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ABSTRACT

The human visual system (HVS) employs foveated sampling and eye movements to
achieve efficient perception, conserving both metabolic energy and computational
resources. Drawing inspiration from this efficiency, we introduce the Foveated
Dynamic Vision Transformer (FDT), a novel architecture that integrates these
mechanisms into a vision transformer framework. Unlike existing models, the FDT
uses a single-pass strategy, utilizing fixation and foveation modules to enhance
computational efficiency and accuracy. The fixation module identifies fixation
points to filter out irrelevant information, while the foveation module generates
foveated embeddings with multi-scale information. Our findings show that the FDT
achieves superior accuracy and computational efficiency, with a 34% reduction in
multiply-accumulate operations. Additionally, the FDT exhibits robustness against
various types of noise and adversarial attacks without specific training for these
challenges. These attributes make the FDT a significant step forward in creating
artificial neural networks that mirror the efficiency, robustness, and adaptability of
the HVS.

1 INTRODUCTION

Recent studies indicate that deep neural networks and the human brain interpret the environment
differently, with the human visual system (HVS) dynamically filtering task-irrelevant information to
focus on potential objects of interest, a process that leads to greater robustness against imperceptible
perturbations that can mislead neural networks (Dodge & Karam), 2017} |Azulay & Weiss| [2019;
Szegedy et al., |2014f Carlini & Wagner} 2017). The retina contains photoreceptors, with the fovea—a
high spatial resolution area—playing a key role in color perception and visual detail recognition
(Curcio et al., [1990). The highest photoreceptor density at the fovea decreases with eccentricity,
resulting in a variable-resolution image transmitted to the brain, a phenomenon known as foveation,
highlighting HVS’s multi-resolution perception. Studying HVS to enhance deep neural network
design is therefore a promising research avenue for developing intelligent agents.

Approximately 107 to 108 bits of information enter the visual nerve every second in the HVS (Itti &
Koch, 2001). To manage this data efficiently, the HVS uses saccadic eye movements to direct the
fovea to selected targets, creating a detailed scene map from varied resolutions, known as fixation
points, and saving computational resources (Itt1 & Koch, [2001; |Bruce & Tsotsos|, |2009). Inspired by
the HVS, several studies have incorporated foveation and fixation mechanisms into neural networks
(Mnih et al.l 2014; |Akbas & Eckstein, [2017; [Thavamani et al.| [2021). Existing methods sequentially
process the input image, first locating the fixation points and then processing the features around the
fixation points. However, these approaches are not optimal for two reasons. First, several inferences
are required for each fixation point. Second, they require a fusion mechanism to exploit the collective
information acquired from various fixation points.

We therefore propose a biologically inspired transformer architecture dubbed Foveated Dynamic
Transformers (FDT) comprised of foveation and fixation modules that dynamically select multiscale
tokens based on the input image. To simulate foveation in HVS, we process input tokens with

'The code will be shared upon acceptance.



Under review as a conference paper at ICLR 2025

Biological Eye Movements Artificial Eye Movements

[

Figure 1: Tllustration comparing the fixations of the human visual system (left; [Yarbus et al.| (1967))
and an ANN (right). Areas outside the fixations are blurred to highlight regions of interest. The
sequence of eye movements is indicated by numbers. Notably, the ANN exhibits overlapping fixation
points, as shown by multiple numbers at the same location, separated by commas.

the foveation module to generate multiscale queries, keys, and values. Inspired by the radial-polar
pooling model of foveation proposed in (Freeman & Simoncelli, 2011)), foveation module transforms
the token into several scales with increasing window size. We employ dynamic networks to simulate
eye movement, with the dynamic fixation module producing a fixation map for each token in each
transformer block. Tokens that are not at the fixation point are discarded. The multi-head attention
processes only the remaining tokens. The processed tokens that are located at the fixation points are
merged with the non-fixated tokens and are sent to the next block. Multiple blocks in transformer
process information from multiple fixation points by combining the information transferred from the
previous blocks, which enables to implement foveation and fixation mechanisms in single pass.

Using a DeiT architecture as a baseline, we evaluate our model on an image classification task. We
integrate the fixation and foveation modules into the same architecture and evaluate the effectiveness,
efficiency, and robustness of our model on the ImageNet100 database. The FDT architecture
enhances the robustness of the vision transformers against adversarial attacks, shortcut learning,
and natural corruption by 27%, 6%, and 3%, respectively, without being directly trained for these
specific challenges. Moreover, FDT achieves a 34% reduction in computational demand, measured in
Multiply-Accumulate operations (MACs), demonstrating its efficiency and effectiveness in processing
while maintaining a lean computational footprint.

2 FOVEATED DYNAMIC TRANSFORMER (FDT)

We introduce the FDT, a bio-inspired transformer with two additional modules: Foveation and
Fixation. The Foveation module mimics the human visual system’s multi-resolution perception by
embedding input features at various resolutions. The Fixation module selectively processes tokens
through gaze sampling, producing binary decisions for each foveated query. The MHSA module then
processes a subset of the foveated queries, keys, and values based on the Fixation module’s decisions,
while the remaining tokens are passed to the next block. The FDT architecture is shown in Figure 2}

2.1 FOVEATION MODULE

The Foveation module in the FDT architecture is designed to replicate the foveation mechanism in
the human visual system by incorporating multi-resolution information from neighboring features to
generate query, key, and value features (Figure [3). This mechanism enables the perception of varying
resolutions in both the central and peripheral visual fields. The Foveation module consists of multiple
blockwise separable convolutional layers, each of which progressively extracts information from
an expanding receptive field. In order to process auxiliary tokens, such as classification tokens, in
convolutional layers, we reorganize input tokens ¢ into patch tokens in image form (¢,) and auxiliary
tokens (t,) using the function K, as follows:

ta,tp = K(t) where K :REN iy ROXA ROXHXW, )

where C' represents the size of the embedding, NV is the number of tokens, A is the number of auxiliary
tokens, and H and W are the height and width of the token.

The Foveation module leverages multi-resolution information by applying successive depthwise
separable convolutions (DSC) to patch tokens 7}, and pointwise convolutions (PC) to auxiliary tokens
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Figure 2: Schematic of the Foveated Dynamic Transformer (FDT), our novel approach inspired by the
HVS. FDT integrates fixation and foveation mechanisms within a single processing pass, eliminating
the need for iterative passes. Input tokens undergo foveation via the FOV module, sampling features
at varying resolutions and yielding foveated query, key, and value vectors. The FIX module then
uses these vectors to identify specific fixation points for targeted token processing. The fixation map
g filters foveated features within the MHSA module. After processing through an MLP block, the
architecture combines selectively processed fixated tokens with the remainder, positioning processed
tokens at fixation points and unprocessed tokens in their original locations. This mechanism mimics
human visual attention patterns, enhancing the efficiency and interpretability of neural networks.
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Figure 3: Foveation module comprises multiple blockwise separable convolutional layers with
progressively larger receptive fields. It processes auxiliary and patch tokens using depthwise (DC)
separable convolutions and pointwise (PC) convolutions. The module then splits and merges these
features to form foveated-query, -key, and -value features, incorporating multi-scale information.

T,, as the latter are two-dimensional features. This is mathematically represented as follows:
1 _ U I _ ppl-1g0-1
t,=DSC (t, ") and t, =PC ™ (ty ). 2)

Here, [ refers to the layer and DSC divides a kernel into two independent kernels that perform
depthwise and pointwise convolutions, DSC(x) = PC(DC(z)). As a result, each successive layer of
the Foveation module employs progressively larger receptive fields.

To embed multi-scale information into the query, key, and value features, we split the auxiliary and
patch-related features of each layer into three equal-sized splits in the channel dimension using

function S:
taqatakvta'u _ S(ta)7 S: RCXA — RC/SXA,RC/?)XA,RC/?)XA,
th7tpk7tpU _ S(tp); S RCXHXW N RC/3><H><W,RC/3><H><W,RC/3><H><W'

3

Finally, we merge and concatenate the auxiliary and patch splits from all three levels in the channel
dimension to form foveated-query (qy), -key (ks), and -value (vy) features using the inverse of the
operation that was applied for initial rearrangement:

dfov = [K:_l(tgqatgq) | U | IC_l(tla;l7tijgl)'IC_l(tfzq’ti)q)]’
kfow = [’Cil(tgkatgk) |- ’Cil(tfﬁcl’t;;1)|K71(tilk’ték)]’ @)
Vfov = [’Cil(tgmtgv) | e | Kﬁl(té;%ti);l)vcil(tiw?ti)v)}'

2.2  FIXATION MODULE

Humans execute a sequence of eye movements to construct a detailed scene map, selecting fixation
points based on multi-resolution information from foveated perception. Inspired by this, we introduce
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Figure 4: Fixation module utilizes multi-resolution information from the foveated-query token g,
through a single linear layer, generating logits for the binary decision of identifying fixation points.
The resulting fixation map then filters the foveated features for processing within the MHSA module.

a fixation module that leverages this multi-resolution data to determine the processing input token,
mirroring the human brain’s decision-making.

Our fixation module uses the multi-resolution information in the foveated-query token ¢ to identify
fixation points. This token’s extensive receptive field allows for fixation decisions to be based on a
single token. We implemented the module with a simple neural network featuring a single linear
layer, which processes the foveated query and outputs two logits for binary fixation decisions.

(3], =MLP(¢}3,) Vi€ {0,...H—1},Vj € {0,...,W —1}. (5)

To generate a fixation map, we feed all the foveated query features to the fixation module (FIX). The
fixation map is generated based on the logits produced by the module. The position where the first
logit value is higher than the second logit value is set to 1.

- 1, 04.(0) > 04 (1),
g9(i,j) = fis >. fixl) (6)
0, otherwise.

The fixation map is used to filter the foveated features that are processed in the Multi-Head Self-
Attention (MHSA) module. See Figure@

2.3 OVERALL ARCHITECTURE

HVS uses foveation and fixation mechanisms to efficiently process information. Inspired by this, we
developed the Foveated Dynamic Transformer (FDT), a variant of the standard vision transformer
that integrates these models into its architecture. FDT retains the use of MHSA and MLP modules
but processes only fixated tokens. Data flow in FDT, denoted by layer norm (LN), is structured as:

dfov, kfmn Vfov = FOV(LN(.T)), g = FIX(qfov)a (7)

Qfies hias Upios @i = {470 K vt ™ | gisg) = 1} @®)

In this architecture, the MHSA module forms a global relationship among fixated tokens and produces
an attention matrix for each input token, focusing on specific fixated values. This module adapts to
varying input sizes by processing solely the fixated tokens (where dj, denotes the number of heads
and o represents the softmax function):

MHSA (i kfiz; Vfin) = 0(qfiakfin/ N dn) - Vin ©)

FDT takes a full-size token map and produces foveated tokens, but since only fixated tokens are
processed, their output shape (z f;,,) does not align with the expected input size for subsequent blocks.
To resolve this, we blend processed and unprocessed tokens, ensuring proper input for the next stages.

i o
outt’ = xfw:’ if g(ZaJ) =1, (10)
x%J,  otherwise.
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2.4 TRAINING DYNAMIC NETWORK

In the FDT architecture, the fixation module functions as a gating network, selectively applying a
selection operation to foveated tokens from the input image. Due to the diverse characteristics of each
input, the number of selected tokens varies, complicating training in mini-batches. To facilitate mini-
batch training, all foveated tokens are fed into the MHSA module without applying fixation sampling.
For a differentiable fixation map enabling end-to-end training, we use Gumbel-Softmax with hard
labeling on the output of the foveation module during training, instead of the logit comparison
outlined in Equation [6]

Tmasked = MHSAmasked(qfova kfo’ua Ufov, g) +z,
Tmasked = MLP(LN(wmasked)) + Tmasked-

The fixation map is then utilized for the calculation of masked attention (where C is a large constant):

MHSAmasked(qfova kfova Ufov;g) =0 qfokaov/ V n+ M *Vfouv,
M = —C x (1 — flatten(g) ® flatten(g)).

(1D

12)

Budget Constraint. In order to achieve high performance, the fixation module tends to assign
all tokens as fixation points when there are no budget constraints. However, the ideal behavior of
the fixation module should be to focus on the minimum number of tokens necessary for accurate
prediction. To achieve this, we introduce a fixation budget constraint that forces the network to
allocate a certain percentage of all tokens. The fixation budget loss is defined as the blockwise {5
norm between the desired percentile and the mean of the fixation map to measure the deviation from
the desired budget (g is the fixation map, 3 is the desired budget, and L is the number of blocks):

L-1

1
Lpuiger = 7 ), [E(9) = BII (13)

£=0

Therefore, the total loss for training FDT on a classification task is the sum of cross-entropy loss as
the task loss and the fixation budget loss (X is the balancing factor):

L= ﬁCE' + A L:Budget~ (14)
3 EMPIRICAL ANALYSES
We demonstrate that FDT outperforms 90
DeiT in robustness against adversarial 50 ~* o o FDT
attacks, natural corruption, and shortcut 2 DeiT
learning. We investigate the impact of 70
budget size on both robustness and com- 60 £°
putational efficiency and provide atten- ¥ e
tion and gating visualizations to support 3 507
our findings. For experimental details, £ ,; | A .
see Section[A.2]in Appendix. £, o .
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N
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When viewing an image perturbed by an Ay
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features and ignore perturbations, poten- v N

tially increasing robustness. To assess ) . o
the robustness of FDT, we subjected it Figure 5: Adversarial robustness. FDT achieves a signifi-

to 13 different adversarial attack meth- cant performance improvement, with an average increase
ods. The results, shown in Figure[3] in- of 27% compared to DeiT across all attack types (exclud-
dicate that FDT outperformed the DeiT 118 clean data accuracy).

method in all types of attacks (for nu-

merical results, see Table[3)).
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Table 1: Robustness to natural corruptions. Models evaluate
ImageNet100-O dataset.

d across five severity levels using the

DeiT FDT

Corruption | / Severity Level — 1 2 3 4 5 1 2 3 4 5
Defocus Blur 63.5+1.04 56.7+0.59 44.0+0.03 34.0+0.43 25.9+0.39|64.9+0.22 57.1+0.82 41.8+0.50 29.9+0.88 20.9+0.65

Blur Glass Blur 68.8+0.61 60.7+0.38 46.0+0.21 39.5+0.37 32.2+0.76|70.6+0.30 63.2+0.36 48.0+0.33 41.0+0.24 32.4+0.74
Motion Blur 70.3+0.48 62.9+0.44 53.2+0.71 43.240.50 37.3+0.38|72.040.22 64.2+0.27 53.7+0.34 43.240.92 36.3+0.57
Zoom Blur 63.0+0.58 57.4+1.12 53.7+0.95 49.7+0.60 45.6+0.76|62.6:+0.75 56.0+0.54 51.8+0.44 47.6+0.27 42.9+0.64
Contrast 72.3+0.13 69.0+0.19 62.7+0.53 44.4+1.55 19.5+1.61|73.340.19 68.9+0.52 61.5+1.16 37.0+1.44 14.6+0.31

Digital | E1astic Transform 6724021 [T4T%038 72. 150,48 62.540.36 67.0+0.15 [76:250143 74.020.30 64.7+0.03
JPEG Compression  [67.7+0.36 63.9+0.54 60.4+0.20 51.1+0.32 39.1+0.58|71.7+0.42 68.8+0.10 66.3+0.40 58.3+0.35 47.1+0.44
Pixelate 71.5+0.71 59.9+1.42 48.6+3.35 73.7+0.17 63.8+0.35 52.3+0.62
Gaussian Noise 74.340.18 69.1+0.05 57.2+0.52 38.3+0.50 16.1+0.41 70.9+0.23 60.3+0.67 42.0+1.95 18.2+2.00

Noise |Impulse Noise 71.8+0.05 63.8+0.26 55.8+0.50 35.0+0.63 15.8+0.36|73.940.31 66.9+0.59 59.2+1.40 39.0+1.93 18.0+2.06
Shot Noise 74.2+40.22 67.6+0.32 55.4+0.54 32.7+0.60 18.4+0.75 69.7+0.36 58.8+0.91 36.4+1.92 21.142.00
Brightness 71.3+0.18 65.5+0.21

Weather Fog 68.0+0.19 62.4+0.44 53.5+0.35 49.4+1.15 38.3+1.34|70.240.21 64.8+0.48 56.0+0.45 52.440.24 43.1+0.48
Frost 73.2+0.36 66.5+0.37 59.8+0.84 59.2+0.85 54.1+0.60 69.3+0.28 63.2+0.52 62.2+0.56 57.0+0.78
Snow 66.9+0.56 52.0+0.28 53.7+0.42 44.7+0.22 41.9+0.53|69.0+0.24 55.4+0.46 57.9+0.51 48.8+0.68 46.6+0.12

Average 71.0+0.20 64.8+0.11 58.5+0.19 48.3+0.21 37.4+0.43|72.840.10 66.6+0.03 60.4+0.18 50.0+0.38 39.0+0.43

3.2 NATURAL CORRUPTION
ROBUSTNESS

We evaluated models using the ImageNet100-O dataset, which includes common corruptions. This
subset of ImageNet-O contains the common classes of ImageNet100. Table [T] shows that FDT
consistently outperforms DeiT across all severity levels, particularly in weather-related corruptions.
This robustness makes FDT highly suitable for safety-critical applications where dependable visual
perception is crucial, akin to the HVS.

3.3 ROBUSTNESS AGAINST SHORTCUT LEARNING

Shortcut learning occurs when ANNs

form decision rules that excel on specific —A— ImageNet100 020
datasets by exploiting spurious correlations 907 _e— Tinted-ImageNet100 Lo.15

or statistical irregularities instead of learn- I

ing the underlying task. These strategies, 801 [ n B 'd O30
though effective on familiar data, do not < 'd A foos £
generalize well across different data distri- E 70 4 'é_l(-u——- ©
butions (Geirhos et all, 2020). To assess & /7 [ 0-00 £
models, we trained both DeiT and the FDT & | } L 0052
under varying budget constraints using the

Tinted-ImageNet100 dataset, where each r-0.10
sample is modified with a class-specific 501 “ .I L 015
tint, following the approach in the Tinted- '
STL10 dataset. Performance was evaluated 40 . -0.20
using the standard ImageNet100 validation P CPTCPCPCPEPCPTIEIN

set. Figure[6]shows that FDT is more robust
to shortcut learning than DeiT, especially
under larger budgets, demonstrating its ca- - Figure 6: Robustness to shortcut learning. Actual perfor-
pability for r QbUSt ge_nerahzatlon in diverse mance of each model displayed as bars, with the relative
and challenging environments. gains of FDT over DeiT depicted as a line graph.

3.4 EFFECT OF BUDGET

Our model incorporates the MHSA module,

which exhibits quadratic growth in computational complexity as the number of tokens increases. The
fixation module within each FDT block dynamically selects a subset of tokens for processing in the
MHSA based on the input image’s complexity, significantly reducing the overall computational cost.
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Table 2: Effect of gating budgets on computational efficiency and model performance. We report
average accuracies for clean (Acc.), adversarially attacked (Adv.), and naturally corrupted (Corr.)
samples, alongside clean accuracy for models trained on tinted samples (Shct.) as a robustness
measure against shortcut learning. ‘Eff. Fix.” denotes the effective fixation ratio on the validation
dataset, with subscripts indicating FDT’s fixation budget. FDT demonstrates high performance and
computational efficiency, capitalizing on the minimal overhead of its foveation and fixation modules.

Accuracy Relative Gain
Acc. Adv. Corr. Shct. Eff. Fix. GMAC Acc. GMAC
DeiT 80.9z011  26.3:043 56.0:018  53.5:016 | 1.00:0000 4.60x0.00 0 0

FDTy, | 75.4+255 45.9+040 48.2:240 44.8:107 | 0.2920002 2.09x001 | +9.38  —54.57
FDTy3 | 80.0x006 40.1:171  54.5:028 51.4:056 | 0.37x0004 2.36:001 | +11.19 —48.70
FDTy4 | 81.5:003 36.85342  56.6:026 54.0:020 | 0.45:0007 2.63x003 | +10.67 —42.83
FDTys | 81.9:005 33.31045 57.8:017 56.5:053 | 0.56x0006 3.01x002 | +9.17  —=34.57
FDTye | 82.82019 32.8:052 59.2:038 57.9:029 | 0.68:0003 3.47:001 | +10.25 -24.57
FDTp7 | 83.1:017 31.8:023 59.9:030 59.5:019 | 0.812000¢ 3.93:001 | +10.45 —14.57
FDTyg | 84.0x042  31.5:009 60.92040 61.12034 | 0.9320001 4.36:001 | +11.64 =522
FDTyo | 83.9z018 32.4x008 61.82040 61.8:072 | 0.99:0001 4.59:000 | +13.19 -0.22
FDT, o | 84.5:007 32.5:068 62.9:0.17 62.4:018 | 1.00=0000 4.63:000 | +14.25  +0.65

To evaluate our model’s efficiency, we quantified the Multiply-Accumulate operations (MACs) re-
quired for inference for both DeiT and FDT under various gating budgets. We calculated FDT’s
computational complexity by averaging the computations needed per sample in the validation set,
reflecting the dynamic nature of our approach. MACs are normalized to DeiT to highlight com-
putational efficiency gains. Table[2|shows that FDT requires fewer expected MACs for inference
than DeiT. At a 50% budget, FDT uses an average of 3.01 GMACsSs, achieving a 34.57% reduction
compared to DeiT. Even at a full budget, where all tokens are utilized, the increase in complexity is
only 0.7%, demonstrating the minimal overhead of the foveation and fixation modules. These findings
underscore FDT’s ability to maintain high performance and computational efficiency, enhancing its
robustness and making it suitable for a wide range of applications.

3.5 FEATURE INVERSION

We employ “feature inversion" to enhance our understanding and visualization of transformer-
based representations. This technique reconstructs an input image from specific model features or
activations, offering insights into how the model processes inputs and makes predictions. While
widely used with CNNs (Simonyan et al., 2013} [Selvaraju et al.,[2017), its application to transformers
remains less explored. Using the ‘Deep Image Prior’ method (Engstrom et al., 2019), we optimize a
CNN-based network Fj(+) to transform random noise input z into an image. The goal is to match the
features of the output image, particularly the CLS features, with those of a target image I, defined by:

arg min || (Fp(2)) — (Dl » (15)

where ¢(I) denotes the target features and |.| represents the Frobenius norm, focusing on the
classification token (CLS); thus, ¢(I) = CLS(I).

We employ the same network architecture and parameters as Engstrom et al.| (2019) for the generative
network Fy(z). The results in Figure[/|reveal clear distinctions between the reconstruction images of
DeiT and FDT. Notably, FDT’s reconstructions are more realistic and semantically richer than those
of DeiT, supporting the hypothesis (Engstrom et al., [2019) that networks designed for robustness
produce more semantically meaningful representations.

3.6 EFFECT OF MODEL SIZE

The relationship between model size and performance is pivotal in neural network design, balancing
capacity with computational efficiency. Generally, larger models can achieve higher accuracy but
may overfit and require more resources. Smaller models might better generalize and suit practical
needs but have limited learning capacity for certain functions. Understanding this trade-off is crucial
for choosing the appropriate model size for specific tasks.
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FDT

Figure 7: Feature inversion using ‘Deep Image Prior’ method for DeiT-S and FDT-S trained at a 50%
budget. This comparison demonstrates that FDT learns more meaningful representations than DeiT.

Table 3: Comparison of FDT across different model sizes (tiny, small, and base) against the DeiT
model in terms of accuracy on clean, adversarially attacked, and naturally corrupted images, as well
as the relative accuracy gain over DeiT for all model sizes.

Size Model | GMAC Acc. Adv. Acc. Corr. Acc. | Rel. Gain
Tiny DeiT 1.26:000 | 64.41048 17.6:032 40.8+0.24 0
FDT 0.84+000 | 67.1x0.08 24.7+1.67 43.5:0.15 +17.05
Small DeiT 4.60+000 | 80.9:0.11 26.3:043 56.0:0.18 0
FDT 3.01x002 | 81.9s00s 33.32045 57.2+031 +10.00
Base DeiT 17.57+000 | 81.5+025 30.0:0.76 56.9:047 0
FDT 11.56+0.07 | 82.2:028 40.8x+1.80 57.8+0.17 +12.81

We explore the impact of model size on our FDT by evaluating three sizes: tiny, small, and base,
following DeiT conventions. We compared FDT’s performance against DeiT across the same
evaluation metrics, except for the learning rate of the base model set to 2e-4. Our results, presented
in Table [3] cover accuracy on clean, adversarially attacked, and naturally corrupted images, and
the relative accuracy gains over DeiT. Our findings indicate that FDT performs well across sizes,
showing high accuracy on clean images and robustness to adversarial and natural challenges. FDT’s
adaptability to various computational demands, coupled with its efficiency and performance, makes it
well-suited for diverse applications.

3.7 REACTION TIME ANALYSIS

RT in HVS measures the duration to respond to a visual stimulus, reflecting neural and cognitive
processes in perception, attention, and decision-making, and varies with task complexity, object
number and similarity, and uncertainties like occlusions or viewpoint changes, generally increasing
with higher difficulty. Our study extends RT analysis to a neural network, comparing its performance
to the HVS by measuring response times to visual stimuli and accuracy for samples classified as easy,
medium, and hard (see Table ), revealing an inverse relationship between sample complexity and
accuracy. The model’s RTs closely match those of the HVS, indicating it effectively mimics human
foveation and fixation, suggesting its potential as a tool for studying human cognition by replicating
intricate behaviors in visual perception and cognitive functions (see Figure|[g).

3.8 EVALUATING MODEL DECISIONS: VISUALIZATION TECHNIQUES AND INSIGHTS

We employ visualizations of eye movements, fixation maps, and attention maps to mirror the human
visual system’s saccadic processing. The FDT uses a fixation module to generate fixation maps
that simulate high-resolution visual acquisition through these movements, highlighting fixation
probabilities within scenes. To demonstrate the FDT’s simulated “eye movements", we identify the
most likely token positions as fixation points. Figure [9illustrates these points and their sequence
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Figure 8: Visual comparison of easy and hard samples with their computational requirements for
inference. The first row shows the original images, the second row shows heatmaps of fixation points,
and the final row lists the GMACs required for each image. This highlights how computational load
varies with the number and distribution of fixation points, reflecting inference efficiency and focus

Easy = Medium  Hard Table 4: Accuracy metrics
Clean 84.9:035  80.5z025  80.3:031 across samples of varying
Adversarial Att. | PGD /5 60.6:035 56.4x12 56.6:132 | difficulty levels, subjected to
Defocus B. 45.9:081  43.8:0m2 39.1w00 | different noise types. The
Blur Glass B. 55.7s071  52.0s006 45.5:007 | validation dataset was di-
Motion B. 60.0:024  54.4:036  47.2+133 vided into three balanced
Zoom B. 63.0:133  52.1:02¢ 41.4:064 | subsets based on average
g Contrast 45.0:126 51.1x120 57.1x05 | fixations per sample: easy’
‘§ Digital Elastic Tran. | 75.4+031  71.4+037  68.5:044 for th? feW@SF, medium’
g JPEG Comp. | 68.7:131  62.2:077 56.4:065 | for an intermediate number,
S Pixelate 74.8:028 68.4s0s51 64.8:072 | and ‘hard’ for the most fix-
= Gaussian N. | 54.4z120  52.2:107  54.0=1.59 ations.  For analyses of
2 | Noise Impulse N. | 53.0s165  50.1s140  51.2:137 | natural corruption, samples
= Shot N. 53.8:144  50.9:137  52.5:160 | from all severity levels were
Brightness 79.3:077  75.0:010  73.4s038 included.

Fog 61.12085  57.4s100 53.5:035

Weather Frost 70.6:054 6432005  61.7:043

Snow 63.0:046  54.6:040  49.1x120

(using arrows and color transitions from green to yellow to indicate the sequence of fixations; and
marking fixation points with circles and blurring regions outside of fixation for clarity). The system’s
focus intensity varies based on the visual input, adapting to scenes with multiple objects through
diverse sampling. Using the Gumbel-Softmax and hard label techniques, we determine tokens as
fixation points based on their likelihood values, producing binary maps that indicate these points.
Averaging these maps across all blocks, we create overall fixation maps shown in Figure 9] which
depict the model’s strategy to maximize informative content while minimizing irrelevant background
areas. Additionally, we visualize attention towards the classification token to understand decision
processes within vision transformers, using the attention rollout method (Abnar & Zuidemal, [2020).
Figure [0 demonstrates that while the fixation module covers broad informative areas, the attention
maps concentrate on the most discriminative regions for class identification. This confirms our
model’s effectiveness in mimicking human visual attention mechanisms.

4 CONCLUSION

We introduced the Foveated Dynamic Vision Transformer (FDT), a novel architecture inspired
by human visual system mechanisms, enhancing computational efficiency and robustness against
adversarial attacks, natural corruption, and shortcut learning. Our results on the ImageNet100 dataset
demonstrate FDT’s superior accuracy, efficiency, and robustness compared to the baseline DeiT-Small
architecture. This research contributes to biologically inspired computational models, integrating
human visual principles into deep learning architectures. The FDT balances high performance with
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=
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Figure 9: Visualization of fixation points and their orders, fixation maps, and attention maps. Each
column displays diverse samples from the ImageNet100 validation set.

computational efficiency, making it suitable for resource-constrained environments and highlighting
its capability to focus on informative image regions, akin to human saccadic movements. Future work
could extend FDT to domains like video processing and augmented reality, where dynamic foveation
can reduce computational demands while maintaining performance, and explore its deployment in
real-world, resource-limited scenarios, underscoring the value of bioinspired approaches in developing
efficient, robust AI models.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. arXiv preprint
arXiv:2005.00928, 2020.

Emre Akbas and Miguel P Eckstein. Object detection through search with a foveated visual system.
PLoS computational biology, 13(10):¢1005743, 2017.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small
image transformations? Journal of Machine Learning Research, 20(184):1-25, 2019. URL
http://Jmlr.org/papers/v20/19-519.html.

Neil DB Bruce and John K Tsotsos. Saliency, attention, and visual search: An information theoretic
approach. Journal of vision, 9(3):5-5, 2009.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 20717
ieee symposium on security and privacy (sp), pp. 39-57. Ieee, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206-2216.
PMLR, 2020.

Christine A Curcio, Kenneth R Sloan, Robert E Kalina, and Anita E Hendrickson. Human photore-
ceptor topography. Journal of comparative neurology, 292(4):497-523, 1990.

10


http://jmlr.org/papers/v20/19-519.html

Under review as a conference paper at ICLR 2025

Arturo Deza and Talia Konkle. Emergent properties of foveated perceptual systems. arXiv preprint
arXiv:2006.07991, 2020.

Samuel Dodge and Lina Karam. A study and comparison of human and deep learning recogni-
tion performance under visual distortions. In 2017 26th international conference on computer
communication and networks (ICCCN), pp. 1-7. IEEE, 2017.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 9185-9193, 2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Alek-
sander Madry. Adversarial robustness as a prior for learned representations. arXiv preprint
arXiv:1906.00945, 2019.

Jeremy Freeman and Eero P Simoncelli. Metamers of the ventral stream. Nature neuroscience, 14(9):
1195-1201, 2011.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665-673, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature reviews
neuroscience, 2(3):194-203, 2001.

Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99—112. Chapman and Hall/CRC, 2018.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial defense
through robust bayesian neural network. arXiv preprint arXiv:1810.01279, 2018.

Hristofor Lukanov, Peter Konig, and Gordon Pipa. Biologically inspired deep learning model for
efficient foveal-peripheral vision. Frontiers in Computational Neuroscience, 15, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

José Martinez and Leopoldo Altamirano Robles. A new foveal cartesian geometry approach used for
object tracking. SPPRA, 6:133-139, 2006.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. Advances
in neural information processing systems, 27, 2014.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-

ization. In Proceedings of the IEEE international conference on computer vision, pp. 618-626,
2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/
1312.6199.

11


http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

Under review as a conference paper at ICLR 2025

Chittesh Thavamani, Mengtian Li, Nicolas Cebron, and Deva Ramanan. Fovea: Foveated image mag-
nification for autonomous navigation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 15539-15548, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347-10357. PMLR, 2021.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Binxu Wang, David Mayo, Arturo Deza, Andrei Barbu, and Colin Conwell. On the use of cortical
magnification and saccades as biological proxies for data augmentation. In SVRHM 2021 Workshop
@ NeurlIPS, 2021. URL https://openreview.net/forum?id=Rpazl1253IHb.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

A Yarbus, B Haigh, and L Rigss. Eye movements and vision. plenum press new york. 1967.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472-7482. PMLR, 2019.

12


https://openreview.net/forum?id=Rpazl253IHb

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

Several approaches inspired by the functioning of the human visual system have been devised to
replicate foveation and eye movement within the domain of computer vision. Mnih et al.| (2014)
introduced a method that employs a sequence of image movements to aggregate information before
classification. This method utilizes a hard-attention mechanism implemented through reinforcement
learning to predict fixation points. In a similar vein, |Akbas & Eckstein|(2017) developed a foveated
object detection system that harnesses varying resolutions to comprehensively analyze the entire
image, aligning its fovea with regions of interest in the input data. This approach amalgamates data
from multiple fixations and leverages peripheral information, similar to the way the human visual
system employs contextual cues to guide gaze.

Furthermore, |Deza & Konkle| (2020) explored the impact of foveation on machine vision employing
two-stage models, encompassing an image transformation stage and a deep convolutional neural
network. Their investigation primarily focused on evaluating the effects of texture-based coding
in the visual periphery on subsequent visual representations. [Thavamani et al.| (2021} proposed a
foveated object detector that utilizes an image-magnification approach, preserving high resolution for
points of interest while maintaining a compact canvas size.

Lukanov et al.| (2021) developed an efficient model that incorporates space-variant sampling, mim-
icking the human retina, and the mechanisms to generate sequences of fixations. They proposed a
CNN-based method that uses Foveal Cartesian Geometry (FCG) sampling, as outlined by [Martinez
& Robles| (2006), to compress visual signals. An attention mechanism is employed for “eye move-
ments" to progressively gather detailed information from a scene. Activation within the feature
maps of the final convolutional layer is harnessed to guide the generation of fixation sequences.
Additionally, [Wang et al.| (2021)) investigate the role of foveation and saccadic eye movements as
biologically inspired proxies for data augmentation in the context of self-supervised learning (SSL).
They suggest that foveation through cortical magnification and saccade-like sampling of images can
replace conventional SSL augmentations, offering insights into potential biological implementations
of self-supervision and challenging spatially uniform processing assumptions in both human and
machine vision.

These approaches have demonstrated promising results in emulating the foveation and eye movement
processes of the human visual system, with potential applications across a variety of computer vision
tasks. However, it is imperative to emphasize the critical necessity for further research, not only
aimed at optimizing and refining the functionality of the human visual system, particularly in the
context of vision transformers, but also unlocking its transformative potential for artificial intelligence,
ultimately advancing the frontiers of machine perception and understanding. To this end, we aim to
design a system that effectively mimics the human visual system’s process of selectively focusing on
certain regions of an image and using surrounding context to guide the gaze.

A.2 EXPERIMENTAL SETTINGS

To evaluate FDT, we conduct image classification experiments on the ImageNet-100 dataset, a subset
of the ImageNet-1k dataset containing 100 randomly chosen classes with 1300 training images and
50 validation images per class. We report top-1 accuracy using a single 224x224 crop and compare
FDT to DeiT (Touvron et al., 2021) using the same training settings, including AdamW optimization
for 300 epochs with cosine learning rate decay and 20 epochs of linear warm-up, batch size of 512,
and V100 GPUs for training and evaluation. The initial learning rate, weight decay, and momentum
are set to 0.001, 0.05, and 0.9, respectively. Unless otherwise stated, all experiments use a budget
of 5 = 0.5. All results are reported as the mean and one standard deviation of three differently
initialized runs. For training Tiny, Small, and Base models, one, two, and four V100 GPUs with
32GB of memory are used, respectively. Evaluations of the models are done on a single V100 GPU.

Adversarial Robustness. The adversarial attack methods used to assess the robustness of FDT
include gaussian noise (GN), CW (Carlini & Wagner, 2017), PGD(L2) (Madry et al.,[2017), FGSM
(Goodfellow et al.l 2014), TPGD (Zhang et al.l [2019), FFGSM (Wong et al., 2020), EOTPGD
(L1u et al., 2018), RFGSM (Tramer et al.,|2017), APGD(T) (Croce & Heinl |2020), BIM (Kurakin
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2018)), and MIFGSM (Dong et al., [2018). We used the TorchAttacks library (2020)

for implementing the attacks. All methods were run with default values, except for the Projected
Gradient Descent (PGD) method, which had an epsilon value of 0.1. As demonstrated in TableElin
the Appendix, although a lower budget results in some accuracy drops, it overall helps to produce
a more robust model. These findings support that the FDT method effectively enhances robustness
against adversarial attacks by focusing on relevant features and filtering out noise.
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A.3 ADVERSARIAL ATTACK RESULTS

Table 5: Comparison of robustness against 13 common adversarial attack methods for FDT and DeiT models trained on ImageNet-100 dataset. The models are
labeled with their corresponding fixation budget hyperparameter (subscript) and model size (T, S, B for tiny, small, and base, respectively). The mean and one
standard deviation of three runs with different initializations are reported.

Attack Type

DeiT-T DeiT-S DeiT-B

FDT-To.5

FDT-So.2 FDT-So.3 FDT-Sp.4 FDT-S¢.5 FDT-Sg.6 FDT-So.7 FDT-Sgp.s FDT-Sg.9 FDT-S1.0 FDT-Bo.5

CLEAN
APGD
APGDT
BIM

Ccw
EOTPGD
FFGSM
FGSM
GN
MIFGSM
PGD
PGDL2
RFGSM
TPGD

64.4+048 80.9+0.11 81.520.25
16.82037 8.9z0.11 8.8:0.11
17.52025 10.32036 11.920.28
1.1:012 6.5:053 11.0:043
55.12048 67.4+0.42 71.41061
6.2:0.13 20.8+047 28.5+1.40
6.6£039 21.9:0.62 26.6+1.84
18.810.81 40.710.65 45.4+1.18
56.020.42 74.8+0.33 76.5:0.40
0.12002 0.92026 1.7:0.16
0.1:001 0.8+032 1.620.09
20.5+1.19 42.7+0.75 50.320.86
5.1:0.18 18.7x0.65 23.2:2.16
25.1x051 28.0+053 32.6+1.01

67.120.08
23.02.50
27.1+3.79
8.3+246
62.4+1.08
14.6+1.62
11.4+083
31.5+278
60.12035
1.1x036
1.2:038
40.3+3.49
9.0:0.39
31.5+1.90

75.41255 80.0x006 81.52023 81.92005 82.8x0.19 83.1x0.17 84.0:042 83.9:018 84.5:007 82.2:028
46.7+3.07 30.42378 22.02565 15.2z088 13.32037 10.8+138 8.9z085 8.0x019 7.1x041 23.723.03
54.6:100 40.0:332 31.1s644 22.0:£137 18.3z1.12 1442146 12.2:082 10.6:067 9.6:046 34.71285
41.52083 30.82308 24.32584 17.92076 16.7x047 12.2:075 11.0x072 12.2:066 11.8£138 32.2:378
T4.2:231 77.22062 77.1x1.10 75.82031 75.52050 74.0:046 73.2:026 73.0:026 72.2:042 77.82038
38.7:060 34.2+193 31.8x201 29.1x034 28.7x092 28.5:055 28.9:108 30.4:063 31.5:121 35.3:090
32.00.75 27.6:1.16 26.4+188 24.9:008 26.3:120 28.1:051 29.2:075 32.8:048 34.7+124 32.6£1.93
59.2+218 55.3:1.690 52.61374 49.4:073 48.8x150 48.1x059 48.2:026 50.2:046 50.9:083 56.5:+1.71
69.75234 7445028 76.4+034 76.7:002 77.6:039 78.6:009 78.9:043 79.4r022 80.2:022 77.7x021
16.6:095 8.9+221 5.7x255 3.12007 3.0:017 2.1:016  1.9:013 2.42006 2.5:028 9.2s2.15

18.4+174  9.7:229  6.12364  2.52035 2.3z006 1.52005 1.4x038 1.6:016 1.3:x028 9.41283

63.8:237 62.65213 60.7£403 579+116 57.8+134 55.5:043 54.8:026 55.2:024 53.2:120 64.8+1.60
27.620.75 24.2+142 22.7:194 21.42028 22.6:104 24.3:042 25.4:090 28.7:059 31.0x140 28.3:1.57
54.3+047 46.2+203 41.3x465 37.5:079 35.92060 35.1:058 35.0:041 36.3:047 36.6£1.03 48.5+204
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Table 6: Comparison of robustness against 13 common adversarial attack methods for FDT and DeiT models trained on Tinted ImageNet-100 dataset. The models
are labeled with their corresponding fixation budget hyperparameter (subscript) and model size (T, S, B for tiny, small, and base, respectively). The mean and one
standard deviation of three runs with different initializations are reported.

Attack Type DeiT-S FDT—SO‘Q FDT—So,g FDT—S()_4 FDT—So,5 FDT—So,a FDT—SOJ FDT—So,g FDT—SO‘Q FDT—SLO
CLEAN 53.5z0.16| 44.8+1.07 51.4:056 54.0:020 56.5:053 57.9:020 59.5:019 61.12034 61.82072 62.4x0.18
APGD 24.9+127| 33.0£1.43  28.5:145 26.1:174 25.1:1.10 23.0:077 22.0x1.15 22.0x109 21.52054 22.5+1.39
APGDT 27.5+108| 36.6£145 33.4:167 30.3:211 28.7:138 26.1:093 24.5:157 2442073 2432072 25.24133
BIM 6.7:031 | 21.6278 16.8+1.05 12.5:1.80 9.8x079  7.1x045 5.8:065 6.5:027 6.1:011  7.42029
CW 50.62048| 44.1x1.02 50.0:063 52.2:076 54.1:083 55.2:026 56.2:067 57.52023 58.62062 58.9:043
EOTPGD |12.9:069| 23.12182 19.1x1.12  18.82047 17.22077 16.32035 16.3z0.11 17.1x023 17.72054 18.520.38
FFGSM 13.12032| 18.3:207 16.42070 16.0:068 15.6:023 16.0:048 16.7:051 18.0:086 18.0:064 19.42048
FGSM 24.4+027| 32.6+1.88 33.0:061 31.1:1.16 29.6:070 28.9:034 28.6:020 30.0:035 30.6x080 30.9z0.11

GN 52.2z008| 46.2+1.10 51.4:051 53.9:022 55.6:060 57.8:070 58.8:027 60.52043 61.22034 61.92042
MIFGSM 1.1:014 | 8.0£212 3.8:056 2.1x026 1.42018  1.1:021  1.1:031  1.1x007 1.22016 2.62023
PGD 1.00.17 | 9.4+236  3.8:058 2.2:036 1.3x022 0.82013 0.62017  0.7:008 0.7:000 1.5:0.16

PGDL2 29.0z046| 34.7+1.58 36.5:075 35.9:074 34.9:067 33.9:079 33.1:081 34.5:070 34.9:038 34.9:0.64
RFGSM 11.3017| 16.12209 14.1:060 13.8:071 13.42040 14.12048 14.22050 15.72085 15.92096 17.0=0.62
TPGD 25.45117| 36.5+157 34.4+136 31.8:1.11 29.5:111 29.1x025 29.7:094 29.0x040 30.32042 32.3:048

A.4 NATURAL CORRUPTION RESULTS

Table 7: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on ImageNet-100 dataset. Models are
evaluated using the ImageNet100-O dataset. The models are labeled with their
corresponding fixation budget hyperparameter (subscript) and model size (T, S, B
for tiny, small, and base, respectively). The mean and one standard deviation of
three runs with different initializations are reported.

Corruption DeiT-T DeiT-S DeiT-B [FDT-To.5 FDT-Sg.2 FDT-So.3 FDT-So.4 FDT-S¢.5 FDT-Sp.¢ FDT-So.7 FDT-So.s FDT-So.9 FDT-S1.0 FDT-Bo.5
64.4+048 80.9+0.11 81.52025| 67.12008 75.4+255 80.0:006 81.5:023 81.9:005 82.8:0.19 83.1x0.17 84.0z042 83.9:018 84.5:007 82.2:028
44.6:0.05 63.5+1.04 62.8:085| 46.6:028 50.2:375 60.5:065 62.5:050 64.9:022 66.0:0.12 67.0x064 68.12050 68.52065 69.62051 62.9:1.00
38.12040 56.72059 56.4+1.03| 38.82048 39.1:327 51.8:1.04 54.32031 57.1z082 58.82038 60.1x065 61.7:097 62.6£1.17 63.5:058 55.3:079
28.4+033 44.020.03 44.7+1.00| 27.42025 21.0x4.10 33.7x163 37.22044 41.82050 45.2+126 47.22073 50.5:101 51.1x136 51.7:068 41.0:050
21.62049 34.02043 34.5+1.11| 20.02027 12.2:351 20.92144 2432078 29.9:088 33.42092 36.5:1.07 39.4x042 40.4x120 40.2:114 28.9:0064
1722064 25.92039 26.2:0.73| 14.92082  7.7+278 13.7x067 16.0x074 20.92z065 23.82053 26.4+1.19 29.8+034 30.9:082 30.4+137 20.5:0.79
51.9z0.15 68.820.61 68.42038| 55.02004 60.42485 68.32014 70.02043 70.62030 71.82021 72.0z052 72.4x005 72.7+044 73.3:044 69.2:086

Defocus Blur

o 2N ~SEVS I (S I el R )

Glass Blur

Blur
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Table 7: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on ImageNet-100 dataset. Models are
evaluated using the ImageNet100-O dataset. The models are labeled with their
corresponding fixation budget hyperparameter (subscript) and model size (T, S, B
for tiny, small, and base, respectively). The mean and one standard deviation of
three runs with different initializations are reported.

Corruption S| DeiT-T DeiT-S DeiT-B |[FDT-Tg.5 FDT-Sg.2 FDT-Sg.35 FDT-Sg.4 FDT-Sg.5 FDT-So.6 FDT-So.7 FDT-Sp.s FDT-Sp.9 FDT-S1.9 FDT-Bg 5
2144.5+033 60.7+038 60.520.83| 47.02047 51.02505 59.42049 61.72071 63.22036 63.92040 64.2:051 64.6:004 64.8:1.12 66.1:051 60.620381

3136.2:072 46.0:021 45.9+093| 36.2:054 37.4+523 447076 46.4+083 48.0:033 48.0:042 48.2:062 48.3:020 48.7+109 49.5:034 46.1x099

4131.220.74 39.52037 39.6+1.02| 30.62069 30.7+449 36.9:1.09 39.4:072 41.02024 40.92026 41.32044 41.82042 41.7+117 42.5:022 39.5:082

5123.8+0.55 32.2+0.76 32.220.70| 22.5+053 20.823.03 26.7x008 29.6x043 32.4+074 32.2:051 33.2:017 34.1:065 34.0:096 35.0:019 30.8x049

1[52.9+022 70.32048 71.02020| 55.620.74 61.623.17 69.3z0.10 70.62043 72.0z022 73.0z0.15 73.5:036 74.6:007 75.4+020 75.6:030 71.3z0388

2145.7£020 62.9044 64.12030| 48.0c060 51.12284 61.0z051 62.22007 64.2:027 65.62002 66.4+x067 68.1:028 68.8:032 69.2:074 63.8:0.77

Motion Blur 3137.5:061 53.2:071 54.3+0.63| 38.7:090 38.9+228 49.6:084 51.3:028 53.7:034 5591024 57.1:074 58.2:019 59.7:055 59.9:1.07 53.8z0386
4130.120.78 43.22050 43.62080| 30.62083 27.2+283 38.2:062 39.9:024 43.2:092 44.82023 45.82072 47.2:039 48.1x054 48 3:144 42.1:049

5126.5+121 37.3x038 37.22091| 2632071 21.523.04 31.82054 33.4x005 36.3:087 37.9:010 38.9:063 40.42056 41.2:057 40.6:1.40 35.4x040

148.4+007 63.0£0.58 63.1x0.77| 49.8+019 53.7+305 61.0:066 61.9+052 62.6:075 63.3:035 64.0:018 64.1:053 64.2:027 65.0:052 61.4=052

2143.31021 57.4+1.12 57.42060| 44.12052 46.52250 54.0z067 54.9:038 56.0:054 56.9:015 57.7:036 57.5:054 57.8:026 58.3:037 55.2+094

Zoom Blur 3140.12021 53.7+095 53.5+1.02| 40.5+1.14 41.02286 49.32046 50.9:010 51.8:044 53.0:017 53.6:027 53.8+034 54.2:028 54.4:070 51.6+0.95
4137.12054 49.72060 49.5:073| 37.22079 36.4+292 45.4:036 46.4:047 47.62027 48.52048 49.1x017 49.1x053 49.8+x039 49.9:076 47.4x065

5(34.1:080 45.6+0.76 45.5+0.63| 33.7x084 31.7+354 41.3:034 41.61040 42.9:064 44.1x054 44.7+029 44.82045 45.0:022 44.9:085 43.42079

1(53.4+037 72.3+0.13 73.52041| 55.8:024 56.9:551 68.9:032 72.1:037 73.32019 75.12042 75.3+1.19 76.62054 76.82062 77.62033 74.410.38

2148.7+090 69.0<0.19 70.0z0.90| 49.7x090 47.52411 61.22143 67.32047 68.9x052 70.82077 72.2+177 73.0x081 73.42070 75.1:x026 70.12041

Contrast 3141.2+090 62.7£0.53 63.7+1.20| 39.3:1.31 32.4+080 46.0:219 56.5:132 61.5:1.16 64.12098 66.7+205 69.1:1.00 69.3:076 71.1:029 60.620.49
412492090 44.4+155 46.42221| 20.121.14 1332148 21.42149 32.0x168 37.0x144 4292196 46.2:241 53.8:033 53.1x127 58.9:062 35.6:028

519.3z080 19.5+1.61 21.021.67| 7.12031  4.1x068  7.42049 12.621.07 14.6:031 16.7+129 1792172 26.12030 24.3+179 32.5:143 15.52084

1]/58.9£039 75.2+044 75.6x021| 62.12035 69.13.10 75.2:014 76.3:014 76.9:030 77.9:015 78.3:047 79.1:031 79.0:0.15 79.4:000 76.2+0.62

2152.310.16 67.2021 67.0z0.11| 53.82043 59.2+277 65.52046 66.42021 67.0z0.18 68.42002 69.0:028 69.1x0.19 69.2:006 69.9:028 66.2+055

Elastic Trans. |3[58.32027 74.7z053 74.7:021| 62.22021 68.8+337 75.0:030 76.0z068 76.2z0.12 77.22048 77.5:022 77.9x039 78.1x019 78.4+022 75.7:076
4156.62046 72.1x0.48 71.820.66| 60.42022 66.9+395 72.7:036 T4.1:025 7T4.0:039 75.32020 75.32024 75.52024 75.7x012 76.0z0.19 73.41051

Digital 5150.0+0.54 62.5036 61.62050| 52.2+034 57.32470 63.0z052 63.7x0.19 64.7:093 65.2:036 64.8:035 64.7:017 65.1:026 65.4:043 63.820.50
1]52.7+083 67.72036 68.7:035| 58.62039 66.9+1.86 70.92024 72.12064 7T1.72042 72.820.15 72.82048 73.5:048 73.8+034 74.2:027 70.8+1.19

2|48.7+1.18 63.9x054 64.020.09| 55.42057 64.7+190 67.92069 68.82062 68.820.10 69.82060 69.2:044 69.8:057 69.8:057 71.2:081 67.6:083

JPEG Comp. |3]45.7:1.55 60.4029 60.8:0.15| 53.1x022 62.3:2.10 65.8:052 66.8:048 66.3x040 67.1:054 66.5:051 67.1x068 67.6:055 68.7:0.19 65.1:x0.68
4136.7+1.05 51.12032 50.7:032| 46.52066 56.3:106 59.0:094 59.2:061 58.3:035 58.5:083 58.020.17 58.12064 58.9:1.09 60.92027 56.9:1.21

5(28.4x140 39.1+058 38.5:039| 38.32068 47.9:1.01 49.2:120 48.8:043 47.1:x044 46.7x142 4592023 46.22063 46.8:094 49.1:035 45.4x1.06

1/60.6£0.49 77.3:033 77.2+027| 64.42025 71.85293 77.1x017 78.4+007 78.8+038 79.7:020 80.0:0.18 80.7:043 80.8:0.13 81.2:031 77.3x035

2159.61052 76.3032 76.12046| 63.520.19 70.62340 76.32020 77.82025 78.1x0.13 79.2:011 79.2:023 80.0:029 80.2:029 80.5:000 76.42021

Pixelate 3156.0+0.19 71.5:071 68.8+0.17| 59.72039 66.0£3.17 72.4x019 72.9:063 73.7:017 T4.42015 T4.6:021 T4.4:049 75.4:083 76.3:023 68.3x047
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Table 7: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on ImageNet-100 dataset. Models are
evaluated using the ImageNet100-O dataset. The models are labeled with their
corresponding fixation budget hyperparameter (subscript) and model size (T, S, B
for tiny, small, and base, respectively). The mean and one standard deviation of
three runs with different initializations are reported.

Corruption S| DeiT-T DeiT-S DeiT-B |[FDT-To.5 FDT-Sg.2 FDT-Sg.3 FDT-Sg.4 FDT-So.5 FDT-So.6 FDT-So.7 FDT-Sg.s FDT-Sg.9 FDT-S1.0 FDT-Bo 5
4150.820.72 59.9+1.42 55.3+1.80| 53.420.10 58.31528 64.4:068 63.5:077 63.82035 62.82038 62.0:029 61.82038 61.5:095 62.6£1.51 53.7:096

5145.0+075 48.6+335 45.12248| 46.7x044 49.22455 55.8z061 53.3z071 5232062 51.2:110 51.5:051 49.1x084 49.2:110 51.12223 44.9:127

1]56.5+0.18 74.320.18 75.4+0.10| 60.5:030 69.12327 74.0x010 76.2+046 76.1:038 77.42046 7T7.9+040 78.8x025 79.12017 79.92011 76.2+0.19

2150.3:029 69.1x0.05 70.620.04| 54.5:034 63.52267 68.42019 70.72037 70.9x023 72.7x054 73.7x049 74.2:025 75.4+021 76.3:058 7T1.7:027

Gaussian Noise [3|39.4+022 57.2+052 60.12050| 44.1x044 53.2+2.12 57.62090 59.3x057 60.3x067 62.5:137 64.0:049 64.3:053 66.5:0.13 68.3:040 60.920.74
4125.02038 38.32059 42.4:079| 30.42133 36.3:133 39.5:157 40.6:157 42.02195 45.62130 46.4x1.19 46.82065 50.8:133 54.0:1.00 42.8:084

5(10.12045 16.1x041 18.92040| 13.42224 15.32179 17.0x174 17.3£135 18.2+209 21.7x067 21.32125 22.621.03 26.9:223 31.4:101 18.42074

1[54.120.19 71.8+0.05 73.1x026| 58.1x000 67.6x263 72.1x0.19 73.8+035 73.9:031 75.5:020 75.8:071 76.6:055 77.6:028 78.1:040 74.2+050

2145.5+021 63.8+026 66.32021| 50.22008 60.2+201 64.12035 66.72022 66.9:059 68.9:095 69.9+0.72 70.4x087 72.1:033 72.8:032 67.2z061

Noise |Impulse Noise [3[38.1:0.10 55.8:059 58.9:0.62| 43.2:065 52.6:150 56.9:090 59.1:x080 59.2:140 61.8:x146 63.1x079 63.0:059 65.8:0.11 66.7:048 59.7+0.49
4122.5+053 35.02063 39.4+1.14| 27.32124 33.0:195 36.9:126 38.6x123 39.0x193 43.1x1.03 43.6:x129 43.9:062 48.7+176 51.1:1.14 40.1:1.18

5/10.8+0.78 15.8+036 19.22028| 13.121.73  15.02272 17.12197 17.62150 18.0x206 22.3z050 21.4+099 23.2:1.02 27.9+247 32.0:1.12 18.62078

1[55.92021 74.2+0.22 75.3:0.26] 60.320.11 69.0£348 73.7:041 75.6:032 76.1:021 77.2:0.13 77.820.13 78.4x027 79.020.17 79.920.14 76.2+0.43

2|48.31044 67.6032 69.120.17| 53.22029 62.723.09 67.22024 69.3x0.19 69.7x036 71.7x076 72.82032 73.1:x079 74.2:038 75.3:038 70.5z0.16

Shot Noise 3138.0£0.19 55.420.54 57.9+1.19| 43. 72022 5224237 56.1:084 58.5:040 58.82091 61.7£1.37 63.2:084 63.2:078 65.1:025 67.0:040 59.0+0.73
4121.82033 32.72060 35.8:090| 26.8+1.12 32.3+138 34.6:187 35.5:158 36.4:192 40.4:1.03 40.62136 41.3z1.02 45.3z162 48.7x108 35.8:1.01

5(12.7+044 18.4+0.75 20.820.69| 16.1x1.50 18.8+135 20.0+1.18 20.2x1.68 21.1x200 25.32098 24.9:134 2592142 30.1:202 33.4:123 20.0+0.99

1[62.4+028 78.820.09 79.12027| 65.920.19 73.4+232 78.22024 79.5z051 80.12032 80.7z0.11 81.4x024 81.9:025 81.9:033 82.0:008 80.1z0.12

2160.6+033 77.2+0.14 78.0z026| 64.0=035 72.2+180 76.62007 78.62046 78.7x007 79.6x029 80.3x024 80.8:030 81.1x030 81.2:005 78.8:035

Brightness 3158.0+0.30 75.2+0.30 76.0:0.13| 61.12033 69.6+1.85 7442012 76.5:014 77.3x038 78.0:025 78.4:029 79.0x007 79.4:0.10 79.7:0.10 77.0+0.22
4153.02030 71.320.18 73.12038| 57.02048 65.9:122 70.6:022 73.5:021 74.12043 75.22024 75.62014 76.3z019 76.6x035 77.2:037 7T4.5:022

5146.7+040 65.5:021 67.62040| 50.52033 59.9x106 64.9:0.14 68.52020 69.3z0.11 70.6x078 70.9+017 71.7:x032 72.7:062 73.1:027 69.92021

1[48.3+1.08 68.0£0.19 69.4+060| 52.12044 59.7+321 67.7:034 69.8+049 70.2:021 7121060 7192090 73.3:054 73.3:041 73.32016 70.8+043

2143.0:086 62.4+044 63.72085| 45.62054 53.82242 61.92034 64.22028 64.82048 65.0:131 66.4+1.14 674072 67.6:089 68.3:039 65.6:037

Fog 3(35.4:0.73 53.5:035 55.0£1.02| 37.2:106 45.3:231 53.5x056 55.8:0.16 56.0:045 55.3x128 56.9:178 58.0:1.14 58.3:078 59.1:067 56.8:0.96
4132.020.73 49.4+1.15 51.52068| 34.0z084 42.5:244 49.8:083 52.12019 52.42024 51.7x1.17 5332181 54.7x095 54.7+067 56.0:045 52.2:074

Weather 5|24.1+080 38.3x1.34 41.82095| 25.7+029 32.7+209 38.5x065 41.0£1.05 43.1:x048 4244135 44.6:142 457:106 46.6:046 47.4:036 41.3x146
1]/55.920.10 73.2+036 74.6£058] 59.5:0.19 69.1x248 73.4x022 74.8+066 75.8:0.19 77.2:018 7T7.2:051 77.7:029 78.0:0.18 78.3:029 75.6x0.75

2146.4£1.02 66.5:037 68.12052| 50.22031 61.4+278 65.2:012 67.92066 69.3:028 70.82025 70.72021 71.52032 72.32005 72.8:004 69.620.60

Frost 3139.0:0.76 59.8:084 61.9+0.71| 42. 72061 54.3:239 58.3:024 61.42056 63.2:052 64.3:021 64.5:026 65.7:047 66.5:070 67.5:025 63.62095
4138.62098 59.2+085 61.32068| 41.520.19 53.3:246 57.2:028 60.22063 62.22056 63.120.13 63.4:006 64.6:057 65.7:046 66.6:0.19 62.5+1.28

5|34.2+126 54.1x060 56.12048| 36.7x032 48.12271 52.12053 55.62071 57.0z078 58.22036 58.8:x026 59.9:057 61.1x091 61.9:035 57.9:1.07
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Table 7: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on ImageNet-100 dataset. Models are
evaluated using the ImageNet100-O dataset. The models are labeled with their
corresponding fixation budget hyperparameter (subscript) and model size (T, S, B
for tiny, small, and base, respectively). The mean and one standard deviation of
three runs with different initializations are reported.

Corruption S| DeiT-T DeiT-S DeiT-B |[FDT-Tg.5 FDT-Sg.2 FDT-Sg.35 FDT-Sg.4 FDT-Sg.5 FDT-So.6 FDT-So.7 FDT-Sp.s FDT-Sp.9 FDT-S1.9 FDT-Bg 5
1]49.3:029 66.92056 68.12059| 53.52028 59.8+507 66.1x022 68.12073 69.0z024 70.72z0.10 70.92033 72.2+055 72.8+026 73.42008 70.1:038

2135.9+027 52.0<028 53.52088| 39.82039 43.8+509 51.52023 54.62067 55.4x046 58.1x069 58.4+032 60.0£1.00 61.1x072 62.1:029 57.32058

Snow 3137.3+083 53.72042 56.0:034| 41.0:074 46.7+477 53.4+031 56.2+1.18 57.9:081 59.9:042 60.6:034 62.3:074 63.0:045 64.0:070 59.32049
4129.7+068 44.7+022 46.5:084| 32.42050 36.4+4.13 43.32063 46.6:134 48.82068 50.52075 51.0=049 53.6:z1.00 54.7+058 56.0:035 50.9:1.06

5127.0£047 41.9+053 43.2+1.12| 29.8+0.77 33.62359 40.5:082 44.6:134 46.6:012 4831082 48.4:047 50.7:097 51.2:094 53.0:023 48.0+1.44
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Table 8: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on Tinted-ImageNet-100 dataset. The
models are evaluated using the ImageNet100-O dataset. The models are labeled
with their corresponding fixation budget hyperparameter (subscript) and model
size (T, S, B for tiny, small, and base, respectively). The mean and one standard
deviation of three runs with different initializations are reported.

COI'I'llptiOl'l DeiT-S FDT—S0_2 FDT—SOAg FDT—SO,4 FDT—SOA5 FDT—SO‘G FDT—S0A7 FDT—SO‘g FDT‘SOAQ FDT—SLO
53.5z0.16| 44.8+1.07 51.42056 54.0:029 56.5:053 57.9:029 59.5:0.19 61.12034 61.82072 62.420.18
37.7+067| 25.7+1.12 31.7:073 36.12077 38.92069 41.42173 42.7:015 44.62039 44.8:071 45.9:038
31.1<1.01| 18.9+124 24.9:1.04 29.42135 31.621.02 34.2+185 35.9:033 37.7x050 38.0047 38.9:039
21.2z080| 10.4+1.56 15.7:081 18.7:026 21.0£137 22.4+175 24.4:091 25.9:035 26.020.19 26.620.75
15.42070| 6.6£136 10.6:057 13.0:026 14.42085 15.4x120 16.7z063 18.1z049 18.1x028 18.6+0.70
11.72052| 4.6£100 8.2:031  9.5:015 10.2:049 11.12090 12.0x042 12.92024 12.92024 12.92053
43.7s0.16| 33.5+137 40.0:1.04 43.42068 46.0:021 47.8:088 49.4x062 50.92082 51.0x1.03 51.9:0.19
36.6x046| 26.9+158 33.0:083 37.0x056 38.9:062 40.8x157 42.0z055 43.7x092 43.7x090 44.1:034
27.2+025| 20.6+1.16  25.8:092 28.7:0.16 29.7:1.17 30.6:1.74 31.0x054 31.42086 32.1x134 32.2:054
22.62020| 1592092 20.5:065 23.4:010 24.1:138 24.6:166 25.2:080 25.5:098 26.02099 26.32045
17.0:018| 9.6:092 13.6:025 16.0:017 17.0s1.10 18.0+149 18.7+043 19.12061 19.22038 19.4:0.14
44.2:006| 34. 15192 41.1:077 44.6:053 46.0:021 48.2:063 49.9:080 50.92052 51.52093 52.32030
37.5:018| 26.9+186 34.0z074 37.6:018 38.6:035 40.8:080 42.3:036 43.1:x024 44.0:0.19 44.7+039
29.62028| 19.1£1.83 25.6:1.02 29.2:018 30.0:058 31.7+134 33.6:036 33.72002 34.02026 34.820.05
22.2+023| 13.2+206 18.7:079 21.62023 22.3:123 23.5:131 24.8x072 24.9:018 25.42010 25.8:054
18.620.17| 10.6£146 15.2:041 17.72040 18.4x120 19.32123 20.52066 20.42013 20.82038 21.4z0.11

Defocus Blur

Glass Blur

Blur

Motion Blur

N AW =Wk WN =0 WD =W
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Table 8: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on Tinted-ImageNet-100 dataset. The
models are evaluated using the ImageNet100-O dataset. The models are labeled
with their corresponding fixation budget hyperparameter (subscript) and model
size (T, S, B for tiny, small, and base, respectively). The mean and one standard

deviation of three runs with different initializations are reported.

Corruption

Zoom Blur

DeiT-S
39.8+0.29
34.8+0.42
32.2+047
29.2+0.32
26.020.62

FDT-Sg.2 FDT-Sg.3 FDT-So.4 FDT-Sg.5 FDT-Sg.6 FDT-So.7 FDT-So.s

30.9+1.34
26.8+1.40
23.2+1.57
20.8+1.32
177134

37.6+1.00
32.6x1.26
29.1+1.06
26.4+1.02
23.621.07

40.020.22
34.6=0.16
31.3+027
28.5+0.66
25.1+0.61

41.6:052
36.7+0.43
33.3:0.57
30.2:0.61
26.620.48

42.5:0.96
37.1+135
33.9:1.48
30.5+1.39
2744145

42.9:032
37.1x039
34.0+0.75
30.8x0.44
27.1:0.46

43.32024
37.6£0.20
34.2+0.42
30.9+0.59
27.4+0.06

FDT-So.9 FDT-S1.0

43.8:051
38.41051
34.6x035
31.1:044
27.4+0.40

43.8+0.34
38.3z0.11
34.8+0.42
31.4:0.10
28.240.23

Digital

Contrast

44 .1+037
40.62027
34.4+0.89
20.4x0.60
5.9+051

27.2+048

21.620.14
14.31023
6.4+0.39
2.420.13

37.5:071
32.6+0.56
24.8+0.57
12.6£0.70
4.1x055

42.2+1.03
37.6x0.85
30.5+0.49
15.9+0.44
5.1x043

44.9+1.03
411124
35.2+133
20.9+1.33
7.4+1.05

47.7+0.88
43.7+059
38.0+0.76
24.621.61
8.6:0.18

49.8+0.65
46.8+0.93
41.5+0.99
26.8+1.18
8.340.59

51.6+0.61
47.620.08
42.1+0.46
28.2+0.89
8.910.46

52.5+037
48.9:0.46
43.4+1.08
28.7+1.78
8.7+1.04

53.2+0.18
49.410.28
43.9+051
27.620.77
8.1x0.72

Elastic Trans.

48.7:023
42.1£033
48.62043
46.2+035
38.7x0.57

39.9+1.64
32.3+155
40.4+1.53
39.1+135
33.7x0.91

46.5:0.95
38.60.47
47.2:+0.74
45.4+0.99
39.1x0.97

49.1:056
41.3+0.70
49.5:038
47.7+0.24
40.7022

51.42034
42.5+0.03
51.9z0.10
50.0+0.44
42.9:037

52.8+0.20
44 .1+0.26
53.2+042
51.2+037
43 42048

53.620.09
45.0+0.16
54.5+0.70
52.0:0.45
43.8:0.42

55.32034
46.0+0.36
56.4+0.47
53.7+0.65
45.320.63

56.0z1.16
46.5+0.85
56.5:1.18
54.0+1.21
45.3+130

56.2+0.36
47.020.07
56.620.49
54.1:0.50
45.5:0.75

JPEG Comp.

45.3+0.24
41.42029
38.3x0.46
28.52029
17.7+047

42.0+1.39
40.1+1.39
37.8+1.31
32.4+136
26.1+1.84

47.5+0.19
45.1:0.19
43.0:0.40
36.0+0.32
27.410.61

48.8+036
46.32052
43.3+0.12
35.2+052
25.9:1.12

51.0+0.29
47.8+0.15
45.1x021
36.8+0.30
27.5:022

52.0+0.30
48.620.42
45.9:050
36.9+0.45
26.4+1.40

52.410.29
48.7+0.57
46.1x0.65
37.00.71
26.2+135

54.1+0.65
50.4x050
47.7+0.25
38.5:0.68
27.8+0.94

54.2+134
50.0<1.00
47.6+0.43
38.7+033
27.6x037

54.7+033
51.3z0.15
48.3+0.28
38.8+0.29
27.620.99

Pixelate

52.620.20
51.4+0.61
48.620.08
42.0+0.22
33.4+0.84

42.3+1.24
40.8+1.62
39.4+1.53
35.3z1.55
30.7+1.69

49.1:0.96
47.9+0.44
46.9:0.96
42.1+136
36.0+1.68

52.3x0.26
51.2+023
50.1x051
44 . 1+0.67
37.3x1.46

54.0+031
53.320.08
51.62025
45.5:0.89
3745143

55.9:033
55.0+0.68
52.7+0.47
45.8+0.79
37.6x0.64

57.4x047
56.7:0.61
53.5:032
46.1x0.12
37.9x0.41

59.22036
58.4+0.63
54.62031
46.5+0.59
37.2+0.94

59.620.79
59.1:0.78
55.6x045
47.7+0.49
38.520.62

60.820.21
60.0+0.16
55.92057
47 .4+1.04
36.8+0.48

Noise

Gaussian Noise

52.62033
46.62032
36.9+0.94
24.310.40
11.2+047

46.2:073
41.2+1.41
32.9:1.83
22.242.05
10.5:1.64

51.620.65
46.2+0.18
37.0:035
2471041
12.2:0.68

53.9+0.11
4934042
39.3+0.61
26.1+1.23
12.1:0.94

55.820.50
51.3+1.00
40.5:0.73
25.2:082
10.8+0.72

58.1+0.34
53.2+0.58
43.620.42
29.1+1.11
13.1:0.67

58.8+0.07
54.2+0.20
45.1:031
30.1x0.72
13.2+0.46

60.52030
56.1x030
47.2+0.94
32.6+1.69
14.5+1.55

61.0=0.20
56.2+0.59
46.9:091
33.0+1.55
15.0+1.92

61.82032
57.7+025
49.3+0.41
35.6+0.67
17.7+1.49

Impulse Noise

49.4+0.60
42.2+0.49

N =N AW WO EWNDROURE WD =R WD =R W — W

44 1+1.12
37.6+1.51

49.8+0.37
42.3+0.28

51.8+0.21
44.620.63

53.7x0.64
46.4+0.68

55.8+0.29
49.3+0.07

56.620.20
50.0:0.33

58.120.07
52.620.41

58.4+033
51.7+035

59.9:0.14
54.340.25
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Table 8: Comparison of robustness against natural corruptions at five different
severities for FDT and DeiT models trained on Tinted-ImageNet-100 dataset. The
models are evaluated using the ImageNet100-O dataset. The models are labeled
with their corresponding fixation budget hyperparameter (subscript) and model
size (T, S, B for tiny, small, and base, respectively). The mean and one standard

deviation of three runs with different initializations are reported.

Corruption

DeiT-S
35.6£0.97
22.5+1.16
11.6+1.02

FDT-Sg.2 FDT-Sg.3 FDT-So.4 FDT-Sg.5 FDT-Sg.6 FDT-So.7 FDT-So.s

31.922.11
20.042.45
10.5z21.52

35.6£0.30
22.440.63
11.92047

37.8+0.52
23.7+1.03
11.7+0.96

39.1x0.67
23.1:0.67
10.92047

43.320.15
27.2+0.95
13.9+1.07

44.210.12
28.7+042
14.4+058

46.5+0.88
30.9+1.44
15.2+1.38

FDT-So.9 FDT-S1.0

45.9:0.80
31.1x148
14911901

48.610.19
33.7+0.60
18.2+1.04

Shot Noise

51.4+0.18
44.7+0.62
35.3+001
20.6z0.58
11.8+0.69

44.9+1.08
39.6x1.44
31.5+1.65
18.321.92
113147

50.9+0.82
44 81045
36.3:0.28
21.8z0.13
13.020.25

52.9:0.11
47.00.44
38.2+0.68
22.4+0.50
13.310.95

54.710.55
49.1:0.86
39.7:071
21.0z0.76
11.7£0.44

56.5£0.19
51.0<0.19
42.0+0.49
24 . 1+1.42
14.2+1.07

57.4+0.11
52.0+0.40
43.4+052
25.2+0.80
14.5:0.49

59.5+0.18
54.120.68
45.4+1.01
27.5£1.49
16.1+1.21

59.8+0.21
54.0+0.20
45.8+0.41
27.9+0.99
16.3+1.06

61.1025
55.82030
47.6:021
30.0+0.68
18.8+1.11

‘Weather

Brightness

48.8+023
45.62028
44 .3+0.24
41.52053
37.3x0.78

41.1+1.06
38.4x037
37.1x036
34.5+0.46
30.8+0.48

47 2071
44 3042
43.0:0.63
40.5:035
36.9+0.60

49.1+0.45
46.7:0.74
45 .4+0.48
43.020.41
39.4+0.18

51.4+0.16
49.0z0.16
47.7+0.15
45.5:0.50
41.6x0.42

53.7+037
51.5x044
50.0+0.21
48.2:0.16
43.9:0.28

54.7+0.71
52.520.70
51.1x0.69
49.1:0.68
45.1+0.75

56.1:0.87
53.820.80
52.2+0.68
50.12047
46.32033

56.7+0.74
54.320.24
52.9+0.03
50.8+0.09
46.9+0.27

57.620.78
55.12030
53.8051
51.7x0.26
48.2+037

Fog

42.5:044
37.6+0.76
30.6+0.62
28.0+0.69
20.0z1.16

32.1+1.84
27.5+1.73
21.0+1.93
18.9+1.91
13.7+1.74

40.3:0.76
34.7+1.14
27.7+1.14
24.7+0.56
17.7+041

41.6z20.15
36.4+0.23
29.6x0.38
27.00.24
20.1x0.12

45.7:0.25
40.4+0.30
33.3x036
30.8+0.39
22.820.13

46.8+031
41.8+022
34.3x0.64
32.0+0.68
24.0+1.45

48.7:0.78
43.0£0.92
35.320.60
32.320.70
24.4+0.56

49.520.93
43.4+1.00
35.0<1.10
32.3+0.67
24.5+055

50.1x0.49
44.310.29
36.2+0.29
33.7x0.70
25.7+1.09

50.5z0.56
44.710.59
36.6:0.88
34.6:047
26.4x0.76

Frost

37.5£0.25
33.1z0.62
29.6+0.58
30.5+0.86
27.9+0.88

32.77+0.24
27.7+0.46
24.0+0.80
23.9:0.54
21.0z0.71

37.9+0.66
33.1+093
29.2+0.63
29.6=0.61
26.7+0.23

39.7x0.26
35.0+0.59
31.2+0.56
31.5+045
29.1x0.73

41.9:0.48
37.6x0.36
33.3:0.64
34.1+0.41
31.620.44

43.8+0.58
39.7+0.62
35.4+043
36.1+0.51
33.1x051

44.3+0.71
39.620.74
35.9+0.65
36.320.65
33.31042

45.7+0.60
41.22024
37.1x035
37.7+0.15
35.2+0.40

46.3+0.65
42.0:085
38.2+0.89
38.8+0.74
35.620.87

46.9:051
42.5+034
38.3:033
39.0+0.75
35.7+0.88

Snow

27.9+0.58
19.32049
19.3+036
14.610.50
14.7+0.56

NP WU WNR—=WONPE WD =ONR W =WORWN =W0 A WW

26.0+0.74
18.410.38
17.5:034
13.70.48
13.5:025

29.7+1.44
21.451.28
20.2+1.12
15.8+1.13
15.7+145

31.8+0.84
22.8+1.07
22.6+1.02
18.0+1.00
17.4+0.54

34.8+0.41
25.7:0.12
25.620.54
20.9:031
19.8+0.88

35.2+0.96
25.8+0.52
25.6x0.40
20.6+0.42
20.1+0.09

35.4z1.16
26.4+0.85
26.1x0.64
20.9:031
20.7:0.76

37.30.71
27.9+0.81
27.9+0.99
22.60.95
22.0+0.83

36.5:0.94
27.9+0.96
26.7+0.98
21.5+1.08
21.8+1.22

37.5+0.65
28.2+0.77
26.820.67
21.8+0.74
22.0+1.03
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