize raw data"""
...
return [x/mean for x in cleaned]
from utils.data_processor import DataValidator
class DataValidator:
def check_integrity(self, data):
from models.transformer import TextEncoder
class TextEncoder:
def __init__(self, vocab_size=5000):
def forward(self, inputs):
--
Based on above, complete the next statement of the following codes:
def run_pipeline(input_texts):
 processed = preprocess_data(input_texts)
 validator = DataValidator()
 if validator.check_integrity(processed):
 encoder = TextEncoder(vocab_size=10000)

Prompt generated by Saracoder

The output of the large model after receiving the prompt

From
Input

Generated
from Code
Retrieval

Figure 3: Prompt template.

Following code retrieval and external link resolution,
SARACODER employs an external LLM to gener-
ate subsequent statements. The final prompt Pfinal
is constructed by concatenating three components:
the external symbols enhancement PE where en-
tities are ordered by file import sequence reflecting
call probability decay—with function entities pop-
ulated with complete function bodies and class en-
tities containing variable tables and method defini-
tions; the similar code snippets Cfinal containing
code snippets strictly sorted in ascending order of
similarity and annotated with source paths; the un-
finished code context Ccontext. This architecture fol-
lows Pfinal = Cfinal ⊕ PE ⊕ Ccontext. (Figure 3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

Table 1: CrossCodeEval vs. RepoEval-
Updated comparison.

CrossCodeEval RepoEval-Updated
Python Java Python Java

Total Repositories 471 239 10 8
Total Files 14348 5868 3258 8260

Total Task cases 2665 2139 2000 1600
Applicable Scenarios Cross-File completion In-File completion

We primarily utilize two datasets here: CrossCodeE-
val and RepoEval-Updated. (1) CrossCodeE-
val Ding et al. (2023): This benchmark evaluates
code completion in complex Cross-File scenarios
like type inference and dependency analysis. It is
ideal for assessing performance that requires a deep
understanding of code across multiple files. (2)
RepoEval-Updated Liu et al. (2024b): Expanded
from RepoEval Zhang et al. (2023), this new ver-
sion, includes repositories of varying scales, offering
a better way to evaluate In-File completion performance. We use CrossCodeEval to test models on
code completion tasks required complex cross-file dependencies. RepoEval-Updated assesses basic
syntax, common API usage, and local context understanding. Table 1 shows details.

4.1.2 EVALUATION INDICATORS SETTING

In this study, the following several evaluation indicators are used to assess the effect of code com-
pletion Lu et al. (2021); Ding et al. (2023).

• Code Exact Match (EM): Proportion of generated code exactly matching the ground truth. EM
is given only for a perfect semantic and syntactic match.

• Identifier Exact Match (ID EM): The percentage of identifiers (variables, functions, etc.) per-
fectly matching the ground code. A high ID EM score indicates the model’s strong contextual
understanding, enabling it to accurately predict and generate contextually appropriate identifiers.

• Identifier F1 Score (ID F1): A more nuanced evaluation of identifier matching by combining
precision and recall. It offers a more comprehensive assessment of identifier completion quality,
particularly beneficial in scenarios where models might generate partial but correct identifier sets.

• Edit Similarity (ES): Similarity metric between generated and ground-truth code based on edit
distance. It tolerates slight variations, requiring the completed code to be highly similar in struc-
ture, syntax, and token order to the target.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1.3 BASELINE SETTING

We employ the following five methods as controls to evaluate the effectiveness of retrieval-
augmented generation (RAG) in code completion: No RAG (Zero-shot-only baseline), Shifted RAG
(Target-context dynamic retrieval), Vanilla RAG (Exemplar-similarity fixed retrieval), Repocoder
(Iterative-fragment integration Zhang et al. (2023)), Graphcoder (Structure-modeling CCG utiliza-
tion Liu et al. (2024b)).

4.1.4 MODEL SELECTION

In this experiment, we select Codegen2-7b, Codegen25-7b Nijkamp
et al. (2023b;a), CodeLlama-7b-Instruct Rozière et al. (2024) and
deepseek-coder-6.7b-instruct Guo et al. (2024) for code completion task inference.

4.2 MAIN RESULTS

To evaluate the performance of SARACODER on repository-level code completion, we have formu-
lated the following four research questions (RQs):

RQ1 Effectiveness in Cross-File Scenarios: How does SARACODER perform when cross-context
understanding is required, compared to other methods?

RQ2 Cost Analysis in Cross-File Scenarios: How does SARACODER’s resource consumption
compare to GraphCoder in Cross-File scenarios?

RQ3 Synergistic Gain Property: How does SARACODER perform when integrated orthogonally
with other methods that provide cross-file context?

RQ4 Advantage in In-File Scenarios: How does SARACODER perform on tasks without cross-
context requirements and what are its advantages?

4.2.1 FOR RQ1: DOMINANT CROSS-FILE CODE ACCURACY.

Table 2 illustrates that SARACODER surpasses the top-performing Repocoder on the CrossCodeEval
dataset, achieving an average improvement of 1.50 in EM, 0.77 in ES, 1.11 in ID EM, and 0.61 in
ID F1. This indicates SARACODER provides more effective information and generates code with
higher semantic accuracy, better capturing intended functionality. The enhanced ID EM further
shows SARACODER’s superior ability to interpret context and select appropriate identifiers. These
advancements effectively mitigate misleading superficial similarity and external symbol ambiguity,
leading to more reliable and contextually relevant code. For Java code completion, SARACODER
shows better EM and ID EM, with slightly lower ES and F1 scores. This discrepancy is attributed to
the inherent characteristics of Java’s static typing system and complex code structure. These features
lead to the generation of code that is logically correct but contains numerous textual variations and
boilerplate redundancies. Consequently, small structural deviations (e.g., misplaced brackets) are
more readily penalized by metrics such as ES and F1.

4.2.2 FOR RQ2: COST-OPTIMIZED ACCURACY ADVANTAGE IN CROSS-FILE.

We experiment with code completion efficiency using codegen25-7b and Graphcoder. Our goal is
to see how retrieving more similar cases (top k) impacts accuracy. Since using fewer top k cases
saves input tokens2, this study shows the balance between resources and accuracy. Our experiments
demonstrate significant performance saturation for both retrieval methods when top k reaches 3-4,
with no observable fluctuations upon increasing to top k = 10. SARACODER achieves compre-
hensive superiority in Python tasks (e.g., 9.4% EM improvement) while maintaining advantages in
Java tasks despite a marginal 0.1 decrease in ES. Crucially, under resource-constrained top k = 1
conditions: all Python metrics outperform the baseline; three Java metrics (EM/ES/ID EM) show
improvements; and Java ID F1 initially trails (35.22 vs. 35.27) but ultimately surpasses the baseline
at saturation (35.84 vs. 35.77). Our method achieves performance breakthroughs at lower computa-
tional cost (stable at top k ≈ 4) by reducing redundant and homogeneous cases (Figure 4).

2For relevant explanations, please refer to the Appendix A.6.2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on the CrossCodeEval dataset. Numbers are shown in percentage
(%). The top results are bolded, and the second best are underlined.

Language Methods
Codegen2-7b Codegen25-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 0.00 13.38 0.00 2.24 0.00 13.26 0.00 2.10 0.00 4.51 0.00 0.57 0.00 13.27 0.00 2.22
Shifted Rag 4.84 46.67 11.48 42.72 7.40 48.88 14.09 44.62 8.19 50.18 14.77 46.69 6.91 49.12 13.60 45.12
Vanilla Rag 9.48 50.97 17.15 47.81 12.39 53.92 23.61 53.14 13.00 54.00 26.63 55.77 11.45 52.93 19.23 50.49
Repocoder 12.47 54.08 21.57 51.89 16.62 56.80 25.73 57.85 17.11 58.11 26.71 56.46 15.14 56.28 24.56 54.22
Graphcoder 10.88 52.36 19.68 49.73 14.54 55.29 23.38 52.61 15.53 57.05 24.29 55.01 13.30 55.41 22.63 52.91
SARACODER 15.04 56.03 24.44 54.68 18.36 58.30 27.28 56.22 19.72 59.93 28.52 58.26 17.91 58.37 27.77 56.82

Java

No Rag 1.03 21.79 0.64 16.86 1.50 21.77 24.78 24.78 6.40 35.79 10.42 32.90 0.93 20.83 1.96 16.17
Shifted Rag 6.08 46.09 12.11 43.76 5.89 38.00 10.23 36.44 5.84 36.19 11.64 35.23 6.73 43.75 12.71 41.68
Vanilla Rag 9.30 47.42 15.71 45.69 10.38 40.76 15.29 39.91 8.88 33.59 15.01 33.51 10.93 45.01 17.81 44.08
Repocoder 10.71 41.83 16.18 41.51 12.16 42.38 17.63 41.69 9.58 34.25 15.76 34.13 13.23 46.01 19.87 45.14
Graphcoder 8.13 45.18 14.35 43.32 8.42 36.77 12.85 35.84 7.39 32.34 12.76 32.05 8.51 40.57 14.96 39.57
SARACODER 11.73 46.69 18.37 45.47 11.40 39.33 16.22 38.97 11.92 34.55 17.72 34.99 12.95 42.71 19.54 42.33

1 2 3 4 5 6 7 8 9 10

7

8

9

10

35.0

35.5

36.0

36.5

37.0

top_k

E
M

(%
)

Code Match (java)

E
S

(%
)

Saracoder(ES)
Graphcoder(ES)Graphcoder(EM)

Saracoder(EM)

1 2 3 4 5 6 7 8 9 10
11

12

13

14

33

34

35

36

top_k

ID
_

E
M

(%
)

Identifier Match （java）
ID

_
F

1
(%

)

Saracoder(ID_F1)
Graphcoder(ID_F1)Graphcoder(ID_EM)

Saracoder(ID_EM)

1 2 3 4 5 6 7 8 9 10

12

14

16

18

20

48

50

52

54

56

top_k

E
M

(%
)

Code Match (python)

E
S

(%
)

Saracoder(ES)
Graphcoder(ES)Graphcoder(EM)

Saracoder(EM)

1 2 3 4 5 6 7 8 9 10

20

22

24

26

28

46

48

50

52

54

top_k

ID
_

E
M

(%
)

Identifier Match (python)

ID
_

F
1

(%
)

Saracoder(ID_F1)
Graphcoder(ID_F1)Graphcoder(ID_EM)

Saracoder(ID_EM)

Figure 4: Impact of top k on CrossCodeEval. (The two on the left are Java tasks, and the two on the
right are Python tasks.)

4.2.3 FOR RQ3: SYNERGISTIC INTEGRATION OF SARACODER ACHIEVES ENHANCED
COMPLETION.

We examine two prominent methods that demonstrate exceptional performance in Cross-File scenar-
ios. (1) Repocoder Zhang et al. (2023), distinct from the original, assumes that if code snippets are
similar, their subsequent content is also likely relevant. In the next search round, it specifically gets
the code following those similar snippets (hereafter referred to as Repocoder). (2) Draco Cheng et al.
(2024), analyzes code to create entity dependency graphs, allowing detailed background knowledge
retrieval. It then uses this information to create structured prompts. Currently, Draco only works
with Python. As shown in Table 3, adding our method significantly boosts all four Python metrics
(by 3.42 to 4.52) compared to using Repocoder or Draco alone. For Java, our method improves EM
by 0.45 and ID EM by 0.33 over Repocoder, showing SARACODER exhibits significant synergistic
gain property with existing cross-file methods. 3

4.2.4 FOR RQ4: ENHANCED IN-FILE ACCURACY AND RESOURCE EFFICIENCY.

On the RepoEval-Updated dataset (Table 4), SARACODER shows superior semantic and identifier
accuracy (surpassing the top-performing Graphcoder: +0.547 EM, +0.737 ES, +0.125 ID EM, and
+0.667 F1) for both Python and Java code completion. The cost analysis (Appendix A.6.1) further
indicates SARACODER generally performs better and exhibits higher stability across most Python
metrics (excluding EM) and all Java metrics. This makes it particularly effective for resource-
constrained environments, especially at lower top k values. However, SARACODER’s gains over
Graphcoder in code and identifier matching are smaller here than on CrossCodeEval. This is pri-
marily because RepoEval-Updated projects contain a higher prevalence of similar code snippets,
resulting in reduced code diversity within the repository. Overall, the conclusions align with those
from the CrossCodeEval dataset.

4.3 ABLATION STUDY

To understand the importance of each part of SARACODER, we conduct ablation tests on the Cross-
CodeEval dataset (Figure 5). “-EAID” indicates disabling External-Aware Identifier Disambigua-
tor, resulting in the loss of external dependency integration capabilities; “-HF OP” denotes remov-

3You can find the causes of synergistic gains in Appendix A.6.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance benefits of SARACODER when integrated orthogonally with other cross-file
approaches (%). The CrossCodeEval dataset is used in this part.

Language Methods
Codegen2-7b Codegen25-7b CodeLlama

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 5.44 57.85 11.71 42.22 7.77 60.52 14.45 45.40 9.49 61.97 16.44 47.36
Shift Rag 4.87 58.36 11.64 42.91 7.44 60.20 14.17 44.78 6.95 60.35 13.75 45.36
Vanilla Rag 9.52 61.87 17.42 48.01 12.43 63.81 20.74 51.00 11.48 63.66 19.42 50.72
SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34

Repocoder 12.50 64.48 21.87 52.09 16.66 66.67 25.99 55.06 15.19 66.24 24.74 54.39
Repocoder + SARACODER 15.94 +3.44 66.43 +1.95 25.73 +3.86 54.80 +2.71 19.49 +2.83 68.53 +1.86 28.90 +2.91 57.49 +2.43 19.19 +4.00 68.45 +2.21 29.05 +4.31 57.47 +3.08

Draco 20.06 66.33 29.13 56.53 22.93 68.70 32.45 59.34 23.50 68.56 32.57 59.49
Draco + SARACODER 24.06 +4.00 69.40 +3.07 34.00 +4.87 61.12 +4.59 27.05 +4.12 71.86 +3.16 36.80 +4.35 63.48 +4.14 27.20 +3.7 72.01 +3.45 37.29 +1.72 64.35 +4.85

Java

No Rag 0.00 25.92 0.05 17.48 0.00 25.46 0.05 17.61 0.00 25.17 0.00 17.23
Shift Rag 6.45 54.84 12.11 43.75 6.08 44.73 10.27 36.46 7.11 50.96 12.72 41.68
Vanilla Rag 9.68 55.71 15.71 45.71 10.47 47.09 15.29 39.93 11.31 51.48 17.81 44.09
SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34

Repocoder 11.22 56.89 17.72 47.41 10.85 47.93 16.18 41.50 13.60 52.17 19.87 45.14
Repocoder + SARACODER 11.50 +0.28 56.09 -0.80 17.72 0.00 46.96 -0.45 11.27 +0.42 46.53 -1.40 16.41 +0.23 40.47 -1.03 14.26 +0.66 50.79 -1.38 20.62 +0.75 44.38 -0.76

Table 4: Performance comparison on the RepoEval-Updated dataset. Numbers are shown in per-
centage (%). The top results are bolded, and the second best are underlined.

Language Methods
Codegen2-7b Codegen25-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 17.40 32.54 23.75 30.21 19.55 34.48 25.75 32.16 11.50 30.33 15.30 22.39 17.35 33.05 23.55 30.53
Shifted Rag 32.70 59.22 40.10 55.66 36.45 61.96 43.20 58.31 20.90 42.95 26.50 38.88 33.90 60.28 41.50 56.39
Vanilla Rag 38.70 63.58 46.45 60.43 42.25 66.26 48.75 62.79 22.20 41.48 27.85 37.58 40.30 65.03 47.55 61.06
Repocoder 37.60 61.98 45.10 58.47 40.55 64.48 46.85 60.71 21.35 40.18 26.65 35.93 39.60 63.71 47.05 59.78
Graphcoder 42.40 65.73 49.45 62.07 44.65 67.59 51.00 63.82 28.50 44.63 33.35 42.63 43.90 67.26 51.15 63.51
SARACODER 42.60 65.92 50.15 62.61 44.50 67.79 51.10 63.84 28.25 46.91 33.45 42.95 45.00 68.27 52.00 63.97

Java

No Rag 6.55 16.84 9.15 8.84 5.35 16.21 9.05 8.65 6.40 20.61 7.75 8.73 6.85 17.11 9.45 9.06
Shifted Rag 30.87 62.52 43.94 61.01 26.63 58.46 37.75 56.57 28.00 55.12 36.81 53.39 35.38 64.63 45.56 62.98
Vanilla Rag 33.50 63.82 45.44 62.08 32.00 61.52 41.56 59.48 21.13 46.51 31.19 45.15 38.56 66.46 48.06 64.90
Repocoder 30.13 60.01 42.31 57.10 28.75 57.73 37.88 54.46 22.19 46.93 32.06 44.26 35.38 62.33 44.44 59.63
Graphcoder 37.75 66.19 50.68 64.77 36.63 64.74 46.13 62.62 28.81 55.75 40.06 53.61 43.00 69.68 52.69 67.85
SARACODER 37.93 67.06 50.93 65.48 36.75 65.54 46.44 62.61 29.75 56.38 40.75 54.18 42.88 69.37 52.00 67.37

ing Hierarchical Feature Optimization, canceling the similar fragment screening mechanism; “-
CCG” indicates disabling the code context graph, so it lost the understanding of code structure. The
ablation experiments demonstrate that the complete SARACODER achieves optimal performance,
with all components positively contributing to repository-level completion. Notably, even without
EAID, SARACODER still outperforms Shift RAG and Vanilla RAG, and even surpasses Repocoder
in Python tasks4, proving that HF OP screening substantially enhances case quality.

python java
0

5

10

15

20

E
M

(%
)

Saracoder

Saracoder - EAID

Saracoder - EAID - HF_OP

Saracoder - EAID - CCG

python java
0

20

40

60

80

E
S

(%
)

Saracoder

Saracoder - EAID

Saracoder - EAID - HF_OP

Saracoder - EAID - CCG

python java
0

10

20

30

ID
_E

M
(%

)

Saracoder

Saracoder - EAID

Saracoder - EAID - HF_OP

Saracoder - EAID - CCG

python java
0

20

40

60

ID
_F

1(
%

)

Saracoder

Saracoder - EAID

Saracoder - EAID - HF_OP

Saracoder - EAID - CCG

Figure 5: Ablation study. (Each three-data-point group represents CodeGen2-7B, CodeGen2.5-7B,
and CodeLlama-7B-Instruct models. Bar lengths show their average performance, with I-shaped
error bars indicating standard deviation)

5 CONCLUSION AND OUTLOOK

In this paper, we present SARACODER, a resource-optimized repository-level code completion
method. It solves the problems of superficial similarity dispersion, retrieval redundancy and rigidity,
and external symbol ambiguity by combining semantic topology with disambiguation. SARACODER
uniquely addresses superficial similarity dispersion, retrieval redundancy and rigidity, and external
symbol ambiguity, reducing unnecessary context window length consumption, and providing more
diverse and higher-quality completion reference information content under resource-constrained
conditions. This method improves code completion quality and can positively complement other
cross-file methods, providing synergistic improvements when used in combination. However, while
both Java and Python are prominent and widely used languages, the generalizability of this method
to other programming languages has not yet been achieved. Future work will pursue two key direc-
tions: expanding language coverage and exploring cross-language code completion.

4Detailed data can be found in Table 8 in appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have submitted the relevant code in the supplementary materials. The names of the experimental
benchmarks, the prompt templates used, and the model’s hyperparameter settings can all be found
in Section 3.4 and A.5 . The Appendix A.5.1 and A.5.2 provides a detailed description of the
experimental setup for the mechanism experiments.

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garcı́a
del Rı́o, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. Santacoder: don’t reach for the stars! Workingpaper, arXiv, January
2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. SIGIR Forum, 51(2):209–210, August 2017. ISSN 0163-
5840. doi: 10.1145/3130348.3130369. URL https://doi.org/10.1145/3130348.
3130369.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Wei Cheng, Yuhan Wu, and Wei Hu. Dataflow-guided retrieval augmentation for repository-level
code completion. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 7957–7977, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.431. URL https://aclanthology.org/2024.
acl-long.431/.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Crosscodee-
val: A diverse and multilingual benchmark for cross-file code completion. In Thirty-seventh Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL
https://openreview.net/forum?id=wgDcbBMSfh.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. CoCoMIC: Code completion by jointly modeling
in-file and cross-file context. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessan-
dro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint Interna-
tional Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 3433–3445, Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.lrec-main.305/.

10

https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3130348.3130369
https://doi.org/10.1145/3130348.3130369
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2024.acl-long.431/
https://aclanthology.org/2024.acl-long.431/
https://openreview.net/forum?id=wgDcbBMSfh
https://aclanthology.org/2024.lrec-main.305/
https://aclanthology.org/2024.lrec-main.305/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, pp. 1536–1547, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL
https://aclanthology.org/2020.findings-emnlp.139/.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training
code representations with data flow. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=jLoC4ez43PZ.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search, 2020. URL https:
//arxiv.org/abs/1909.09436.

Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: multi-token code completion by
jointly learning from structure and naming sequences. In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, pp. 401–412, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450392211. doi: 10.1145/3510003.3510172. URL
https://doi.org/10.1145/3510003.3510172.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu, Hang Zhang, Bolun Yao, Weizhen Qi, Daxin
Jiang, Weizhu Chen, and Nan Duan. CodeRetriever: A large scale contrastive pre-training method
for code search. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 2898–2910,
Abu Dhabi, United Arab Emirates, December 2022a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.187. URL https://aclanthology.org/2022.
emnlp-main.187/.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Rob-
son, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-
level code generation with alphacode. Science, 378(6624):1092–1097, 2022b. doi: 10.1126/
science.abq1158. URL https://www.science.org/doi/abs/10.1126/science.
abq1158.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=pPjZIOuQuF.

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and Qianxiang
Wang. Graphcoder: Enhancing repository-level code completion via coarse-to-fine retrieval based
on code context graph. In Proceedings of the 39th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’24, pp. 570–581, New York, NY, USA, 2024b. Associa-
tion for Computing Machinery. ISBN 9798400712487. doi: 10.1145/3691620.3695054. URL
https://doi.org/10.1145/3691620.3695054.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie LIU. Codexglue: A machine learning benchmark dataset for code under-
standing and generation. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL https:

11

https://aclanthology.org/2020.findings-emnlp.139/
https://openreview.net/forum?id=jLoC4ez43PZ
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3510003.3510172
https://aclanthology.org/2022.emnlp-main.187/
https://aclanthology.org/2022.emnlp-main.187/
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=pPjZIOuQuF
https://doi.org/10.1145/3691620.3695054
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

//datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:
A retrieval-augmented code completion framework. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6227–6240, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431. URL
https://aclanthology.org/2022.acl-long.431/.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages, 2023a. URL https:
//arxiv.org/abs/2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis, 2023b. URL https://arxiv.org/abs/2203.13474.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. GREED: A neural framework for learning graph distance functions. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
3LBxVcnsEkV.

R. Rivest. Rfc1321: The md5 message-digest algorithm, 1992.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tongtong Xu, Liguo Huang, and Bin Luo. Do-
main adaptive code completion via language models and decoupled domain databases, 2023. URL
https://arxiv.org/abs/2308.09313.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: Continual pre-training on sketches for library-oriented code
generation. In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI-22, pp. 2369–2375. International Joint Conferences on Artificial
Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/329. URL https://doi.org/
10.24963/ijcai.2022/329. Main Track.

Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing
stars: on approximating graph edit distance. Proc. VLDB Endow., 2(1):25–36, August 2009.
ISSN 2150-8097. doi: 10.14778/1687627.1687631. URL https://doi.org/10.14778/
1687627.1687631.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 2471–2484, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
151. URL https://aclanthology.org/2023.emnlp-main.151/.

A APPENDIX

A.1 CONTEXT GRAPH CONSTRUCTION

Code parsing transforms source code into an intermediate representation that is easier to analyze and
process, and is a fundamental step to understand the semantics and structure of a program. Abstract

12

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://aclanthology.org/2022.acl-long.431/
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2203.13474
https://openreview.net/forum?id=3LBxVcnsEkV
https://openreview.net/forum?id=3LBxVcnsEkV
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.09313
https://doi.org/10.24963/ijcai.2022/329
https://doi.org/10.24963/ijcai.2022/329
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631
https://aclanthology.org/2023.emnlp-main.151/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Syntax Tree (AST) is one of the most commonly used and effective intermediate representations
in code parsing. It can map source code to a tree topology structure, and accurately represent the
syntax features and context relationships of code elements. By traversing and manipulating the
abstract syntax tree, the relationship graph in the code can be constructed efficiently. Tree-sitter
is a CFG-based parser generator that can support a variety of programming languages including
Python, Java, C++. The core advantage of Tree-sitter is its efficient parsing performance and wide
support for multiple languages, which makes the system have the ability to parse the code of multiple
programming languages uniformly, and provides the possibility of multi-language code analysis. In
code, the following relationships play a key role in semantic analysis, refactoring, debugging, and
maintenance. We use tree-sitter to model the following relationships. See Table 5 for details

Table 5: Semantic Relationships in Code Analysis

Relationship Definition Syntax Examples Type-Sensitive Characteristics
Python Java

Assignment Variable obtains type identity through assignment count: int = 10 String s = new String() Type inference and propagation

Contextual Binding Creates temporary type bindings in specific syntactic structures with open(file) as f: try (BufferedReader br = ...) Context-dependent type lifecycle management

Reference Access to existing variables or properties obj.calculate() this.value Late-bound type resolution

Type Declaration Explicit annotation of variable/return types def func() -> list[str]: List<Integer> list = new ArrayList<>() Basis for static type checking

Parameter Constraint Type constraints on function parameters def sort(items: Sequence[T]) void sort(List<? extends Comparable> l) Input type validation

Return Constraint Type constraints on function return values @return type(float) public int getValue() { ... } Output type consistency guarantee

Inheritance Subclasses automatically acquire parent class members class Child(Parent): class Child extends Parent { ... } Type hierarchy inheritance

Implementation Class fulfillment of interface contracts class MyList(ABC): class ArrayList implements List { ... } Foundation for polymorphic behavior

Override Subclass overriding of parent class methods def method(self): ... @Override void method() { ... } Dynamic method dispatch

Import Dependency Cross-module import dependencies import pandas as pd import java.util.List; Type visibility control

Invocation Execution dependencies between methods/functions math.sqrt(x) Collections.sort(list) Type compatibility verification

A.2 METHOD SUPPLEMENT

A.3 IMPLEMENTATION OF CONTEXT GRAPH SLICING

We begin by initializing three empty sets: Vcf for control flow, Vdd for data dependencies, and Vcd
for control dependencies, along with an empty queue Q. The process starts by adding vtarget to Q.
We then enter a loop, continuing as long as Q is not empty. In each iteration, a vertex v is dequeued.
We apply two critical checks: first, a hop count check stops processing if v is more than h hops
from vtarget; second, a size check halts if the combined size of Vcf ∪Vdd ∪Vcd reaches k statements.
If v passes these checks, we update the sets: v goes into Vcf, its data dependency predecessors go
into Vdd, and its control dependency predecessors go into Vcd. Following this, all unvisited control
flow predecessors of v are enqueued. The loop concludes when Q is empty or a size/hop limit is
hit. Finally, using the union Vcf ∪ Vdd ∪ Vcd as the vertex set, we generate the induced subgraph
Gh(vtarget), which represents our final context graph slice.

A.4 RETHINKING ON THE RETRIEVAL RANGE

Based on preliminary research, we observed that several retrieval-augmented methods for finding
similar code snippets employ a zero-filtering strategy for subsequent code within the same file.
Specifically, this strategy assigns a similarity score of zero—for both textual and graph-structural
similarity—to any code segment located after the current line requiring completion within the same
file, relative to the context of the current completion point. This approach stems from the assumption
that code segments appearing after the completion point in the same file hold no semantic relevance
to the current completion task. The rationale behind this assumption likely lies in a developer mind-
set: “During code completion, neither the code being completed nor the subsequent code exists yet;
therefore, later code offers no reference value.”

We contend that this perspective may not universally hold. Firstly, in practical development, due to
modular programming logic, most programmers’ cognitive context is not continuous. Development
does not strictly follow a top-down sequence based on physical line numbers; rather, it often involves
non-linear thought processes. Consequently, there is no inherent correspondence between physical
line numbers and the semantic boundaries of code segments. Secondly, within the same file, different
functions may share similar implementations. For instance, Different classes might exhibit identical
initialization logic; operations on distinct variables may follow similar patterns. Therefore, code
segments following the completion point are not entirely devoid of reference value. In fact, due to the
typically homogeneous nature of tasks handled within a single file, these subsequent segments might

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

be more contextually relevant to the actual scenario requiring completion compared to snippets
retrieved from entirely different files.

A.4.1 HE OP’S PREVIOUS PREPARATION

After the database is established, when we receive a code completion request, we first conduct a
global search for similar code snippet in the context of the location to be completed, and obtain a
larger candidate pool by relaxing the location constraints. Use Jaccard similarity to calculate the
text similarity with the query code, and select the top k × p samples with the highest similarity
as the candidate set to participate in the subsequent process. Among them, Jaccard similarity is a
measurement method used to measure the similarity between two sets. It measures the similarity
between the two sets by calculating the ratio of their intersection to their union.

A.4.2 THE ALGORITHM OF SEMANTIC ALIGNMENT DISTILLATION

For details, please refer to Algorithm 1.

Algorithm 1 Code Similarity Analysis

Require: Query Q, Candidates C, Max length L = 512
Ensure: Filtered results R

Preprocess:
Tokenize and pad Q and C to length L
Encode:
for s ∈ {Q} ∪ C do

Extract features vs ∈ R768

Normalize vs
end for
Filter:
Compute similarities S = {cos(vQ, vc)|c ∈ C}
Set threshold τ = quantile(S, 0.75)
R← {c| cos(vQ, vc) ≥ τ}
Cache:
if s ∈ Cache then

Retrieve cached vs
else

Compute and store vs
end if

A.4.3 D-SED CALCULATION

For details, please refer to Algorithm 2. The following is the symbol explanation.

• XA: Set of aligned vertices (mapped to target graph)
• X l

h(ŷ) \XA: Set of unaligned vertices (to be inserted/deleted)
• EA: Set of aligned edges
• El

h(ŷ) \ EA: Set of unaligned edges
• h(v, ỹ): Distance from vertex v to reference point ỹ
• c(v,A(v)): Vertex substitution cost (for aligned vertices)
• c(v): Vertex insertion/deletion cost (for unaligned vertices)
• c(e,A(e)): Edge substitution cost (for aligned edges)
• c(e): Edge insertion/deletion cost (for unaligned edges)

Key Features:

• Distance-based decay: γh(v,ỹ) weights edit costs based on proximity to reference

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Decay Subgraph Edit Distance (D-SED)

Require: Graphs Gl
h(ŷ) and Gl

h(x)
Decay factor γ ∈ (0, 1)

Ensure: SED between Gl
h(ŷ) and Gl

h(x)
1: SED← 0
2: for each vertex v ∈ XA do
3: SED← SED + γh(v,ỹ) · c(v,A(v))
4: end for
5: for each vertex v ∈ X l

h(ŷ) \XA do
6: SED← SED + γh(v,ỹ) · c(v)
7: end for
8: for each edge e = (v, t, u) ∈ EA do
9: SED← SED + γh(v,ỹ) · c(e,A(e))

10: end for
11: for each edge e = (v, t, u) ∈ El

h(ŷ) \ EA do
12: SED← SED + γh(v,ỹ) · c(e)
13: end for
14: return SED

• Four cost categories: Separates vertex/edge and aligned/unaligned cases

• Reference point: ỹ serves as the anchor for distance calculations

• Asymmetric treatment: Focuses on edits in Gl
h(ŷ) relative to Gl

h(x)

A.5 DETAILS OF EXPERIMENT SETUP

A.5.1 PARAMETER SETTING

In this study, we mainly adopt the Greedy Decoding strategy for text generation. Its core configu-
ration is: disable sampling (do sample=False) and set the temperature value (temperature)
to 0. This combination ensures that the model necessarily selects the token with the highest logical
probability at each step, thereby eliminating randomness in the generation process and facilitating
a strict and reproducible evaluation of the model’s performance. To simplify and observe the per-
formance of various methods within the limited length of the context window, the maximum length
limit for text is 2048 new tokens (max num tokens).

A.5.2 RESOURCE CONTROL AND ALLOCATION IN THE EXPERIMENT

In practice, the max num tokens parameter controls the total length of the context window. The
system sets a maximum length limit for the “unfinished code context,” which is no more than half
of the total window. The remaining context window is dynamically used to accommodate other
information, including retrieved similar code snippets. Since the output of the External Symbols
Enhancement module is highly compressed, we primarily use the top k parameter to control the
number of similar code snippets that can be included in the prompt. This effectively constrains the
use of this portion of the resources. The value of top k directly determines the number of similar
examples that can be introduced; a smaller value allocates less context space to similar code snippets.
Through this mechanism, we can achieve flexible and precise control over the different components
of the information within a limited total resource budget.

A.5.3 DETAILS OF DATASET

The detailed information of dataset is as follows in the table 6 and table 7.

A.5.4 CALCULATION OF EVALUATION INDICATORS

(1) Code Exact Match(EM): The code exact match measures the proportion of the generated code
completions that are exactly the same as the ground truth.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: The dataset of CrossCodeEval

Python Java
Total number of repositories 471 239
Total number of documents 14348 5868
Total number of task cases 2665 2139

Table 7: The dataset of RepoEval-Updated

Language Project Name Creation time The number of files Total project file size (MB)

Python

devchat 2023-04-17 40 0.5
nemo aligner 2023-09-01 54 1.6

awslabs fortuna 2022-11-17 168 1.9
task weaver 2023-09-11 113 3.0

huggingface diffusers 2022-05-30 305 6.2
opendilab ACE 2022-11-23 425 6.8

metagpt 2023-06-30 374 17.9
apple 2023-02-25 265 23.8

QingruZhang 2023-05-31 1357 32.6
nerfstudio-project nerfstudio 2022-05-31 157 54.5

Java

FloatingPoint-MC MIN 2023-07-10 2628 269.5
itlemon chatgpt4j 2023-04-04 67 0.4

mybatis-flex mybatis-flex 2023-02-27 487 8.8
Guiqu1aixi rocketmq 2023-04-25 988 10.6

SimonHalvdansson Harmonic-HN 2023-05-23 51 16.8
Open-DBT open-dbt 2023-02-27 366 20.0

QuasiStellar custom-pixel-dungeon 2023-05-08 1093 51.3
gentics cms-oss 2023-05-08 2580 130.5

(2) Identifier Exact Match(ID EM): The identifier exact match measures the proportion of the gen-
erated code completions that are exactly the same as the ground truth.

(3) Identifier F1 Score: The Identifier F1 score measures the degree of match between the identi-
fiers (variable names, function names, etc.) in the generated code and the actual identifiers. It
combines Precision (correctness) and Recall (completeness).

F1 = 2× precision × recall
precision + recall

(3)

(4) Edit Distance Similarity (ES) : Edit Distance similarity is calculated based on the edit distance
and measures the degree of similarity between the generated code string and the real code string.

ES = 1− ED (S1, S2)

max (len (S1) , len (S2))
(4)

Among them,len(S1) and len(S2) are the lengths of S1 and S2 respectively. ED(S1, S2) is the
edit Distance between S1 and S2, also known as the Levenshtein Distance(Algorithm 3), which
is usually calculated through Dynamic Programming.

A.5.5 DETAILS OF BASELINES

• No RAG: As a basic control experiment, this method only relies on the pre-trained knowledge
base of large language models (LLMS), and directly inputs the current code context into the model
for autoregressive generation. The characteristic of this method lies in completely ignoring the
context information of the code base, and it can be used to evaluate the native reasoning ability of
LLMS in zero-shot scenarios.

• Shifted RAG: The core of this method is the sliding window offset mechanism. This mechanism
dynamically adjusts window positions during retrieval, prioritizing code segments likely to con-
tain target call chains. Through temporal probability prediction, it enhances temporal relevance
between retrieval results and completion targets. The approach demonstrates distinct advantages
in scenarios like API invocation sequences and control flow continuation.

• Vanilla Rag: Given the context, retrieve a set of similar code snippets from the repository through
a fixed-size sliding window and call the LLM to obtain the predicted next statement.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 Levenshtein Distance Calculation

Require: Two strings: str1 (length m), str2 (length n)
Ensure: Edit distance between str1 and str2

Initialize dp as 2D array of size (m+ 1)× (n+ 1)
for i = 0 to m do
dp[i][0]← i {Deletion operations}

end for
for j = 0 to n do
dp[0][j]← j {Insertion operations}

end for
for i = 1 to m do

for j = 1 to n do
if str1[i− 1] == str2[j − 1] then
dp[i][j]← dp[i− 1][j − 1] {Characters match}

else

dp[i][j]← 1 + min


dp[i][j − 1] (Insertion)

dp[i− 1][j] (Deletion)

dp[i− 1][j − 1] (Substitution)

end if
end for

end for
return dp[m][n] {Final edit distance}

• Repocoder5: This is an iterative retrieval-augmented framework for repository-level code com-
pletion. It addresses the challenge of leveraging fragmented repository information by integrating
similarity-based retrievers with pretrained code LLMs, enabling precise cross-file completion of
unfinished code.

• Graphcoder: This is a structured retrieval-augmented code completion framework. Its core inno-
vation lies in employing a graph-based retrieval-generation process, which utilizes Code Context
Graphs (CCG) to accurately model code dependencies, replacing traditional sequence-based con-
text representations.

A.6 ADDITIONAL RESULTS

Table 8: Detailed data of the ablation experiment

Language Methods
Codegen2-7b Codegen25-7b CodeLlama

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 5.44 57.85 11.71 42.22 7.77 60.52 14.45 45.40 9.49 61.97 16.44 47.36
Shift Rag 4.87 58.36 11.64 42.91 7.44 60.20 14.17 44.78 6.95 60.35 13.75 45.36
Vanilla Rag 9.52 61.87 17.42 48.01 12.43 63.81 20.74 51.00 11.48 63.66 19.42 50.72

SARACODER 15.07 66.04 24.71 54.86 18.40 67.95 27.50 56.38 17.94 67.99 27.96 57.00
- EAID 13.49 65.02 22.86 52.95 15.90 66.80 25.01 54.74 15.90 66.63 25.27 54.98

- HF OP 10.96 63.05 19.95 49.90 14.54 65.66 23.57 52.88 13.37 65.63 22.86 53.11
- CCG 11.11 63.23 20.14 50.19 13.98 65.27 23.27 52.78 13.37 65.28 22.36 52.86

Java

No Rag 0.00 25.92 0.05 17.48 0.00 25.46 0.05 17.61 0.00 25.17 0.00 17.23
Shift Rag 6.45 54.84 12.11 43.75 6.08 44.73 10.27 36.46 7.11 50.96 12.72 41.68
Vanilla Rag 9.68 55.71 15.71 45.71 10.47 47.09 15.29 39.93 11.31 51.48 17.81 44.09

SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34
- EAID 8.88 53.12 14.63 43.12 8.60 42.29 13.00 35.84 9.91 46.89 15.71 40.03

- HF OP 8.56 53.08 14.35 43.33 8.51 42.29 12.86 35.84 8.93 46.36 14.96 39.57
- CCG 8.88 52.67 14.31 42.92 8.18 42.10 12.34 35.57 8.98 45.44 14.68 38.51

5We attempt to run the code publicly released by Zhang et al., but fail to execute them with the provided
instructions. For the specific implementation here, please refer to Ding et al.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6.1 COST ANALYSIS IN IN-FILE SCENARIOS

In this Token cost analysis experiment on the efficiency of code completion inference, we used the
RepoEval Updated dataset, the Deepseeking -coder model for code inference, and Graphcoder as
the control group for the experiment. The main comparison is to show the changes of each accuracy
index as the number of similar cases retrieved by the code in the prompt word (top-k) increases.
As can be seen from Figure 6, whether it is a Graphcoder or SARACODER, with the increase of
top k, they basically show a trend of first rising, then falling, and finally gradually stabilizing. This
indicates that as top-k increases, the noise cases that may be introduced may lead to a decrease in
accuracy. SARACODER demonstrates advantages in the vast majority of scenarios: in the python
code completion task, the stable values of the three metrics except EM are higher than those of the
original retrieval method, among which the ES value increases by 0.31, the ID EM value increases
by 0.1, and the ID F1 value increases by 0.32. In the java code completion task, the stable values
of the four indicators have all seen relatively significant improvements, increasing by 0.937, 0.641,
0.687, and 0.568 respectively. In addition, it can be seen from the figure that when the top k is
between 2 and 4, the performance of the improved retrieval method is significantly better than that
of the original retrieval method. This indicates that our method is more suitable for scenarios with
scarce computing resources.

1 2 3 4 5 6 7 8 9 10
27

28

29

30

31

50

52

54

56

top_k

E
M

(%
)

Code Match (java)

E
S

(%
)

Saracoder(ES)

Graphcoder(ES)Graphcoder(EM)

Saracoder(EM)

1 2 3 4 5 6 7 8 9 10
38

39

40

41

42

43

45

50

55

top_k

ID
_E

M
(%

)

Identifier Match （java）

ID
_F

1(
%

)
Saracoder(ID_F1)

Graphcoder(ID_F1)Graphcoder(ID_EM)

Saracoder(ID_EM)

1 2 3 4 5 6 7 8 9 10

26

27

28

29

30

44

45

46

47

top_k

E
M

(%
)

Code Match (python)

E
S

(%
)

Saracoder(ES)

Graphcoder(ES)Graphcoder(EM)

Saracoder(EM)

1 2 3 4 5 6 7 8 9 10
31

32

33

34

35

36

37

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

top_k

ID
_E

M
(%

)

Identifier Match (python)

ID
_F

1(
%

)

Saracoder(ID_F1)

Graphcoder(ID_F1)Graphcoder(ID_EM)

Saracoder(ID_EM)

Figure 6: Impact of top k on RepoEval-Updated. (The two on the left are Java tasks, and the two on
the right are Python tasks.

A.6.2 QUANTITATIVE ANALYSIS OF TOP K AND TOKEN.

In our experiments, we focused on minimizing the influence of external factors. To do this, we used
the smallest runnable (executable and producing valid output) module, which included both unfin-
ished code context and HE OP (Hierarchical Feature Optimization). The unfinished code context
provided the input content, while HE OP offered code completion reference cases. Importantly,
HE OP is directly influenced by the top k parameter. We conducted our tests using two key top k
values(4 and 10) and set max token num to 2048. As shown in the table 9, clearly demonstrate that
a top k of 4 significantly reduces input token consumption across all three models compared to a
top k of 10. On average, each task saved approximately 22.38 input tokens when top k was set to 4,
confirming that a smaller top k value leads to lower token consumption. Furthermore, we observed
no significant drop in output token count when top k was reduced. This, coupled with the results
in Figure 6 showing no decline in accuracy, indicates that our method effectively reduces resource
consumption while maintaining output quality.

Table 9: Quantitative analysis of top k and token. The comparison of the average input and output
tokens on each task when the dataset is Repo Updated and max num tokens is 2048.

Method Codegen2-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct
#In #Out #In #Out #In #Out

context 821.627 95.15 778.52 93.48 763.93 96.86
context+HF OP (top k=10) 1665.50 88.15 1621.92 90.86 1611.37 96.99
context+HF OP (top k=4) 1644.26 89.20 1596.83 88.57 1590.55 98.06

A.6.3 CASE STUDY IN SYNERGISTIC GAIN PROPERTY

To better understand the causes of synergistic gains, we analyzed our experimental cases. SARA-
CODER’s External-Aware Identifier Disambiguator effectively resolves “type inference chain break-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

age” in cross-file dependencies by injecting essential symbolic relationships. Still, it occasionally
introduces irrelevant information, which can lead to misinterpretations. Repocoder, when used in-
dependently, offers prompts that closely align with common coding patterns. However, it faces chal-
lenges with the adaptability of external information, often clashing with local APIs or project con-
straints, thereby limiting its accuracy. Draco stands out for its deep semantic modeling, which gener-
ates detailed data and control flow graphs to pinpoint highly relevant cross-file context; nonetheless,
it encounters difficulties when the code’s intent is unclear. SARACODER significantly contributes
by providing semantically aligned code examples. These examples offer crucial “intent hinting”
and “structure references,” compensating for Draco’s limitations in ambiguous code scenarios. As a
result, the “Draco + SARACODER” combination synergistically boosts performance: Draco delivers
precise cross-file context, while SARACODER guides intent and structure. Moreover, the external
disambiguation module within SARACODER clarifies identifiers, effectively alleviating Repocoder’s
issues with external information adaptability and conflicts, making the “Repocoder + SARACODER”
combination a more effective choice than using Repocoder in isolation.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLM)

In order to enhance the language quality and clarity of this academic paper, the author utilized AI-
powered tools for text refinement during the writing process. The specific details are as follows:

Purpose of Use: The primary purposes for using AI tools were to:

• Check grammar and spelling for certain sentences.
• Optimize vocabulary choices for more precise and academic expression.
• Adjust sentence structures to improve logical coherence and readability between paragraphs.

Method of Use: The author input original paragraphs written by themselves into the AI tools and
then manually judged, filtered, and revised the text based on the refinement suggestions provided.
All adopted changes were carefully considered by the author to ensure they fully align with the
original intent and academic rigor of the paper.

Disclaimer of Responsibility: All academic content in this paper, including core arguments, re-
search data, result analysis, argumentation process, and final conclusions, was independently created
and is the sole responsibility of the author. The AI tools were used purely as an auxiliary aid and did
not generate any critical academic viewpoints, research data, or conclusions. The author assumes
full responsibility for the final content of the paper.

Tools Used: The AI tools used in this process were: Gemini-2.5 Flash, deepseek-V3.1.

19

	Introduction
	Related Work
	Similar Code Snippet Retrieval for RAG
	Cross-File Dependency Retrieval Augmentation
	Repository-Level Code Completion Evaluation

	Method
	Database and Initial Candidate Construction
	Hierarchical Feature Optimization (HF_OP)
	Semantic Alignment Distillation
	Redundancy-Aware Pruning
	Topological Proximity Metric
	Diversity-Aware Reranking

	External-Aware Identifier Disambiguator (EAID)
	Prompt Generation

	Experiments
	Experimental Settings
	Datasets
	Evaluation Indicators Setting
	Baseline Setting
	Model Selection

	Main Results
	For RQ1: Dominant Cross-File Code Accuracy.
	For RQ2: Cost-Optimized Accuracy Advantage In Cross-File.
	For RQ3: Synergistic Integration of SaraCoder Achieves Enhanced Completion.
	For RQ4: Enhanced In-File Accuracy and Resource Efficiency.

	Ablation Study

	Conclusion and Outlook
	Appendix
	Context Graph Construction
	Method Supplement
	Implementation of Context Graph Slicing
	Rethinking on The Retrieval Range
	HE_OP's Previous Preparation
	The algorithm of Semantic Alignment Distillation
	D-SED calculation

	Details of Experiment Setup
	Parameter Setting
	Resource Control and Allocation in the Experiment
	Details of Dataset
	Calculation of evaluation indicators
	Details of Baselines

	Additional Results
	Cost Analysis in In-File Scenarios
	Quantitative analysis of top_k and token.
	Case Study in Synergistic Gain Property

	The Use of Large Language Models (LLM)

