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Abstract

Generating novel and functional protein sequences is critical to a wide range of1

applications in biology. Recent advancements in conditional diffusion models have2

shown impressive empirical performance in protein generation tasks. However,3

reliable generation of proteins remains an open research question in de novo protein4

design, especially when it comes to conditional diffusion models. Considering the5

biological function of a protein is determined by multi-level structures, we propose6

a novel multi-level conditional diffusion model that integrates both sequence-based7

and structure-based information for efficient end-to-end protein design guided by8

specified functions. By generating representations at different levels simultaneously,9

our framework can effectively model the inherent hierarchical relations between10

different levels, resulting in an informative and discriminative representation of the11

generated protein. We also propose Protein-MMD (Maximum Mean Discrepancy),12

a new reliable evaluation metric, to evaluate the quality of generated protein with13

conditional diffusion models. Our new metric is able to capture both distributional14

and functional similarities between real and generated protein sequences while15

ensuring conditional consistency. Using conditional protein generation tasks with16

benchmark datasets, we demonstrate the efficacy of the proposed protein generation17

framework and evaluation metric.18

1 Introduction19

Designing proteins with specific biological functions is a fundamental yet formidable challenge20

in biotechnology. It benefits wide-ranging applications from synthetic biology to drug discovery21

[1–5, 5, 6]. The challenge arises from the intricate interplay between protein sequence, structure, and22

function, which has not yet been fully understood [7]. Traditional methods, such as directed evolution,23

rely on labor-intensive trial-and-error approaches involving random mutations and selective pressures,24

making the process time-consuming and costly [8]. Recently, generative models have emerged as25

promising tools for protein design, enabling the exploration of vast sequence-structure-function26

landscapes [9–12]. However, existing generative models—including those focused on enzyme27

engineering, antibody creation, and therapeutic protein development—are typically task-specific and28

require retraining for new design objectives [10, 11]. These limitations impede their adaptability and29

scalability across different protein families.30

While conditional generative models offer an end-to-end solution by directly linking the design31

process to the guidance, these models have been applied to protein generation [13–15]. In conditional32

protein generation tasks, maintaining conditional consistency across diverse contexts and ensuring33

functional relevance are critical [16, 17]. Specifically, the generated proteins should fully adhere34

to the specified functional constraints [18]. At the same time, achieving diversity and novelty in35

generated proteins is essential for successful design. In the literature, structural novelty can be36

assessed using Foldseek [19], which performs rapid protein structure searches against databases37
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like PDB [20] and AlphaFold [21] to ensure the generated proteins are novel compared to known38

structures. Diversity is measured using TM-score [22], which calculates structural variation between39

the generated proteins themselves and between the generated and wild-type proteins [17].40
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Figure 1: Protein visualization.

Despite the success of existing dif-41

fusion models in protein generation,42

these models only generate the protein43

representation at a single level and44

ignore hierarchical relations among45

different levels of representations.46

Choosing the level of granularity at47

which representing the comprehensive48

information of the protein raises significant concerns about the reliability of generated proteins in49

real-world applications. Motivated by the need to capture both the structural and functional nuances of50

protein sequences, we propose a novel multi-level conditional generative diffusion model for protein51

design that integrates both sequence-based [6] and structure-based [23] hierarchical information.52

Specifically, our proposed method generates the protein at three different levels: the amino acid level,53

the backbone level, and the all-atom level. Generation at multi-levels enables efficient end-to-end54

generation of proteins with specified functions and modeling the inherent hierarchical relations55

between different representations, resulting in an informative and discriminative representation of the56

protein. Also, the conditional diffusion flow in the architecture preserves the hierarchical relations57

between different levels. Intuitively, a representation at the lower level (e.g., the atom level) can58

decide the potential representation space at the higher level (e.g., the amino acid level). Modeling59

such hierarchical relations can guarantee consistency at different levels. Our model incorporates60

a rigid-body 3D rotation-invariant preprocessing step combined with an autoregressive decoder to61

maintain SE(3)-invariance, ensuring accurate modeling of protein structures in 3D space. Figure 162

shows the proteins generated by different methods with the same input. The thin line indicates that63

the sequence is unlikely to undergo meaningful folding into a stable 3D structure. Compared with the64

baselines, our method can generate discriminative and functional proteins.65

We remark that it is still unknown how to assess the conditional consistency [18] in de novo protein66

design. Specifically, the fundamental problem of properly evaluating conditional consistency is67

quantifying to what extent the generated protein adheres to the specified functional constraints.68

Unlike computer vision, where metrics such as FID [24] have become a standard for assessing69

generated images, it is unclear whether such metrics are suitable for protein generation tasks. In70

protein design, the generated output cannot be as easily visualized or assessed as in images, making71

the choice of evaluation metrics even more critical. Therefore, how to adapt metrics like FID or72

Maximum Mean Discrepancy [18] presents challenges. To address the challenges of evaluating the73

conditional consistency, we propose Protein-MMD, a metric based on Maximum Mean Discrepancy74

(MMD), to better capture both distributional and functional similarities between real and generated75

protein sequences, while ensuring conditional consistency. We prove that our Protein-MMD provides76

a more accurate measure that reflects the given condition. Experiments demonstrate that our proposed77

model outperforms existing approaches in generating diverse, novel, and functionally relevant proteins.78

Our main contributions are summarized as follows:79

• We design a novel multi-level conditional generative diffusion model that integrates80

sequence-based and structure-based information for efficient end-to-end protein design.81

• We highlight the limitations of current evaluation metrics in protein generation and propose82

Protein-MMD, a novel metric to evaluate conditional consistency for protein generation.83

• We experiment with standard datasets to verify the effectiveness of the proposed model. Our84

evaluation metric paves the way for reliable protein design with given conditions.85

2 Methodology86

2.1 Multi-level Diffusion87

Motivated by the need to capture both the structural and functional nuances of protein sequences,88

we propose a multi-level diffusion model to generate information about a protein at three levels:89

the amino acid level, the backbone level, and the all-atom level. By constructing representations at90

different levels, our framework effectively integrates the inherent hierarchical relations of proteins,91
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resulting in a more rational protein generative model. We remark that there are hierarchical relations92

among different levels. To the best of our knowledge, this work is the first diffusion model to generate93

information at three levels and leverage the hierarchical relation between different levels.94
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Figure 2: The architecture of the multi-level diffusion model.
Figure 2 shows the architecture of our model. At each level, the information will be encoded with95

its own set of embeddings and processed through a conditional diffusion flow where the condition96

comes from a lower level. With decoders, the sequence, backbone rotations, and residue rotations97

will be combined to indicate the complete information of a generated protein.98

Amino Acid Level Representation. As the 3D conformation dictates biochemical interactions99

[3, 7], we first represent a protein’s structure as a graph Ga = (Va, Ea), where Va is the set of nodes100

corresponding to residues (amino acids), and Ea is the set of edges representing interactions between101

two residues. Specifically, an edge between two nodes vi and vj is established if the Euclidean102

distance between their Cα atoms in 3D space is below a certain threshold, indicating a potential103

biochemical or structural interaction. At the amino acid level, each node vi ∈ Va corresponds to104

an amino acid and is represented by a vector vi = (ϕi;hi), where ϕi ∈ R3 denotes the spatial105

coordinates of the amino acid’s Cα atom in three-dimensional space, and hi abstracts biochemical or106

structural properties. Each edge is represented as an embedding of the sequential distance [25].107

Backbone Level Representation. An amino acid consists of backbone atoms and side chain atoms.108

Similarly, we use backbone atom (C, N , Cα) coordinates as the feature of in node of the backbone109

Vb. We follow [25] to compute three Euler angles τ1i,j , τ2i,j , τ3i,j between two backbone atoms i110

and j. The angles will be integrated with the sequential distance as the edge feature. Backbone-111

level representation derives finer-grained protein information. With the three angles, the orientation112

between any two backbone planes can be determined to capture the backbone structures.113

Atom Level Representation. Atom-level representation considers all atoms in the protein and114

provides the most fine-grained information. There are several methods to treat an atom as a node in the115

representation [26, 27]. Side chain torsion angles are important properties of protein structures [21].116

In this paper, we also consider geometric representation at the atom level by incorporating the first117

four torsion angles: χ1
i , χ2

i , χ3
i , and χ4

i . With the complete geometric representation at the atom level,118

the diffusion model can capture 3D information about all atoms in a protein and distinguish any two119

distinct protein structures in nature.120

Encoding. We adopt a graph neural networks model [28] to encode the representing at different levels121

by leveraging the message-passing mechanism. In many models dealing with the spatial positions122

of amino acids, SE(3)-equivariance is often leveraged to ensure the invariance of operations such123

as translation and rotation [2, 29]. We also introduce a novel method to ensure SE(3)-invariance by124

transforming each amino acid’s coordinates ϕ. This step is crucial for facilitating the subsequent125

autoregressive decoding.126

Given a protein chain, we first translate the coordinates such that the position of the first amino acid127

is moved to the origin, i.e., (0, 0, 0). Then, we apply a rotation matrix to align the position of the128

second amino acid onto the positive x-axis:129

R1 = I + sin(θ)K + (1− cos(θ))K2, (1)
where θ is the rotation angle between a node v and the x-axis, and K is the skew-symmetric matrix130

derived from the cross-product of v and the unit vector along the x-axis. The third amino acid is131

rotated around the x-axis to place it in the positive xy-plane:132

R2 =

(
1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)

)
, (2)
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where ψ is the angle that brings the third amino acid into the xy-plane. This process is iteratively133

applied to all amino acids in the protein chain.134

In each iteration, the next amino acid is positioned relative to the previous ones, aligning the structure135

step by step while preserving the overall 3D conformation. The method ensures that all residues136

maintain SE(3)-invariance, making the transformations consistent across the entire protein chain.137

The decoder at each level is an autoregressive Transformer [30] model that reconstructs the protein138

at each respective level. The autoregressive decoder can then use these transformed embeddings139

to reconstruct the information of a protein. At the sequence level, the decoder predicts the next140

amino acid token in the sequence. At the backbone level and the atom level, the decoder predicts141

geometric features (e.g., bond angles and distances) in an autoregressive fashion of each amino142

acid in the protein chain. Our method facilitates the use of SE(3)-invariant embeddings within an143

autoregressive framework. The decoder’s autoregressive nature allows it to progressively predict144

amino acid positions by leveraging the SE(3)-invariant representation.145

Proof of SE(3)- invariance of the Transformation. Let {ϕi}ni=1 be the original coordinates of the146

amino acids in the protein chain. Consider an arbitrary rotation R ∈ SO(3) and translation Γ ∈ R3147

applied to the protein, resulting in transformed coordinates:148

ϕ′i = Rϕi + Γ. (3)

Our goal is to show that after applying the transformation method to both {ϕi} and {ϕ′i}, the resulting149

representations are identical.150

Proof : For any transformation T in SO(3) and any vector v ∈ R3, we have:151

T (v) = Rv. (4)

Since rotations preserve vector norms, we can express T (v) in terms of the norm of v and its unit152

vector v′ = v/∥v∥:153

T (v) = ∥v∥Rv′ = ∥v∥T (v′). (5)

This implies that the effect of T on v can be decomposed into scaling by ∥v∥ and transforming its154

direction via rotation and translation. To simplify the expression and subsequent calculations, we155

denote all vectors ϕi as unit vectors (i.e., their norms are equal to 1).156

Step 1: Translation to Origin Compute the relative positions with respect to the first amino acid:157

ξi = ϕi − ϕ1, (6)

ξ′i = ϕ′i − ϕ′1 = (Rϕi + Γ)− (Rϕ1 + Γ) = R(ϕi − ϕ1) = Rξi. (7)

Thus, we have ξ′i = Rξi.158

Step 2: Rotation to Align Second Amino Acid Along Positive x-Axis: since ∥ξ2∥ = ∥ξ′2∥ = 1, we159

have:160

R1ξ2 = ex, (8)

R′
1ξ

′
2 = ex, (9)

where ex = [1, 0, 0]⊤. Since ξ′2 = Rξ2, we have:161

R′
1Rξ2 = ex. (10)

Let R′
1 = R1R

−1, then:162

R′
1ϕ

′
i = R1R

−1Rϕi = R1ϕi. (11)

Step 3: Rotation Around x-Axis to Place Third Amino Acid in xy-Plane. Find rotation matrices R2163

and R′
2 (rotations around the x-axis) such that:164

R2R1ϕ3 ∈ span{ex, ey}, (12)

R′
2R

′
1ϕ

′
3 ∈ span{ex, ey}. (13)

Since R′
1d

′
3 = R1d3, we have:165

R′
2R1ϕ3 = R2R1ϕ3. (14)
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Thus, R′
2 = R2. After applying the sequence of transformations, the final coordinates are:166

ϕ̃i = R2R1ϕi, (15)

ϕ̃′i = R′
2R

′
1d

′
i = R2R1ϕi = ϕ̃i. (16)

Thus, ϕ̃′i = ϕ̃i, proving that the transformed coordinates are invariant under any initial rotation R and167

translation Γ. This confirms that the method achieves SE(3)-invariance.168
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Figure 3: Consistency in the latent space.

Hierarchical Diffusion169

with Conditional Flow:170

To achieve control over171

the conditional generation172

of proteins at multiple173

levels, we employ a novel174

hierarchical diffusion175

model with a conditional176

flow mechanism. This177

design enables fine-grained178

manipulation of protein179

structure generation under180

specific conditions, such181

as targeted functional attributes. The diffusion process is split into three distinct levels: all-atom,182

backbone, and amino acid (sequence). Conditional information is injected from a lower level to183

ensure conditional consistency.184

Algorithm 1 Training Diffusion Models with Conditional
Flow

1: while epoch < epochs do
2: Sample a random timestep t
3: for all levels i ∈ {1, 2, 3} in parallel do
4: if i = 1 then
5: Initialize zero vector z0t
6: else
7: Initialize zi−1

0 from ground truth data
8: end if
9: Sample noise vectors

10: Diffuse latent vectors to get zi−1
t and zit−1

11: Update latent vector:
12: zit ← ϵi(zit−1; z

i−1
t W i, c, γt)

13: Compute loss at ith level
14: Update model parameters
15: end for
16: epoch+ = 1
17: end while

Our conditional flow mechanism facil-185

itates the transfer of information from186

lower levels (atom) to higher levels187

(backbone and amino acid) during the188

generation process. After denoising at189

each level, the latent representation is190

passed upward through a linear projec-191

tion. Figure 3 shows the conditional192

flow (red lines). Specifically, for each193

level, the conditional flow integrates194

the latent vector from the lower level195

through a projection operation, which196

aligns the latent vector of the lower197

level to the higher level’s embedding198

space via a learned linear transforma-199

tion. This ensures that the structural200

information from the previous level is201

preserved and effectively conditions202

the next level’s generation. The input203

at the atom level starts as a zero vector204

z0t = 0 ∈ RL×d. At the higher lev-205

els, the latent vector from the previous206

level, after removing noise, is linearly projected and combined with the current level’s conditional207

embedding and time step embedding to ensure that the generative process is guided by both the208

condition and the structural information from the lower levels. The update at level i is given by:209

zit = ϵi(zit−1; z
i−1
t W i, c, γt), (17)

where zit ∈ RL×d is the latent vector at level i and time step t, zi−1
t is the latent vector from210

the previous level, W i ∈ Rd×d is a learned linear projection matrix, c represents the conditional211

embedding (e.g., the protein’s functional target), and γt is the time step embedding. Denote ϵi as the212

diffusion model at level i, which predicts the noise added during the forward process.213

Training with Teacher Forcing: To enable efficient parallel training, we use the teacher forcing214

method during training. In this setup, for each level, the input zi−1
0 to the conditional flow is the215

ground truth data from the previous level, rather than the model’s own generated output. This allows216
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us to decouple the training of the three levels, enabling them to be trained independently and in parallel.217

The training process for the diffusion model at each level follows the typical DDPM framework but218

with the conditional flow incorporated to introduce additional control over the generative process.219

The training procedure is outlined in Algorithm 1.220

2.2 Evaluation of Conditional Consistency221

Evaluating the quality and consistency of protein generation models requires a well-defined frame-222

work, particularly in the context of conditional generation. In this section, we define the theoretical223

basis for assessing conditional consistency in multi-class generation tasks and propose a novel224

framework to assess the suitability of different evaluations.225

Denote {C1, C2, . . . , CK} as a set of target classes, where each class Ck corresponds to an indepen-226

dent and mutually exclusive category (e.g., different protein functions or classes). Let x represent227

a data sample, and d(x,Ck) be a conditional consistency metric that measures the consistency228

between a sample x and the target class Ck. Given a model exhibiting strong conditional consis-229

tency, it should generate samples such that as we progress through a sequence of generated samples230

{xi|i = 0, 1, 2, · · · ,∞} ordered by increasing quality (i.e., this sequence is assumed to exist with231

each sample xi becoming more consistent with the target class Ck as i increases), the consistency232

distance between each sample and samples in Ck should decrease. Mathematically, a good evaluation233

metric d satisfies:234

lim
i→∞

d(xi, Ck)→ 0. (18)

It implies that as the sample quality improves, the consistency to the correct target class decreases235

asymptotically towards zero. We can further derive the following theorem.236

Theorem: ∃N ∈ N+,∀i > N, d(xi, Ck) < min
j ̸=k

d(xi, Cj) where Cj is any other class.237

Proof : see Appendix A.3.238

Distance
Evaluation Metric

Class 1

Class 2Class 3

Figure 4: Consistency in the latent space

Given that test samples exhibit strong conditional con-239

sistency, the theorem suggests that if we measure d(·)240

between test samples and all target classes, the majority241

will be classified into the correct target class Ck. How-242

ever, relying solely on spatial distance may be too rigid243

for general evaluation, especially in conditional settings.244

In Figure 4, the green points represent generated samples,245

and darker shades indicate better sample quality. A well-246

defined metric should indicate that the green points are247

closer to their correct target class (i.e., Class 2) rather than248

the blue or pink classes.249

Besides the accuracy (which class the generated belongs to), Mean Reciprocal Rank (MRR) and250

Normalized Mean Rank (NMR) are widely used to assess how well the evaluation metric ranks251

generated samples based on their correct target classes. Specifically:252

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
,NMR =

1

|Q|

|Q|∑
i=1

ranki − 1

N − 1
. (19)

where Q is the set of test queries, and ranki is the rank of the correct target class for the i-th test query.253
These metrics, in combination with accuracy, provide a more comprehensive evaluation framework254

for assessing conditional consistency evaluation metrics in generative models.255

In this paper, we propose Protein-MMD, a new evaluation metric that calculates the Maximum Mean256

Discrepancy (MMD) based on protein embeddings. Specifically, both real and generated protein257

sequences are encoded using the ESM2 language model [6], which provides biologically informed258

embeddings. ESM2 was chosen due to its ability to capture both structural and functional properties259

of proteins, thanks to its pretraining on a large protein corpus. This makes ESM2 particularly effective260

for evaluating distributional and functional similarities between real and generated proteins, aligning261

with the goals of de novo protein design:262

Protein-MMD(pr, pg) =

∥∥∥∥∥∥ 1n
n∑

i=1

φ(xi)−
1

m

m∑
j=1

φ(yj)

∥∥∥∥∥∥
2

H

, (20)
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where φ(·) denotes the embeddings extracted from the language model. These embeddings represent263

both sequence and functional information, making them particularly well-suited for comparing real264

and generated protein distributions.265

Table 1: Evaluation on the EC dataset.

Metric Accuracy ↑ MRR ↑ NMR ↓
MMD 0.0687 0.3101 0.5506
Protein-FID 0.2988 0.4825 0.3920
Protein-MMD 0.5487 0.6629 0.2524

To validate the effectiveness of Protein-MMD266

and other metrics, we apply the evaluation met-267

rics on the Enzyme Commission (EC) dataset,268

which categorizes proteins based on the reac-269

tions they catalyze using EC numbers. We focus270

on seven classes from the first EC number cat-271

egory for our conditional generation task. In272

Table 1, we compare three evaluation metrics:273

MMD (considering only sequence statistics as presented in [31]), Protein-FID (using ESM2 in274

place of Inception for protein generation), and Protein-MMD. All metrics are used to compute the275

Accuracy, Mean Reciprocal Rank (MRR), and Normalized Mean Rank (NMR) scores to evaluate276

how it performs in evaluating the conditional consistency. As observed, Protein-MMD outperforms277

both MMD and Protein-FID across all evaluation metrics. The higher accuracy and MRR scores278

indicate that Protein-MMD better captures the conditional consistency of the proteins in the test279

set. The lower NMR score further demonstrates that Protein-MMD ranks the correct target class280

higher in comparison to other metrics, validating its effectiveness in conditional protein generation281

tasks. While Protein-MMD proves to be the most effective metric according to our framework, we282

acknowledge the widespread use of FID in generative modeling tasks. Therefore, we will continue to283

report Protein-FID results alongside Protein-MMD in subsequent experiments.284

3 Experiments285

3.1 Experimental Setup286

We compared our model against several baselines, each representing distinct approaches to pro-287

tein generation. ProteoGAN [31] is a GAN-based method, while ESM2 [6] and ProstT5 [32] are288

Transformer-based language models specifically designed for protein sequence modeling. Protein-289

MPNN [11] and LatentDiff [10], on the other hand, are graph-based models, with LatentDiff also290

incorporating a diffusion-based framework, specifically using a latent diffusion approach. For each291

model, we evaluate the performance using both diversity metrics (TM-score, RMSD, and Seq.ID) and292

conditional consistency metrics (Protein-MMD and Protein-FID). Higher RMSD, lower TM-score,293

and lower Seq.ID indicate higher diversity, while lower Protein-MMD and Protein-FID values signify294

higher conditional consistency between the generated and real protein distributions. More detailed295

settings can be found in Appendix A.2.296

Table 2: Results on EC and GO datasets.

EC Dataset GO Dataset

Diversity Conditional Consistency Diversity Conditional Consistency
TM-score↓ RMSD↑ Seq.ID↓ Protein-MMD↓ Protein-FID↓ TM-score↓ RMSD↑ Seq.ID↓ Protein-MMD↓ Protein-FID↓

ProteGAN 0.26 5.35 6.71 13.99 260.31 0.23 5.96 6.33 10.89 256.31
ESM2 0.29 4.25 6.57 13.35 238.46 0.22 7.33 6.39 11.86 290.31
ProstT5 0.28 4.25 6.61 13.76 248.32 0.26 6.81 6.73 11.93 292.58
ProteinMPNN 0.24 4.24 67.43 22.31 587.72 0.14 7.10 77.96 15.94 410.43
LatentDiff 0.37 2.73 7.67 13.43 256.75 0.31 4.26 7.37 12.66 346.40
Ours(128) 0.24 4.7 7.56 13.74 250.2 —–
Ours(256) 0.27 4.40 6.88 13.67 248.31 —–
Ours(512) 0.25 5.39 6.79 13.28 237.46 0.26 6.09 7.13 11.67 284.65

The best performance for each metric is indicated in bold, while the second-best performance is underlined.

3.2 Results and Analysis297

Table 2 presents the results of our model and the baselines on two datasets. Our model achieves298

the best performance in terms of most metrics on the EC dataset, indicating superior conditional299

consistency and diversity in generating proteins that adhere closely to the specified enzyme classes.300

On the EC dataset, our model (with sequence length 512) achieves the lowest Protein-MMD and301

Protein-FID scores, demonstrating effective modeling of the distributional and functional similarities302

between generated and real proteins. The RMSD and TM-score metrics indicate that our model303

generates structurally diverse proteins, with the highest RMSD and among the 2nd-lowest TM-scores,304

suggesting less topological similarity to templates. The sequence identity (Seq.ID) is also low,305

indicating higher sequence diversity. For the GO dataset, our model also performs competitively.306

However, in terms of conditional consistency metrics (Protein-MMD and Protein-FID), our model307
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ranks second, with ESM2 achieving the best Protein-MMD score and ProteoGAN achieving the best308

Protein-FID score. This suggests that our model generates diverse protein structures.309

Table 3: Ablation study.

Method Protein-MMD↓ Protein-FID↓
All 13.50 241.82
Removed backbone level 13.73 249.14
Removed all-atom level 13.94 251.83
Removed both 14.06 255.15

Ablation Study. To investigate the ef-310

fectiveness of each of the three levels311

(amino acid, backbone, all-atom), we312

conducted an ablation study in the ex-313

periment. Specifically, the variant of314

our model removes either a specific315

level (the backbone or all-atom) or316

both two levels. Then we examine the317

performance of the conditional consis-318

tency metrics. Note that we can not remove the amino acid level because the amino acid is required319

for evaluation. The ablation study is conducted on the EC dataset. As shown in Table 3, if we remove320

any level (i.e., backbone and all-atom level) or both two levels, the performance will drop. It verifies321

the necessity of our multi-level conditional diffusion.322
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Figure 5: Consistency.

Impact of Maximum Sequence Length. In previous studies323

on protein de novo design, existing works usually employ a324

maximum sequence length of 128 [10]. However, through our325

experiments, we observed that for conditional generation tasks,326

shorter sequence lengths fail to fully leverage the conditional327

information, which in turn results in lower conditional consis-328

tency metrics. To address this, we constructed models with329

three different maximum sequence lengths: 128, 256, and 512,330

and investigated the impact of maximum length on the model’s331

ability to maintain conditional consistency.332

Table 4: Comparison with ProteoGAN.

Method IoUmean↑ IoUmax↑
ProteoGAN 0.2181 0.4706
Ours (512) 0.2088 0.5833

As shown in Figure 5, we observe a positive correlation be-333

tween the Protein-MMD metric, which reflects conditional334

consistency, and the proportion of training data samples335

exceeding the current maximum sequence length. This336

indicates that longer sequences help the model better incor-337

porate condition information during generation. Moreover,338

the results in Table 2 for our method with different lengths339

reveal that the maximum sequence length does not influence the model’s performance on diversity340

metrics, which are independent of the quality of condition-guided generation. These findings under-341

score the importance of maximum sequence length in enhancing conditional consistency, offering342

valuable insights for the design of future protein conditional generation models.343

Case Study. To further demonstrate the superiority of our model on the GO dataset, particularly344

regarding conditional consistency, we conducted a fine-grained case study comparing our method345

with the best baseline ProteoGAN. While our model leads on the EC dataset, it ranks second to346

ProteoGAN on the GO dataset in terms of conditional consistency metrics. We utilized an in-silico347

evaluation to perform a fine-grained analysis of the generated protein sequences. By employing a348

trained ESM-MLP classifier on the GO dataset, we assessed each generated protein’s adherence to349

the specified GO terms using the Intersection over Union (IoU) [33, 34].350

Ours ProteoGAN
A B

Figure 6: A shows the two highest generated pro-
tein results of Ours and ProteoGAN in terms of the
IoU indicator. B shows the statistical frequency
histogram.

As shown in Table 4, our method exhibits a351

lower average IoUmean compared to ProteoGAN,352

aligning with earlier results in Table 2. However,353

it achieves a higher IoUmax, indicating a greater354

potential for generating high-quality samples355

that closely match the desired GO annotations.356

Figure 6 illustrates the distribution of IoU scores.357

While ProteoGAN’s samples are concentrated358

around medium quality, our method generates a359

broader range of samples, including those with360

higher IoU scores. This suggests that our model,361

despite a lower average performance, is more362

capable of producing proteins with superior conditional consistency.363
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K. Cho, and A. G. Wilson, “Protein design with guided discrete diffusion,” in Advances408

in Neural Information Processing Systems 36: Annual Conference on Neural Information409

Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,410

A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., 2023.411

9

https://openreview.net/forum?id=jZPqf2G9Sw
https://openreview.net/forum?id=8NfHmzo0Op


[16] B. L. Trippe, J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola, “Diffusion412

probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem,” arXiv413

preprint arXiv:2206.04119, 2022.414

[17] Y. Hu, Y. Tan, A. Han, L. Zheng, L. Hong, and B. Zhou, “Secondary structure-guided novel415

protein sequence generation with latent graph diffusion,” arXiv preprint arXiv:2407.07443,416

2024.417

[18] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample418

test,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773, 2012.419

[19] M. van Kempen, S. S. Kim, C. Tumescheit, M. Mirdita, C. L. Gilchrist, J. Söding, and M. Steineg-420
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A Appendices616

A.1 Related Works617

De novo protein design methods are dedicated to identify novel proteins with the desired structure618

and function properties [1, 3, 35, 36, 13, 37]. Recent advancements in machine learning have enabled619

a generative model to accelerate key steps in the discovery of novel molecular structures and drug620

design [38–41]. A prior step of generate models to the representation of proteins [25, 42–47]. The621

majority of representation learning for protein is to represent a protein as a sequence of amino622

acids [48–51]. Considering the spatial information is important to the property of a protein, many623

works resort to a graph model for a comprehensive presentation with the structure information [52, 53].624

In general, each node on the graph is an amino acid and the edge is decided by the distance between625

two nodes [54–56]. Despite the power of graph models, the relation information in a 3-dimensional626

space captures the multi-level structure such as the angle between two edges. A line of research works627

explore the protein structure in 3D space [26, 5, 57–59, 41, 53]. Recently, large language models628

(LLMs) have also been introduced to model the sequence [60, 6, 61, 62] inspired by the success of629

natural language processing.630

Capitalizing on the power of generative models such as Generative Adversarial Networks (GANs)631

and diffusion models, deep generative modeling has shown its potential for fast generation of new632

and viable protein structures. [63] has applied GANs to the task of generating protein structures633

by encoding protein structures in terms of pairwise distances on the protein backbone. Diffusion634

models [64–66] have emerged as a powerful tool for graph-structured diffusion processes [14].635

FrameDiff has been proposed for monomer backbone generation and it can generate designable636

monomers up to 500 amino acids [29]. NOS is another diffusion model that generates protein637

sequences with high likelihood by taking many alternating steps in the continuous latent space of the638

model [15].639

A.2 Experiment settings640

To verify the effectiveness of our proposed multi-level conditional diffusion model, we conducted641

comprehensive experiments on two standard datasets: the Enzyme Commission (EC) dataset and the642

Gene Ontology (GO) dataset. The EC dataset categorizes proteins based on the biochemical reactions643

they catalyze, while the GO dataset classifies proteins according to their associated biological644

processes, cellular components, and molecular functions. These datasets provide a robust benchmark645

for assessing both the diversity and conditional consistency of generated protein sequences.646

Our model leverages the esm2 t33 650M UR50D model from ESM2 [6] as the amino acid-level647

encoder. To construct the Protein Variational Auto-encoder model, we set the latent dimension to 384,648

and the decoder is composed of 8 Transformer [30] decoder blocks, each equipped with an 8-head649

self-attention mechanism. The Protein Variational Auto-encoder model is trained with a learning rate650

of 10−4, using a combination of mean squared error (MSE) and cross-entropy as the loss functions.651

To regulate the latent vector distribution, we apply a KL divergence loss with a weight of 10−5. We652

experimented with 128, 256, and 512 as the maximum sequence lengths. For the diffusion model, we653

modify the DiT-B architecture from DiT [67], which consists of 12 DiT blocks and uses a hidden size654

of 768. The DiT model is trained from scratch with a learning rate of 10−4 and includes a weight655

decay of 10−5.656

A.3 Protein-MMD657

Theorem: ∃N ∈ N+,∀i > N, d(xi, Ck) < min
j ̸=k

d(xi, Cj) where Cj is any other class.658

Proof : Assume that there exists a class Cj(j ̸= k) such that d(xi, Cj) ≤ d(xi, Ci) for i > N .659

Since Ck is defined as the correct target class and the quality of the generated sample improves660
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Figure 7: Protein Visualization Comparison on EC Dataset (Ours vs. ProteinMPNN, ProteoGAN,
and ESM2).

with i → ∞, the consistency d(xin, C
k) should approach zero. If d(xi, Cj) ≤ d(xi, Ci), we have661

lim
n→∞

d(xi, Cj) = 0. It contradicts the assumption that Ck is the correct class for the generated data.662

Therefore, the assumption is false.663

Visualization. In Figure 7 (Appendix), we present visualizations of proteins conditionally generated664

by our method and other baselines on the EC dataset. Specifically, we generate proteins with 7665

different functions (e.g., Oxidoreductases). Compared with the baselines, our method can generate666

discriminative proteins given the same input. By modeling the hierarchical relation at different levels,667

our method can generate foldable and functional sequences in 3D space.668
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A.4 Conclusions669

In this paper, we introduce a novel multi-level conditional generative diffusion model that integrates670

sequence-based and structure-based information for efficient end-to-end protein design. Our model671

incorporates a 3D rotation-invariant preprocessing step to maintain SE(3)-invariance. To address the672

limitation of the existing evaluations, we propose a novel metric to evaluate conditional consistency.673
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