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ABSTRACT

Despite Retrieval-Augmented Generation improving code completion, traditional
retrieval methods struggle with information redundancy and a lack of diversity
within limited context windows. To solve this, we propose a resource-optimized
retrieval augmentation method, SARACODER. It maximizes information diver-
sity and representativeness in a limited context window, significantly boosting
the accuracy and reliability of repository-level code completion. Its core Hier-
archical Feature Optimization module systematically refines candidates by dis-
tilling deep semantic relationships, pruning exact duplicates, assessing structural
similarity with a novel graph-based metric that weighs edits by their topological
importance, and reranking results to maximize both relevance and diversity. Fur-
thermore, an External-Aware Identifier Disambiguator module accurately resolves
cross-file symbol ambiguity via dependency analysis. Extensive experiments on
the challenging CrossCodeEval and RepoEval-Updated benchmarks demonstrate
that SARACODER outperforms existing baselines across multiple programming
languages and models. Our work proves that systematically refining retrieval re-
sults across multiple dimensions provides a new paradigm for building more ac-
curate and resource-optimized repository-level code completion systems.

1 INTRODUCTION

Code Large Language Models (Code LLMs) Izadi et al. (2022); Li et al. (2022b); Allal et al. (2023),
built on the Transformer architecture and trained on massive code corpora. These models compress
vast programming knowledge into hundreds of millions of parameters and have been successfully
applied in numerous real-world development scenarios, and have significantly advanced the intelli-
gence of modern software development. However, these models often only process local information
within their context window. As codebases grow and development tasks become increasingly com-
plex, this limitation becomes more pronounced. Tasks like understanding functionality and fixing
bugs often require integrating a wide range of context, such as related API definitions, dependent
modules, and type constraints. Since the models cannot perceive information outside their window,
the suggestions they generate tend to be localized, often insufficient, and inaccurate.

Retrieval-Augmented Generation (RAG) Tang et al. (2023); Zan et al. (2022); Zhang et al. (2023)
overcomes the limitations of traditional models by introducing an external knowledge retrieval
mechanism. In this framework, an efficient retriever can dynamically fetch relevant code snippets,
API documentation, or type definitions from an external codebase in real time, thereby expanding
the model’s contextual awareness. The generative model then integrates these retrieval results with
the current context to produce syntactically correct, semantically consistent, and standard-compliant
code suggestions. Retrieval-Augmented Generation is gradually becoming a foundational technol-
ogy for achieving accurate and trustworthy repository-level intelligent code completion.

However, current Retrieval-Augmented Generation (RAG) methods for code completion often have
a single-aspect information problem. Methods like GraphCoder Liu et al. (2024b) focus on retriev-
ing similar code snippets, while others like DraCo Cheng et al. (2024) prioritize cross-file context.
This narrow focus overlooks the need to combine different types of information, even though devel-
opers in real-world settings require both cross-file context for project-wide consistency and similar
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code snippets for structural reference and efficiency. Limited resources, such as a finite context win-
dow, make the effective fusion of these different information types a critical challenge. To make
matters worse, existing similarity-based retrieval methods have three major practical flaws. (a) Mis-
leading Superficial Similarity: They often retrieve irrelevant code snippets that share surface-level
similarities, which can mislead the model and result in incorrect or ineffective suggestions. (b) Re-
dundant Retrieval Homogenization: Relying solely on similarity ranking frequently yields redun-
dant or duplicate snippets. This wastes valuable context window space and provides a homogeneous,
narrow viewpoint, hindering the model’s ability to generate innovative or superior solutions. (c) Ex-
ternal Symbol Ambiguity: These methods fail to capture essential dependencies like unreferenced
classes or architectural rules. This ambiguity can trigger a cascade of errors, including failed type
inference and mismatched signatures, compromising the correctness and reliability of the generated
code. Ultimately, these flaws not only degrade the quality of retrieved information but also exacer-
bate the challenge of a finite context window by filling the limited space with irrelevant, repetitive,
or ambiguous data, thereby compromising the generation of correct and innovative code.

(a) Misleading Surface Similarity

Question：
positive_test_data = [-3, 0, 7, 2, -1, 4]
result = count_items(positive_test_data)
print(f"The number of positive numbers in 
the list is: {result}") 
def count_items(items):
    count = 0
    for item in items:
    // Complete the line 

Traditional retrieval case：
positive_test_data = [-3, 0, 7, 2, -1, 4]
result = count_items(positive_test_data)
print(f"The sum of numbers in the list is: 
{result}") 
def sum_items(items):
    count = 0  
    for item in items:
        count += item
    return count

(b) Redundant Retrieval Homogenization (c) External Symbol Ambiguity

Context： // Complete the last line of the code 
Map<String, String> columnNames = ... ;  
for (String columnName : updateColumn) {  
    String fieldName = columnNames.get(columnName);  
    if (StringUtils.isNotEmpty(fieldName)) {    

CLM Answer：TableFieldUtil.setFieldValue(r, fieldName, columnName);  

What We Want： TableFieldUtil.getFieldMap(r.getClass());  

//from TableTest.java
for (ConfigItem item : changedItems) {  
    String fieldName = configMap.get(item.key());  
    if (fieldName != null) {   
        TableFieldUtil.setFieldValue(configObj, 
fieldName, item.value());  
    }  
}  

Retrieval case：

package com.example.service; 

import com.yourcompany.util.TableFieldUtil; 
....

Map<String, String> columnNames = ... ;  
for (String columnName : updateColumn) {  

    String fieldName = columnNames.get(columnName);  
      if (StringUtils.isNotEmpty(fieldName)) { 

File to complete

Traditional retrieval prompt

No information about the class methods of 
TableFieldUtil in the retrieved code cases

Retrieval without 
Filtering 

def calculate_average(numbers):
    total = sum(numbers)
    count = len(numbers)
    return total / count

from calculate.py

from table.py

from average.py

Traditional 
Retrieval Queue

... ...

... ...

from calculate.py

Our Retrieval 
Queue

More computing resources

 Semantic equivalence

Retrieval with 
Filtering 

 Fewer computing resources

Obscure the real demands

Misuse of methods Fabricate method parametersMisleading code generation

positive_test_data = [-3, 0, 7, -1, 4]
result = count_items(positive_test_data)
print(f"The number of positive numbers in 
the list is: {result}")
def count_items(items):
    count = 0
    for item in items:
        if item > 0:
            count += 1
    return count

Our retrieval case：

 Accurate code generation

Our retrieval prompt

Context： // Complete the last line of the code 
Map<String, String> columnNames = ... ;  
for (String columnName : updateColumn) {  
    String fieldName = columnNames.get(columnName);  
    if (StringUtils.isNotEmpty(fieldName)) {    
//from TableTest.java
for (ConfigItem item : changedItems) {  
    String fieldName = configMap.get(item.key()); 
    ... 

Retrieval case：

External Symbols: import com.yourcompany.util.TableFieldUtil;
//public class TableFieldUtil {
//public static Map<String, Field> 
getFieldMap(Class<?> clazz) {

Information About  
TableFieldUtil

Correct use of methods Authentic method parameters

def calculate_average(numbers):
    total = sum(numbers)
    count = len(numbers)
    return total / count

def calculate_average(numbers):
    total = sum(numbers)
    count = len(numbers)
    return total / count

def calculate_average(numbers):
    total = sum(numbers)
    count = len(numbers)
    return total / count

Figure 1: The pitfalls of pure similarity retrieval and the highlights of SARACODER. Pink boxes il-
lustrate traditional retrieval results based purely on surface similarity, while green boxes demonstrate
results from our method SARACODER.

To address these challenges, we introduce SARACODER, a Semantic-Aware Code Retrieval frame-
work with Redundancy Reduction and Ambiguity Suppression for Repository-Level Code Comple-
tion, that leverages hierarchical resource-optimization to enhance repository-level code completion
under resource-constrained conditions. By deeply mining relationships in code snippets, remov-
ing redundancy and optimized reranking, we provide LLMs with richer, higher-quality reference
cases while minimizing context window consumption. To address misleading superficial similar-
ity, we utilize semantic alignment distillation to capture deep semantic relationships and a graph-
based structural similarity metric, which weighs editing operations by topological importance to
assess the structural proximity of candidates to the target context. To combat redundant retrieval
homogenization, we integrate MD5-based deduplication pruning and diversity-aware reranking, en-
suring relevance while maximizing diversity. Additionally, to resolve external symbol ambiguity
in repository-level code completion, we introduce an external-aware identifier disambiguator that
analyzes project-level dependencies for LLMs. Our key contributions are:

• We propose SARACODER, a hierarchical and resource-optimized retrieval-augmented code com-
pletion framework. SARACODER has redefined its code completion goal from retrieving a large
volume of relevant code to providing the most valuable information within a limited context.

• As an intelligent information filter, SARACODER upgrades code completion by moving from
surface-level code matching to intelligent decision-making based on deep semantics and project
structure. This provides LLMs with high-quality, precise information, leading to more efficient
repository-level code completion within limited contexts.
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• SARACODER’s design allows it to maintain suggestion quality even with a nearly full context
window. This ensures that when complementing other methods that provide different information,
it minimizes negative interference and maximizes the preservation of their content. This synergy
enables it to complement orthogonally other methods that provide cross-file context, providing a
cooperative improvements when used in combination.

2 RELATED WORK

Current Retrieval-Augmented Generation methods for repo-level code completion mainly rely on
code similarity or cross-file dependencies.

2.1 SIMILAR CODE SNIPPET RETRIEVAL FOR RAG

This approach enhances the quality of code LLM generation by retrieving semantically similar
code snippets and integrating them into prompts, mimicking the reference behaviors of program-
mers. CodeSearchNet Husain et al. (2020) pioneers large-scale code corpora construction, providing
retrieval-based completion references; CodeRetriever Li et al. (2022a) integrates pretrained models
like CodeBERT Feng et al. (2020) to enhance complex scenario handling; ReACC Lu et al. (2022)
combines vector and string-based retrieval to significantly optimize long-code processing; Graph-
Coder Liu et al. (2024b) improves code completion by using program dependencies for structured
representations, allowing coarse-to-fine retrieval for Python and Java. However, like many other
methods, its dependency analysis does not fully grasp deep semantic relationships in code. Addi-
tionally, most approaches rely too much on surface-level textual similarity. This often results in
redundant retrieved content, wasting resources.

2.2 CROSS-FILE DEPENDENCY RETRIEVAL AUGMENTATION

This method approaches code completion in complex repositories by leveraging cross-file code con-
text (e.g., dependencies, dataflow, and subsequent similar code). Inspired by Ding et al.’s Ding et al.
(2023) observation that subsequent content of high-similarity snippets effectively informs comple-
tion, it injects these snippets into prompts. COCOMIC Ding et al. (2024) dynamically fuses the con-
text of this file with the cross-file entities retrieved by CCFinder (compressed into [SUM] vectors)
through a joint attention mechanism to achieve location-aware code completion. DraCo Cheng et al.
(2024) extends this paradigm through dataflow-guided retrieval, parsing private repositories into
code entities and constructing a repository-specific context graph reflecting dependencies. DraCo re-
trieves precise contextual knowledge from this graph to generate well-structured prompts, overcom-
ing cross-file information barriers and repository-specific accuracy gaps. Current limitations include
Python-exclusive implementation with type-sensitive dependencies lacking multilingual support.

2.3 REPOSITORY-LEVEL CODE COMPLETION EVALUATION

Traditional code completion benchmarks like Chen et al. (2021); Austin et al. (2021) focus on iso-
lated snippets, but modern software development’s complexity demands a better evaluation. To
address this, specialized benchmarks such as RepoEval Zhang et al. (2023), CrossCodeEval Ding
et al. (2023), RepoBench Liu et al. (2024a), and ReccEval Cheng et al. (2024) have emerged. They
provide standardized, rigorous tests across various languages and project scales. These benchmarks
divide repository-level code completion into two scenarios. (1) In-File Completion: A high-
frequency task that uses only the current file’s context (e.g., RepoEval). (2) Cross-File Comple-
tion: A more complex task that requires understanding and completing code with dependencies on
symbols from other files (e.g., CrossCodeEval and ReccEval). This shift highlights the move from
simple, isolated tests to comprehensive evaluations that reflect real-world coding environments.

3 METHOD

As shown in Figure 2, SARACODER is a hierarchical feature-optimized retrieval-enhanced code
completion framework. Formally, given a code context Ccontext = {x1, x2, · · · , xn} and its con-
taining file path F , the task aims to predict the next statement ỹ.
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Function
def preprocess_data(raw: list) -> list:
     """Clean and normalize raw data"""
     cleaned = [x.strip() for x in raw if x]
     mean = sum(cleaned) / len(cleaned)
     return [x/mean for x in cleaned]

Class
class TextEncoder:

def __init__(self, vocab_size=5000):
def forward(self, inputs):
def Encoder(self, inputs):

Prompt Generation
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Figure 2: An illustration of SARACODER framework. (1) Database Construction. This phase
constructs a key-value codebase. This involves using a slicing algorithm to create induced graph
slices, which are then precisely mapped to source code snippets. (2) Code Retrieval. This phase
takes code context as input and retrieves similar code, then refines suggestions via Hierarchical
Feature Optimization. Concurrently, an External-Aware Identifier Disambiguator clarifies external
symbols via dependency analysis, delivering highly accurate candidates. (3) Code Generation.
This phase generates prompts by integrating outputs from code retrieval with the code completion
context. These prompts are then fed into an LLM to predict completion statements.

3.1 DATABASE AND INITIAL CANDIDATE CONSTRUCTION

To better represent code logic, we introduce a multi-level code context graph model that integrates
control flow, data dependency, and control dependency Liu et al. (2024b). This structured repre-
sentation offers enhanced generalization capabilities compared to serialization methods, enabling
more effective capture of task-relevant context and facilitating easier adaptation to other languages.
We utilize program slicing to generate precisely mapped, task-relevant subgraphs from source code
on-demand, constructing structured codebases tailored to support specific analysis tasks. When a
code completion task request occurs, we extract the Unfinished Code Context Ccontext and the Im-
port Statements I from the code file . Ccontext is then used to retrieve an initial candidate set of
top k × p 1 code snippets C via text similarity from structured codebases.

3.2 HIERARCHICAL FEATURE OPTIMIZATION (HF OP)

3.2.1 SEMANTIC ALIGNMENT DISTILLATION

Semantic alignment distillation addresses Superficial Similarity Misguidance by leveraging the
GraphcodeBERT Guo et al. (2021), a pretrained model specialized in code understanding, to cap-
ture deep semantic relationships between code snippets. First, the query code Q and candidate
set C are tokenized into subword sequences and uniformly padded or truncated to a fixed length
L = 512. Subsequently, during the feature encoding phase, a 768-dimensional semantic vector vs is
extracted for each code unit s ∈ Q ∪ C, with vector space standardized through L2 normalization.
When code repositories lack sufficient repetitive or relevant code, standard filtering methods are
too strict, often leading to zero-candidate scenarios. This scarcity of reference material then hurts
the accuracy of large language models. To fix this “one-size-fits-all” problem, we introduce a new
dynamic quantile threshold mechanism. During the dynamic filtering phase, the cosine similarity
set S = {cos(vQ, vc) | c ∈ C} is computed between the query vector vQ and all candidate vectors
vc. An adaptive threshold τ = quantile(S, 0.75) is set at the 75th percentile, outputting filtered
results CSAD = {c | cos(vQ, vc) ≥ τ}. To reduce redundant computation overhead and improve
efficiency, a caching mechanism stores encoding results for high-frequency code.

1To ensure a high-quality final candidate set of top k results, we expand the initial candidate pool to top k×
p, allowing more candidates to participate in the Hierarchical Feature Optimization.
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3.2.2 REDUNDANCY-AWARE PRUNING

This module implements lightweight hash-based deduplication via exact text matching. Using the
MD5 algorithm Rivest (1992), it generates 128-bit hash fingerprints (single computation ≈ 0.02ms,
memory footprint 32 bytes/hash) to eliminate verbatim duplicates from candidate set CSAD with
minimal computational cost, significantly reducing downstream overhead. The module maintains
a global hash set Hseen to dynamically track processed sample fingerprints: for each candidate
c ∈ CSAD, if its MD5 hash hc /∈ Hseen, c is added to deduplicated result set CRAP and Hseen
is updated. This achieves real-time processing with O(N) time complexity. After semantic align-
ment distillation processing, the number of code snippets requiring MD5 hashing is limited and their
structure is fixed by syntactic and semantic constraints. The MD5 collision resistance (theoretical
probability ≈ 1.47 × 10−18) is sufficient for strict sensitivity. Additionally, MD5’s superior speed
and lower memory footprint provide optimal cost-performance.

3.2.3 TOPOLOGICAL PROXIMITY METRIC

At this layer, the decaying subgraph edit distance (D-SED) is introduced to measure the graph simi-
larity between the query graph Gq and the candidate graph Gc (Ranjan et al.; Zeng et al.). A higher
D-SED value indicates less similarity. We calculate D-SED for code snippets to quantify their struc-
tural similarity and retain those with the closest match.

D − SED (Gq, Gc) =
∑
op=O

γl(op) · c(op) (1)

Editing operations O are the set of operations to transform Gc to Gq , include adding, deleting, and
modifying nodes and edges. Each operation op ∈ O has a cost c(op) and a hop count l(op) from its
“core node”. For simplicity, we choose the node with the largest ID as core node. Operations closer
to the core exert greater structural influence. γ ∈ (0, 1) is an attenuation factor that reduces the cost
weight for operations farther from the core node. After computing D-SED scores for each candidate
c ∈ CRAP , we compute a composite score s as a weighted sum of text similarity (calculated during
initial candidate generation) and structural similarity (D-SED scores). Subsequently, we generate
QTPM = [(c, s), . . .], ordered in descending score s.

3.2.4 DIVERSITY-AWARE RERANKING

This module implements a variability-aware ranking model based on the Maximal Marginal Rele-
vance (MMR) Carbonell & Goldstein (2017) algorithm to maximize result diversity while preserving
relevance. It addresses homogeneity in traditional rankings through adversarial similarity calcula-
tion and dynamic weight adjustment. S contains items (c, s) ∈ QTPM that have not been selected
into Cfinal yet. Sim1 represents the relevance (si = π2 ◦ ιci(S)) of item ci to query q. Sim2 denotes
the maximum cosine similarity between ci and any item cj in the selected set Cfinal. λ is a trade-off
parameter that balances the emphasis between relevance (Sim1) and diversity (Sim2).

MMR = argmax
ci∈S

[
λ · Sim1(ci, q)− (1− λ) · max

cj∈Cfinal
Sim2(ci, cj)

]
(2)

3.3 EXTERNAL-AWARE IDENTIFIER DISAMBIGUATOR (EAID)

This module enhances knowledge through external identifier augmentation. Firstly, file-level entity
modeling parses code per file F , extracting method entities Emethod (functions/class methods with
identifier, alias, line range [lstart, lend], parameter signature, scope) and class entities Eclass (class def-
initions with identifier, alias, line range [lstart, lend], member mappings) that built in the F . After
that, it generates a structured identifier symbol table STlib = {identifier 7→ syntax features}, where
identifier corresponds to either: (1) the unique identifier of a method entity ∀e ∈ Emethod, or (2) the
unique identifier of a class entity ∀c ∈ Eclass, with the mapped syntax features containing all as-
sociated attributes for that entity. Subsequently, the dependency resolution mechanism processes all
import statements (I) within the unfinshed file. For Intra-project Cross-module Reference, this phase
retrieves complete entities (Elib) from the pre-built entity library (STlib) by determining their corre-
sponding file paths (p). These paths are constructed through decomposition of module components
derived from either dotted names (e.g., my.module.MyClass) or relative imports (e.g., from
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.sub module import MyClass), which are subsequently joined using directory separators
(/) and appended with the .py file extension. For standard and third-party libraries, the system
constructs a lightweight reference table Text = {canonical name 7→ alias} to efficiently manage
external dependencies without full entity resolution. The enhanced prompts PE = I ⊕ Elib ⊕ Text.

3.4 PROMPT GENERATION

Similar Code 
Snippet

External 
Symbols 

Enhancement

Unfinished 
Code Context

Predicted Statementembeddings = encoder.forward(processed)

# Here are some relevant code fragments from other files of the repo:
# --------------------------------------------------
# The below code fragment can be found in:
# pipeline/integration.py
# --------------------------------------------------
# def run_pipeline(inputs, config):
#     """Run full data processing pipeline"""
#     cleaned = clean_inputs(inputs)
#     normalized = normalize(cleaned)
#     validated = validate(normalized)
#     if config['encode']:
#         encoded = encoder.encode(validated)
#         return encoded
#     return validated
# --------------------------------------------------
# Cross-file reference snippets:
# --------------------------------------------------
from utils.data_processor import preprocess_data
# def preprocess_data(raw: list) -> list:
#     """Clean and normalize raw data"""
# ...
#     return [x/mean for x in cleaned]
from utils.data_processor import DataValidator
# class DataValidator:
#     def check_integrity(self, data):
from models.transformer import TextEncoder
# class TextEncoder:
#     def __init__(self, vocab_size=5000):
#     def forward(self, inputs):
# --------------------------------------------------
# Based on above, complete the next statement of the following codes:
def run_pipeline(input_texts):
    processed = preprocess_data(input_texts)
    validator = DataValidator()
    if validator.check_integrity(processed):
        encoder = TextEncoder(vocab_size=10000)

Prompt generated by Saracoder

The output of the large model after receiving the prompt

From 
Input

Generated 
from Code 
Retrieval

Figure 3: Prompt template.

Following code retrieval and external link resolution,
SARACODER employs an external LLM to gener-
ate subsequent statements. The final prompt Pfinal
is constructed by concatenating three components:
the external symbols enhancement PE where en-
tities are ordered by file import sequence reflecting
call probability decay—with function entities pop-
ulated with complete function bodies and class en-
tities containing variable tables and method defini-
tions; the similar code snippets Cfinal containing
code snippets strictly sorted in ascending order of
similarity and annotated with source paths; the un-
finished code context Ccontext. This architecture fol-
lows Pfinal = Cfinal ⊕ PE ⊕ Ccontext. (Figure 3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

Table 1: CrossCodeEval vs. RepoEval-
Updated comparison.

CrossCodeEval RepoEval-Updated
Python Java Python Java

Total Repositories 471 239 10 8
Total Files 14348 5868 3258 8260

Total Task cases 2665 2139 2000 1600
Applicable Scenarios Cross-File completion In-File completion

We primarily utilize two datasets here: CrossCodeE-
val and RepoEval-Updated. (1) CrossCodeE-
val Ding et al. (2023): This benchmark evaluates
code completion in complex Cross-File scenarios
like type inference and dependency analysis. It is
ideal for assessing performance that requires a deep
understanding of code across multiple files. (2)
RepoEval-Updated Liu et al. (2024b): Expanded
from RepoEval Zhang et al. (2023), this new ver-
sion, includes repositories of varying scales, offering
a better way to evaluate In-File completion performance. We use CrossCodeEval to test models on
code completion tasks required complex cross-file dependencies. RepoEval-Updated assesses basic
syntax, common API usage, and local context understanding. Table 1 shows details.

4.1.2 EVALUATION INDICATORS SETTING

In this study, the following several evaluation indicators are used to assess the effect of code com-
pletion Lu et al. (2021); Ding et al. (2023).

• Code Exact Match (EM): Proportion of generated code exactly matching the ground truth. EM
is given only for a perfect semantic and syntactic match.

• Identifier Exact Match (ID EM): The percentage of identifiers (variables, functions, etc.) per-
fectly matching the ground code. A high ID EM score indicates the model’s strong contextual
understanding, enabling it to accurately predict and generate contextually appropriate identifiers.

• Identifier F1 Score (ID F1): A more nuanced evaluation of identifier matching by combining
precision and recall. It offers a more comprehensive assessment of identifier completion quality,
particularly beneficial in scenarios where models might generate partial but correct identifier sets.

• Edit Similarity (ES): Similarity metric between generated and ground-truth code based on edit
distance. It tolerates slight variations, requiring the completed code to be highly similar in struc-
ture, syntax, and token order to the target.
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4.1.3 BASELINE SETTING

We employ the following five methods as controls to evaluate the effectiveness of retrieval-
augmented generation (RAG) in code completion: No RAG (Zero-shot-only baseline), Shifted RAG
(Target-context dynamic retrieval), Vanilla RAG (Exemplar-similarity fixed retrieval), Repocoder
(Iterative-fragment integration Zhang et al. (2023)), Graphcoder (Structure-modeling CCG utiliza-
tion Liu et al. (2024b)).

4.1.4 MODEL SELECTION

In this experiment, we select Codegen2-7b, Codegen25-7b Nijkamp
et al. (2023b;a), CodeLlama-7b-Instruct Rozière et al. (2024) and
deepseek-coder-6.7b-instruct Guo et al. (2024) for code completion task inference.

4.2 MAIN RESULTS

To evaluate the performance of SARACODER on repository-level code completion, we have formu-
lated the following four research questions (RQs):

RQ1 Effectiveness in Cross-File Scenarios: How does SARACODER perform when cross-context
understanding is required, compared to other methods?

RQ2 Cost Analysis in Cross-File Scenarios: How does SARACODER’s resource consumption
compare to GraphCoder in Cross-File scenarios?

RQ3 Synergistic Gain Property: How does SARACODER perform when integrated orthogonally
with other methods that provide cross-file context?

RQ4 Advantage in In-File Scenarios: How does SARACODER perform on tasks without cross-
context requirements and what are its advantages?

4.2.1 FOR RQ1: DOMINANT CROSS-FILE CODE ACCURACY.

Table 2 illustrates that SARACODER surpasses the top-performing Repocoder on the CrossCodeEval
dataset, achieving an average improvement of 1.50 in EM, 0.77 in ES, 1.11 in ID EM, and 0.61 in
ID F1. This indicates SARACODER provides more effective information and generates code with
higher semantic accuracy, better capturing intended functionality. The enhanced ID EM further
shows SARACODER’s superior ability to interpret context and select appropriate identifiers. These
advancements effectively mitigate misleading superficial similarity and external symbol ambiguity,
leading to more reliable and contextually relevant code. For Java code completion, SARACODER
shows better EM and ID EM, with slightly lower ES and F1 scores. This discrepancy is attributed to
the inherent characteristics of Java’s static typing system and complex code structure. These features
lead to the generation of code that is logically correct but contains numerous textual variations and
boilerplate redundancies. Consequently, small structural deviations (e.g., misplaced brackets) are
more readily penalized by metrics such as ES and F1.

4.2.2 FOR RQ2: COST-OPTIMIZED ACCURACY ADVANTAGE IN CROSS-FILE.

We experiment with code completion efficiency using codegen25-7b and Graphcoder. Our goal is
to see how retrieving more similar cases (top k) impacts accuracy. Since using fewer top k cases
saves input tokens2, this study shows the balance between resources and accuracy. Our experiments
demonstrate significant performance saturation for both retrieval methods when top k reaches 3-4,
with no observable fluctuations upon increasing to top k = 10. SARACODER achieves compre-
hensive superiority in Python tasks (e.g., 9.4% EM improvement) while maintaining advantages in
Java tasks despite a marginal 0.1 decrease in ES. Crucially, under resource-constrained top k = 1
conditions: all Python metrics outperform the baseline; three Java metrics (EM/ES/ID EM) show
improvements; and Java ID F1 initially trails (35.22 vs. 35.27) but ultimately surpasses the baseline
at saturation (35.84 vs. 35.77). Our method achieves performance breakthroughs at lower computa-
tional cost (stable at top k ≈ 4) by reducing redundant and homogeneous cases (Figure 4).

2For relevant explanations, please refer to the Appendix A.6.2
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Table 2: Performance comparison on the CrossCodeEval dataset. Numbers are shown in percentage
(%). The top results are bolded, and the second best are underlined.

Language Methods
Codegen2-7b Codegen25-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 0.00 13.38 0.00 2.24 0.00 13.26 0.00 2.10 0.00 4.51 0.00 0.57 0.00 13.27 0.00 2.22
Shifted Rag 4.84 46.67 11.48 42.72 7.40 48.88 14.09 44.62 8.19 50.18 14.77 46.69 6.91 49.12 13.60 45.12
Vanilla Rag 9.48 50.97 17.15 47.81 12.39 53.92 23.61 53.14 13.00 54.00 26.63 55.77 11.45 52.93 19.23 50.49
Repocoder 12.47 54.08 21.57 51.89 16.62 56.80 25.73 57.85 17.11 58.11 26.71 56.46 15.14 56.28 24.56 54.22
Graphcoder 10.88 52.36 19.68 49.73 14.54 55.29 23.38 52.61 15.53 57.05 24.29 55.01 13.30 55.41 22.63 52.91
SARACODER 15.04 56.03 24.44 54.68 18.36 58.30 27.28 56.22 19.72 59.93 28.52 58.26 17.91 58.37 27.77 56.82

Java

No Rag 1.03 21.79 0.64 16.86 1.50 21.77 24.78 24.78 6.40 35.79 10.42 32.90 0.93 20.83 1.96 16.17
Shifted Rag 6.08 46.09 12.11 43.76 5.89 38.00 10.23 36.44 5.84 36.19 11.64 35.23 6.73 43.75 12.71 41.68
Vanilla Rag 9.30 47.42 15.71 45.69 10.38 40.76 15.29 39.91 8.88 33.59 15.01 33.51 10.93 45.01 17.81 44.08
Repocoder 10.71 41.83 16.18 41.51 12.16 42.38 17.63 41.69 9.58 34.25 15.76 34.13 13.23 46.01 19.87 45.14
Graphcoder 8.13 45.18 14.35 43.32 8.42 36.77 12.85 35.84 7.39 32.34 12.76 32.05 8.51 40.57 14.96 39.57
SARACODER 11.73 46.69 18.37 45.47 11.40 39.33 16.22 38.97 11.92 34.55 17.72 34.99 12.95 42.71 19.54 42.33
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Figure 4: Impact of top k on CrossCodeEval. (The two on the left are Java tasks, and the two on the
right are Python tasks.)

4.2.3 FOR RQ3: SYNERGISTIC INTEGRATION OF SARACODER ACHIEVES ENHANCED
COMPLETION.

We examine two prominent methods that demonstrate exceptional performance in Cross-File scenar-
ios. (1) Repocoder Zhang et al. (2023), distinct from the original, assumes that if code snippets are
similar, their subsequent content is also likely relevant. In the next search round, it specifically gets
the code following those similar snippets (hereafter referred to as Repocoder). (2) Draco Cheng et al.
(2024), analyzes code to create entity dependency graphs, allowing detailed background knowledge
retrieval. It then uses this information to create structured prompts. Currently, Draco only works
with Python. As shown in Table 3, adding our method significantly boosts all four Python metrics
(by 3.42 to 4.52) compared to using Repocoder or Draco alone. For Java, our method improves EM
by 0.45 and ID EM by 0.33 over Repocoder, showing SARACODER exhibits significant synergistic
gain property with existing cross-file methods. 3

4.2.4 FOR RQ4: ENHANCED IN-FILE ACCURACY AND RESOURCE EFFICIENCY.

On the RepoEval-Updated dataset (Table 4), SARACODER shows superior semantic and identifier
accuracy (surpassing the top-performing Graphcoder: +0.547 EM, +0.737 ES, +0.125 ID EM, and
+0.667 F1) for both Python and Java code completion. The cost analysis (Appendix A.6.1) further
indicates SARACODER generally performs better and exhibits higher stability across most Python
metrics (excluding EM) and all Java metrics. This makes it particularly effective for resource-
constrained environments, especially at lower top k values. However, SARACODER’s gains over
Graphcoder in code and identifier matching are smaller here than on CrossCodeEval. This is pri-
marily because RepoEval-Updated projects contain a higher prevalence of similar code snippets,
resulting in reduced code diversity within the repository. Overall, the conclusions align with those
from the CrossCodeEval dataset.

4.3 ABLATION STUDY

To understand the importance of each part of SARACODER, we conduct ablation tests on the Cross-
CodeEval dataset (Figure 5). “-EAID” indicates disabling External-Aware Identifier Disambigua-
tor, resulting in the loss of external dependency integration capabilities; “-HF OP” denotes remov-

3You can find the causes of synergistic gains in Appendix A.6.3.
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Table 3: Performance benefits of SARACODER when integrated orthogonally with other cross-file
approaches (%). The CrossCodeEval dataset is used in this part.

Language Methods
Codegen2-7b Codegen25-7b CodeLlama

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 5.44 57.85 11.71 42.22 7.77 60.52 14.45 45.40 9.49 61.97 16.44 47.36
Shift Rag 4.87 58.36 11.64 42.91 7.44 60.20 14.17 44.78 6.95 60.35 13.75 45.36
Vanilla Rag 9.52 61.87 17.42 48.01 12.43 63.81 20.74 51.00 11.48 63.66 19.42 50.72
SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34

Repocoder 12.50 64.48 21.87 52.09 16.66 66.67 25.99 55.06 15.19 66.24 24.74 54.39
Repocoder + SARACODER 15.94 +3.44 66.43 +1.95 25.73 +3.86 54.80 +2.71 19.49 +2.83 68.53 +1.86 28.90 +2.91 57.49 +2.43 19.19 +4.00 68.45 +2.21 29.05 +4.31 57.47 +3.08

Draco 20.06 66.33 29.13 56.53 22.93 68.70 32.45 59.34 23.50 68.56 32.57 59.49
Draco + SARACODER 24.06 +4.00 69.40 +3.07 34.00 +4.87 61.12 +4.59 27.05 +4.12 71.86 +3.16 36.80 +4.35 63.48 +4.14 27.20 +3.7 72.01 +3.45 37.29 +1.72 64.35 +4.85

Java

No Rag 0.00 25.92 0.05 17.48 0.00 25.46 0.05 17.61 0.00 25.17 0.00 17.23
Shift Rag 6.45 54.84 12.11 43.75 6.08 44.73 10.27 36.46 7.11 50.96 12.72 41.68
Vanilla Rag 9.68 55.71 15.71 45.71 10.47 47.09 15.29 39.93 11.31 51.48 17.81 44.09
SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34

Repocoder 11.22 56.89 17.72 47.41 10.85 47.93 16.18 41.50 13.60 52.17 19.87 45.14
Repocoder + SARACODER 11.50 +0.28 56.09 -0.80 17.72 0.00 46.96 -0.45 11.27 +0.42 46.53 -1.40 16.41 +0.23 40.47 -1.03 14.26 +0.66 50.79 -1.38 20.62 +0.75 44.38 -0.76

Table 4: Performance comparison on the RepoEval-Updated dataset. Numbers are shown in per-
centage (%). The top results are bolded, and the second best are underlined.

Language Methods
Codegen2-7b Codegen25-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 17.40 32.54 23.75 30.21 19.55 34.48 25.75 32.16 11.50 30.33 15.30 22.39 17.35 33.05 23.55 30.53
Shifted Rag 32.70 59.22 40.10 55.66 36.45 61.96 43.20 58.31 20.90 42.95 26.50 38.88 33.90 60.28 41.50 56.39
Vanilla Rag 38.70 63.58 46.45 60.43 42.25 66.26 48.75 62.79 22.20 41.48 27.85 37.58 40.30 65.03 47.55 61.06
Repocoder 37.60 61.98 45.10 58.47 40.55 64.48 46.85 60.71 21.35 40.18 26.65 35.93 39.60 63.71 47.05 59.78
Graphcoder 42.40 65.73 49.45 62.07 44.65 67.59 51.00 63.82 28.50 44.63 33.35 42.63 43.90 67.26 51.15 63.51
SARACODER 42.60 65.92 50.15 62.61 44.50 67.79 51.10 63.84 28.25 46.91 33.45 42.95 45.00 68.27 52.00 63.97

Java

No Rag 6.55 16.84 9.15 8.84 5.35 16.21 9.05 8.65 6.40 20.61 7.75 8.73 6.85 17.11 9.45 9.06
Shifted Rag 30.87 62.52 43.94 61.01 26.63 58.46 37.75 56.57 28.00 55.12 36.81 53.39 35.38 64.63 45.56 62.98
Vanilla Rag 33.50 63.82 45.44 62.08 32.00 61.52 41.56 59.48 21.13 46.51 31.19 45.15 38.56 66.46 48.06 64.90
Repocoder 30.13 60.01 42.31 57.10 28.75 57.73 37.88 54.46 22.19 46.93 32.06 44.26 35.38 62.33 44.44 59.63
Graphcoder 37.75 66.19 50.68 64.77 36.63 64.74 46.13 62.62 28.81 55.75 40.06 53.61 43.00 69.68 52.69 67.85
SARACODER 37.93 67.06 50.93 65.48 36.75 65.54 46.44 62.61 29.75 56.38 40.75 54.18 42.88 69.37 52.00 67.37

ing Hierarchical Feature Optimization, canceling the similar fragment screening mechanism; “-
CCG” indicates disabling the code context graph, so it lost the understanding of code structure. The
ablation experiments demonstrate that the complete SARACODER achieves optimal performance,
with all components positively contributing to repository-level completion. Notably, even without
EAID, SARACODER still outperforms Shift RAG and Vanilla RAG, and even surpasses Repocoder
in Python tasks4, proving that HF OP screening substantially enhances case quality.
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Figure 5: Ablation study. (Each three-data-point group represents CodeGen2-7B, CodeGen2.5-7B,
and CodeLlama-7B-Instruct models. Bar lengths show their average performance, with I-shaped
error bars indicating standard deviation)

5 CONCLUSION AND OUTLOOK

In this paper, we present SARACODER, a resource-optimized repository-level code completion
method. It solves the problems of superficial similarity dispersion, retrieval redundancy and rigidity,
and external symbol ambiguity by combining semantic topology with disambiguation. SARACODER
uniquely addresses superficial similarity dispersion, retrieval redundancy and rigidity, and external
symbol ambiguity, reducing unnecessary context window length consumption, and providing more
diverse and higher-quality completion reference information content under resource-constrained
conditions. This method improves code completion quality and can positively complement other
cross-file methods, providing synergistic improvements when used in combination. However, while
both Java and Python are prominent and widely used languages, the generalizability of this method
to other programming languages has not yet been achieved. Future work will pursue two key direc-
tions: expanding language coverage and exploring cross-language code completion.

4Detailed data can be found in Table 8 in appendix.
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REPRODUCIBILITY STATEMENT

We have submitted the relevant code in the supplementary materials. The names of the experimental
benchmarks, the prompt templates used, and the model’s hyperparameter settings can all be found
in Section 3.4 and A.5 . The Appendix A.5.1 and A.5.2 provides a detailed description of the
experimental setup for the mechanism experiments.
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timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
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A APPENDIX

A.1 CONTEXT GRAPH CONSTRUCTION

Code parsing transforms source code into an intermediate representation that is easier to analyze and
process, and is a fundamental step to understand the semantics and structure of a program. Abstract
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Syntax Tree (AST) is one of the most commonly used and effective intermediate representations
in code parsing. It can map source code to a tree topology structure, and accurately represent the
syntax features and context relationships of code elements. By traversing and manipulating the
abstract syntax tree, the relationship graph in the code can be constructed efficiently. Tree-sitter
is a CFG-based parser generator that can support a variety of programming languages including
Python, Java, C++. The core advantage of Tree-sitter is its efficient parsing performance and wide
support for multiple languages, which makes the system have the ability to parse the code of multiple
programming languages uniformly, and provides the possibility of multi-language code analysis. In
code, the following relationships play a key role in semantic analysis, refactoring, debugging, and
maintenance. We use tree-sitter to model the following relationships. See Table 5 for details

Table 5: Semantic Relationships in Code Analysis

Relationship Definition Syntax Examples Type-Sensitive Characteristics
Python Java

Assignment Variable obtains type identity through assignment count: int = 10 String s = new String() Type inference and propagation

Contextual Binding Creates temporary type bindings in specific syntactic structures with open(file) as f: try (BufferedReader br = ...) Context-dependent type lifecycle management

Reference Access to existing variables or properties obj.calculate() this.value Late-bound type resolution

Type Declaration Explicit annotation of variable/return types def func() -> list[str]: List<Integer> list = new ArrayList<>() Basis for static type checking

Parameter Constraint Type constraints on function parameters def sort(items: Sequence[T]) void sort(List<? extends Comparable> l) Input type validation

Return Constraint Type constraints on function return values @return type(float) public int getValue() { ... } Output type consistency guarantee

Inheritance Subclasses automatically acquire parent class members class Child(Parent): class Child extends Parent { ... } Type hierarchy inheritance

Implementation Class fulfillment of interface contracts class MyList(ABC): class ArrayList implements List { ... } Foundation for polymorphic behavior

Override Subclass overriding of parent class methods def method(self): ... @Override void method() { ... } Dynamic method dispatch

Import Dependency Cross-module import dependencies import pandas as pd import java.util.List; Type visibility control

Invocation Execution dependencies between methods/functions math.sqrt(x) Collections.sort(list) Type compatibility verification

A.2 METHOD SUPPLEMENT

A.3 IMPLEMENTATION OF CONTEXT GRAPH SLICING

We begin by initializing three empty sets: Vcf for control flow, Vdd for data dependencies, and Vcd
for control dependencies, along with an empty queue Q. The process starts by adding vtarget to Q.
We then enter a loop, continuing as long as Q is not empty. In each iteration, a vertex v is dequeued.
We apply two critical checks: first, a hop count check stops processing if v is more than h hops
from vtarget; second, a size check halts if the combined size of Vcf ∪Vdd ∪Vcd reaches k statements.
If v passes these checks, we update the sets: v goes into Vcf, its data dependency predecessors go
into Vdd, and its control dependency predecessors go into Vcd. Following this, all unvisited control
flow predecessors of v are enqueued. The loop concludes when Q is empty or a size/hop limit is
hit. Finally, using the union Vcf ∪ Vdd ∪ Vcd as the vertex set, we generate the induced subgraph
Gh(vtarget), which represents our final context graph slice.

A.4 RETHINKING ON THE RETRIEVAL RANGE

Based on preliminary research, we observed that several retrieval-augmented methods for finding
similar code snippets employ a zero-filtering strategy for subsequent code within the same file.
Specifically, this strategy assigns a similarity score of zero—for both textual and graph-structural
similarity—to any code segment located after the current line requiring completion within the same
file, relative to the context of the current completion point. This approach stems from the assumption
that code segments appearing after the completion point in the same file hold no semantic relevance
to the current completion task. The rationale behind this assumption likely lies in a developer mind-
set: “During code completion, neither the code being completed nor the subsequent code exists yet;
therefore, later code offers no reference value.”

We contend that this perspective may not universally hold. Firstly, in practical development, due to
modular programming logic, most programmers’ cognitive context is not continuous. Development
does not strictly follow a top-down sequence based on physical line numbers; rather, it often involves
non-linear thought processes. Consequently, there is no inherent correspondence between physical
line numbers and the semantic boundaries of code segments. Secondly, within the same file, different
functions may share similar implementations. For instance, Different classes might exhibit identical
initialization logic; operations on distinct variables may follow similar patterns. Therefore, code
segments following the completion point are not entirely devoid of reference value. In fact, due to the
typically homogeneous nature of tasks handled within a single file, these subsequent segments might
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be more contextually relevant to the actual scenario requiring completion compared to snippets
retrieved from entirely different files.

A.4.1 HE OP’S PREVIOUS PREPARATION

After the database is established, when we receive a code completion request, we first conduct a
global search for similar code snippet in the context of the location to be completed, and obtain a
larger candidate pool by relaxing the location constraints. Use Jaccard similarity to calculate the
text similarity with the query code, and select the top k × p samples with the highest similarity
as the candidate set to participate in the subsequent process. Among them, Jaccard similarity is a
measurement method used to measure the similarity between two sets. It measures the similarity
between the two sets by calculating the ratio of their intersection to their union.

A.4.2 THE ALGORITHM OF SEMANTIC ALIGNMENT DISTILLATION

For details, please refer to Algorithm 1.

Algorithm 1 Code Similarity Analysis

Require: Query Q, Candidates C, Max length L = 512
Ensure: Filtered results R

Preprocess:
Tokenize and pad Q and C to length L
Encode:
for s ∈ {Q} ∪ C do

Extract features vs ∈ R768

Normalize vs
end for
Filter:
Compute similarities S = {cos(vQ, vc)|c ∈ C}
Set threshold τ = quantile(S, 0.75)
R← {c| cos(vQ, vc) ≥ τ}
Cache:
if s ∈ Cache then

Retrieve cached vs
else

Compute and store vs
end if

A.4.3 D-SED CALCULATION

For details, please refer to Algorithm 2. The following is the symbol explanation.

• XA: Set of aligned vertices (mapped to target graph)
• X l

h(ŷ) \XA: Set of unaligned vertices (to be inserted/deleted)
• EA: Set of aligned edges
• El

h(ŷ) \ EA: Set of unaligned edges
• h(v, ỹ): Distance from vertex v to reference point ỹ
• c(v,A(v)): Vertex substitution cost (for aligned vertices)
• c(v): Vertex insertion/deletion cost (for unaligned vertices)
• c(e,A(e)): Edge substitution cost (for aligned edges)
• c(e): Edge insertion/deletion cost (for unaligned edges)

Key Features:

• Distance-based decay: γh(v,ỹ) weights edit costs based on proximity to reference

14
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Algorithm 2 Decay Subgraph Edit Distance (D-SED)

Require: Graphs Gl
h(ŷ) and Gl

h(x)
Decay factor γ ∈ (0, 1)

Ensure: SED between Gl
h(ŷ) and Gl

h(x)
1: SED← 0
2: for each vertex v ∈ XA do
3: SED← SED + γh(v,ỹ) · c(v,A(v))
4: end for
5: for each vertex v ∈ X l

h(ŷ) \XA do
6: SED← SED + γh(v,ỹ) · c(v)
7: end for
8: for each edge e = (v, t, u) ∈ EA do
9: SED← SED + γh(v,ỹ) · c(e,A(e))

10: end for
11: for each edge e = (v, t, u) ∈ El

h(ŷ) \ EA do
12: SED← SED + γh(v,ỹ) · c(e)
13: end for
14: return SED

• Four cost categories: Separates vertex/edge and aligned/unaligned cases

• Reference point: ỹ serves as the anchor for distance calculations

• Asymmetric treatment: Focuses on edits in Gl
h(ŷ) relative to Gl

h(x)

A.5 DETAILS OF EXPERIMENT SETUP

A.5.1 PARAMETER SETTING

In this study, we mainly adopt the Greedy Decoding strategy for text generation. Its core configu-
ration is: disable sampling (do sample=False) and set the temperature value (temperature)
to 0. This combination ensures that the model necessarily selects the token with the highest logical
probability at each step, thereby eliminating randomness in the generation process and facilitating
a strict and reproducible evaluation of the model’s performance. To simplify and observe the per-
formance of various methods within the limited length of the context window, the maximum length
limit for text is 2048 new tokens (max num tokens).

A.5.2 RESOURCE CONTROL AND ALLOCATION IN THE EXPERIMENT

In practice, the max num tokens parameter controls the total length of the context window. The
system sets a maximum length limit for the “unfinished code context,” which is no more than half
of the total window. The remaining context window is dynamically used to accommodate other
information, including retrieved similar code snippets. Since the output of the External Symbols
Enhancement module is highly compressed, we primarily use the top k parameter to control the
number of similar code snippets that can be included in the prompt. This effectively constrains the
use of this portion of the resources. The value of top k directly determines the number of similar
examples that can be introduced; a smaller value allocates less context space to similar code snippets.
Through this mechanism, we can achieve flexible and precise control over the different components
of the information within a limited total resource budget.

A.5.3 DETAILS OF DATASET

The detailed information of dataset is as follows in the table 6 and table 7.

A.5.4 CALCULATION OF EVALUATION INDICATORS

(1) Code Exact Match(EM): The code exact match measures the proportion of the generated code
completions that are exactly the same as the ground truth.
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Table 6: The dataset of CrossCodeEval

Python Java
Total number of repositories 471 239
Total number of documents 14348 5868
Total number of task cases 2665 2139

Table 7: The dataset of RepoEval-Updated

Language Project Name Creation time The number of files Total project file size (MB)

Python

devchat 2023-04-17 40 0.5
nemo aligner 2023-09-01 54 1.6

awslabs fortuna 2022-11-17 168 1.9
task weaver 2023-09-11 113 3.0

huggingface diffusers 2022-05-30 305 6.2
opendilab ACE 2022-11-23 425 6.8

metagpt 2023-06-30 374 17.9
apple 2023-02-25 265 23.8

QingruZhang 2023-05-31 1357 32.6
nerfstudio-project nerfstudio 2022-05-31 157 54.5

Java

FloatingPoint-MC MIN 2023-07-10 2628 269.5
itlemon chatgpt4j 2023-04-04 67 0.4

mybatis-flex mybatis-flex 2023-02-27 487 8.8
Guiqu1aixi rocketmq 2023-04-25 988 10.6

SimonHalvdansson Harmonic-HN 2023-05-23 51 16.8
Open-DBT open-dbt 2023-02-27 366 20.0

QuasiStellar custom-pixel-dungeon 2023-05-08 1093 51.3
gentics cms-oss 2023-05-08 2580 130.5

(2) Identifier Exact Match(ID EM): The identifier exact match measures the proportion of the gen-
erated code completions that are exactly the same as the ground truth.

(3) Identifier F1 Score: The Identifier F1 score measures the degree of match between the identi-
fiers (variable names, function names, etc.) in the generated code and the actual identifiers. It
combines Precision (correctness) and Recall (completeness).

F1 = 2× precision × recall
precision + recall

(3)

(4) Edit Distance Similarity (ES) : Edit Distance similarity is calculated based on the edit distance
and measures the degree of similarity between the generated code string and the real code string.

ES = 1− ED (S1, S2)

max (len (S1) , len (S2))
(4)

Among them,len(S1) and len(S2) are the lengths of S1 and S2 respectively. ED(S1, S2) is the
edit Distance between S1 and S2, also known as the Levenshtein Distance(Algorithm 3), which
is usually calculated through Dynamic Programming.

A.5.5 DETAILS OF BASELINES

• No RAG: As a basic control experiment, this method only relies on the pre-trained knowledge
base of large language models (LLMS), and directly inputs the current code context into the model
for autoregressive generation. The characteristic of this method lies in completely ignoring the
context information of the code base, and it can be used to evaluate the native reasoning ability of
LLMS in zero-shot scenarios.

• Shifted RAG: The core of this method is the sliding window offset mechanism. This mechanism
dynamically adjusts window positions during retrieval, prioritizing code segments likely to con-
tain target call chains. Through temporal probability prediction, it enhances temporal relevance
between retrieval results and completion targets. The approach demonstrates distinct advantages
in scenarios like API invocation sequences and control flow continuation.

• Vanilla Rag: Given the context, retrieve a set of similar code snippets from the repository through
a fixed-size sliding window and call the LLM to obtain the predicted next statement.
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Algorithm 3 Levenshtein Distance Calculation

Require: Two strings: str1 (length m), str2 (length n)
Ensure: Edit distance between str1 and str2

Initialize dp as 2D array of size (m+ 1)× (n+ 1)
for i = 0 to m do
dp[i][0]← i {Deletion operations}

end for
for j = 0 to n do
dp[0][j]← j {Insertion operations}

end for
for i = 1 to m do

for j = 1 to n do
if str1[i− 1] == str2[j − 1] then
dp[i][j]← dp[i− 1][j − 1] {Characters match}

else

dp[i][j]← 1 + min


dp[i][j − 1] (Insertion)

dp[i− 1][j] (Deletion)

dp[i− 1][j − 1] (Substitution)

end if
end for

end for
return dp[m][n] {Final edit distance}

• Repocoder5: This is an iterative retrieval-augmented framework for repository-level code com-
pletion. It addresses the challenge of leveraging fragmented repository information by integrating
similarity-based retrievers with pretrained code LLMs, enabling precise cross-file completion of
unfinished code.

• Graphcoder: This is a structured retrieval-augmented code completion framework. Its core inno-
vation lies in employing a graph-based retrieval-generation process, which utilizes Code Context
Graphs (CCG) to accurately model code dependencies, replacing traditional sequence-based con-
text representations.

A.6 ADDITIONAL RESULTS

Table 8: Detailed data of the ablation experiment

Language Methods
Codegen2-7b Codegen25-7b CodeLlama

Code Match Identifier Match Code Match Identifier Match Code Match Identifier Match
EM ES EM F1 EM ES EM F1 EM ES EM F1

Python

No Rag 5.44 57.85 11.71 42.22 7.77 60.52 14.45 45.40 9.49 61.97 16.44 47.36
Shift Rag 4.87 58.36 11.64 42.91 7.44 60.20 14.17 44.78 6.95 60.35 13.75 45.36
Vanilla Rag 9.52 61.87 17.42 48.01 12.43 63.81 20.74 51.00 11.48 63.66 19.42 50.72

SARACODER 15.07 66.04 24.71 54.86 18.40 67.95 27.50 56.38 17.94 67.99 27.96 57.00
- EAID 13.49 65.02 22.86 52.95 15.90 66.80 25.01 54.74 15.90 66.63 25.27 54.98

- HF OP 10.96 63.05 19.95 49.90 14.54 65.66 23.57 52.88 13.37 65.63 22.86 53.11
- CCG 11.11 63.23 20.14 50.19 13.98 65.27 23.27 52.78 13.37 65.28 22.36 52.86

Java

No Rag 0.00 25.92 0.05 17.48 0.00 25.46 0.05 17.61 0.00 25.17 0.00 17.23
Shift Rag 6.45 54.84 12.11 43.75 6.08 44.73 10.27 36.46 7.11 50.96 12.72 41.68
Vanilla Rag 9.68 55.71 15.71 45.71 10.47 47.09 15.29 39.93 11.31 51.48 17.81 44.09

SARACODER 12.16 54.16 18.37 45.47 11.50 44.90 16.22 38.95 13.32 48.04 19.54 42.34
- EAID 8.88 53.12 14.63 43.12 8.60 42.29 13.00 35.84 9.91 46.89 15.71 40.03

- HF OP 8.56 53.08 14.35 43.33 8.51 42.29 12.86 35.84 8.93 46.36 14.96 39.57
- CCG 8.88 52.67 14.31 42.92 8.18 42.10 12.34 35.57 8.98 45.44 14.68 38.51

5We attempt to run the code publicly released by Zhang et al., but fail to execute them with the provided
instructions. For the specific implementation here, please refer to Ding et al.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6.1 COST ANALYSIS IN IN-FILE SCENARIOS

In this Token cost analysis experiment on the efficiency of code completion inference, we used the
RepoEval Updated dataset, the Deepseeking -coder model for code inference, and Graphcoder as
the control group for the experiment. The main comparison is to show the changes of each accuracy
index as the number of similar cases retrieved by the code in the prompt word (top-k) increases.
As can be seen from Figure 6, whether it is a Graphcoder or SARACODER, with the increase of
top k, they basically show a trend of first rising, then falling, and finally gradually stabilizing. This
indicates that as top-k increases, the noise cases that may be introduced may lead to a decrease in
accuracy. SARACODER demonstrates advantages in the vast majority of scenarios: in the python
code completion task, the stable values of the three metrics except EM are higher than those of the
original retrieval method, among which the ES value increases by 0.31, the ID EM value increases
by 0.1, and the ID F1 value increases by 0.32. In the java code completion task, the stable values
of the four indicators have all seen relatively significant improvements, increasing by 0.937, 0.641,
0.687, and 0.568 respectively. In addition, it can be seen from the figure that when the top k is
between 2 and 4, the performance of the improved retrieval method is significantly better than that
of the original retrieval method. This indicates that our method is more suitable for scenarios with
scarce computing resources.
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Figure 6: Impact of top k on RepoEval-Updated. (The two on the left are Java tasks, and the two on
the right are Python tasks.

A.6.2 QUANTITATIVE ANALYSIS OF TOP K AND TOKEN.

In our experiments, we focused on minimizing the influence of external factors. To do this, we used
the smallest runnable (executable and producing valid output) module, which included both unfin-
ished code context and HE OP (Hierarchical Feature Optimization). The unfinished code context
provided the input content, while HE OP offered code completion reference cases. Importantly,
HE OP is directly influenced by the top k parameter. We conducted our tests using two key top k
values(4 and 10) and set max token num to 2048. As shown in the table 9, clearly demonstrate that
a top k of 4 significantly reduces input token consumption across all three models compared to a
top k of 10. On average, each task saved approximately 22.38 input tokens when top k was set to 4,
confirming that a smaller top k value leads to lower token consumption. Furthermore, we observed
no significant drop in output token count when top k was reduced. This, coupled with the results
in Figure 6 showing no decline in accuracy, indicates that our method effectively reduces resource
consumption while maintaining output quality.

Table 9: Quantitative analysis of top k and token. The comparison of the average input and output
tokens on each task when the dataset is Repo Updated and max num tokens is 2048.

Method Codegen2-7b deepseek-coder-6.7b-instruct CodeLlama-7b-Instruct
#In #Out #In #Out #In #Out

context 821.627 95.15 778.52 93.48 763.93 96.86
context+HF OP (top k=10) 1665.50 88.15 1621.92 90.86 1611.37 96.99
context+HF OP (top k=4) 1644.26 89.20 1596.83 88.57 1590.55 98.06

A.6.3 CASE STUDY IN SYNERGISTIC GAIN PROPERTY

To better understand the causes of synergistic gains, we analyzed our experimental cases. SARA-
CODER’s External-Aware Identifier Disambiguator effectively resolves “type inference chain break-
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age” in cross-file dependencies by injecting essential symbolic relationships. Still, it occasionally
introduces irrelevant information, which can lead to misinterpretations. Repocoder, when used in-
dependently, offers prompts that closely align with common coding patterns. However, it faces chal-
lenges with the adaptability of external information, often clashing with local APIs or project con-
straints, thereby limiting its accuracy. Draco stands out for its deep semantic modeling, which gener-
ates detailed data and control flow graphs to pinpoint highly relevant cross-file context; nonetheless,
it encounters difficulties when the code’s intent is unclear. SARACODER significantly contributes
by providing semantically aligned code examples. These examples offer crucial “intent hinting”
and “structure references,” compensating for Draco’s limitations in ambiguous code scenarios. As a
result, the “Draco + SARACODER” combination synergistically boosts performance: Draco delivers
precise cross-file context, while SARACODER guides intent and structure. Moreover, the external
disambiguation module within SARACODER clarifies identifiers, effectively alleviating Repocoder’s
issues with external information adaptability and conflicts, making the “Repocoder + SARACODER”
combination a more effective choice than using Repocoder in isolation.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLM)

In order to enhance the language quality and clarity of this academic paper, the author utilized AI-
powered tools for text refinement during the writing process. The specific details are as follows:

Purpose of Use: The primary purposes for using AI tools were to:

• Check grammar and spelling for certain sentences.
• Optimize vocabulary choices for more precise and academic expression.
• Adjust sentence structures to improve logical coherence and readability between paragraphs.

Method of Use: The author input original paragraphs written by themselves into the AI tools and
then manually judged, filtered, and revised the text based on the refinement suggestions provided.
All adopted changes were carefully considered by the author to ensure they fully align with the
original intent and academic rigor of the paper.

Disclaimer of Responsibility: All academic content in this paper, including core arguments, re-
search data, result analysis, argumentation process, and final conclusions, was independently created
and is the sole responsibility of the author. The AI tools were used purely as an auxiliary aid and did
not generate any critical academic viewpoints, research data, or conclusions. The author assumes
full responsibility for the final content of the paper.

Tools Used: The AI tools used in this process were: Gemini-2.5 Flash, deepseek-V3.1.
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