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Abstract

Domain incremental learning aims to adapt to a sequence of domains with access
to only a small subset of data (i.e., memory) from previous domains. Various
methods have been proposed for this problem, but it is still unclear how they are
related and when practitioners should choose one method over another. In response,
we propose a unified framework, dubbed Unified Domain Incremental Learning
(UDIL), for domain incremental learning with memory. Our UDIL unifies various
existing methods, and our theoretical analysis shows that UDIL always achieves
a tighter generalization error bound compared to these methods. The key insight
is that different existing methods correspond to our bound with different fixed
coefficients; based on insights from this unification, our UDIL allows adaptive
coefficients during training, thereby always achieving the tightest bound. Empirical
results show that our UDIL outperforms the state-of-the-art domain incremental
learning methods on both synthetic and real-world datasets. Code will be available
at https://github.com/Wang-ML-Lab/unified-continual-learning.

1 Introduction

Despite recent success of large-scale machine learning models [35, 48, 36, 28, 92, 22, 33], continually
learning from evolving environments remains a longstanding challenge. Unlike the conventional
machine learning paradigms where learning is performed on a static dataset, domain incremental
learning, i.e., continual learning with evolving domains, hopes to accommodate the model to the
dynamically changing data distributions, while retaining the knowledge learned from previous
domains [90, 60, 41, 97, 27]. Naive methods, such as continually finetuning the model on new-
coming domains, will suffer a substantial performance drop on the previous domains; this is referred
to as “catastrophic forgetting” [46, 58, 81, 105, 52]. In general, domain incremental learning
algorithms aim to minimize the total risk of all domains, i.e.,

L∗(θ) = Lt(θ) + L1:t−1(θ) = E(x,y)∼Dt
[ℓ(y, hθ(x)] +

t−1∑
i=1

E(x,y)∼Di
[ℓ(y, hθ(x)], (1)

where Lt calculates model hθ’s expected prediction error ℓ over the current domain’s data distribution
Dt. L1:t−1 is the total error evaluated on the past t− 1 domains’ data distributions, i.e., {Di}t−1

i=1 .

The main challenge of domain incremental learning comes from the practical memory constraint
that no (or only very limited) access to the past domains’ data is allowed [52, 46, 105, 74]. Under
such a constraint, it is difficult, if not impossible, to accurately estimate and optimize the past error
L1:t−1. Therefore the main focus of recent domain incremental learning methods has been to develop
effective surrogate learning objectives for L1:t−1. Among these methods [46, 81, 2, 105, 58, 10, 75,
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77, 21, 25, 65, 66, 9, 72, 82, 95, 53], replay-based methods, which replay a small set of old exemplars
during training [90, 75, 8, 4, 80, 11], has consistently shown promise and is therefore commonly used
in practice.

One typical example is ER [75], which stores a set of exemplarsM and uses a replay loss Lreplay as
the surrogate of L1:t−1. In addition, a fixed, predetermined coefficient β is used to balance current
domain learning and past sample replay. Specifically,

L̃(θ) = Lt(θ) + β · Lreplay(θ) = Lt(θ) + β · E(x′,y′)∼M[ℓ(y′, hθ(x
′)]. (2)

While such methods are popular in practice, there is still a gap between the surrogate loss (βLreplay)
and the true objective (L1:t−1), rendering them lacking in theoretical support and therefore calling into
question their reliability. Besides, different methods use different schemes of setting β [75, 8, 4, 80],
and it is unclear how they are related and when practitioners should choose one method over another.

To address these challenges, we develop a unified generalization error bound and theoretically show
that different existing methods are actually minimizing the same error bound with different fixed
coefficients (more details in Table 1 later). Based on such insights, we then develop an algorithm
that allows adaptive coefficients during training, thereby always achieving the tightest bound and
improving the performance. Our contributions are as follows:

• We propose a unified framework, dubbed Unified Domain Incremental Learning (UDIL),
for domain incremental learning with memory to unify various existing methods.

• Our theoretical analysis shows that different existing methods are equivalent to minimizing
the same error bound with different fixed coefficients. Based on insights from this unification,
our UDIL allows adaptive coefficients during training, thereby always achieving the tightest
bound and improving the performance.

• Empirical results show that our UDIL outperforms the state-of-the-art domain incremental
learning methods on both synthetic and real-world datasets.

2 Related Work

Continual Learning. Prior work on continual learning can be roughly categorized into three
scenarios [90, 15]: (i) task-incremental learning, where task indices are available during both
training and testing [52, 46, 90], (ii) class-incremental learning, where new classes are incrementally
included for the classifier [74, 100, 30, 45, 44], and (iii) domain-incremental learning, where the
data distribution’s incremental shift is explicitly modeled [60, 41, 97, 27]. Regardless of scenarios,
the main challenge of continual learning is to alleviate catastrophic forgetting with only limited
access to the previous data; therefore methods in one scenario can often be easily adapted for another.
Many methods have been proposed to tackle this challenge, including functional and parameter
regularization [52, 46, 81, 2], constraining the optimization process [77, 21, 58, 10], developing
incrementally updated components [104, 38, 53], designing modularized model architectures [73, 95],
improving representation learning with additional inductive biases [9, 66, 65, 25], and Bayesian
approaches [24, 63, 49, 1]. Among them, replaying a small set of old exemplars, i.e., memory, during
training has shown great promise as it is easy to deploy, applicable in all three scenarios, and, most
importantly, achieves impressive performance [90, 75, 8, 4, 80, 11]. Therefore in this paper, we focus
on domain incremental learning with memory, aiming to provide a principled theoretical framework
to unify these existing methods.

Domain Adaptation and Domain Incremental Learning. Loosely related to our work are domain
adaptation (DA) methods, which adapt a model trained on labeled source domains to unlabeled
target domains [68, 67, 57, 78, 79, 108, 71, 16, 17, 64, 94, 51]. Much prior work on DA focuses
on matching the distribution of the source and target domains by directly matching the statistical
attributions [67, 89, 87, 71, 64] or adversarial training [108, 57, 26, 109, 17, 102, 101, 54, 94].
Compared to DA’s popularity, domain incremental learning (DIL) has received limited attention
in the past. However, it is now gaining significant traction in the research community [90, 60, 41,
97, 27]. These studies predominantly focus on the practical applications of DIL, such as semantic
segmentation [27], object detection for autonomous driving [60], and learning continually in an
open-world setting [18]. Inspired by the theoretical foundation of adversarial DA [5, 57], we propose,
to the best of our knowledge, the first unified upper bound for DIL. Most related to our work
are previous DA methods that flexibly align different domains according to their associated given
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or inferred domain index [94, 101], domain graph [102], and domain taxonomy [54]. The main
difference between DA and DIL is that the former focuses on improving the accuracy of the target
domains, while the latter focuses on the total error of all domains, with additional measures taken to
alleviate forgetting on the previous domains. More importantly, DA methods typically require access
to target domain data to match the distributions, and therefore are not directly applicable to DIL.

3 Theory: Unifying Domain Incremental Learning

In this section, we formalize the problem of domain incremental learning, provide the generalization
bound of naively applying empirical risk minimization (ERM) on the memory bank, derive two
error bounds (i.e., intra-domain and cross-domain error bounds) more suited for domain incremental
learning, and then unify these three bounds to provide our final adaptive error bound. We then develop
an algorithm inspired by this bound in Sec. 4. All proofs of lemmas, theorems, and corollaries can
be found in Appendix A.

Problem Setting and Notation. We consider the problem of domain incremental learning with
T domains arriving one by one. Each domain i contains Ni data points Si = {(x(i)

j , y
(i)
j )}Ni

j=1,

where (x
(i)
j , y

(i)
j ) is sampled from domain i’s data distribution Di. Assume that when domain

t ∈ [T ] ≜ {1, 2, . . . , T} arrives at time t, one has access to (1) the current domain t’s data St, (2) a
memory bankM = {Mi}t−1

i=1 , where Mi = {(x̃(i)
j , ỹ

(i)
j )}Ñi

j=1 is a small subset (Ñi ≪ Ni) randomly
sampled from Si, and (3) the history model Ht−1 after training on the previous t− 1 domains. For
convenience we use shorthand notation Xi ≜ {x(i)

j }
Ni
j=1 and X̃i ≜ {x̃(i)

j }
Ñi
j=1. The goal is to learn

the optimal model (hypothesis) h∗ that minimizes the prediction error over all t domains after each
domain t arrives. Formally,

h∗ = argmin
h

t∑
i=1

ϵDi
(h), ϵDi

(h) ≜ Ex∼Di
[h(x) ̸= fi(x)], (3)

where for domain i, we assume the labels y ∈ Y = {0, 1} are produced by an unknown deterministic
function y = fi(x) and ϵDi

(h) denotes the expected error of domain i.

3.1 Naive Generalization Bound Based on ERM

Definition 3.1 (Domain-Specific Empirical Risks). When domain t arrives, model h’s empirical
risk ϵ̂Di(h) for each domain i (where i ≤ t) is computed on the available data at time t, i.e.,

ϵ̂Di
(h) =


1
Ni

∑
x∈Xi

1h(x)̸=fi(x) if i = t,

1

Ñi

∑
x∈X̃i

1h(x)̸=fi(x) if i < t.
(4)

Note that at time t, only a small subset of data from previous domains (i < t) is available in the
memory bank (Ñi ≪ Ni). Therefore empirical risks for previous domains (ϵ̂Di

(h) with i < t) can
deviate a lot from the true risk ϵDi

(h) (defined in Eqn. 3); this is reflected in Lemma 3.1 below.

Lemma 3.1 (ERM-Based Generalization Bound). LetH be a hypothesis space of VC dimension
d. When domain t arrives, there are Nt data points from domain t and Ñi data points from each
previous domain i < t in the memory bank. With probability at least 1− δ, we have:

t∑
i=1

ϵDi
(h) ≤

t∑
i=1

ϵ̂Di
(h) +

√√√√( 1
Nt

+

t−1∑
i=1

1

Ñi

)(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
. (5)

Lemma 3.1 shows that naively using ERM to learn h is equivalent to minimizing a loose generalization
bound in Eqn. 33. Since Ñi ≪ Ni, there is a large constant

∑t−1
i=1

1

Ñi
compared to 1

Nt
, making the

second term of Eqn. 33 much larger and leading to a looser bound.
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3.2 Intra-Domain and Cross-Domain Model-Based Bounds

In domain incremental learning, one has access to the history model Ht−1 besides the memory
bank {Mi}t−1

i=1; this offers an opportunity to derive tighter error bounds, potentially leading to better
algorithms. In this section, we will derive two such bounds, an intra-domain error bound (Lemma 3.2)
and a cross-domain error bound (Lemma 3.3), and then integrate them two with the ERM-based
bound in Eqn. 33 to arrive at our final adaptive bound (Theorem 3.4).

Lemma 3.2 (Intra-Domain Model-Based Bound). Let h ∈ H be an arbitrary function in the
hypothesis spaceH, and Ht−1 be the model trained after domain t− 1. The domain-specific error
ϵDi

(h) on the previous domain i has an upper bound:

ϵDi(h) ≤ ϵDi(h,Ht−1) + ϵDi(Ht−1), (6)

where ϵDi
(h,Ht−1) ≜ Ex∼Di

[h(x) ̸= Ht−1(x)].

Lemma 3.2 shows that the current model h’s error on domain i is bounded by the discrepancy between
h and the history model Ht−1 plus the error of Ht−1 on domain i.

One potential issue with the bound Eqn. 34 is that only a limited number of data is available for each
previous domain i in the memory bank, making empirical estimation of ϵDi

(h,Ht−1) + ϵDi
(Ht−1)

challenging. Lemma 3.3 therefore provides an alternative bound.

Lemma 3.3 (Cross-Domain Model-Based Bound). Let h ∈ H be an arbitrary function in the
hypothesis spaceH, and Ht−1 be the function trained after domain t− 1. The domain-specific error
ϵDi

(h) evaluated on the previous domain i then has an upper bound:

ϵDi
(h) ≤ ϵDt

(h,Ht−1) +
1
2dH∆H(Di,Dt) + ϵDi

(Ht−1), (7)

where dH∆H(P,Q) = 2 suph∈H∆H |Prx∼P [h(x) = 1]− Prx∼Q[h(x) = 1]| denotes the H∆H-
divergence between distribution P and Q, and ϵDt

(h,Ht−1) ≜ Ex∼Dt
[h(x) ̸= Ht−1(x)].

Lemma 3.3 shows that if the divergence between domain i and domain t, i.e., dH∆H(Di,Dt), is
small enough, one can use Ht−1’s predictions evaluated on the current domain Dt as a surrogate loss
to prevent catastrophic forgetting. Compared to the error bound Eqn. 34 which is hindered by limited
data from previous domains, Eqn. 35 relies on the current domain t which contains abundant data and
therefore enjoys much lower generalization error. Our lemma also justifies LwF-like cross-domain
distillation loss ϵDt(h,Ht−1) which are widely adopted [52, 23, 100].

3.3 A Unified and Adaptive Generalization Error Bound

Our Lemma 3.1, Lemma 3.2, and Lemma 3.3 provide three different ways to bound the true risk∑t
i=1 ϵDi

(h); each has its own advantages and disadvantages. Lemma 3.1 overly relies on the limited
number of data points from previous domains i < t in the memory bank to compute the empirical
risk; Lemma 3.2 leverages the history model Ht−1 for knowledge distillation, but is still hindered
by the limited number of data points in the memory bank; Lemma 3.3 improves over Lemma 3.2
by leveraging the abundant data Dt in the current domain t, but only works well if the divergence
between domain i and domain t, i.e., dH∆H(Di,Dt), is small. Therefore, we propose to integrate
these three bounds using coefficients {αi, βi, γi}t−1

i=1 (with αi + βi + γi = 1) in the theorem below.

Theorem 3.4 (Unified Generalization Bound for All Domains). LetH be a hypothesis space of
VC dimension d. Let N = Nt +

∑t−1
i Ñi denoting the total number of data points available to the

training of current domain t, where Nt and Ñi denote the numbers of data points collected at domain
t and data points from the previous domain i in the memory bank, respectively. With probability at
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Table 1: UDIL as a unified framework for domain incremental learning with memory. Three
methods (LwF [52], ER [75], and DER++ [8]) are by default compatible with DIL setting. For the
remaining four CIL methods (iCaRL [74], CLS-ER [4], EMS-ER [80], and BiC [100]), we adapt their
original training objective to DIL settings before the analysis. For CLS-ER [4] and EMS-ER [80], λ
and λ′ are the intensity coefficients of the logits distillation. For BiC [100], t is the current number of
the incremental domain. The conditions under which the unification of each method is achieved are
provided in detail in Appendix B.

UDIL (Ours) LwF [52] ER [75] DER++ [8] iCaRL [74] CLS-ER [4] EMS-ER [80] BiC [100]

αi [0, 1] 0 0 0.5 1 λ/(1+λ) λ′
/(1+λ′) 1/(2t−1)

βi [0, 1] 1 0 0 0 0 0 (t−1)/(2t−1)

γi [0, 1] 0 1 0.5 0 1/(1+λ) 1/(1+λ′) t−1/(2t−1)

least 1− δ, we have:

t∑
i=1

ϵDi(h) ≤

{
t−1∑
i=1

[γiϵ̂Di(h) + αiϵ̂Di(h,Ht−1)]

}
+

{
ϵ̂Dt(h) + (

t−1∑
i=1

βi)ϵ̂Dt(h,Ht−1)

}

+ 1
2

t−1∑
i=1

βidH∆H(Di,Dt) +

t−1∑
i=1

(αi + βi)ϵDi
(Ht−1)

+

√√√√( (1+
∑t−1

i=1 βi)
2

Nt
+

t−1∑
i=1

(γi+αi)
2

Ñi

)(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
≜ g(h,Ht−1,Ω), (8)

where ϵ̂Di
(h,Ht−1) =

1

Ñi

∑
x∈X̃i

1h(x) ̸=Ht−1(x), ϵ̂Dt
(h,Ht−1) =

1
Nt

∑
x∈Xi

1h(x) ̸=Ht−1(x), and

Ω ≜ {αi, βi, γi}t−1
i=1 .

Theorem 3.4 offers the opportunity of adaptively adjusting the coefficients (αi, βi, and γi) according
to the data (current domain data St and the memory bankM = {Mi}t−1

i=1) and history model (Ht−1)
at hand, thereby achieving the tightest bound. For example, when the H∆H divergence between
domain i and domain t, i.e., dH∆H(Di,Dt), is small, minimizing this unified bound (Eqn. 8) leads to
a large coefficient βi and therefore naturally puts on more focus on cross-domain bound in Eqn. 35
which leverages the current domain t’s data to estimate the true risk.

UDIL as a Unified Framework. Interestingly, Eqn. 8 unifies various domain incremental learning
methods. Table 1 shows that different methods are equivalent to fixing the coefficients {αi, βi, γi}t−1

i=1
to different values (see Appendix B for a detailed discussion). For example, assuming default
configurations, LwF [52] corresponds to Eqn. 8 with fixed coefficients {αi = γi = 0, βi = 1};
ER [75] corresponds to Eqn. 8 with fixed coefficients {αi = βi = 0, γi = 1}, and DER++ [8]
corresponds to Eqn. 8 with fixed coefficients {αi = γi = 0.5, βi = 0}, under certain achievable
conditions. Inspired by this unification, our UDIL adaptively adjusts these coefficients to search for
the tightest bound in the range [0, 1] when each domain arrives during domain incremental learning,
thereby improving performance. Corollary 3.4.1 below shows that such adaptive bound is always
tighter, or at least as tight as, any bounds with fixed coefficients.

Corollary 3.4.1. For any bound g(h,Ht−1,Ωfixed) (defined in Eqn. 8) with fixed coefficients Ωfixed,
e.g., Ωfixed = ΩER = {αi = βi = 0, γi = 1}t−1

i=1 for ER [75], we have

∑t

i=1
ϵDi(h) ≤ min

Ω
g(h,Ht−1,Ω) ≤ g(h,Ht−1,Ωfixed), ∀h,Ht−1 ∈ H. (9)

Corollary 3.4.1 shows that the unified bound Eqn. 8 with adaptive coefficients is always preferable
to other bounds with fixed coefficients. We therefore use it to develop a better domain incremental
learning algorithm in Sec. 4 below.
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4 Method: Adaptively Minimizing the Tightest Bound in UDIL

Although Theorem 3.4 provides a unified perspective for domain incremental learning, it does not
immediately translate to a practical objective function to train a model. It is also unclear what
coefficients Ω for Eqn. 8 would be the best choice. In fact, a static and fixed setting will not suffice,
as different problems may involve different sequences of domains with dynamic changes; therefore
ideally Ω should be dynamic (e.g., αi ̸= αi+1) and adaptive (i.e., learnable from data). In this section,
we start by mapping the unified bound in Eqn. 8 to concrete loss terms, discuss how the coefficients
Ω are learned, and then provide a final objective function to learn the optimal model.

4.1 From Theory to Practice: Translating the Bound in Eqn. 8 to Differentiable Loss Terms

(1) ERM Terms. We use the cross-entropy classification loss in Definition 4.1 below to optimize
domain t’s ERM term ϵ̂Dt

(h) and memory replay ERM terms {γiϵ̂Di
(h)}t−1

i=1 in Eqn. 8.

Definition 4.1 (Classification Loss). Let h : Rn → SK−1 be a function that maps the input x ∈ Rn

to the space of K-class probability simplex, i.e., SK−1 ≜ {z ∈ RK : zi ≥ 0,
∑

i zi = 1}; let X be a
collection of samples drawn from an arbitrary data distribution and f : Rn → [K] be the function
that maps the input to the true label. The classification loss is defined as the average cross-entropy
between the true label f(x) and the predicted probability h(x), i.e.,

ℓ̂X (h) ≜ 1
|X |

∑
x∈X

[
−
∑K

j=1
1f(x)=j · log

(
[h(x)]j

)]
. (10)

Following Definition 4.1, we replace ϵ̂Dt(h) and ϵ̂Di(h) in Eqn. 8 with ℓ̂Xt(h) and ℓ̂Xi
(h).

(2) Intra- and Cross-Domain Terms. We use the distillation loss below to optimize intra-
domain ({ϵ̂Di(h,Ht−1)}t−1

i=1) and cross-domain (ϵ̂Dt(h,Ht−1)) model-based error terms in Eqn. 8.

Definition 4.2 (Distillation Loss). Let h,Ht−1 : Rn → SK−1 both be functions that map the input
x ∈ Rn to the space of K-class probability simplex as defined in Definition 4.1; let X be a collection
of samples drawn from an arbitrary data distribution. The distillation loss is defined as the average
cross-entropy between the target probability Ht−1(x) and the predicted probability h(x), i.e.,

ℓ̂X (h,Ht−1) ≜ 1
|X |

∑
x∈X

[
−
∑K

j=1
[Ht−1(x)]j · log

(
[h(x)]j

)]
. (11)

Accordingly, we replace ϵ̂Di
(h,Ht−1) with ℓ̂Xi

(h,Ht−1) and ϵ̂Dt
(h,Ht−1) with ℓ̂Xt

(h,Ht−1).

(3) Constant Term. The error term
∑t−1

i=1(αi + βi)ϵDi(Ht−1) in Eqn. 8 is a constant and contains
no trainable parameters (since Ht−1 is a fixed history model); therefore it does not need a loss term.

(4) Divergence Term. In Eqn. 8,
∑t−1

i=1 βidH∆H(Di,Dt) measures the weighted average of the
dissimilarity between domain i’s and domain t’s data distributions. Inspired by existing adversarial
domain adaptation methods [57, 26, 109, 17, 102, 101, 94], we can further tighten this divergence
term by considering the embedding distributions instead of data distributions using an learnable
encoder. Specifically, given an encoder e : Rn → Rm and a family of domain discriminators
(classifiers)Hd, we have the empirical estimate of the divergence term as follows:

t−1∑
i=1

βid̂H∆H(e(Ui), e(Ut)) = 2

t−1∑
i=1

βi − 2 min
d∈Hd

t−1∑
i=1

βi

[
1

|Ui|

∑
x∈Ui

1∆i(x)≥0 +
1

|Ut|

∑
x∈Ut

1∆i(x)<0

]
,

where Ui (and Ut) is a set of samples drawn from domain Di (and Dt), d : Rm → St−1 is a
domain classifier, and ∆i(x) = [d(e(x))]i − [d(e(x))]t is the difference between the probability
of x belonging to domain i and domain t. Replacing the indicator function with the differentiable
cross-entropy loss,

∑t−1
i=1 βid̂H∆H(e(Ui), e(Ut)) above then becomes

2

t−1∑
i=1

βi − 2 min
d∈Hd

t−1∑
i=1

βi

[
1

Ñi

∑
x∈Xi

[− log ([d(e(x))]i)] +
1
Nt

∑
x∈St

[− log ([d(e(x))]t)]

]
. (12)
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Algorithm 1 Unified Domain Incremental Learning (UDIL) for Domain t Training

Require: history model Ht−1 = Pt−1 ◦ Et−1, current model hθ = p ◦ e, discriminator model dϕ;
Require: dataset from the current domain St, memory bankM = {Mi}t−1

i=1;
Require: training steps S, batch size B, learning rate η;
Require: domain alignment strength coefficient λd, hyperparameter for generalization effect C.

1: hθ ← Ht−1 ▷ Initialization of the current model.
2: Ω ≜ {αi, βi, γi} ← {1/3, 1/3, 1/3}, for ∀i ∈ [t− 1] ▷ Initialization of the replay coefficient Ω.
3: for s = 1, · · · , S do
4: Bt ∼ St;Bi ∼Mi,∀i ∈ [t− 1] ▷ Sample a mini-batch of data from all domains.

5: ϕ← ϕ− η · λd · ∇ϕVd(d, e,
◦
Ω) ▷ Discriminator training with Eqn. 16.

6: Ω← Ω− η · ∇ΩV0-1(
◦
h,Ω) ▷ Find a tighter bound with Eqn. 15.

7: θ ← θ − η · ∇θ(Vl(hθ,
◦
Ω)− λdVd(d, e,

◦
Ω)) ▷ Model training with Eqn. 14 and Eqn. 16.

8: end for
9: Ht ← h

10: M← BalancedSampling(M,St)
11: return Ht ▷ For training on domain t+ 1.

4.2 Putting Everything Together: UDIL Training Algorithm

Objective Function. With these differentiable loss terms above, we can derive an algorithm that
learns the optimal model by minimizing the tightest bound in Eqn. 8. As mentioned above, to
achieve a tighter dH∆H, we decompose the hypothesis as h = p ◦ e, where e : Rn → Rm and
p : Rm → SK−1 are the encoder and predictor, respectively. To find and to minimize the tightest
bound in Theorem 3.4, we treat Ω = {αi, βi, γi}t−1

i=1 as learnable parameters and seek to optimize
the following objective (we denote as

◦
x = sg(x) the ‘copy-weights-and-stop-gradients’ operation):

min
{Ω,h=p◦e}

max
d

Vl(h,
◦
Ω) + V0-1(

◦
h,Ω)− λdVd(d, e,

◦
Ω) (13)

s.t. αi + βi + γi = 1, ∀i ∈ {1, 2, . . . , t− 1}
αi, βi, γi ≥ 0, ∀i ∈ {1, 2, . . . , t− 1}

Details of Vl, V0-1, and Vd. Vl is the loss for learning the model h, where the terms ℓ̂·(·) are
differentiable cross-entropy losses as defined in Eqn. 10 and Eqn. 11:

Vl(h,
◦
Ω) =

∑t−1

i=1

[
◦
γiℓ̂Xi(h) +

◦
αiℓ̂Xi(h,Ht−1)

]
+ ℓ̂St(h) + (

∑t−1

i=1

◦
βi)ℓ̂St

(h,Ht−1). (14)

V0-1 is the loss for finding the optimal coefficient set Ω. Its loss terms use Definition 3.1 and Eqn. 12
to estimate ERM terms andH∆H-divergence, respectively:

V0-1(
◦
h,Ω) =

∑t−1

i=1

[
γiϵ̂Di

(
◦
h) + αiϵ̂Di

(
◦
h,Ht−1)

]
+ (
∑t−1

i=1
βi)ϵ̂Dt

(
◦
h,Ht−1)

+ 1
2

∑t−1

i=1
βid̂H∆H

(
◦
e(Xi),

◦
e(St)

)
+
∑t−1

i=1
(αi + βi)ϵ̂Di

(Ht−1)

+ C ·

√(
(1+

∑t−1
i=1 βi)

2

Nt
+
∑t−1

i=1

(γi+αi)
2

Ñi

)
. (15)

In Eqn. 15, ϵ̂·(·) uses discrete 0-1 loss, which is different from Eqn. 14, and a hyper-parameter
C =

√
8d log (2eN/d) + 8 log (2/δ) is introduced to model the combined influence of H’s VC-

dimension and δ.

Vd follows Eqn. 12 to minimize the divergence between different domains’ embedding distribu-
tions (i.e., aligning domains) by the minimax game between e and d with the value function:

Vd(d, e,
◦
Ω) =

(
t−1∑
i=1

◦
βi

)
1
Ni

∑
x∈St

[− log ([d(e(x))]t)] +

t−1∑
i=1

◦
βi

Ñi

∑
x∈X̃i

[− log ([d(e(x))]i)] . (16)
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Figure 1: Results on HD-Balls. In (a-b), data is colored according to labels; in (c-h), data is colored
according to domain ID. All data is plotted after PCA [6]. (a) Simplified HD-Balls dataset with 3
domains in the 3D space (for visualization purposes only). (b-c) Embeddings of HD-Balls’s raw
data colored by labels and domain ID. (d-h) Accuracy and embeddings learned by Joint (oracle),
UDIL, and three best baselines (more in Appendix C.5). Joint, as the oracle, naturally aligns different
domains, and UDIL outperforms all baselines in terms of embedding alignment and accuracy.

Here in Eqn. 16, if an optimal d∗ and a fixed Ω is given, maximizing Vd(d
∗, e,Ω) with respect to the en-

coder e is equivalent to minimizing the weighted sum of the divergence
∑t−1

i=1 βidH∆H(e(Di), e(Dt)).
This result indicates that the divergence between two domains’ embedding distributions can be ac-
tually minimized. Intuitively this minimax game learns an encoder e that aligns the embedding
distributions of different domains so that their domain IDs can not be predicted (distinguished) by a
powerful discriminator given an embedding e(x). Algorithm 1 below outlines how UDIL minimizes
the tightest bound. Please refer to Appendix C for more implementation details, including a model
diagram in Fig. 2.

5 Experiments

In this section, we compare UDIL with existing methods on both synthetic and real-world datasets.

5.1 Baselines and Implementation Details

We compare UDIL with the state-of-the-art continual learning methods that are either specifi-
cally designed for domain incremental learning or can be easily adapted to the domain incre-
mental learning setting. For fair comparison, we do not consider methods that leverage large-
scale pre-training or prompt-tuning [99, 98, 53, 88]. Exemplar-free baselines include online Elas-
tic Weight Consolidation (oEWC) [81], Synaptic Intelligence (SI) [105], and Learning without
Forgetting (LwF) [52]. Memory-based domain incremental learning baselines include Gradient
Episodic Memory (GEM) [58], Averaged Gradient Episodic Memory (A-GEM) [10], Experience
Replay (ER) [75], Dark Experience Replay (DER++) [8], and two recent methods, Complementary
Learning System based Experience Replay (CLS-ER) [4] and Error Senesitivity Modulation based
Experience Replay (ESM-ER) [80] (see Appendix C.5 for more detailed introduction to the baseline
methods above). In addition, we implement the fine-tuning (Fine-tune) [52] and joint-training (Joint)
as the performance lower bound and upper bound (Oracle).

We train all models using three different random seeds and report the mean and standard deviation.
All methods are implemented with PyTorch [70], based on the mammoth code base [7, 8], and run
on a single NVIDIA RTX A5000 GPU. For fair comparison, within the same dataset, all methods
adopt the same neural network architecture, and the memory sampling strategy is set to random
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Table 2: Performances (%) on HD-Balls, P-MNIST, and R-MNIST. We use two metrics, Average
Accuracy and Forgetting, to evaluate the methods’ effectiveness. “↑” and “↓” mean higher and
lower numbers are better, respectively. We use boldface and underlining to denote the best and the
second-best performance, respectively. We use “-” to denote “not appliable”.

Method Buffer HD-Balls P-MNIST R-MNIST
Avg. Acc (↑) Forgetting (↓) Avg. Acc (↑) Forgetting (↓) Avg. Acc (↑) Forgetting (↓)

Fine-tune - 52.319±0.024 43.520±0.079 70.102±2.945 27.522±3.042 47.803±1.703 52.281±1.797

oEWC [81] - 54.131±0.193 39.743±1.388 78.476±1.223 18.068±1.321 48.203±0.827 51.181±0.867

SI [105] - 52.303±0.037 43.175±0.041 79.045±1.357 17.409±1.446 48.251±1.381 51.053±1.507

LwF [52] - 51.523±0.065 25.155±0.264 73.545±2.646 24.556±2.789 54.709±0.515 45.473±0.565

GEM [58]

400

69.747±0.656 13.591±0.779 89.097±0.149 6.975±0.167 76.619±0.581 21.289±0.579

A-GEM [10] 62.777±0.295 12.878±1.588 87.560±0.087 8.577±0.053 59.654±0.122 39.196±0.171

ER [75] 82.255±1.552 9.524±1.655 88.339±0.044 7.180±0.029 76.794±0.696 20.696±0.744

DER++ [8] 79.332±1.347 13.762±1.514 92.950±0.361 3.378±0.245 84.258±0.544 13.692±0.560

CLS-ER [4] 85.844±0.165 5.297±0.281 91.598±0.117 3.795±0.144 81.771±0.354 15.455±0.356

ESM-ER [80] 71.995±3.833 13.245±5.397 89.829±0.698 6.888±0.738 82.192±0.164 16.195±0.150

UDIL (Ours) 86.872±0.195 3.428±0.359 92.666±0.108 2.853±0.107 86.635±0.686 8.506±1.181

Joint (Oracle) ∞ 91.083±0.332 - 96.368±0.042 - 97.150±0.036 -

balanced sampling (see Appendix C.2 and Appendix C.6 for more implementation details on training).
We evaluate all methods with standard continual learning metrics including ‘average accuracy’,
‘forgetting’, and ‘forward transfer’ (see Appendix C.4 for detailed definitions).

5.2 Toy Dataset: High-Dimensional Balls

To gain insight into UDIL, we start with a toy dataset, high dimensional balls on a sphere (referred
to as HD-Balls below), for domain incremental learning. HD-Balls includes 20 domains, each
containing 2,000 data points sampled from a Gaussian distribution N (µ, 0.22I). The mean µ is
randomly sampled from a 100-dimensional unit sphere, i.e., {µ ∈ R100 : ∥µ∥2 = 1}; the covariance
matrix Σ is fixed. In HD-Balls, each domain represents a binary classification task, where the decision
boundary is the hyperplane that passes the center µ and is tangent to the unit sphere. Fig. 1(a-c)
shows some visualization on HD-Balls.

Column 3 and 4 of Table 2 compare the performance of our UDIL with different baselines. We can see
that UDIL achieves the highest final average accuracy and the lowest forgetting. Fig. 1(d-h) shows the
embedding distributions (i.e., e(x)) for different methods. We can see better embedding alignment
across domains generally leads to better performance. Specifically, Joint, as the oracle, naturally
aligns different domains’ embedding distributions and achieves an accuracy upper bound of 91.083%.
Similarly, our UDIL can adaptively adjust the coefficients of different loss terms, including Eqn. 12,
successfully align different domains, and thereby outperform all baselines.

5.3 Permutation MNIST

We further evaluate our method on the Permutation MNIST (P-MNIST) dataset [50]. P-MNIST in-
cludes 20 sequential domains, with each domain constructed by applying a fixed random permutation
to the pixels in the images. Column 5 and 6 of Table 2 show the results of different methods. Our
UDIL achieves the second best (92.666%) final average accuracy, which is only 0.284% lower than
the best baseline DER++. We believe this is because (i) there is not much space for improvement
as the gap between joint-training (oracle) and most methods are small; (ii) under the permutation,
different domains’ data distributions are too distinct from each other, lacking the meaningful rela-
tions among the domains, and therefore weakens the effect of embedding alignment in our method.
Nevertheless, UDIL still achieves best performance in terms of forgetting (2.853%). This is mainly
because our unified UDIL framework (i) is directly derived from the total loss of all domains, and (ii)
uses adaptive coefficients to achieve a more balanced trade-off between learning the current domain
and avoiding forgetting previous domains.
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Table 3: Performances (%) evaluated on Seq-CORe50. We use three metrics, Average Accuracy,
Forgetting, and Forward Transfer, to evaluate the methods’ effectiveness. “↑” and “↓” mean higher
and lower numbers are better, respectively. We use boldface and underlining to denote the best and
the second-best performance, respectively. We use “-” to denote “not appliable” and “⋆” to denote
out-of-memory (OOM) error when running the experiments.

Method Buffer D1:3 D4:6 D7:9 D10:11 Overall
Avg. Acc (↑) Avg. Acc (↑) Forgetting (↓) Fwd. Transfer (↑)

Fine-tune - 73.707±13.144 34.551±1.254 29.406±2.579 28.689±3.144 31.832±1.034 73.296±1.399 15.153±0.255

oEWC [81] - 74.567±13.360 35.915±0.260 30.174±3.195 28.291±2.522 30.813±1.154 74.563±0.937 15.041±0.249

SI [105] - 74.661±14.162 34.345±1.001 30.127±2.971 28.839±3.631 32.469±1.315 73.144±1.588 14.837±1.005

LwF [52] - 80.383±10.190 28.357±1.143 31.386±0.787 28.711±2.981 31.692±0.768 72.990±1.350 15.356±0.750

GEM [58]

500

79.852±6.864 38.961±1.718 39.258±2.614 36.859±0.842 37.701±0.273 22.724±1.554 19.030±0.936

A-GEM [10] 80.348±9.394 41.472±3.394 43.213±1.542 39.181±3.999 43.181±2.025 33.775±3.003 19.033±0.792

ER [75] 90.838±2.177 79.343±2.699 68.151±0.226 65.034±1.571 66.605±0.214 32.750±0.455 21.735±0.802

DER++ [8] 92.444±1.764 88.652±1.854 80.391±0.107 78.038±0.591 78.629±0.753 21.910±1.094 22.488±1.049

CLS-ER [4] 89.834±1.323 78.909±1.724 70.591±0.322 ⋆ ⋆ ⋆ ⋆
ESM-ER [80] 84.905±6.471 51.905±3.257 53.815±1.770 50.178±2.574 52.751±1.296 25.444±0.580 21.435±1.018

UDIL (Ours) 98.152±1.665 89.814±2.302 83.052±0.151 81.547±0.269 82.103±0.279 19.589±0.303 31.215±0.831

Joint (Oracle) ∞ - - - - 99.137±0.049 - -

5.4 Rotating MNIST

We also evaluate our method on the Rotating MNIST dataset (R-MNIST) containing 20 sequential
domains. Different from P-MNIST where shift from domain t to domain t+ 1 is abrupt, R-MNIST’s
domain shift is gradual. Specifically, domain t’s images are rotated by an angle randomly sampled
from the range [9◦ · (t − 1), 9◦ · t). Column 7 and 8 of Table 2 show that our UDIL achieves the
highest average accuracy (86.635%) and the lowest forgetting (8.506%) simultaneously, significantly
improving on the best baseline DER++ (average accuracy of 84.258% and forgetting of 13.692%).
Interestingly, such improvement is achieved when our UDIL’s βi is high, which further verifies that
UDIL indeed leverages the similarities shared across different domains so that the generalization
error is reduced.

5.5 Sequential CORe50

CORe50 [55, 56] is a real-world continual object recognition dataset that contains 50 domestic objects
collected from 11 domains (120,000 images in total). Prior work has used CORe50 for settings such
as domain generalization (e.g., train a model on only 8 domains and test it on 3 domains), which
is different from our domain-incremental learning setting. To focus the evaluation on alleviating
catastrophic forgetting, we retain 20% of the data as the test set and continually train the model on
these 11 domains; we therefore call this dataset variant Seq-CORe50. Table 3 shows that our UDIL
outperforms all baselines in every aspect on Seq-CORe50. Besides the average accuracy over all
domains, we also report average accuracy over different domain intervals (e.g., D1:3 denotes average
accuracy from domain 1 to domain 3) to show how different model’s performance drops over time.
The results show that our UDIL consistently achieves the highest average accuracy until the end.
It is also worth noting that UDIL also achieves the best performance on another two metrics, i.e.,
forgetting and forward transfer.

6 Conclusion

In this paper, we propose a principled framework, UDIL, for domain incremental learning with
memory to unify various existing methods. Our theoretical analysis shows that different existing
methods are equivalent to minimizing the same error bound with different fixed coefficients. With
this unification, our UDIL allows adaptive coefficients during training, thereby always achieving the
tightest bound and improving the performance. Empirical results show that our UDIL outperforms
the state-of-the-art domain incremental learning methods on both synthetic and real-world datasets.
One limitation of this work is the implicit i.i.d. exemplar assumption, which may not hold if memory
is selected using specific strategies. Addressing this limitation can lead to a more powerful unified
framework and algorithms, which would be interesting future work.
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Appendix
In Sec. A, we present the proofs for the lemmas, theorems, and corollaries presented in the main body
of our work. Sec. B discusses the correspondence of existing methods to specific cases within our
framework. In Sec. C, we provide a detailed presentation of our final algorithm, UDIL, including an
algorithmic description, a visual diagram, and implementation details. We introduce the experimental
settings, including the evaluation metrics and specific training schemes. Finally, in Sec. D, we present
additional empirical results with varying memory sizes and provide more visualization results.

A Proofs of Lemmas, Theorems, and Corollaries

Before proceeding to prove any lemmas or theorems, we first introduce three crucial additional lemmas
that will be utilized in the subsequent sections. Among these, Lemma A.1 offers a generalization
bound for any weighted summation of ERM losses across multiple domains. Furthermore, Lemma A.2
provides a generalization bound for a weighted summation of labeling functions within a given domain.
Lastly, we highlight Lemma 3 in [5] as Lemma A.3, which will be used to establish the upper bound
for Lemma 3.3.
Lemma A.1 (Generalization Bound of α-weighted Domains). Let H be a hypothesis space of
VC dimension d. Assume Nj denotes the number of the samples collected from domain j, and
N =

∑
j Nj is the total number of the examples collected from all domains. Then for any αj > 0

and δ ∈ (0, 1), with probability at least 1− δ:∑
j

αjϵDj
(h) ≤

∑
j

αj ϵ̂Dj
(h) +

√
(
∑
j

α2
j

Nj
)
(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
. (17)

Proof. Suppose each domainDj has a deterministic ground-truth labeling function fj : Rn → {0, 1}.
Denote as ϵ̂α ≜

∑
j αj ϵ̂Dj (h) the α-weighted empirical loss evaluated on different domains. Hence,

ϵ̂α(h) =
∑
j

αj ϵ̂Dj
(h) =

∑
j

αj
1
Nj

∑
x∈Xj

1h(x)̸=fj(x) =
1
N

∑
j

Nj∑
k=1

Rj,k, (18)

where Rj,k = (
αjNj

N ) · 1h(xk )̸=fj(xk) is a random variable that takes the values in {αjNj

N , 0}. By the
linearity of the expectation, we have ϵα(h) = E[ϵ̂α(h)]. Following [3, 62], we have

P {∃h ∈ H, s.t. |ϵ̂α(h)− ϵα(h)| ≥ ϵ} (19)

≤ 2 · P
{
sup
h∈H
|ϵ̂α(h)− ϵ̂′α(h)| ≥ ϵ

2

}
(20)

≤ 2 · P

 ⋃
Rj,k,R′

j,k

1
N

∣∣∣∣∣∣
∑
j

Nj∑
k=1

(Rj,k −R′
j,k)

∣∣∣∣∣∣ ≥ ϵ
2

 (21)

≤ 2ΠH(2N) exp
{

−2(Nϵ/2)2∑
j(Nj)(2αjN/Nj)

2

}
(22)

= 2ΠH(2N) exp

{
− ϵ2

8
∑

j(
α2
j/Nj)

}
(23)

≤ 2(2N)d exp

{
− ϵ2

8
∑

j(
α2
j/Nj)

}
, (24)

where in Eqn. 20, ϵ̂′α(h) is the α-weighted empirical loss evaluated on the “ghost” set of examples
{X ′

j}; Eqn. 22 is yielded by applying Hoeffding’s inequalities [37] and introducing the growth
function ΠH [3, 62, 91] at the same time; Eqn. 24 is achieved by using the fact ΠH(2N) ≤
(e·2N/d)d ≤ (2N)d, where d is the VC-dimension of the hypothesis setH. Finally, by setting Eqn. 24
to δ and solve for the error tolerance ϵ will complete the proof.

Lemma A.2 (Generalization Bound of β-weighted Labeling Functions). LetD be a single domain
and X = {xi}Ni be a collection of samples drawn from D;H is a hypothesis space of VC dimension
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d. Suppose {fj : Rn → {0, 1}}j is a set of different labeling functions. Then for any βj > 0 and
δ ∈ (0, 1), with probability at least 1− δ:∑

j

βjϵD(h, fj) ≤
∑
j

βj ϵ̂D(h, fj) + (
∑
j

βj)
√

1
N

(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
. (25)

Proof. Denote as ϵβ(h) ≜
∑

j βjϵD(h, fj) the β-weighted error on domain D and {fj}j the set of
the labeling functions , and ϵ̂β ≜

∑
j βj ϵ̂D(h, fj) as the β-weighted empirical loss evaluated on

different labeling functions. We have

ϵ̂β(h) =
∑
j

βj
1
N

N∑
i=1

1h(xi )̸=fj(xi) =
1
N

N∑
i=1

∑
j

βj1h(xi )̸=fj(xi) ≜
1
N

N∑
i=1

Ri, (26)

where Ri =
∑

j βj1h(xi )̸=fj(xi) ∈ [0,
∑

j βj ] is a new random variable.

Then we have

P {∃h ∈ H, s.t. |ϵ̂β(h)− ϵβ(h)| ≥ ϵ} (27)

≤ 2 · P
{
sup
h∈H
|ϵ̂β(h)− ϵ̂′β(h)| ≥ ϵ

2

}
(28)

≤ 2 · P

 ⋃
Ri,R′

i

1
N

∣∣∣∣∣
N∑
i=1

(Ri −R′
i)

∣∣∣∣∣ ≥ ϵ
2

 (29)

≤ 2ΠH(2N) exp
{

−2(Nϵ/2)2

N ·(2
∑

j βj)2

}
(30)

≤ 2(2N)d exp
{
− Nϵ2

8(
∑

j βj)2

}
, (31)

where in Eqn. 28, ϵ̂′β(h) is the β-weighted empirical loss evaluated on the “ghost” set of examples
X ′; Eqn. 30 is yielded by applying Hoeffding’s inequalities [37] and introducing the growth function
ΠH [3, 62, 91] at the same time; Eqn. 31 is achieved by using the fact ΠH(2N) ≤ (e·2N/d)d ≤ (2N)d,
where d is the VC-dimension of the hypothesis setH. Finally, by setting Eqn. 31 to δ and solve for
the error tolerance ϵ will complete the proof.

Lemma A.2 asserts that altering or merging multiple target functions does not impact the generaliza-
tion error term, as long as the sum of the weights for each loss

∑
j βj remains constant and the same

dataset X is used for estimation. Next we highligt the Lemma 3 in [5] again, as it will be utilized for
proving 3.3.
Lemma A.3. For any hypothesis h, h′ ∈ H and any two different domains D,D′,

|ϵD(h, h′)− ϵD′(h, h′)| ≤ 1
2dH∆H(D,D′). (32)

Proof. By definition, we have

dH∆H(D,D′) = 2 sup
h,h′∈H

|Px∼D[h(x) ̸= h′(x)]− Px∼D′ [h(x) ̸= h′(x)]|

= 2 sup
h,h′∈H

|ϵD(h, h′)− ϵD′(h, h′)|

≥ 2 |ϵD(h, h′)− ϵD′(h, h′)| .

Now we are ready to prove the main lemmas and theorems in the main body of our work.
Lemma 3.1 (ERM-Based Generalization Bound). LetH be a hypothesis space of VC dimension
d. When domain t arrives, there are Nt data points from domain t and Ñi data points from each
previous domain i < t in the memory bank. With probability at least 1− δ, we have:

t∑
i=1

ϵDi(h) ≤
t∑

i=1

ϵ̂Di(h) +

√√√√( 1
Nt

+

t−1∑
i=1

1

Ñi

)(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
. (33)
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Proof. Simply using Lemma A.1 and setting αi = 1 for every i ∈ [t] completes the proof.

Lemma 3.2 (Intra-Domain Model-Based Bound). Let h ∈ H be an arbitrary function in the
hypothesis spaceH, and Ht−1 be the model trained after domain t− 1. The domain-specific error
ϵDi

(h) on the previous domain i has an upper bound:

ϵDi
(h) ≤ ϵDi

(h,Ht−1) + ϵDi
(Ht−1), (34)

where ϵDi
(h,Ht−1) ≜ Ex∼Di

[h(x) ̸= Ht−1(x)].

Proof. By applying the triangle inequality [5] of the 0-1 loss function, we have

ϵDi
(h) = ϵDi

(h, fi)

≤ ϵDi
(h,Ht−1) + ϵDi

(Ht−1, fi)

= ϵDi(h,Ht−1) + ϵDi(Ht−1).

Lemma 3.3 (Cross-Domain Model-Based Bound). Let h ∈ H be an arbitrary function in the
hypothesis spaceH, and Ht−1 be the function trained after domain t− 1. The domain-specific error
ϵDi

(h) evaluated on the previous domain i then has an upper bound:

ϵDi(h) ≤ ϵDt(h,Ht−1) +
1
2dH∆H(Di,Dt) + ϵDi(Ht−1), (35)

where dH∆H(P,Q) = 2 suph∈H∆H |Prx∼P [h(x) = 1]− Prx∼Q[h(x) = 1]| denotes the H∆H-
divergence between distribution P and Q, and ϵDt(h,Ht−1) ≜ Ex∼Dt [h(x) ̸= Ht−1(x)].

Proof. By the triangle inequality used above and Lemma A.3, we have

ϵDi(h) ≤ ϵDi(h,Ht−1) + ϵDi(Ht−1)

= ϵDi(h,Ht−1) + ϵDi(Ht−1)− ϵDt(h,Ht−1) + ϵDt(h,Ht−1)

≤ ϵDi
(Ht−1) + |ϵDi

(h,Ht−1)− ϵDt
(h,Ht−1)|+ ϵDt

(h,Ht−1)

≤ ϵDt
(h,Ht−1) +

1
2dH∆H(Di,Dt) + ϵDi

(Ht−1).

Theorem 3.4 (Unified Generalization Bound for All Domains). LetH be a hypothesis space of
VC dimension d. Let N = Nt +

∑t−1
i Ñi denoting the total number of data points available to the

training of current domain t, where Nt and Ñi denote the numbers of data points collected at domain
t and data points from the previous domain i in the memory bank, respectively. With probability at
least 1− δ, we have:

t∑
i=1

ϵDi(h) ≤

{
t−1∑
i=1

[γiϵ̂Di(h) + αiϵ̂Di(h,Ht−1)]

}
+

{
ϵ̂Dt(h) + (

t−1∑
i=1

βi)ϵ̂Dt(h,Ht−1)

}

+ 1
2

t−1∑
i=1

βidH∆H(Di,Dt) +

t−1∑
i=1

(αi + βi)ϵDi(Ht−1)

+

√√√√( (1+
∑t−1

i=1 βi)
2

Nt
+

t−1∑
i=1

(γi+αi)
2

Ñi

)(
8d log

(
2eN
d

)
+ 8 log

(
2
δ

))
≜ g(h,Ht−1,Ω), (36)

where ϵ̂Di
(h,Ht−1) =

1

Ñi

∑
x∈X̃i

1h(x) ̸=Ht−1(x), ϵ̂Dt
(h,Ht−1) =

1
Nt

∑
x∈Xi

1h(x) ̸=Ht−1(x), and

Ω ≜ {αi, βi, γi}t−1
i=1 .

Proof. By applying Lemma 3.2 and Lemma 3.3 to each of the past domains, we have

ϵDi
(h) = (αi + βi + γi)ϵDi

(h)

≤ γiϵDi
(h) + αi[ϵDi

(h,Ht−1) + ϵDi
(Ht−1)]

+ βi[ϵDi(h,Ht−1) + ϵDt(h,Ht−1) +
1
2dH∆H(Di,Dt)].

19



Table 4: Unification of existing methods under UDIL, when certain conditions are achieved.

αi βi γi Transformed Objective Condition

UDIL (Ours) [0, 1] [0, 1] [0, 1] - -

LwF [52] 0 1 0 LLwF(h) = ℓ̂Xt
(h) + λoℓ̂Xt

(h,Ht−1) λo = t− 1

ER [75] 0 0 1 LER(h) = ℓ̂Bt
(h) +

t−1∑
i=1

|B′
t|/(t−1)

|Bt| ℓ̂B′
i
(h) |Bt| = |B′

t|
(t−1)

DER++ [8] 1/2 0 1/2 LDER++(h) = ℓ̂Bt(h) +
1
2

t−1∑
i=1

|B′
t|/(t−1)

|Bt| [ℓ̂B′
i
(h) + ℓ̂B′

i
(h,Ht−1)] |Bt| = |B′

t|
(t−1)

iCaRL [74] 1 0 0 LiCaRL(h) = ℓ̂′Bt(h) +

t−1∑
i=1

|B′
t|/(t−1)

|Bt| ℓ̂′B′
i
(h,Ht−1) |Bt| = |B′

t|
(t−1)

CLS-ER [4] λ
λ+1 0 1

λ+1 LCLS-ER(h) = ℓ̂Bt
(h) +

t−1∑
i=1

1
t−1 ℓ̂B′

i
(h) +

t−1∑
i=1

λ
t−1 ℓ̂B′

i
(h,Ht−1) λ = t− 2

ESM-ER [80] λ
λ+1 0 1

λ+1 LESM-ER(h) = ℓ̂Bt
(h) +

t−1∑
i=1

1
r(t−1) ℓ̂B′

i
(h) +

t−1∑
i=1

λ
r(t−1) ℓ̂B′

i
(h,Ht−1)

{
λ = −1 + r(t− 1)

r = 1− e−1

BiC [100] t−1
2t−1

t−1
2t−1

1
2t−1

LBiC(h) =ℓ̂Bt
(h) +

t−1∑
i=1

(t−1)|Bi|
|Bt| ℓ̂B′

i
(h,Ht−1)

+ (t− 1)ℓ̂Bt(h,Ht−1) +

t−1∑
i=1

|Bi|
|Bt| ℓ̂B

′
i
(h)

|Bi| = |Bt|

Re-organizing the terms will give us

t∑
i=1

ϵDi(h) ≤

{
t−1∑
i=1

[γiϵDi(h) + αiϵDi(h,Ht−1)]

}
+

{
ϵDt(h) + (

t−1∑
i=1

βi)ϵDt(h,Ht−1)

}

+ 1
2

t−1∑
i=1

βidH∆H(Di,Dt) +

t−1∑
i=1

(αi + βi)ϵDi
(Ht−1). (37)

Then applying Lemma A.1 and Lemma A.2 jointly to Eqn. 37 will complete the proof.

B UDIL as a Unified Framework

In this section, we will delve into a comprehensive discussion of our UDIL framework, which serves
as a unification of numerous existing methods. It is important to note that we incorporate methods
designed for task incremental and class incremental scenarios that can be easily adapted to our domain
incremental learning. To provide clarity, we will present the corresponding coefficients {αi, βi, γi}
of each method within our UDIL framework (refer to Table 4). Furthermore, we will explore the
conditions under which these coefficients are included in this unification process.

Learning without Forgetting (LwF) [52] was initially proposed for task-incremental learning,
incorporating a combination of shared parameters and task-specific parameters. This framework can
be readily extended to domain incremental learning by setting all “domain-specific” parameters to be
the same in a static model architecture. LwF was designed for the strict continual learning setting,
where no data from past tasks is accessible. To overcome this limitation, LwF records the predictions
of the history model Ht−1 on the current data Xt at the beginning of the new task t. Subsequently,
knowledge distillation (as defined in Definition 4.2) is performed to mitigate forgetting:

Lold(h,Ht−1) ≜ − 1
Nt

∑
x∈Xt

K∑
k=1

[Ht−1(x)]k · [log([h(x)]k)] = ℓ̂Xt
(h,Ht−1), (38)

where Ht−1(x), h(x) ∈ RK are the class distribution of x over K classes produced by the history
model and current model, respectively. The loss for learning the current task Lnew is defined as

Lnew(h) ≜ − 1
Nt

∑
(x,y)∈St

K∑
k=1

1y=k · [log([h(x)]k)] = ℓ̂Xt
(h). (39)
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LwF uses a “loss balance weight” λo to balance two losses, which gives us its final loss for training:

LLwF(h) ≜ Lnew(h) + λo · Lold(h,Ht−1). (40)

In LwF, the default setting assumes the presence of two domains (tasks) with λo = 1. However, it
is possible to learn multiple domains continuously using LwF’s default configuration. To achieve
this, the current domain t can be weighed against the number of previous domains (1 versus t− 1).
Specifically, if there is no preference for any particular domain, λo should be set to t−1. Remarkably,
this is equivalent to setting {βi = 1, αi = γi = 0} in our UDIL framework (Row 2 in Table 4).

Experience Replay (ER) [75] serves as the fundamental operation for replay-based continual learning
methods. It involves storing and replaying a subset of examples from past domains during training.
Following the description and implementation provided by [8], ER operates as follows: during each
training iteration on domain t, a mini-batch Bt of examples is sampled from the current domain,
along with a mini-batch B′

t from the memory. These two mini-batches are then concatenated into a
larger mini-batch (Bt ∪B′

t), upon which average gradient descent is performed:

LER(h) = ℓ̂Bt∪B′
t
(h) (41)

= 1
|Bt|+|B′

t|

∑
(x,y)∈Bt∪B′

t

K∑
k=1

1y=k · [log([h(x)]k)] (42)

= |Bt|
|Bt|+|B′

t|
ℓ̂Bt

(h) +
|B′

t|
|Bt|+|B′

t|
ℓ̂B′

t
(h). (43)

Suppose that each time the mini-batch of past-domain data is perfectly balanced, meaning that each
domain has the same number of examples in B′

t. In this case, Eqn. 43 can be further decomposed as
follows:

LER(h) =
|Bt|

|Bt|+|B′
t|
ℓ̂Bt(h) +

t−1∑
i=1

|B′
t|/(t−1)

|Bt|+|B′
t|
ℓ̂B′

i
(h), (44)

where B′
i = {(x, y)|(x, y) ∈ (B′

t ∩Mi)} is the subset of the mini-batch that belongs to domain i.

Now, by dividing both sides of Eqn. 44 by (|Bt|+|B′
t|/|Bt|) and comparing it to Theorem 3.4, we can

include ER in our UDIL framework when the condition |Bt| = |B′
t|/(t−1) is satisfied. In this case,

ER is equivalent to {αi = βi = 0, γi = 1} in UDIL (Row 3 in Table 4). It is important to note that
this condition is not commonly met throughout the entire process of continual learning. It can be
achieved by linearly scaling up the size of the mini-batch from the memory (which is feasible in the
early domains) or by linearly scaling down the mini-batch from the current-domain data (which may
cause a drop in model performance). It is worth mentioning that this incongruence highlights the
intrinsic bias of the original ER setting towards current domain learning and cannot be rectified by
adjusting the batch sizes of the current domain or the memory. However, it does not weaken our
claim of unification.

Dark Experience Replay (DER++) [8] includes an additional dark experience replay, i.e., knowledge
distillation on the past domain exemplars, compared to ER [75]. Now under the same assumptions
(balanced sampling strategy and |Bt| = |B′

t|/(t−1)) as discussed for ER, we can utilize Eqn. 44 to
transform the DER++ loss as follows:

LDER++(h) =
|Bt|

|Bt|+|B′
t|
ℓ̂Bt

(h) + 1
2

t−1∑
i=1

|B′
t|/(t−1)

|Bt|+|B′
t|
ℓ̂B′

i
(h) + 1

2

t−1∑
i=1

|B′
t|/(t−1)

|Bt|+|B′
t|
ℓ̂B′

i
(h,Ht−1). (45)

In this scenario, DER++ is equivalent to {αi = γi = 1/2, βi = 0} in UDIL (Row 4 in Table 4).

Incremental Classifier and Representation Learning (iCaRL) [74] was initially proposed for class
incremental learning. It decouples learning the representations and final classifier into two individual
phases. During training, iCaRL adopts an incrementally increasing linear classifier. Different from
traditional design choice of multi-class classification where the softmax activation layer and multi-
class cross entropy loss are used jointly, iCaRL models multi-class classification as multi-label
classification [107, 86, 106]. Suppose there are K classes in total, and we denote the one-hot label
vector of the input x as y ∈ RK where yj ≜ 1f(x)=j . Then the multi-label learning objective treats
each dimension of the output logits as a score for binary classification, which is computed as follows:

ℓ̂′X (h) ≜ −1
|X |

∑
x∈X

∑K

j=1

[
yj log

(
[h(x)]j

)
+ (1− yj) log

(
1− [h(x)]j

)]
. (46)
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When a new task that contains K ′ new classes is presented, iCaRL adds additional K ′ new dimensions
to the final linear classifier.

In iCaRL training, the new classes and the old classes are treated differently. For new classes, it trains
the representations of the network with the ground-truth labels (f(x) in the original paper), and for
old classes, it uses the history model’s output (Ht−1(x)) as the learning target (i.e., pseudo labels).
Each data point is treated with the same level of importance during iCaRL’s training procedure.
Hence after translating the loss function of iCaRL in the context of class-incremental learning to
domain-incremental learning, we have

LiCaRL(h) = Nt · ℓ̂′Xt
(h) +

t−1∑
i=1

Ñi · ℓ̂′Xi
(h,Ht−1), (47)

where in ℓ̂′Xi
(h,Ht−1), we follow the same definition as in the distillation loss in Eqn. 4.2 and replace

the ground-truth label with the soft label for iCaRL.

Similar to ER [75] and DER++ [8] as analyzed before, the equation above does not naturally fall
into the realm of unification provided in UDIL. To achieve this, we need to sample the data from the
current domain and exemplars in the memory independently, i.e., assuming Bt and Bi. By applying
the same rule of αi + βi + γi = 1, we now have that for iCaRL, the corresponding coefficients are
{αi = Bi/Bt = 1, βi = γi = 0} (Row 5 in Table 4).

Complementary Learning System based Experience Replay (CLS-ER) [4] involves the mainte-
nance of two history models, namely the plastic model H(p)

t−1 and the stable model H(s)
t−1, throughout

the continual training process of the working model h. Following each update of the working model,
the two history models are stochastically updated at different rates using exponential moving averages
(EMA) of the working model’s parameters:

H
(i)
t−1 ← α(i) ·H(i)

t−1 + (1− α(i)) · h, i ∈ {p, s}, (48)

where α(p) ≤ α(s) is set such that the plastic model undergoes rapid updates, allowing it to swiftly
adapt to newly acquired knowledge, while the stable model maintains a “long-term memory” spanning
multiple tasks. Throughout training, CLS-ER assesses the certainty generated by both history models
and employs the logits from the more certain model as the target for knowledge distillation.

In the general formulation of the UDIL framework, the history model Ht−1 is not required to be a
single model with the same architecture as the current model h. In fact, if there are no constraints on
memory consumption, we have the flexibility to train and preserve a domain-specific model Hi for
each domain i. During testing, we can simply select the prediction with the highest certainty from each
domain-specific model. From this perspective, the “two-history-model system” employed in CLS-ER
can be viewed as a specific and limited version of the all-domain history models. Consequently, we
can combine the two models used in CLS-ER into a single history model Ht−1 as follows:

Ht−1(x) ≜

H
(p)
t−1(x) if [H(p)

t−1(x)]y > [H
(s)
t−1(x)]y

H
(s)
t−1(x) o.w.

(49)

where (x, y) ∈M is an arbitrary exemplar stored in the memory bank.

At each iteration of training, CLS-ER samples a mini-batch Bt from the current domain and a
mini-batch B′

t from the episodic memory. It then concatenates Bt and B′
t for the cross entropy loss

minimization with the ground-truth labels, and uses B′
t to minimize the MSE loss between the logits

of h and Ht−1. To align the loss formulation of CLS-ER with that of ESM-ER [80], here we consider
the scenarios where the losses evaluated on Bt and B′

t are individually calculated, i.e., we consider
ℓ̂Bt

(h) + ℓ̂B′
t
(h) instead of ℓ̂Bt∪B′

t
(h). Based on the assumption from [34], the MSE loss on the

logits is equivalent to the cross-entropy loss on the predictions under certain conditions. Therefore,
following the same balanced sampling strategy assumptions as in ER, the original CLS-ER training
objective can be transformed as follows:

LCLS-ER(h) = ℓ̂Bt(h) + ℓ̂B′
t
(h) + λℓ̂B′

t
(h,Ht−1) (50)

= ℓ̂Bt
(h) +

t−1∑
i=1

1
t−1 ℓ̂B′

i
(h) +

t−1∑
i=1

λ
t−1 ℓ̂B′

i
(h,Ht−1). (51)
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Therefore, by imposing the constraint αi+βi+γi = 1, we find that λ = t−2. Substituting this value
back into λ/t−1 yields the equivalence that CLS-ER corresponds to {αi = λ/λ+1, βi = 0, γi = 1/λ+1}
in UDIL, where λ = t− 2 (Row 6 in Table 4).

Error Sensitivity Modulation based Experience Replay (ESM-ER) [80] builds upon CLS-ER by
incorporating an additional error sensitivity modulation module. The primary goal of ESM-ER is to
mitigate sudden representation drift caused by excessively large loss values during current-domain
learning. Let’s consider (x, y) ∼ Dt, which represents a sample from the current domain batch. In
ESM-ER, the cross-entropy loss value of this sample is evaluated using the stable model H(s)

t−1 and
can be expressed as:

ℓ(x, y) = − log([H
(s)
t−1(x)]y). (52)

To screen out those samples with a high loss value, ESM-ER assigns each sample a weight λ by
comparing the loss with their expectation value, for which ESM-ER uses a running estimate µ as its
replacement. This can be formulated as follows:

λ(x) =

{
1 if ℓ(x, y) ≤ β · µ

µ
ℓ(x,y) o.w.

(53)

where β is a hyperparameter that determines the margin for a sample to be classified as low-loss.
For the sake of analysis, we make the following assumptions: (i) β = 1; (ii) the actual expected loss
value Ex,y[ℓ(x, y)] is used instead of the running estimate µ; (iii) a hard screening mechanism is
employed instead of the current re-scaling approach. Based on these assumptions, we determine the
sample-wise weights λ⋆ according to the following rule:

λ⋆(x) =

{
1 if ℓ(x, y) ≤ Ex,y[ℓ(x, y)]

0 o.w.
(54)

Under the assumption that the loss value ℓ(x, y) follows an exponential distribution, denoted
as ℓ(x, y) ∼ Exp(λ0), where the probability density function is given by f(ℓ(x, y), λ0) =
λ0e

−λ0ℓ(x,y), we can calculate the expectation of the loss as Ex,y[ℓ(x, y)] = 1/λ0. Based on
this, we can now determine the expected ratio r of the unscreened samples in a mini-batch using the
following equation:

r =

∫ 1
λ0

0

1 · λ0e
−λ0ℓ(x,y) dℓ(x, y) =

∫ 1

0

e−ydy = (1− e−1). (55)

The ratio r represents the proportion of effective samples in the current-domain batch, as the weights
λ⋆(x) of the remaining samples are set to 0 due to their high loss value. Consequently, the original
training loss of ESM-ER can be transformed as follows:

LESM-ER(h) = r · ℓ̂Bt(h) + ℓ̂B′
t
(h) + λℓ̂B′

t
(h,Ht−1) (56)

= r · ℓ̂Bt
(h) +

t−1∑
i=1

1
t−1 ℓ̂B′

i
(h) +

t−1∑
i=1

λ
t−1 ℓ̂B′

i
(h,Ht−1). (57)

After applying the constraint of αi + βi + γi = 1, we obtain λ = r · (t− 1)− 1. Substituting this
value back into λ/r(t−1), we find that ESM-ER is equivalent to {αi = λ/λ+1, βi = 0, γi = 1/λ+1} in
UDIL, where λ = r · (t− 1)− 1 = (1− e−1)(t− 1)− 1 should be set (Row 7 in Table 4).

Bias Correction (BiC) [100] was the first to apply class incremental learning at a large scale,
covering extensive image classification datasets including ImageNet (1,000 classes, [76]) and MS-
Celeb-1M (10,000 classes, [31]). Similar to iCaRL [74], BiC treats each data example (from new
classes’ data and the memory) with the same level of importance. Different from its previous work,
the distillation loss in BiC (Ld in the original paper) implicitly includes the cross-domain distillation
loss described by Lemma 3.3, as it computes the old classifier’s output evaluated on the new data
(considering only old classes). In addition, BiC further re-balances the classification loss (Lc in the
original paper) and the distillation loss (Ld) based on the number of old classes n and new classes m
as follows:

LBiC = n
n+m · Ld +

m
n+m · Lc. (58)
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Figure 2: Diagram of UDIL.M = {Mi}t−1
i=1 represents the memory bank that stores all the past

exemplars. St corresponds to the dataset from the current domain t, and the current model h = p ◦ e
is depicted separately in the diagram. The three different categories of losses are illustrated in the
dark rectangles, while the weighting effect of the learned replay coefficient Ω = {αi, βi, γi}t−1

i=1 is
depicted using dashed lines.

By interpreting the distillation loss Ld as the combination of the intra-domain loss (Lemma 3.2) and
the cross-domain distillation loss (Lemma 3.3), and substituting (n,m) with (t − 1, 1) due to the
consistent number of classes in each domain, we arrive at the BiC model for DIL:

LBiC(h) =
t−1
t

[
Nt · ℓ̂Xt

(h,Ht−1) +

t−1∑
i=1

Ñi · ℓ̂Xi
(h,Ht−1)

]

+ 1
t

[
Nt · ℓ̂Xt(h) +

t−1∑
i=1

Ñi · ℓ̂Xi(h)

]
. (59)

The equation above relies on the number of the current-domain examples and the exemplars (i.e.,
memory), which is not constant in practice. Hence we replace (Nt, Ñi) with the mini-batch size
(|Bt|, |Bi|). After re-organizing the equation above, we have

LBiC(h) =ℓ̂Bt(h) +

t−1∑
i=1

(t−1)|Bi|
|Bt| · ℓ̂B′

i
(h,Ht−1)

+ (t− 1) · ℓ̂Bt
(h,Ht−1) +

t−1∑
i=1

|Bi|
|Bt| · ℓ̂B′

i
(h). (60)

The immediate observatio is that BiC exhibits a significant bias towards retaining knowledge from past
domains. This is evident in the coefficient of coefficient of cross-domain distillation summed over the
past domains

∑t−1
i=1 βi = (t−1), which violates the constraints posed in this work (αi+βi+γi = 1).

However, if we slightly relax BiC’s formulation and focus on the relative ratios of the three coefficient,
we get αi : βi : γi = (t− 1)Bi : (t− 1)Bt : Bi. Further applying the constraint αi + βi + γi = 1
and assuming Bi = Bt to enforce a balanced sampling strategy over different domains, we arrive at
{αi = βi = t−1/2t−1, γi = 1/2t−1} (Row 8 in Table 4).

C Implementation Details of UDIL

This section delves into the implementation details of the UDIL algorithm. The algorithmic descrip-
tion of UDIL is presented in Algorithm 1 and a diagram is presented in Fig. 2. However, there are
several practical issues to be further addressed here, including (i) how to exert the constraints of
probability simplex ([αi, βi, γi] ∈ S2) and (ii) how the memory is maintained. These two problems
will be addressed in Sec. C.1 and Sec. C.2. Then, Sec. C.3 will introduce two auxiliary losses
that improve the stability and domain alignment for the encoder during training. Next, Sec. C.4
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will cover the evaluation metrics used in this paper. Finally, Sec. C.5 and Sec. C.6 will present a
detailed introduction to the main baselines and the specific training schemes we follow for empirical
evaluation.

C.1 Modeling the Replay Coefficients Ω = {αi, βi, γi}

Instead of directly modeling Ω in a way such that it can be updated by gradient descent and satisfies
the constraints that αi+βi+γi = 1 and αi, βi, γi ≥ 0 at the same time, we use a set of logit variables
{ᾱi, β̄i, γ̄i} ∈ R3 and the softmax function to indirectly calculate Ω during training. Concretely, we
have: [

αi

βi

γi

]
= softmax

ᾱi

β̄i

γ̄i

 =

[
exp(ᾱi)/Zi

exp(β̄i)/Zi

exp(γ̄i)/Zi

]
, (61)

where Zi = exp(ᾱi) + exp(β̄i) + exp(γ̄i) is the normalizing constant. At the beginning of training
on domain t, the logit variables {ᾱi, β̄i, γ̄i} = {0, 0, 0} are initialized to all zeros, since we do not
have any bias towards any upper bound. During training, they are updated in the same way as the
other parameters with gradient descent.

C.2 Memory Maintenance with Balanced Sampling

Different from DER++ [8] and its following work [4, 80] that use reservoir sampling [93] to maintain
the episodic memory, UDIL adopts a random balanced sampling after training on each domain. To
be more concrete, given a memory bank with fixed size |M|, after domain t’s training is complete,
we will assign each domain a quota of |M|/t. For the current domain t, we will randomly sample
⌊|M|/t⌋ exemplars from its dataset; for all the previous domains i ∈ [t− 1], we will randomly swap
out ⌈|M|/t−1− |M|/t⌉ exemplars from the memory to make sure each domain has roughly the same
number of exemplars. To ensure a fair comparison, we use the same random balanced sampling
strategy for all the other baselines. The following Algorithm 2 shows the detailed procedure of
random balanced sampling.

Algorithm 2 Balanced Sampling for UDIL

Require: memory bankM = {Mi}t−1
i=1 , current domain dataset St, domain ID t.

1: for i = 1, · · · , t− 1 do
2: for j = 1, · · · , ⌈|M|/t−1− |M|/t⌉ do
3: (x, y)← RandomSample(Mi)
4: (x′, y′)← RandomSample(St)
5: Swap (x′, y′) intoM, replacing (x, y)
6: end for
7: end for
8: returnM

C.3 Improving Stability and Domain Alignment for the Embedding Distribution

In this section, we will examine the training loss employed to align the embedding distribution across
distinct domains. As discussed in Sec. 4.2, we decompose the model h into an encoder e and a
predictor p as h = p ◦ e. In order to establish a tighter upper bound proposed in Theorem 3.4, we
introduce a discriminator d that aims to distinguish embeddings based on domain IDs. Specifically,
during the training process of UDIL, given a set of coefficients Ω = {αi, βi, γi}, both the encoder e
and the discriminator d engage in the following minimax game:

min
e

max
d
− λdVd(d, e,

◦
Ω), (62)

where (
◦·) represents the "copying-weights-and-stopping-gradients" operation, and λd is a hyperpa-

rameter introduced to control the strength of domain embedding alignment. More specifically, the
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value function of the mini-max game Vd is defined as follows:

Vd(d, e,
◦
Ω) =

(
t−1∑
i=1

◦
βi

)
1
Ni

∑
x∈St

[− log ([d(e(x))]t)] +

t−1∑
i=1

◦
βi

Ñi

∑
x∈X̃i

[− log ([d(e(x))]i)] . (63)

As previously mentioned, the practical effect of Eqn. 62 is to align the embedding distribution of
different domains, thus enhancing the model’s generalization ability to both previously encountered
domains and those that may be encountered in the future.

However, actively altering the embedding space can lead to the well-known stability-plasticity
dilemma [43, 96, 20, 39, 61]. This dilemma arises when the model needs to modify a significant
number of parameters to achieve domain alignment for a new domain, potentially resulting in a
mismatch between the predictor p and the encoder e, which, in turn, can lead to catastrophic forgetting.
Furthermore, it is worth noting that the adversarial training scheme described in Eqn. 62 is primarily
designed for unsupervised domain alignment [108, 57, 26, 109, 17, 102, 101, 94], where the semantic
labels in the target domain(s) are not available during training. This implies that the current adversarial
training technique does not fully leverage the label information in domain incremental learning.

To tackle the aforementioned challenges, i.e., (i) maintaining a stable embedding distribution across
all domains and (ii) accelerating domain alignment with label information, we incorporate two
additional auxiliary losses: (i) the past embedding distillation loss [40, 65] and (ii) the supervised
contrastive loss [42, 29]. It’s important to note that these auxiliary losses, in conjunction with the
adversarial feature alignment loss Vd, operate exclusively on the encoder space of the model and do
not impact the original objectives outlined in Theorem 3.4, provided that encoder e and predictor p
remain sufficiently strong. Therefore, the two losses are used to simply stabilize the training, without
compromising the theoretical significance of our work.

In past embedding distillation, also known as representation(al) distillation or embedding distillation
in previous work on continual learning [40, 65, 59], the model stores the embeddings of the memory
after being trained on domain t−1. It then uses them to constrain the encoder’s behavior: the features
produced on these samples should not change too much during the current domain training. After
decoupling the history model Ht−1 = Pt−1 ◦ Et−1, where Et−1 is the history encoder and Pt−1 is
history predictor, we define the past embedding distillation loss Vp as

Vp(e) =

t−1∑
i=1

Ex∼Di

[
∥e(x)− Et−1(x)∥22

]
. (64)

The loss above promotes the stability of the embedding distribution from past domains. When
combined with the adversarial embedding alignment loss in Eqn. 62, it encourages the embedding
distribution of the current domain to match those of the previous domains, but not vice versa.

As supervised variations of contrastive learning [12, 32, 14, 83, 65, 13, 84, 85], the supervised
contrastive loss [42, 29] will compensate for the fact that Eqn. 62 does not utilize the label information
to align different domains, and therefore lack in the efficiency of aligning two domains’ embedding
distribution. The supervised contrastive learning pulls together the embeddings of the same label and
pushes apart those with distinct labels. Notably, it is done in a “domain-agnostic” manner, i.e., the
domain labels are not considered. Denoting as P = 1

t

∑t
i Di the combined data distribution of all

domains and as P·|y the data distribution given the class label y ∈ [K], the supervised contrastive
loss for embedding alignment is defined as follows:

Vs(e) = EyE(x1,x2)∼P·|y

{ui}B
i=1∼P

[
− log exp{−se(x1,x2)}

exp{−se(x1,x2)}+
∑B

i=1 exp{−se(x1,ui)}

]
, (65)

where se(u,v) = ∥e(u)− e(v)∥22 is the squared Euclidean distance for any u,v ∈ X .

Introducing the supervised contrastive loss to continual learning is novel, as existing methods
often harness its ability to create a compact representation space, thereby mitigating representation
overlapping in class incremental learning [65, 30, 9, 96]. However, in this work, the primary
motivation for using the supervised contrastive loss to facilitate domain alignment lies in its optimal
solution [29, 110, 19]. This optimal point referred to as neural collapse [47, 69, 111, 103], where the
embeddings of the same class collapse to the same point, and those of different classes are sparsely
distributed. It is easy to envision that when the optimal state of the supervised constrastive loss is
attained across different domains, it concurrently achieves perfect domain alignment.
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The loss function that fosters stability and domain alignment in the encoder e can be summarized as
follows:

Lenc(e) = −λdVd(d, e,
◦
Ω) + λpVp(e) + λsVs(e). (66)

Here, two hyper-parameters, λp and λs, balance the influence of each individual loss on the encoder’s
embedding distribution. In practice, the final performance of UDIL is not significantly affected by
the values of λp and λs, and a wide range of values for these parameters can yield reasonable results.

C.4 Evaluation Metrics

In continual learning, many evaluation metrics are based on the Accuracy Matrix R ∈ RT×T ,
where T represents the total number of tasks (domains). In the accuracy matrix R, the entry Ri,j

corresponds to the accuracy of the model when evaluated on task j after training on task i. With this
definition in mind, we primarily focus on the following specific metrics:

Average Accuracy (Avg. Acc.) up until domain t represents the average accuracy of the first t
domains after training on these domains. We denote it as At and define it as follows:

At ≜ 1
t

t∑
i=1

Rt,i. (67)

In most of the continual learning literature, the final average accuracy AT is usually reported. In our
paper, this metric is reported in the column labeled “overall”. The average accuracy of a model is a
crucial metric as it directly corresponds to the primary optimization goal of minimizing the error on
all domains, as defined in Eqn. 3.

Additionally, to better illustrate the learning (and forgetting) process of a model across multiple
domains, we propose the use of the "Avg. of Avg. Acc." metric At1:t2 , which represents the average
of average accuracies for a consecutive range of domains starting from domain t1 and ending at
domain t2. Specifically, we define this metric as follows:

At1:t2 ≜ 1
t2−t1+1

t2∑
i=t1

Ai. (68)

This metric provides a condensed representation of the trend in accuracy variation compared to
directly displaying the entire series of average accuracies {A1, A2, · · · , AT }. We report this Avg. of
Avg. Acc. metric in all tables (except in Table 2 due to the limit of space).

Average Forgetting (i.e., ‘Forgetting’ in the main paper) defines the average of the largest drop of
accuracy for each domain up till domain t. We denote this metric as Ft and define it as follows:

Ft ≜ 1
t−1

t−1∑
j=1

ft(j), (69)

where ft(j) is the forgetting on domain j after the model completes the training on domain t, which
is defined as:

ft(j) ≜ max
l∈[t−1]

{Rl,j −Rt,j}. (70)

Typically, the average forgetting is reported after training on the last domain T . Measuring forgetting
is of great practical significance, especially when two models have similar average accuracies. It
indicates how a model balances stability and plasticity. If a model P achieves a reasonable final
average accuracy across different domains but exhibits high forgetting, we can conclude that this
model has high plasticity and low stability. It quickly adapts to new domains but at the expense of
performance on past domains. On the other hand, if another model S has a similar average accuracy
to P but significantly lower average forgetting, we can infer that the model S has high stability and
low plasticity. It sacrifices performance on recent domains to maintain a reasonable performance
on past domains. Hence, to gain a comprehensive understanding of model performance, we focus
on evaluating two key metrics: Avg. Acc. and Forgetting. These metrics provide insights into
how models balance stability and plasticity and allow us to assess their overall performance across
different domains.
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Forward Transfer Wt quantifies the extent to which learning from past t− 1 domains contributes to
the performance on the next domain t. It is defined as follows:

Wt ≜ 1
t−1

t∑
i=2

Ri−1,i − ri, (71)

where ri is the accuracy of a randomly initialized model evaluated on domain i. For domain
incremental learning, where the model does not have access to future domain data and does not
explicitly optimize for higher Forward Transfer, the results of this metric are typically random.
Therefore, we do not report this metric in the complete tables presented in this section.

C.5 Introduction to Baselines

We compare UDIL with the state-of-the-art continual learning methods that are either specifically
designed for domain incremental learning or can be easily adapted to the domain incremental learn-
ing setting. Exemplar-free baselines include online Elastic Weight Consolidation (oEWC) [81],
Synaptic Intelligence (SI) [105], and Learning without Forgetting (LwF) [52]. Memory-based do-
main incremental learning baselines include Gradient Episodic Memory (GEM) [58], Averaged
Gradient Episodic Memory (A-GEM) [10], Experience Replay (ER) [75], Dark Experience Re-
play (DER++) [8], and two recent methods, Complementary Learning System based Experience
Replay (CLS-ER) [4] and Error Senesitivity Modulation based Experience Replay (ESM-ER) [80].
In addition, we implement the fine-tuning (Fine-tune) [52] and joint-training (Joint) as the perfor-
mance lower bound and upper bound (Oracle). Here we provide a short description of the primary
idea of the memory-based domain incremental learning baselines.

• GEM [58]: The baseline method that uses the memory to provide additional optimization
constraints during learning the current domain. Specifically, the update of the model cannot
point towards the direction at which the loss of any exemplar increases.

• A-GEM [10]: The improved baseline method where the constraints of GEM are averaged
as one, which shortens the computational time significantly.

• ER [75]: The fundamental memory-based domain incremental learning framework where
the mini-batch of the memory is regularly replayed with the current domain data.

• DER++ [8]: A simple yet effective replay-based method where an additional logits distilla-
tion (dubbed “dark experience replay”) is applied compared to the vanilla ER.

• CLS-ER [4]: A complementary learning system inspired replay method, where two expo-
nential moving average models are used to serve as the semantic memory, which provides
the logits distillation target during training.

• ESM-ER [80]: An improved version of CLS-ER, where the effect of large errors when
learning the current domain is reduced, dubbed “error sensitivity modulation”.

C.6 Training Schemes

Training Process. For each group of experiments, we run three rounds with different seeds and
report the mean and standard deviation of the results. We follow the optimal configurations (epochs
and learning rate) stated in [8, 80] for the baselines in P-MNIST and R-MNIST dataset. For HD-Balls
and Seq-CORe50, we first search for the optimal training configuration for the joint learning, and then
grid-search the configuration in a small range near it for the baselines listed above. For our UDIL
framework, as it involves adversarial training for the domain embedding alignment, we typically need
a configuration that has larger number of epochs and smaller learning rate. We use a simple grid
search to achieve the optimal configuration for it as well.

Model Architectures. For the baseline methods and UDIL in the same dataset, we adopt the same
backbone neural architectures to ensure fair comparison. In HD-Balls, we adopt the same multi-layer
perceptron with the same separation of encoder and decoder as in CIDA [94], where the hidden
dimension is set to 800. In P-MNIST and R-MNIST, we adopt the same multi-layer perceptron
architecture as in DER++ [8] with hidden dimension set to 800 as well. In Seq-CORe50, we use the
ResNet18 [33] as our backbone architecture for all the methods, where the layers before the final
average pooling are treated as the encoder e, and the remaining part is treated as the predictor p.
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Figure 3: More Results on HD-Balls. Data is colored according to domain ID. All data is plotted after
PCA [6]. (a-h) Accuracy and embeddings learned by Joint (oracle), UDIL, and six baselines with
memory. Joint, as the oracle, naturally aligns different domains, and UDIL outperforms all baselines
in terms of embedding alignment and accuracy.

Hyperparameter Setting. For setting the hyper-parameter embedding alignment strength coeffi-
cient λd and parameter C that models the combined effect of VC-dimension d and error tolerance δ,
we use grid search for each dataset, where the range λd ∈ [0.01, 100] and C ∈ [0, 1000] are used.

D Additional Empirical Results

This section presents additional empirical results of the UDIL algorithm. Sec. D.1 will show the
additional results on different constraints with varying memory sizes. Sec. D.2 provides additional
qualitative results: visualization of embedding distributions, to showcase the importance of the
embedding alignment across domains.

D.1 Empirical Results on Varying Memory Sizes

Here we present additional empirical results to validate the effectiveness of our UDIL framework
using varying memory sizes. The evaluation is conducted on three real-world datasets, as shown
in Table 5, Table 6, and Table 7. By increasing the memory size from 400 to 800 in Table 5 and 6
and from 500 to 1000 in Table 7, we can investigate the impact of having access to a larger pool of
past experiences on the continual learning performance, which might occur when the constraint on
memory capacity is relaxed. This allows us to study the benefits of a more extensive memory in terms
of knowledge retention and performance improvement. On the other hand, by further decreasing the
memory size to the extreme of 200 in Table 5 and 6, we can explore the consequences of severely
limited memory capacity. This scenario simulates situations where memory constraints are extremely
tight, and the model can only retain a small fraction of past domain data, for example, a model
deployed on edge devices. To ensure a fair comparison, here we use the same best configuration
found in the main body of this work.

The results in all three tables demonstrate a clear advantage of our UDIL framework when the
memory size is limited. In P-MNIST and R-MNIST, when the memory size |M| = 200, the overall
performance of UDIL reaches 91.483% and 82.796% respectively, which outperforms the second
best model DER++ by 0.757% and a remarkable 6.125%. In Seq-CORe50, when the memory
size |M| = 500 is set, UDIL holds a 3.474% lead compared to the second best result. When the
memory size is larger, the gap between UDIL and the baseline models is smaller. This is because
when the memory constraint is relaxed, all the continual learning models should be at least closer
to the performance upper bound, i.e., joint learning or ‘Joint (Oracle)’ in the tables, causing the
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indistinguishable results among each other. Apparently, DER++ favors larger memory more than
UDIL, while UDIL can still maintain a narrow lead in the large scale dataset Seq-CORe50.

D.2 Visualization of Embedding Spaces

Here we provide more embedding space visualization results for the baselines with the utilization
of memory, shown in Fig. 3. As one of the primary objectives of our algorithm, embedding space
alignment across multiple domains naturally follows the pattern shown in the joint learning and
therefore leads to a higher performance.
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Table 5: Performances (%) evaluated on P-MNIST. Average Accuracy (Avg. Acc.) and Forgetting
are reported to measure the methods’ performance. “↑” and “↓” mean higher and lower numbers
are better, respectively. We use boldface and underlining to denote the best and the second-best
performance, respectively. We use “-” to denote “not appliable”.

Method Buffer D1:5 D6:10 D11:15 D16:20 Overall
Avg. Acc (↑) Avg. Acc (↑) Forgetting (↓)

Fine-tune - 92.506±2.062 87.088±1.337 81.295±2.372 72.807±1.817 70.102±2.945 27.522±3.042

oEWC [81] - 92.415±0.816 87.988±1.607 83.098±1.843 78.670±0.902 78.476±1.223 18.068±1.321

SI [105] - 92.282±0.862 87.986±1.622 83.698±1.220 79.669±0.709 79.045±1.357 17.409±1.446

LwF [52] - 95.025±0.487 91.402±1.546 83.984±2.103 76.046±2.004 73.545±2.646 24.556±2.789

GEM [58]

200

93.310±0.374 91.900±0.456 89.813±0.914 87.251±0.524 86.729±0.203 9.430±0.156

A-GEM [10] 93.326±0.363 91.466±0.605 89.048±1.005 86.518±0.604 85.712±0.228 10.485±0.196

ER [75] 94.087±0.762 92.397±0.464 89.999±1.060 87.492±0.448 86.963±0.303 9.273±0.255

DER++ [8] 94.708±0.451 94.582±0.158 93.271±0.585 90.980±0.610 90.333±0.587 6.110±0.545

CLS-ER [4] 94.761±0.340 93.943±0.197 92.725±0.566 91.150±0.357 90.726±0.218 5.428±0.252

ESM-ER [80] 95.198±0.236 94.029±0.427 91.710±1.056 88.181±1.021 86.851±0.858 10.007±0.864

UDIL (Ours) 95.747±0.486 94.695±0.256 93.756±0.343 92.254±0.564 91.483±0.270 4.399±0.314

GEM [58]

400

93.557±0.225 92.635±0.306 91.246±0.492 89.565±0.342 89.097±0.149 6.975±0.167

A-GEM [10] 93.432±0.333 92.064±0.439 90.038±0.726 87.988±0.335 87.560±0.087 8.577±0.053

ER [75] 93.525±1.101 91.649±0.362 90.426±0.456 88.728±0.353 88.339±0.044 7.180±0.029

DER++ [8] 94.952±0.403 95.089±0.075 94.458±0.328 93.257±0.249 92.950±0.361 3.378±0.245

CLS-ER [4] 94.262±0.649 93.195±0.148 92.623±0.195 91.839±0.187 91.598±0.117 3.795±0.144

ESM-ER [80] 95.413±0.139 94.654±0.314 93.353±0.588 91.022±0.781 89.829±0.698 6.888±0.738

UDIL (Ours) 95.992±0.349 95.026±0.250 94.212±0.280 93.094±0.326 92.666±0.108 2.853±0.107

GEM [58]

800

93.717±0.177 93.116±0.206 92.166±0.335 91.076±0.342 90.609±0.364 5.393±0.417

A-GEM [10] 93.612±0.241 92.523±0.375 90.718±0.739 88.543±0.391 88.020±0.851 8.081±0.867

ER [75] 93.827±0.871 92.457±0.217 91.688±0.277 90.617±0.289 90.252±0.056 5.188±0.045

DER++ [8] 95.295±0.317 95.539±0.041 95.099±0.187 94.423±0.151 94.227±0.261 2.106±0.161

CLS-ER [4] 94.463±0.537 93.567±0.093 93.182±0.137 92.744±0.112 92.578±0.152 2.803±0.183

ESM-ER [80] 95.567±0.150 95.136±0.202 94.301±0.347 92.981±0.397 92.408±0.387 4.170±0.357

UDIL (Ours) 96.082±0.313 95.207±0.196 94.642±0.156 93.997±0.194 93.724±0.043 1.633±0.035

Joint (Oracle) ∞ - - - - 96.368±0.042 -
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Table 6: Performances (%) evaluated on R-MNIST. Average Accuracy (Avg. Acc.) and Forgetting
are reported to measure the methods’ performance. “↑” and “↓” mean higher and lower numbers
are better, respectively. We use boldface and underlining to denote the best and the second-best
performance, respectively. We use “-” to denote “not appliable”.

Method Buffer D1:5 D6:10 D11:15 D16:20 Overall
Avg. Acc (↑) Avg. Acc (↑) Forgetting (↓)

Fine-tune - 92.961±2.683 76.617±8.011 60.212±3.688 49.793±1.552 47.803±1.703 52.281±1.797

oEWC [81] - 91.765±2.286 76.226±7.622 60.320±3.892 50.505±1.772 48.203±0.827 51.181±0.867

SI [105] - 91.867±2.272 76.801±7.391 60.956±3.504 50.301±1.538 48.251±1.381 51.053±1.507

LwF [52] - 95.174±1.154 83.044±5.935 65.899±4.061 55.980±1.296 54.709±0.515 45.473±0.565

GEM [58]

200

93.441±0.610 88.620±2.381 81.034±2.704 73.112±1.922 70.545±0.623 27.684±0.645

A-GEM [10] 92.667±1.352 82.772±5.503 70.579±4.028 60.462±2.001 57.958±0.579 40.969±0.580

ER [75] 94.705±0.790 89.171±2.883 79.962±3.365 71.787±1.608 69.627±0.911 28.749±0.993

DER++ [8] 94.904±0.414 91.637±1.871 84.915±2.315 78.373±1.244 76.671±0.391 21.743±0.409

CLS-ER [4] 95.131±0.523 91.421±1.732 84.773±2.665 77.733±1.480 75.609±0.418 22.483±0.456

ESM-ER [80] 95.378±0.531 90.800±2.528 83.438±2.581 76.987±1.219 75.203±0.143 23.564±0.157

UDIL (Ours) 95.097±0.447 93.101±1.305 89.194±1.472 84.704±1.722 82.796±1.882 12.971±2.389

GEM [58]

400

93.842±0.313 90.663±1.856 85.392±1.856 79.061±1.578 76.619±0.581 21.289±0.579

A-GEM [10] 92.820±1.274 83.564±5.024 72.616±3.865 62.223±2.081 59.654±0.122 39.196±0.171

ER [75] 94.916±0.457 91.491±1.878 86.029±2.176 78.688±1.323 76.794±0.696 20.696±0.744

DER++ [8] 95.246±0.228 93.627±1.147 90.011±1.289 85.601±0.982 84.258±0.544 13.692±0.560

CLS-ER [4] 95.233±0.271 92.740±1.268 89.111±1.305 83.678±1.388 81.771±0.354 15.455±0.356

ESM-ER [80] 95.825±0.303 93.378±1.480 89.290±1.604 83.868±1.163 82.192±0.164 16.195±0.150

UDIL (Ours) 95.274±0.469 94.043±0.759 91.511±0.990 87.809±0.849 86.635±0.686 8.506±1.181

GEM [58]

800

94.212±0.322 92.482±1.125 89.191±1.346 84.866±1.317 82.772±1.079 14.781±1.104

A-GEM [10] 92.902±1.194 84.611±4.451 75.150±3.421 64.510±2.437 61.240±1.026 37.528±1.089

ER [75] 95.144±0.281 92.997±1.195 89.319±1.365 84.352±1.681 81.877±1.157 15.285±1.196

DER++ [8] 95.496±0.261 94.960±0.568 93.013±0.689 90.820±0.687 89.746±0.356 7.821±0.371

CLS-ER [4] 95.462±0.174 93.927±0.881 91.275±0.930 87.816±0.988 86.418±0.215 10.598±0.228

ESM-ER [80] 96.086±0.361 94.746±0.915 92.393±0.974 89.745±0.712 88.662±0.263 9.409±0.255

UDIL (Ours) 95.354±0.480 94.711±0.563 92.776±0.695 90.399±0.755 89.191±0.685 6.351±1.304

Joint (Oracle) ∞ - - - - 97.150±0.036 -
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Table 7: Performances (%) evaluated on Seq-CORe50. Avg. Acc. and Forgetting are reported
to measure the methods’ performance. “↑” and “↓” mean higher and lower numbers are better,
respectively. We use boldface and underlining to denote the best and the second-best performance,
respectively. We use “-” to denote “not appliable” and “⋆” to denote out-of-memory (OOM) error
when running the experiments.

Method Buffer D1:3 D4:6 D7:9 D10:11 Overall
Avg. Acc (↑) Avg. Acc (↑) Forgetting (↓)

Fine-tune - 73.707±13.144 34.551±1.254 29.406±2.579 28.689±3.144 31.832±1.034 73.296±1.399

oEWC [81] - 74.567±13.360 35.915±0.260 30.174±3.195 28.291±2.522 30.813±1.154 74.563±0.937

SI [105] - 74.661±14.162 34.345±1.001 30.127±2.971 28.839±3.631 32.469±1.315 73.144±1.588

LwF [52] - 80.383±10.190 28.357±1.143 31.386±0.787 28.711±2.981 31.692±0.768 72.990±1.350

GEM [58]

500

79.852±6.864 38.961±1.718 39.258±2.614 36.859±0.842 37.701±0.273 22.724±1.554

A-GEM [10] 80.348±9.394 41.472±3.394 43.213±1.542 39.181±3.999 43.181±2.025 33.775±3.003

ER [75] 90.838±2.177 79.343±2.699 68.151±0.226 65.034±1.571 66.605±0.214 32.750±0.455

DER++ [8] 92.444±1.764 88.652±1.854 80.391±0.107 78.038±0.591 78.629±0.753 21.910±1.094

CLS-ER [4] 89.834±1.323 78.909±1.724 70.591±0.322 ⋆ ⋆ ⋆
ESM-ER [80] 84.905±6.471 51.905±3.257 53.815±1.770 50.178±2.574 52.751±1.296 25.444±0.580

UDIL (Ours) 98.152±1.665 89.814±2.302 83.052±0.151 81.547±0.269 82.103±0.279 19.589±0.303

GEM [58]

1000

78.717±4.831 43.269±3.419 40.908±2.200 40.408±1.168 41.576±1.599 18.537±1.237

A-GEM [10] 78.917±8.984 41.172±4.293 44.576±1.701 38.960±3.867 42.827±1.659 33.800±1.847

ER [75] 90.048±2.699 84.668±1.988 77.561±1.281 72.268±0.720 72.988±0.566 25.997±0.694

DER++ [8] 89.510±5.726 92.492±0.902 88.883±0.794 86.108±0.284 86.392±0.714 13.128±0.474

CLS-ER [4] 92.004±0.894 85.044±1.276 ⋆ ⋆ ⋆ ⋆
ESM-ER [80] 85.120±4.339 54.852±5.511 61.714±1.840 55.098±3.834 58.932±0.959 20.134±0.643

UDIL (Ours) 98.648±1.174 93.447±1.111 90.545±0.705 87.923±0.232 88.155±0.445 12.882±0.460

Joint (Oracle) ∞ - - - - 99.137±0.049 -
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