

D&R: RECOVERY-BASED AI-GENERATED TEXT DETECTION VIA A SINGLE BLACK-BOX LLM CALL

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Large language models (LLMs) generate increasingly human-like text, raising
012 concerns about misinformation and authenticity. Detecting AI-generated text
013 remains challenging: existing methods often underperform, especially on short
014 texts, require probability access unavailable in real-world black-box settings, in-
015 incur high costs from multiple calls, or fail to generalize across models. We propose
016 Disrupt-and-Recover (D&R), a recovery-based detection framework grounded
017 in posterior concentration. D&R disrupts text via model-free Within-Chunk
018 Shuffling, performs a single black-box LLM recovery, and measures seman-
019 tic-structural recovery similarity as a proxy for concentration. This design en-
020 sures efficiency, black-box practicality, and is theoretically supported under the
021 concentration assumption. Extensive experiments across four datasets and six
022 source models show that D&R achieves state-of-the-art performance, with AU-
023 ROC 0.96 on long texts and 0.87 on short texts, surpassing the strongest base-
024 line by +0.08 and +0.14. D&R further remains robust under source-recovery
025 mismatch and model variation. Our code and data is available at <https://anonymous.4open.science/r/1MAdaWTy0xaod5qR>.
026
027

1 INTRODUCTION

028 Large language models (LLMs) have rapidly advanced to generate human-like text across domains
029 such as education, news, scientific writing, and online communication. While these advances create
030 tremendous opportunities, they also raise serious concerns about misinformation, academic integrity,
031 and content authenticity, making reliable AI-generated text detection increasingly crucial. However,
032 this task remains highly challenging. Real-world applications require detectors that can efficiently
033 scale to large volumes of text with minimal overhead, for example by reducing LLM calls. They
034 must remain robust to evolving and diverse source models while operating in black-box settings
035 without probability access. They must also handle varied text lengths, with short texts being par-
036 ticularly difficult. These challenges underscore the need for a detection framework that is not only
037 accurate but also efficient, black-box practical, generalizable, and robust.
038

039 Despite recent progress, the performance of existing AI-text detectors remains far from satisfactory,
040 even on common long-text settings. Likelihood- and entropy-based methods (Gehrman et al., 2019;
041 Hashimoto et al., 2019) rely on white-box access to model probabilities, making them impractical
042 for black-box settings. Perturbation- and continuation-based methods (Bao et al., 2024; Yang et al.,
043 2024) may improve accuracy, and rewriting-based methods (Mao et al., 2024; Park et al., 2025)
044 avoid probability access, but all require multiple model calls, incurring high computational cost and
045 showing instability (particularly on short texts). Supervised classifiers (OpenAI, 2019) lack gener-
046 alization and require costly labels, while watermarking detectors (Zhao et al., 2024) heavily depend
047 on model providers. Consequently, no existing method simultaneously delivers high performance
048 while satisfying the demands of efficiency, black-box practicality, generalizability, and robustness.
049

050 To address these limitations, we propose *Disrupt-and-Recover (D&R)*, a recovery-based detection
051 framework grounded in the observation of posterior concentration: when text is disrupted in a way
052 consistent with LLM pretraining biases, AI-generated text yields LLM-based recoveries that con-
053 centrate more sharply around the original text T_{orig} , whereas human-written text produces more
Shuffling (WCS), which aligns with pretraining objectives and constrains recovery to a reduced can-

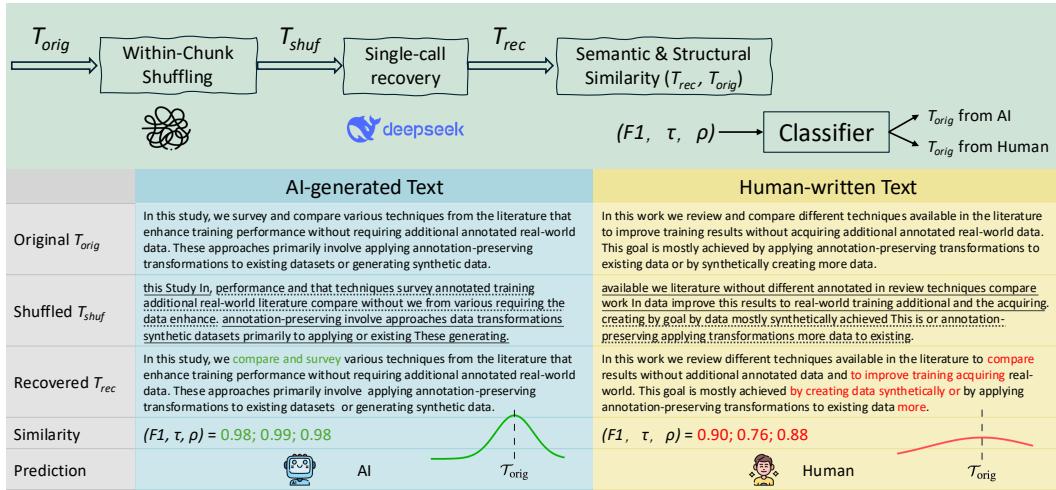


Figure 1: Illustration of D&R. **Top:** pipeline overview. **Bottom:** AI vs. Human examples. In the Shuffled T_{shuf} , individual chunks are highlighted with alternating solid and dashed underlines. AI text is recovered with fewer errors/higher similarity (green), whereas Human text shows more errors/lower similarity (red). The curves below each column schematically show recovery outcomes across examples: recoveries from AI-generated text concentrate more sharply around T_{orig} , while those from human-written text are more dispersed.

didate space; (ii) perform a single black-box recovery call, avoiding the inefficiency of multi-call methods; and (iii) compute semantic and structural recovery similarities between the recovered and original text, which serve as observable proxies for posterior concentration. These similarities are then passed to a lightweight binary classifier to output the final prediction. As illustrated in Figure 1, AI text (left) recovers with higher similarity and more concentrated outcomes near T_{orig} , while Human text (right) shows lower similarity and more dispersed recoveries. Building on this concentration assumption, we establish the theoretical foundation of D&R. We then validate its effectiveness, robustness, and usability through extensive experiments across diverse datasets, source models, and scenarios.

This paper makes the following four contributions:

- We introduce D&R, a novel detection framework that employs a model-free disruption, Within-Chunk Shuffling (WCS), conceptually aligned with the inductive biases of LLM pretraining, and ensures efficiency through a single black-box recovery call.
- We propose the Concentration Assumption and design semantic–structural recovery similarity metrics as faithful proxies for posterior concentration, providing the theoretical rationale for D&R.
- We conduct extensive experiments against eleven representative baselines across diverse datasets and source models, showing that D&R achieves state-of-the-art detection and consistently surpasses the strongest baseline (RAIDAR) by a significant margin.
- We further show that D&R remains robust and practical in challenging scenarios, including short texts, source–recovery model mismatch, and recovery–model variation.

2 RELATED WORK

Zero-shot detectors. Zero-shot detectors avoid large labeled datasets and instead exploit unsupervised signals such as probabilities or perturbations. Likelihood- and entropy-based methods (Hashimoto et al., 2019; Gehrmann et al., 2019) depend on model probability distributions, making them inherently white-box detectors. To address these limitations, recent works propose estimating black-box logits via proxy model tuning (Zeng et al., 2024), utilizing dual-model scoring (Hans et al., 2024), or analyzing intrinsic features by pre-trained models (Yu et al., 2024). Perturbation-

108 based approaches such as DetectGPT (Mitchell et al., 2023) analyze the log-likelihood curvature
 109 of perturbed passages, with the state-of-the-art variant Fast-DetectGPT (Bao et al., 2024) improving
 110 both accuracy and efficiency. NPR (Su et al., 2023) also leverages paraphrasing but measures
 111 residual signals, and is less effective than Fast-DetectGPT. Continuation-based methods such as
 112 DNA-GPT (Yang et al., 2024) truncate the text and regenerate the suffix for comparison. Rewriting-
 113 based RAIDAR (Mao et al., 2024) generates paraphrased versions of entire passages and measures
 114 consistency via edit distances between versions, but it requires multiple model calls, depends on
 115 a specific paraphraser, and is vulnerable to prompt-level manipulations. Among these, RAIDAR
 116 is most relevant to our D&R, as both rely on transformation-consistency—assessing textual con-
 117 sistency under transformations such as paraphrasing or shuffling—recovery. In contrast to existing
 118 generative methods (e.g., perturbation-, continuation-, and rewriting-based ones), D&R achieves
 119 detection with only a single model call.

120 **Non-zero-shot detectors.** Non-zero-shot detectors rely on supervised discriminative models trained
 121 with large labeled datasets. Representative examples include RoBERTa-based classifiers (Liu et al.,
 122 2019), and the OpenAI Text Classifier (OpenAI, 2019), alongside recent frameworks utilizing multi-
 123 level contrastive learning (Guo et al., 2024), stylistic alignment (Chen et al., 2025), or out-of-
 124 distribution detection on human texts (Zeng et al., 2025). These approaches can achieve strong
 125 in-domain accuracy but generalize poorly to unseen generation models and require costly labeling
 126 and frequent retraining as LLMs evolve. Another line of work explores watermarking (Zhao et al.,
 127 2024; Kirchenbauer et al., 2023), which embeds detectable signatures during generation. However,
 128 watermarking depends on model providers and is unsuitable for post-hoc detection.

3 METHOD

132 Our D&R method follows the pipeline shown in Algorithm 1. First, we introduce a semantic-
 133 preserving disruption, Within-Chunk Shuffling, which aligns with LLM pretraining objectives by
 134 constraining the recovery problem to a locally permuted candidate space. Second, we perform a
 135 single LLM call to recover the text. Next, we compute both semantic and structural similarities
 136 between the recovered and source texts, and use these similarities as observable recoverability met-
 137 rics. Finally, we train a binary classifier on the recoverability metrics of labeled AI-generated and
 138 human-written texts, and apply it to obtain detection results.

Algorithm 1 D&R Pipeline

```

1: Input: Original text  $\mathcal{T}_{\text{orig}}$ ; black-box LLM  $\mathcal{M}$ 
2: Output: Prediction  $y \in \{\text{Human, AI}\}$ 
3: for each chunk  $c_i$  in  $\mathcal{T}_{\text{orig}}$  do
4:    $c_i^{\text{shuf}} \leftarrow \text{ShuffleTokens}(c_i)$  ▷ Apply Within-Chunk Shuffling
5: end for
6:  $\mathcal{T}_{\text{shuf}} \leftarrow \text{Join}(\{c_i^{\text{shuf}}\})$  ▷ Obtain disruption result
7:  $\mathcal{T}_{\text{rec}} \leftarrow \mathcal{M}.\text{Recover}(\mathcal{T}_{\text{shuf}})$  ▷ Single-call recovery
8:  $F_1 \leftarrow \text{SemanticSim}(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}})$  ▷ Compute semantic similarity
9:  $(\tau, \rho) \leftarrow \text{StructuralSim}(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}})$  ▷ Compute structural similarity
10:  $y \leftarrow \text{Classifier}([F_1, \tau, \rho])$  ▷ Predict label
11: return  $y$ 

```

153 Intuitively, recovery outcomes for AI-generated text within this constrained space tend to be highly
 154 concentrated, whereas human-written text yields more dispersed results due to the diversity of writ-
 155 ing processes. This concentration gap can be characterized by the notion of *posterior concentration*,
 156 which provides the theoretical rationale behind our method and is, in practice, approximated by
 157 recovery similarity metrics.

158 A key design in D&R is the disruption step, which determines the nature of the subsequent recov-
 159 ery task. We adopt *Within-Chunk Shuffling* (WCS), where the original text $\mathcal{T}_{\text{orig}}$ is segmented into
 160 chunks by punctuation marks, and tokens within each chunk are randomly permuted while preserv-
 161 ing chunk order. This disruption requires no model calls and can be implemented with a simple
 random shuffling function.

162 The advantage of WCS is that it constrains recovery to a locally permuted candidate space rather
 163 than the unconstrained generative space, closely aligning with pretraining objectives that emphasize
 164 predicting local token orderings. As a result, recovery under WCS becomes almost effortless for the
 165 LLM, akin to recalling the original token order, leading to recovered texts that lie very close to the
 166 source. In distributional terms, AI-generated text tends to yield recovery outcomes that are highly
 167 concentrated near the original text, i.e., exhibiting strong *posterior concentration*, whereas human-
 168 written text produces more dispersed recoveries due to greater variability in writing processes.

169 Formally, as Algorithm 1 shows, we segment $\mathcal{T}_{\text{orig}}$ into chunks by punctuation, apply a random per-
 170 mutation to the tokens within each chunk, and then join the shuffled chunks to obtain the disrupted
 171 text $\mathcal{T}_{\text{shuf}}$, which is used as the input for the subsequent recovery step.

173 3.1 RECOVERY WITH A SINGLE LLM CALL

175 After disruption, the shuffled text $\mathcal{T}_{\text{shuf}}$ is passed to a large language model for recovery. We perform
 176 this step with a *single* LLM call, where the model is prompted to restore token order and reconstruct
 177 a coherent version of the original text \mathcal{T}_{rec} . A typical recovery prompt is:

178 The following text has its tokens shuffled within
 179 punctuation-delimited spans. Please restore the correct
 180 word order without adding or removing words: [INPUT].

182 This single-call design is both more efficient than multi-call approaches and well aligned with LLM
 183 pretraining priors, as predicting local token order is a task for which pretrained models are already
 184 highly competent. In practice, recovery can be performed either (i) via API calls to black-box
 185 LLMs (e.g., DeepSeek-v3), or (ii) via local inference with smaller models (e.g., Mistral 7B).
 186 Importantly, D&R achieves strong performance in both settings, demonstrating robustness and cost-
 187 effectiveness, a property we further validate in our Recovery-Model Independence experiments (see
 188 Section 4.3). Formally, given disrupted input $\mathcal{T}_{\text{shuf}}$ and recovery model \mathcal{M} , the recovered text is
 189 obtained as in Algorithm 1.

190 3.2 RECOVERABILITY METRICS

192 Given an original text $\mathcal{T}_{\text{orig}}$ and its recovered counterpart \mathcal{T}_{rec} , we quantify *recoverability* using two
 193 complementary forms of recovery similarity: semantic and structural.

194 **Semantic similarity.** We adopt *BERTScore* (Zhang et al., 2020), which measures token-level semantic
 195 overlap by comparing contextual embeddings from a pre-trained transformer (*bert-base-uncased*,
 196 Devlin et al., 2019). Let m and n denote the number of tokens in $\mathcal{T}_{\text{orig}}$ and \mathcal{T}_{rec} , respectively; $\{x_i\}_{i=1}^m$
 197 and $\{y_j\}_{j=1}^n$ their contextual embeddings; and $\cos(\cdot, \cdot)$ the cosine similarity. Semantic similarity is
 198 defined by the F1 score calculated from BScore’s precision and recall:

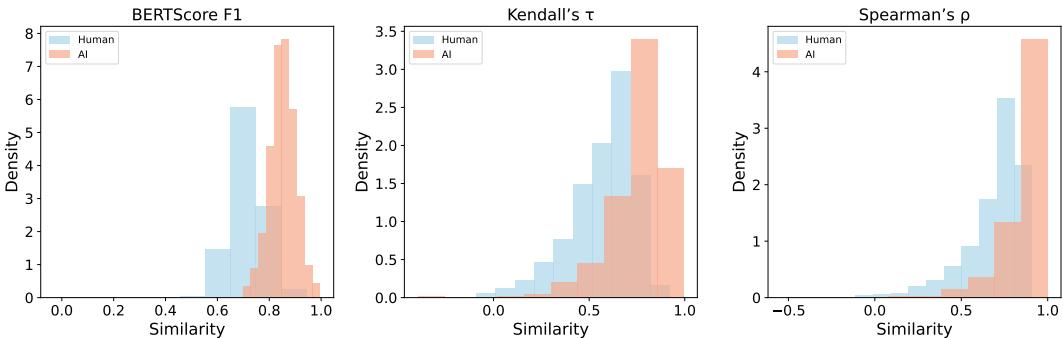
$$200 \text{Precision (P)} = \frac{1}{n} \sum_{j=1}^n \max_i \cos(x_i, y_j), \quad \text{Recall (R)} = \frac{1}{m} \sum_{i=1}^m \max_j \cos(x_i, y_j), \quad \text{F1} = \frac{2PR}{P+R}.$$

203 **Structural similarity.** We measure word-order consistency using Kendall’s τ (Kendall, 1938; Chen
 204 et al., 2023) and Spearman’s ρ (Spearman, 1904; Guo et al., 2025), two rank-based correlation
 205 coefficients applied to token orderings. When $m \neq n$ or tokens repeat, we first construct a one-
 206 to-one alignment $A = \{(i_k, j_k)\}_{k=1}^\ell \subseteq [m] \times [n]$ (e.g., via token-normalized Longest Common
 207 Subsequence (LCS) with left-to-right stable matching), and then compute ranks $r_k = i_k$ and $s_k = j_k$
 208 for $k = 1, \dots, \ell$, where C and D denote the numbers of concordant and discordant pairs among the
 209 aligned indices.

$$210 \tau = \frac{C - D}{\frac{1}{2} \ell(\ell - 1)}, \quad \rho = 1 - \frac{6 \sum_{k=1}^\ell (r_k - s_k)^2}{\ell(\ell^2 - 1)}.$$

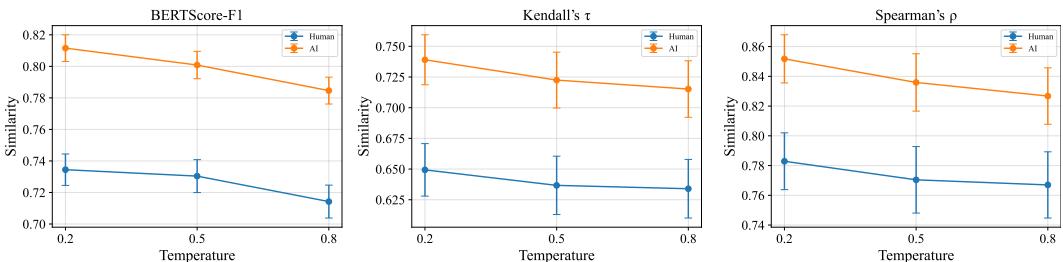
213 Semantic similarity captures fidelity of meaning, while structural similarity assesses reconstruction
 214 of word order. Together, higher values indicate the recovered text stays closer to the source both
 215 semantically and structurally. Thus, these complementary metrics provide observable signals of
 recoverability.

216 **Sanity check 1.** We conducted a lightweight evaluation of our metrics on the ML-ArXiv-Papers
 217 dataset (arXiv.org submitters, 2024) by sampling 1,000 AI-generated and 1,000 human-written texts.
 218 For each text, we computed recovery similarity with three metrics (BERTScore F1, Kendall’s τ ,
 219 and Spearman’s ρ) and plotted their distributions in Figure 2. AI-generated texts consistently
 220 exhibit higher average similarity scores than human-written texts, revealing clear distributional gaps
 221 across all metrics. Thus, *our recoverability metrics are effective for distinguishing AI-generated*
 222 *from human-written text.*



234
 235 Figure 2: Distributions of recovery similarity scores on 1,000 ML-ArXiv-Papers samples. AI-
 236 generated texts show a clear trend toward higher scores than human-written texts across all metrics:
 237 BERTScore F1, Kendall’s τ , and Spearman’s ρ .

238 **Sanity check 2.** We conducted another lightweight evaluation on the ML-ArXiv-Papers
 239 dataset (arXiv.org submitters, 2024), varying the temperature of the recovery model to control out-
 240 put concentration, where the temperature is a decoding hyperparameter in the inference API (lower
 241 values yield more concentrated outputs, while higher values yield more dispersed ones). As shown
 242 in Figure 3, recovery similarity scores across all metrics decrease as temperature increases, demon-
 243 strating a positive correlation with posterior concentration. This confirms that *our recoverability*
 244 *metrics provide observable proxies for posterior concentration.*



254
 255 Figure 3: Recovery similarity scores on 1,000 ML-ArXiv-Papers samples across recovery-model
 256 temperature settings. Scores track posterior concentration: lower temperatures yield higher con-
 257 centration and similarity, whereas higher temperatures reduce both across all metrics.

259 3.3 THEORETICAL ANALYSIS AND PROOF

261 3.3.1 THEORETICAL RATIONALE

263 **Concentration Assumption:** Following a disruption that preserves semantics while respecting the
 264 inductive biases of LLM pretraining (e.g., Within-Chunk Shuffling), the distribution of LLM-based
 265 recovery outputs for AI-generated text is more concentrated in the vicinity of the original text,
 266 whereas the distribution for human-written text is more dispersed.

267 Crucially, since posterior concentration is a distributional property that cannot be directly observed
 268 in a single-call recovery, D&R *indirectly estimates* it from a *single recovery sample* T_{rec} by comput-
 269 ing its similarity S to the original text T_{orig} . We prove below that **Recovery similarity is a faithful**
proxy for posterior concentration, yielding a non-trivial gap between AI-and human-written texts.

270 SETUP
271272 Let \mathcal{M} be the recovery model, $\mathcal{T}_{\text{orig}}$ the original text, $\mathcal{T}_{\text{shuf}}$ its WCS-disrupted version, and $\mathcal{T}_{\text{rec}} \sim \mathcal{M}(\cdot \mid \mathcal{T}_{\text{shuf}})$ a recovered sample. Define a distance $d(\cdot, \cdot) \geq 0$ (e.g., normalized Kendall distance) and a bounded similarity $S(\cdot, \cdot) \in [0, 1]$ with $S = 1$ when texts match.273
274
275 The posterior is (r, δ) -concentrated if $\Pr(d(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}}) \leq r) \geq 1 - \delta$. Assume S is continuous in
276 d with modulus of continuity $\omega(\cdot)$, i.e., $S(\mathcal{T}_{\text{orig}}, u) \geq 1 - \omega(d(\mathcal{T}_{\text{orig}}, u))$, $\forall u$, with $\omega(0) = 0$
277 and ω non-decreasing (e.g., $\omega(t) = Lt$).278
279 **Theorem 1 (Posterior concentration \Rightarrow high recovery similarity).** If the recovery posterior is
280 (r, δ) -concentrated, then with probability at least $1 - \delta$, $S(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}}) \geq 1 - \omega(r)$, and consequently,

281
$$\mathbb{E}[S(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}})] \geq (1 - \delta)(1 - \omega(r)).$$

282

283 *Proof.* Define $A = \{\mathcal{T}_{\text{rec}} : d(\mathcal{T}_{\text{orig}}, \mathcal{T}_{\text{rec}}) \leq r\}$. By posterior concentration, $\Pr(A) \geq 1 - \delta$. For
284 $\mathcal{T}_{\text{rec}} \in A$, the continuity of S gives $S \geq 1 - \omega(r)$. For $\mathcal{T}_{\text{rec}} \notin A$, we only know $S \geq 0$. Hence
285 $\mathbb{E}[S] \geq (1 - \omega(r)) \Pr(A) \geq (1 - \omega(r))(1 - \delta)$. \square 286
287 **Theorem 2 (Non-trivial gap under Concentration Assumption).** Let $\mathcal{T}_{\text{orig}}^{\text{AI}}$ and $\mathcal{T}_{\text{orig}}^{\text{Human}}$ denote AI-
288 generated and human-written texts. Suppose their recovery posteriors are (r_A, δ_A) - and (r_H, δ_H) -
289 concentrated, respectively. Assume there exists $\delta_0 > 0$ and $\epsilon > 0$ such that the expected similarity
290 for human text satisfies: $\mathbb{E}[S(\mathcal{T}_{\text{orig}}^{\text{Human}}, \mathcal{T}_{\text{rec}}^{\text{Human}})] < (1 - \delta_0)(1 - \omega(r_H))$, and $(1 - \delta_A)(1 - \omega(r_A)) \geq$
291 $(1 - \delta_H)(1 - \omega(r_H)) + 2\epsilon$. Furthermore, assume the compatibility condition $\delta_H \geq \delta_0 \geq \delta_H -$
292 $\frac{\epsilon}{1 - \omega(r_H)}$ holds and $\omega(r_A) \leq \omega(r_H)$. Then

293
$$\mathbb{E}[S(\mathcal{T}_{\text{orig}}^{\text{AI}}, \mathcal{T}_{\text{rec}}^{\text{AI}})] \geq \mathbb{E}[S(\mathcal{T}_{\text{orig}}^{\text{Human}}, \mathcal{T}_{\text{rec}}^{\text{Human}})] + \epsilon.$$

294

295 *Proof.* By Theorem 1, $\mathbb{E}[S_{\text{AI}}] \geq (1 - \delta_A)(1 - \omega(r_A))$; by the assumption, $\mathbb{E}[S_{\text{Human}}] < (1 - \delta_0)(1 - \omega(r_H))$. Therefore, $\mathbb{E}[S_{\text{AI}}] - \mathbb{E}[S_{\text{Human}}] \geq (1 - \delta_H)(1 - \omega(r_H)) + 2\epsilon - (1 - \delta_0)(1 - \omega(r_H)) = (1 - \omega(r_H))(\delta_0 - \delta_H) + 2\epsilon \geq \epsilon$. \square 296
297
298 *Consequences for Metrics.* - *Kendall τ :* $\tau = 1 - 2d$, so $\omega(r) = 2r$. - *Spearman ρ :* If at most fraction
299 r of ranks are perturbed, then $1 - \rho \leq c_\ell r$, hence $\omega(r) = c_\ell r$. - *BERTScore FI*: WCS preserves
300 token sets; embedding drift under local permutations is bounded by $L_{\text{sem}} r$, hence $\omega(r) = L_{\text{sem}} r$.
301302 **Takeaway.** Theorem 1 shows that posterior concentration entails high recovery similarity: as $r \rightarrow 0$
303 and $\delta \rightarrow 0$, $S \rightarrow 1$. Theorem 2 shows that under the Concentration Assumption, AI texts achieve
304 strictly higher expected recovery similarity than human texts by margin ϵ . Thus recovery similarity
305 is a faithful proxy for posterior concentration, providing the theoretical foundation for D&R.
306 We provide a detailed discussion on the validity of the assumptions underlying Theorem 2 in **Appendix A.2**.
307308 3.3.2 COMPUTATIONAL OVERHEAD.
309310 The efficiency of D&R stems from requiring only a single black-box LLM call. Its time overhead
311 is $T_{\text{D\&R}} = T_{\text{shuffle}} + T_{\text{LLM}} + T_{\text{similarity}}$, where the shuffling cost is negligible ($T_{\text{shuffle}} \approx 0$) and the
312 similarity scoring cost is much smaller than an LLM call ($T_{\text{similarity}} \ll T_{\text{LLM}}$), so the overall cost is
313 dominated by one call. In contrast, existing generative methods (e.g., perturbation-, continuation-, or
314 rewriting-based) require multiple calls, performing $k > 1$ queries with overhead $T_{\text{baseline}} \approx k \cdot T_{\text{LLM}} +$
315 T_{extra} , which scales as $O(k \cdot T_{\text{LLM}})$. Thus, D&R lowers detection overhead to $O(T_{\text{LLM}})$, providing
316 linear efficiency gains without additional assumptions. Empirical validation of these efficiency gains
317 is provided in Appendix A.4.318 4 EXPERIMENTS
319320 We evaluate D&R against representative baselines on long-text datasets, with ablations of recover-
321 ability metrics, and further analyze its usability and robustness in challenging real-world scenarios
322 including short texts, source-recovery model mismatch, and recovery LLM variation, providing a
323 comprehensive assessment of its effectiveness.

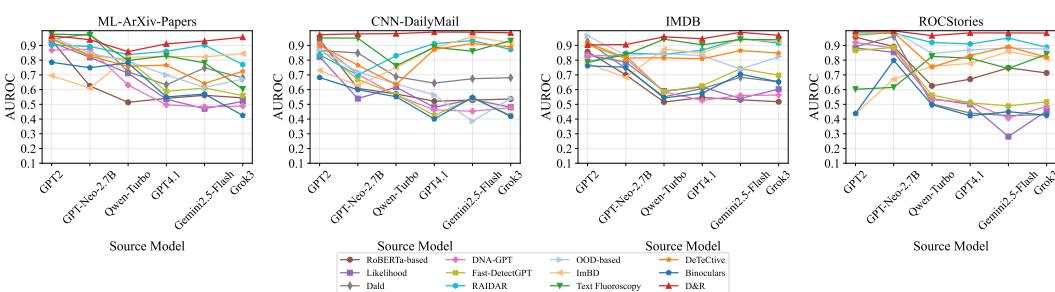
324 4.1 SETTINGS
325

326 **Datasets and Metrics.** To evaluate the performance of the D&R method on paragraph-level AI-
327 generated text detection, we use six publicly available datasets spanning different text lengths and
328 domains. Based on average text length, we group them into long texts (>800 words) and short texts
329 (<350 words), with dataset-wise length distributions shown in Figure 5. The long-text group in-
330 cludes ML-ArXiv-Papers (research abstracts) (arXiv.org submitters, 2024), CNN-DailyMail (news
331 articles) (See et al., 2017), IMDB (movie reviews) (Maas et al., 2011), and ROCStories (five-
332 sentence stories) (Mostafazadeh et al., 2016); the short-text group includes Wikihow (instructional
333 guides) (Sentence-Transformers, 2020), AG-News (news headlines and summaries) (Zhang et al.,
334 2015), and Reddit (user-generated posts) (Sentence-Transformers, 2021). For each dataset, we sam-
335 ple 1,000 human-written texts as negatives and generate AI counterparts of comparable length via
336 paraphrasing prompts from different source models, ensuring balanced parallel datasets. To mimic
337 diverse real-world source models, we use six widely adopted LLMs from different providers: GPT-2
338 (Solaiman et al., 2019), GPT-Neo-2.7B (Black et al., 2021), Qwen-Turbo (Yang et al., 2025), GPT-
339 4.1 (OpenAI, 2025), Gemini2.5-Flash (Comanici et al., 2025), and Grok3 (xAI, 2025). Detection
340 performance is measured with the area under the ROC curve (AUROC) (Fawcett, 2006), which
341 reflects the probability that the detector ranks an AI-generated text above a human-written one.

342 **Baselines.** We compare D&R against eleven representative baselines spanning all major families of
343 AI-generated text detection. These include the rewriting-based RAIDAR (Mao et al., 2024), most
344 closely related to our method; the perturbation-based Fast-DetectGPT (Bao et al., 2024), the state
345 of the art in this family; the continuation-based DNA-GPT (Yang et al., 2024); the likelihood-based
346 method (Hashimoto et al., 2019); recent works such as Binoculars (Hans et al., 2024), DALD (Zeng
347 et al., 2024), and Text Fluoroscopy (Yu et al., 2024). Finally, we compare against supervised and
348 learning-based detectors, including the RoBERTa classifier (OpenAI, 2019), Detective (Guo et al.,
349 2024), Imitate Before Detect (Chen et al., 2025), and Human-Outlier OOD detection (Zeng et al.,
350 2025). In the main experiments, we report results against all eleven baselines for comprehensive
351 coverage. For additional experimental analyses, we focus on the strongest baselines and report
352 results only against RAIDAR and Fast-DetectGPT. Baseline configurations follow their original
353 papers, unless otherwise specified.

354 4.2 MAIN RESULTS
355

356 **Detection Performance.** We compare D&R with eleven representative baselines on four long-text
357 datasets across six source models, reporting AUROC performance in Table 1 and their visualization
358 in Figure 4. For fairness, the same transformation model (DeepSeek-v3) is used for RAIDAR’s para-
359 phrasing and D&R’s recovery. As shown in Table 1, D&R achieves the highest mean AUROC with
360 the lowest variance (0.9602 ± 0.0351), substantially outperforming all baselines in both accuracy and
361 stability. Figure 4 further illustrates that D&R’s advantage holds consistently, while baselines not
362 only perform worse but also fluctuate with dataset and source model shifts. For instance, on ML-
363 ArXiv-Papers, when the source model changes from GPT-2 to the more advanced Grok-3, RAIDAR
364 drops from about 0.90 to 0.77, whereas D&R remains stable above 0.95. These results demonstrate
365 that D&R is a robust and effective zero-shot detector for long-text scenarios.



376 Figure 4: AUROC scatter plot on four long-text datasets across six source models, complementing
377 the averaged results in Table 1.

378 Table 1: Mean \pm SD AUROC on four long-text datasets, averaged over six source models, using
 379 DeepSeek-v3 as the recovery model. The first two entries are traditional methods, while the remain-
 380 ing baselines represent recent state-of-the-art approaches from top venues (NeurIPS, ICML, ACL,
 381 EMNLP, ICLR), followed by our proposed D&R. Detailed per-dataset results are provided in Ap-
 382 pendix A.5.

Dataset	RoBERTa-based	Likelihood	Dald	OOD-based
ML-ArXiv-Papers	0.6195 \pm 0.1443	0.6628 \pm 0.1667	0.7838 \pm 0.1441	0.7648 \pm 0.1323
CNN-DailyMail	0.6174 \pm 0.1456	0.5786 \pm 0.1186	0.7336 \pm 0.0992	0.6203 \pm 0.1703
IMDB	0.6114 \pm 0.1273	0.6617 \pm 0.1085	0.6941 \pm 0.1303	0.8392 \pm 0.0773
ROCStories	0.7675 \pm 0.1182	0.5852 \pm 0.2158	0.6084 \pm 0.2515	0.9109 \pm 0.0694
Avg.	0.6539 \pm 0.1498	0.6221 \pm 0.1633	0.7050 \pm 0.1313	0.7838 \pm 0.1373
Dataset	ImBD	Text Fluoroscopy	DeTeCtive	Binoculars
ML-ArXiv-Papers	0.7693 \pm 0.0964	0.8266 \pm 0.1367	0.7772 \pm 0.1123	0.6435 \pm 0.1406
CNN-DailyMail	0.8115 \pm 0.1248	0.8905 \pm 0.0762	0.8295 \pm 0.1116	0.5333 \pm 0.1044
IMDB	0.8424 \pm 0.0957	0.8917 \pm 0.0621	0.8452 \pm 0.0403	0.6650 \pm 0.0910
ROCStories	0.7185 \pm 0.1451	0.7399 \pm 0.1053	0.8756 \pm 0.0917	0.5054 \pm 0.1487
Avg.	0.7854 \pm 0.0905	0.8372 \pm 0.0951	0.8319 \pm 0.0890	0.5868 \pm 0.0962
Dataset	DNA-GPT	Fast-DetectGPT	RAIDAR	D&R(ours)
ML-ArXiv-Papers	0.6400 \pm 0.1708	0.7242 \pm 0.1456	0.8611 \pm 0.0472	0.9266 \pm 0.0354
CNN-DailyMail	0.5953 \pm 0.1659	0.5838 \pm 0.1556	0.8471 \pm 0.0759	0.9830 \pm 0.0063
IMDB	0.6491 \pm 0.1291	0.7277 \pm 0.1075	0.8675 \pm 0.0552	0.9451 \pm 0.0314
ROCStories	0.6231 \pm 0.2002	0.6385 \pm 0.1855	0.9323 \pm 0.0482	0.9861 \pm 0.0115
Avg.	0.6269 \pm 0.1697	0.6685 \pm 0.1583	0.8770 \pm 0.0657	0.9602 \pm 0.0351

402 **Ablation Study.** We examine the contribution of semantic and structural recovery similarities
 403 through an ablation study on four long-text datasets with advanced source models. As shown in
 404 Table 7, removing semantic similarity results in the largest performance drop ($\downarrow 28.1\%$), while re-
 405 moving structural similarity also yields a substantial decrease ($\downarrow 19.8\%$). The full model achieves an
 406 AUROC of 0.9614, demonstrating that both forms of recovery similarity are indispensable and that
 407 their combination ensures state-of-the-art accuracy and stability. We also experimentally showed
 408 that our Within-Chunk Shuffling (WCS) is optimal compared to global or chunk-order shuffling,
 409 effectively striking an optimal balance in the recovery task difficulty to maximize the concentration
 410 gap, detailed analyses for these experiments are provided in Appendix A.3.2.

411 4.3 ANALYSIS

412 **Short-text Robustness.** Short texts are particularly challenging for AI-generated text detection,
 413 as the limited context amplifies the distributional overlap between human and machine outputs. As
 414 shown in Table 2, D&R achieves the highest mean AUROC with low variance (0.8687 ± 0.0888), sig-
 415 nificantly outperforming RAIDAR and Fast-DetectGPT by margins of 0.14 and 0.21, respectively.
 416 The advantage is most pronounced on earlier source models (GPT-2, GPT-Neo-2.7B), where D&R
 417 attains near-perfect AUROC scores (around 0.99), while on stronger models performance declines
 418 for all methods but D&R still maintains clear margins. These results underscore D&R’s consistent
 419 superiority on short-text detection and its resilience across both weaker and stronger generators.
 420

421 **Source-model Agnosticism (Robustness under Model Mismatch).** As transformation-
 422 consistency based detectors, both D&R and RAIDAR rely on a transformation model to recover
 423 or paraphrase the text generated by a source model. Although neither method requires explicit
 424 knowledge of the source model, performance can depend on whether the source and transformation
 425 models are the same. We therefore evaluate two cases: (i) the same-source case ($src=trx$), an eas-
 426 ier, pseudo-white-box setting in which the detector can implicitly benefit from the source model’s
 427 distributional biases; and (ii) the different-source case ($src \neq trx$), a more realistic heterogeneous
 428 pairing. As shown in Table 3, across both settings, our D&R consistently outperforms RAIDAR.
 429 Moreover, under the different-source condition, D&R degrades only 0.1-3.3% degradation (mean
 430 1.9%), whereas RAIDAR drops by 4.2-14.2% (mean 9.4%). These results demonstrate that D&R
 431 is source-agnostic: it does not rely on knowledge of the source model, remaining markedly more
 432 robust than RAIDAR under model mismatch.

432 Table 2: AUROC performance on three Short-Text datasets across six source models. For each
 433 dataset, results from two earlier models (GPT-2, GPT-Neo-2.7B) and four more advanced models
 434 (Qwen-Turbo, GPT-4.1, Gemini 2.5, Grok-3) are separated by a dotted line.

436	437	Dataset	Source Model	Method		
				Fast-DetectGPT	RAIDAR	D&R (ours)
438	439	Wikihow	GPT2	0.7449	0.7800	0.9904
440	441		GPT-Neo-2.7B	0.7936	0.7743	0.9987
442	443		Qwen-Turbo	0.5193	0.5300	0.7363
444	445		GPT4.1	0.4551	0.5700	0.7850
446	447		Gemini2.5-Flash	0.4370	0.7550	0.8517
448	449		Grok3	0.4719	0.6950	0.7727
450	451	AG-News	GPT2	0.7780	0.7231	0.9886
452	453		GPT-Neo-2.7B	0.7932	0.7524	0.9982
454	455		Qwen-Turbo	0.7542	0.6850	0.7666
456	457		GPT4.1	0.5819	0.6735	0.8202
458	459		Gemini2.5-Flash	0.6898	0.7776	0.8835
460	461		Grok3	0.6439	0.7375	0.7963
462	463	Reddit	GPT2	0.7043	0.7649	0.9271
464	465		GPT-Neo-2.7B	0.7259	0.7947	0.9586
466	467		Qwen-Turbo	0.6852	0.7310	0.7502
468	469		GPT4.1	0.6406	0.7429	0.8451
470	471		Gemini2.5-Flash	0.7007	0.7810	0.9007
472	473		Grok3	0.6916	0.7800	0.8672
474	475	Mean \pm SD		0.6561 \pm 0.1129	0.7248 \pm 0.0707	0.8687\pm0.0888

456 Table 3: AUROC performance under same vs. different Source–Transformation Pairings. The trans-
 457 formation model (trx) is fixed as DeepSeek-v3. For the ‘Same’ case ($src=trx$), the source model
 458 equals the transformation model; for the ‘Different’ case ($src\neq trx$), results are averaged over six
 459 diverse source models listed in Table 1.

461	462	Dataset	RAIDAR		D&R (ours)			
			Same ($src=trx$)	Different ($src\neq trx$)	Same ($src=trx$)	Different ($src\neq trx$)		
463	464	ML-ArXiv-Papers	0.9475	0.8611	$\downarrow 9.1\%$	0.9590	0.9266	$\downarrow 3.3\%$
465	466	CNN-DailyMail	0.9875	0.8471	$\downarrow 14.2\%$	0.9943	0.9830	$\downarrow 1.1\%$
467	468	IMDB	0.9675	0.8675	$\downarrow 10.3\%$	0.9770	0.9451	$\downarrow 3.2\%$
469	470	ROCStories	0.9825	0.9412	$\downarrow 4.2\%$	0.9869	0.9865	$\downarrow 0.1\%$
471	472	Average	0.9712	0.8792	$\downarrow 9.4\%$	0.9793	0.9603	$\downarrow 1.9\%$

472 **Recovery-model Independence (API-based vs. Local LLMs).** We examine whether D&R de-
 473 pends on the choice of recovery model. In addition to DeepSeek-v3 (the API-based recovery model
 474 used in the main experiments), we evaluate Mistral-7B-Instruct-v0.3 as a locally deployed recov-
 475 ery model. As shown in Table 4, D&R maintains strong performance (mean AUROC 0.9614 vs.
 476 0.9359), with only $\sim 2.5\%$ degradation when switching from a large API model to a smaller local
 477 model. Importantly, D&R with Mistral-7B still outperforms RAIDAR even when RAIDAR relies on
 478 the larger DeepSeek-v3 as the recovery model (data omitted for brevity). These results demon-
 479 strate that D&R is robust across recovery-model families and scales, and remains practically deployable
 even with smaller local models.

480 **Further Robustness and Generalization.** To thoroughly evaluate D&R’s applicability, we ex-
 481 tended our experiments to two additional settings: (i) **Adversarial Robustness:** On the RAID
 482 benchmark (Dugan et al., 2024), D&R retains high efficacy (AUROC 0.87) and proves resilient
 483 against 11 varying attack categories, most notably paraphrasing. (ii) **Multilingual Generalization:**
 484 Experiments on German, Spanish, and French confirmed that D&R generalizes effectively beyond
 485 English, achieving > 0.93 AUROC on long texts. Detailed results and analyses for these experi-
 486 ments are provided in [Appendix A.3](#).

486
487
488
Table 4: AUROC performance with two Recovery Models: DeepSeek-v3 (API-based) and Mistral-
7B-Instruct-v0.3 (local).

489 490 Dataset	Source Model	DeepSeek-v3 (API-based)		Mistral-7B (Local)
		D&R	RAIDAR	D&R
491 492 493 494 495 496 497 498 499 500 501 502 503 504 ML-ArXiv-Papers	Qwen-Turbo	0.8580	0.8375	0.8039
	GPT4.1	0.9108	0.8600	0.8656
	Gemini2.5-Flash	0.9299	0.9025	0.8972
	Grok3	0.9559	0.7700	0.8157
495 496 497 498 499 500 501 502 503 504 CNN-DailyMail	Qwen-Turbo	0.9800	0.8300	0.9800
	GPT4.1	0.9908	0.9125	0.9844
	Gemini2.5-Flash	0.9901	0.9325	0.9862
	Grok3	0.9856	0.8725	0.9784
501 502 503 504 IMDB	Qwen-Turbo	0.9584	0.8400	0.9381
	GPT4.1	0.9456	0.8600	0.9289
	Gemini2.5-Flash	0.9890	0.9475	0.9713
	Grok3	0.9688	0.9275	0.9398
501 502 503 504 ROCStories	Qwen-Turbo	0.9667	0.8725	0.9522
	GPT4.1	0.9851	0.9150	0.9758
	Gemini2.5-Flash	0.9849	0.9500	0.9818
	Grok3	0.9842	0.8875	0.9752
Mean \pm SD		0.9614\pm0.0350	0.8823 \pm 0.0475	0.9359\pm0.0579

505
506
507

5 CONCLUSION

508
509
510
511
512
513
514
515
516
517
Disrupt-and-Recover (D&R) provides an efficient, black-box practical, and theoretically grounded
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
framework for AI-text detection, achieving state-of-the-art accuracy and robustness across diverse
530
531
532
533
534
535
536
537
538
539
settings, with particularly strong gains on short texts. Beyond these empirical results, D&R highlights
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024

540 Jiaqi Chen, Xiaoye Zhu, Tianyang Liu, Ying Chen, Chen Xinhui, Yiwen Yuan, Chak Tou Leong,
 541 Zuchao Li, Long Tang, Lei Zhang, et al. Imitate before detect: Aligning machine stylistic pref-
 542 erence for machine-revised text detection. In *Proceedings of the AAAI Conference on Artificial*
 543 *Intelligence*, pp. 23559–23567, 2025.

544

545 Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. Exploring the use of large
 546 language models for reference-free text quality evaluation: An empirical study. In *Findings of*
 547 *the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)*, pp. 361–374.
 548 Association for Computational Linguistics, 2023.

549

550 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 551 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 552 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 553 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

554

555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 556 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 557 *the North American chapter of the association for computational linguistics: human language*
 558 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

559

560 Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne
 561 Ippolito, and Chris Callison-Burch. Raid: A shared benchmark for robust evaluation of machine-
 562 generated text detectors. In *Proceedings of the 62nd Annual Meeting of the Association for Com-
 563 putational Linguistics (Volume 1: Long Papers)*, pp. 12463–12492, 2024.

564

565 Tom Fawcett. An introduction to roc analysis. *Pattern Recognition Letters*, 27(8):861–874, 2006.

566

567 Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and vi-
 568 sualization of generated text. In *Proceedings of the 57th Annual Meeting of the Association for*
 569 *Computational Linguistics: System Demonstrations*. Association for Computational Linguistics,
 570 2019.

571

572 Xun Guo, Yongxin He, Shan Zhang, Ting Zhang, Wanquan Feng, Haibin Huang, and Chongyang
 573 Ma. Detective: Detecting ai-generated text via multi-level contrastive learning. *Advances in*
 574 *Neural Information Processing Systems*, 37:88320–88347, 2024.

575

576 Yuchen Guo, Zhicheng Dou, Huy H Nguyen, Ching-Chun Chang, Saku Sugawara, and Isao Echizen.
 577 Measuring human involvement in ai-generated text: A case study on academic writing. *arXiv*
 578 *preprint arXiv:2506.03501*, 2025.

579

580 Abhimanyu Hans, Avi Schwarzschild, Valeria Cherepanova, Hamid Kazemi, Aniruddha Saha,
 581 Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot
 582 detection of machine-generated text. *arXiv preprint arXiv:2401.12070*, 2024.

583

584 Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical evaluation
 585 for natural language generation. *arXiv preprint arXiv:1904.02792*, 2019.

586

587 M. G. Kendall. A new measure of rank correlation. *Biometrika*, 30(1/2):81–93, 1938.

588

589 Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. The multilingual amazon reviews
 590 corpus. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language*
 591 *Processing*, 2020.

592

593 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
 594 watermark for large language models. In *Proceedings of the 40th International Conference on*
 595 *Machine Learning*, volume 202, pp. 17061–17084. PMLR, 2023.

596

597 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 598 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 599 approach. *arXiv preprint arXiv:1907.11692*, 2019.

594 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 595 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting*
 596 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150.
 597 Association for Computational Linguistics, 2011.

598 Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative AI detection via
 599 rewriting. In *The Twelfth International Conference on Learning Representations*, 2024.

600

601 Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
 602 tectgpt: Zero-shot machine-generated text detection using probability curvature. In *International*
 603 *conference on machine learning*, pp. 24950–24962. PMLR, 2023.

604 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
 605 derwende, Pushmeet Kohli, and James Allen. A corpus and evaluation framework for deeper
 606 understanding of commonsense stories. *arXiv preprint arXiv:1604.01696*, 2016.

607

608 OpenAI. Roberta-base-openai-detector. Hugging Face Models, 2019. URL <https://huggingface.co/roberta-base-openai-detector>.

609

610 OpenAI. Introducing gpt-4.1 in the api, 2025. URL <https://openai.com/index/gpt-4-1/>.

611

612 Hyeonchu Park, Byungjun Kim, and Bugeun Kim. Dart: An aigt detector using amr of rephrased
 613 text. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Asso-
 614 ciation for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)*,
 615 pp. 710–721, 2025.

616

617 Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano.
 618 Mlsum: The multilingual summarization corpus. *arXiv preprint arXiv:2004.14900*, 2020.

619

620 Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
 621 pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for
 622 Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics,
 623 2017.

624

625 Sentence-Transformers. Wikihow dataset, 2020. URL <https://huggingface.co/datasets/sentence-transformers/wikihow>.

626

627 Sentence-Transformers. Reddit-title-body dataset, 2021. URL <https://huggingface.co/datasets/sentence-transformers/reddit-title-body>.

628

629 Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
 630 Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
 631 impacts of language models. *arXiv preprint arXiv:1908.09203*, 2019.

632

633 C. Spearman. The proof and measurement of association between two things. *The American Journal
 634 of Psychology*, 15(1):72–101, 1904.

635

636 Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov. DetectLLM: Leveraging log rank information
 637 for zero-shot detection of machine-generated text. In *Findings of the Association for Compu-
 638 tational Linguistics: EMNLP 2023*. Association for Computational Linguistics, 2023.

639

640 xAI. Grok-3, 2025. URL <https://x.ai/>.

641

642 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 643 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 644 arXiv:2505.09388*, 2025.

645

646 Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Petzold, William Yang Wang, and Haifeng Chen.
 647 DNA-GPT: Divergent n-gram analysis for training-free detection of GPT-generated text. In *The
 648 Twelfth International Conference on Learning Representations*, 2024.

649

650 Xiao Yu, Kejiang Chen, Qi Yang, Weiming Zhang, and Nenghai Yu. Text fluoroscopy: Detecting
 651 llm-generated text through intrinsic features. In *Proceedings of the 2024 Conference on Empirical
 652 Methods in Natural Language Processing*, pp. 15838–15846, 2024.

648 Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, Zhiqiang Xu, Yao Li,
 649 Haifeng Chen, Wei Cheng, and Dongkuan DK Xu. Dald: Improving logits-based detector without
 650 logits from black-box llms. *Advances in Neural Information Processing Systems*, 37:54947–
 651 54973, 2024.

652 Cong Zeng, Shengkun Tang, Yuanzhou Chen, Zhiqiang Shen, Wenchao Yu, Xujiang Zhao, Haifeng
 653 Chen, Wei Cheng, and Zhiqiang Xu. Human texts are outliers: Detecting llm-generated texts via
 654 out-of-distribution detection, 2025. URL <https://arxiv.org/abs/2510.08602>.

655 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 656 ating text generation with bert. In *International Conference on Learning Representations*, 2020.

657 Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
 658 classification. In *NIPS*, 2015.

659 Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust water-
 660 marking for AI-generated text. In *The Twelfth International Conference on Learning Representa-
 661 tions*, 2024.

664 A APPENDIX

667 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

668 We acknowledge the use of large language models (ChatGPT and Gemini) as assistive tools in
 669 the preparation of this paper. Their role was strictly limited to language refinement, including
 670 grammar correction, sentence restructuring, and style polishing. All substantive research contrib-
 671 utions—including hypothesis formulation, experimental design and execution, result analysis, and
 672 conclusions—are solely the work of the authors.

674 A.2 DISCUSSION ON THE VALIDITY OF ASSUMPTIONS IN THEOREM 2

675 In this section, we provide a detailed breakdown of the assumptions underlying Theorem 2, dis-
 676 cussing the specific conditions under which they hold and the rationale behind them.

677 **Assumption 1 (Upper Bound of Expected Similarity for Human-Written Text).** There exist
 678 $\delta_0 > 0$ and $\epsilon > 0$ such that:

$$679 \mathbb{E}[S(\mathcal{T}_{orig}^{Human}, \mathcal{T}_{rec}^{Human})] < (1 - \delta_0)(1 - \omega(r_H)) \quad (1)$$

680 **When It Holds:** This assumption holds if the recovery distribution of human text satisfies two
 681 theoretical properties:

- 682 1. *Posterior concentration:* $\Pr(A) \geq 1 - \delta_H$, where $A = \{d(\mathcal{T}_{orig}^{Human}, \mathcal{T}_{rec}^{Human}) \leq r_H\}$, as
 683 per Theorem 1.
- 684 2. *Negligible excess similarity:* For the concentrated subset, the excess similarity is negligible,
 685 i.e., $\alpha = \mathbb{E}[S | A] - (1 - \omega(r_H)) = o(1 - \omega(r_H))$; and for the deviated subset, the similarity
 686 is negligible, i.e., $\beta = \mathbb{E}[S | A^c] = o(1 - \omega(r_H))$.

687 **Rationale:** Human text inherently lacks the specific pretraining biases of LLMs (often exhibiting
 688 more flexible semantics and diverse structures). Consequently, even well-recovered human text can-
 689 not achieve the “exact consistency” typical of AI text (justifying the bound on α), while deviated
 690 recoveries typically result in near-zero similarity (justifying β). The expectation decomposition
 691 $\mathbb{E}[S_{Human}] = \mathbb{E}[S | A] \Pr(A) + \mathbb{E}[S | A^c] \Pr(A^c)$ mathematically derives the upper bound, ensur-
 692 ing theoretical rigor.

697 698 Assumption 2 (Gap in Theoretical Lower Bounds for AI-Generated Text).

$$699 (1 - \delta_A)(1 - \omega(r_A)) \geq (1 - \delta_H)(1 - \omega(r_H)) + 2\epsilon \quad (2)$$

700 **When It Holds:** This assumption holds for standard LLMs (e.g., GPT-4, Gemini) under normal
 701 generation settings (implying a high probability of occurrence):

702 1. *Practical condition*: AI text is generated with standard parameters (e.g., temperature ≤ 1.0 ,
 703 without random token insertion).

704 2. *Theoretical condition*: $\delta_A \leq \delta_H$, $r_A \leq r_H$, and 2ϵ is less than or equal to the intrinsic
 705 AI-human lower bound gap.

706

707 **Rationale**: LLMs are pretrained to optimize local token predictability. This objective leads to
 708 inherently stronger posterior concentration (smaller deviation radius r_A and higher probability mass
 709 $1 - \delta_A$) compared to human text, creating a natural distributional gap.

710 **Assumption 3 (Compatibility Condition)**.

712
$$\delta_H \geq \delta_0 \geq \delta_H - \frac{\epsilon}{1 - \omega(r_H)} \quad (3)$$

713

714 **When It Holds**: This assumption holds for **all valid parameter tunings** (providing a 100% chance
 715 of a non-empty interval):

717 1. *Practical condition*: ϵ is set to a small conceptual margin (e.g., 0.03–0.08), aligned with
 718 observed AI-human generation differences.

719 2. *Theoretical condition*: $\epsilon \leq \delta_H(1 - \omega(r_H))$. This is naturally satisfied since $\delta_H > 0$ for
 720 human text and $1 - \omega(r_H) > 0$ for any reasonable radius $r_H > 0$.

722 **Rationale**: This interval serves to balance Assumptions 1 and 2. A value for δ_0 can always be
 723 chosen within this range (e.g., $\delta_0 = \delta_H - \frac{\epsilon}{2(1 - \omega(r_H))}$) to strictly avoid mathematical contradictions.

725 **Summary**. The assumptions may fail only in extreme edge cases (e.g., AI text generated by non-
 726 pretrained/random models, or human text intentionally mimicking AI patterns). However, they hold
 727 universally in standard AI-text detection tasks. Our sanity checks confirm their practical applicabil-
 728 ity, while the theoretical conditions ensure a high probability of occurrence in real-world scenarios.

729 **A.3 EXTENDED EXPERIMENTAL ANALYSIS**

731 In this section, we present comprehensive evaluations concerning adversarial robustness, the abla-
 732 tion of disruption strategies, and multilingual generalization to further validate the effectiveness of
 733 D&R.

735 **A.3.1 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS**

737 To evaluate the robustness of D&R against adversarial attempts to evade detection, we utilized the
 738 **RAID** (Dugan et al., 2024). We tested D&R against 11 diverse attack types, ranging from character-
 739 level perturbations (e.g., homoglyphs) to high-level semantic obfuscations (e.g., paraphrasing).

740 As shown in Table 5, D&R maintains strong performance across all attack categories. Even under
 741 **Paraphrase** attacks—typically considered the most challenging for detection—D&R maintains a
 742 strong AUROC of 0.8210. Furthermore, for character-level attacks (e.g., Homoglyph, Zero Width
 743 Space), performance remains robust (> 0.83). These results indicate that our disruption-recovery
 744 mechanism relies on intrinsic posterior concentration rather than surface-level artifacts, making it
 745 difficult to fool via simple perturbations.

746 Table 5: Robustness of D&R on the RAID Dataset (AUROC). The method maintains high detection
 747 performance across various attack types.

748

Attack Type	AUROC	Attack Type	AUROC
None (Clean)	0.8736	Homoglyph	0.8352
Insert Paragraphs	0.8428	Number	0.8641
Alternative Spelling	0.8564	Paraphrase	0.8210
Article Deletion	0.8627	Whitespace	0.8505
Synonym	0.8139	Upper/Lower	0.8479
Perplexity Misspelling	0.8643	Zero Width Space	0.8322

756 A.3.2 ABLATION STUDY OF WITHIN-CHUNK SHUFFLING AND RECOVERY SIMILARITY
757758 To verify the necessity of our **Within-Chunk Shuffling (WCS)** strategy, we compared it against
759 two alternative disruption mechanisms:760 **Global Shuffling:** Randomly shuffling all tokens in the text.
761762 **Chunk-Order Shuffling:** Shuffling the order of chunks while keeping tokens within chunks intact.
763764 Table 6 presents the results across four datasets.
765766 Table 6: Ablation Study Results comparison (Avg. AUROC on 4 Datasets).
767

Disruption Method	ML-ArXiv	CNN-DM	IMDB	ROCStories	Avg.
D&R (Global Shuffling)	0.5421	0.5833	0.5612	0.5390	0.5564
D&R (Chunk-Order Shuffling)	0.7130	0.7544	0.7205	0.7811	0.7423
D&R (WCS - Ours)	0.9266	0.9830	0.9451	0.9861	0.9602

771

- 772 • **Global Shuffling:** The severe disruption destroys all semantic context, making recovery
773 impossible for both AI and Human texts. Since both fail to be recovered, they become
774 indistinguishable, dropping performance to random guessing (~ 0.55).
- 775 • **Chunk-Order Shuffling:** Preserving internal token order makes the task trivial, allowing
776 both AI and Human texts to be recovered with high fidelity. This “ceiling effect” causes
777 their recoverability scores to converge, significantly reducing discriminability.
- 778 • **WCS (Ours):** WCS proves to be the optimal disruption strategy. It disrupts local token
779 order to challenge the model while preserving semantic anchors, thereby maximizing the
780 observable “concentration gap” between AI and Human text.

782 Table 7: Ablation study of D&R by removing Semantic or Structural Recovery Similarity.
783

Dataset	Source Model	w/o SemanticSim	w/o StructuralSim	D&R
ML-ArXiv-Papers	Qwen-Turbo	0.6529	0.7342	0.8580
	GPT4.1	0.6616	0.7268	0.9108
	Gemini2.5-Flash	0.7029	0.7311	0.9299
	Grok3	0.7272	0.7611	0.9559
CNN-DailyMail	Qwen-Turbo	0.6567	0.7465	0.9800
	GPT4.1	0.6627	0.7151	0.9908
	Gemini2.5-Flash	0.6955	0.7731	0.9901
	Grok3	0.6653	0.7072	0.9856
IMDB	Qwen-Turbo	0.7112	0.8560	0.9584
	GPT4.1	0.7011	0.8551	0.9456
	Gemini2.5-Flash	0.7013	0.8806	0.9890
	Grok3	0.7159	0.8716	0.9688
ROCStories	Qwen-Turbo	0.6581	0.7158	0.9667
	GPT4.1	0.6561	0.7410	0.9851
	Gemini2.5-Flash	0.8022	0.7910	0.9849
	Grok3	0.6796	0.7256	0.9842
Average		0.6906 ↓28.1%	0.7707 ↓19.8%	0.9614

800 A.3.3 MULTILINGUAL GENERALIZATION
801802 To demonstrate that D&R is not limited to English, we extended our experiments to **German (DE)**,
803 **Spanish (ES)**, and **French (FR)**. We utilized the MLSUM (Scialom et al., 2020) dataset for long
804 texts and the Amazon (Keung et al., 2020) reviews dataset for short texts, averaging results across
805 diverse source models.
806807 As detailed in Table 8, D&R achieves consistently high performance across all tested languages
808 (AUROC > 0.93 for long texts). Even on challenging short texts, it maintains robust performance
809 (> 0.83). This confirms that the principle of posterior concentration is not an artifact of English-
810 centric training but holds across different languages.

810 Table 8: Multilingual Performance (Avg. AUROC) on long (MLSUM) and short (Amazon) texts.
811

812 Language	813 Long Text (MLSUM)	814 Short Text (Amazon)
815 German (DE)	0.9306	0.8313
816 Spanish (ES)	0.9556	0.8604
817 French (FR)	0.9377	0.8592
818 Overall Avg		~0.94
819		~0.85

820 A.4 EFFICIENCY COMPARISON

821 To quantify the practical benefits of our single-call framework, we compared the average latency
822 and estimated cost of D&R against RAIDAR, the most competitive baseline which requires multiple
823 generation calls.824 As shown in Table 9, D&R drastically reduces computational overhead. Specifically, the single-
825 call design lowers the average latency from 15 seconds to 2 seconds per sample and reduces the
826 estimated API cost from \$5 to \$0.2 per 1,000 samples. This confirms that D&R is not only accurate
827 but also highly efficient for large-scale deployment.828 Table 9: Efficiency comparison between the multi-call baseline (RAIDAR) and our single-call
829 method (D&R). Cost is estimated per 1,000 samples.
830

831 Method	832 Avg Latency (s)	833 Est. Cost (\$/1k samples)	834 Calls per Sample
835 RAIDAR	836 15	837 \$5	838 ~5 calls
839 D&R (Ours)	840 2	841 \$0.2	842 1 call

843 A.5 ADDITIONAL RESULTS

844 In this section, we present comprehensive performance data to supplement the main experimen-
845 tal results. Tables 10, 11, 12, and 13 provide the detailed AUROC breakdown on four long-text
846 datasets, namely ML-ArXiv-Papers, CNN-DailyMail, IMDB, and ROCStories, respectively. This
847 table expands upon the summarized results in the main text, demonstrating D&R’s consistent su-
848 periority across diverse source models and text domains. Table 14 reports the TPR scores at fixed FPR
849 threshold of **1%** and **5%**.850 Table 10: AUROC on ML-ArXiv-Papers datasets across six source models.
851

852 ML-ArXiv-Papers						
853 Source Model	854 RoBERTa	855 Likelihood	856 DNA-GPT	857 Fast-Detect	858 RAIDAR	859 Dald
860 GPT2	0.9333	0.9206	0.8679	0.9489	0.9033	0.9432
861 GPT-Neo-2.7B	0.6245	0.8193	0.8741	0.8334	0.8933	0.9786
862 Qwen-Turbo	0.5137	0.7112	0.6309	0.8038	0.8375	0.7210
863 GPT4.1	0.5406	0.5352	0.4966	0.5878	0.8600	0.6326
864 Gemini2.5-Flash	0.5613	0.4703	0.4826	0.6115	0.9025	0.7477
865 Grok3	0.5441	0.5206	0.4882	0.5596	0.7700	0.6798
866 Source Model	867 OOD	868 ImBD	869 Binoculars	870 Text-Flu	871 DeTeCtive	872 D&R(ours)
873 GPT2	0.9608	0.6944	0.7856	0.9772	0.9433	0.9660
874 GPT-Neo-2.7B	0.8483	0.6103	0.7487	0.9701	0.8283	0.9390
875 Qwen-Turbo	0.7935	0.8192	0.7821	0.7980	0.7581	0.8580
876 GPT4.1	0.6995	0.8259	0.5500	0.8286	0.7666	0.9108
877 Gemini2.5-Flash	0.6156	0.8220	0.5699	0.7817	0.6416	0.9299
878 Grok3	0.6712	0.8439	0.4248	0.6038	0.7250	0.9559

879 A.6 DATASET DETAILS

880 **ML-ArXiv-Papers.** This dataset consists of abstracts from research papers in the computer science
881 domain, particularly in machine learning, sourced from the ArXiv platform. The text is characterized

864

865

866 Table 11: AUROC on four CNN-DailyMail datasets across six source models.

CNN-DailyMail						
Source Model	RoBERTa	Likelihood	DNA-GPT	Fast-Detect	RAIDAR	Dald
GPT2	0.9392	0.8234	0.9126	0.8760	0.8367	0.8662
GPT-Neo-2.7B	0.6084	0.5390	0.7041	0.8760	0.8367	0.8486
Qwen-Turbo	0.5705	0.6163	0.5618	0.5675	0.8300	0.6876
GPT4.1	0.5212	0.4796	0.4625	0.4240	0.9125	0.6441
Gemini2.5-Flash	0.5288	0.5339	0.4531	0.5419	0.9325	0.6741
Grok3	0.5363	0.4799	0.4778	0.4249	0.8725	0.6808
Source Model	OOD	ImBD	Binoculars	Text-Flu	DeTeCtive	D&R(ours)
GPT2	0.9000	0.7303	0.6822	0.9509	0.9000	0.9734
GPT-Neo-2.7B	0.7666	0.6284	0.5993	0.9495	0.7666	0.9734
Qwen-Turbo	0.6346	0.7485	0.5519	0.7617	0.6346	0.9800
GPT4.1	0.8726	0.8852	0.4004	0.8876	0.8726	0.9908
Gemini2.5-Flash	0.9131	0.9592	0.5471	0.8606	0.9131	0.9901
Grok3	0.8900	0.9175	0.4186	0.9324	0.8900	0.9856

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886 Table 12: AUROC on four IMDB datasets across six source models.

IMDB						
Source Model	RoBERTa	Likelihood	DNA-GPT	Fast-Detect	RAIDAR	Dald
GPT2	0.8579	0.8340	0.8314	0.9034	0.7833	0.9257
GPT-Neo-2.7B	0.7000	0.7867	0.8290	0.8115	0.8467	0.7451
Qwen-Turbo	0.5156	0.5901	0.5841	0.5862	0.8400	0.5509
GPT4.1	0.5465	0.6174	0.5267	0.6257	0.8600	0.6072
Gemini2.5-Flash	0.5309	0.5398	0.5601	0.7422	0.9475	0.6834
Grok3	0.5178	0.6027	0.5633	0.6975	0.9275	0.6525
Source Model	OOD	ImBD	Binoculars	Text-Flu	DeTeCtive	D&R(ours)
GPT2	0.9646	0.7780	0.7611	0.7888	0.9183	0.9036
GPT-Neo-2.7B	0.8336	0.6828	0.7523	0.8357	0.8150	0.9056
Qwen-Turbo	0.8428	0.8739	0.5431	0.9424	0.8155	0.9584
GPT4.1	0.8319	0.8493	0.5756	0.9040	0.8091	0.9456
Gemini2.5-Flash	0.7389	0.9442	0.7051	0.9403	0.8650	0.9890
Grok3	0.8234	0.9261	0.6527	0.9388	0.8483	0.9688

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904 Table 13: AUROC on ROCStories datasets across six source models.

ROCStories						
Source Model	RoBERTa	Likelihood	DNA-GPT	Fast-Detect	RAIDAR	Dald
GPT2	0.8563	0.8833	0.9199	0.8655	0.9856	0.8915
GPT-Neo-2.7B	0.8918	0.8533	0.8811	0.8862	0.9833	0.9613
Qwen-Turbo	0.6254	0.5385	0.5312	0.5625	0.8725	0.5025
GPT4.1	0.6710	0.4999	0.5132	0.5105	0.9150	0.4411
Gemini2.5-Flash	0.7476	0.2809	0.4066	0.4888	0.9500	0.4229
Grok3	0.7131	0.4553	0.4866	0.5175	0.8875	0.4311
Source Model	OOD	ImBD	Binoculars	Text-Flu	DeTeCtive	D&R(ours)
GPT2	0.9956	0.4360	0.4381	0.6024	0.9691	0.9970
GPT-Neo-2.7B	0.9982	0.6708	0.7982	0.6152	0.9883	0.9988
Qwen-Turbo	0.8448	0.7582	0.4974	0.8257	0.7533	0.9667
GPT4.1	0.8689	0.7774	0.4225	0.8129	0.8316	0.9851
Gemini2.5-Flash	0.8833	0.8575	0.4501	0.7432	0.8916	0.9849
Grok3	0.8745	0.8110	0.4261	0.8400	0.8199	0.9842

917

918
919
920
921 Table 14: **TPR (%) at Fixed FPR Thresholds.** Detailed performance breakdown across different
922 source models for both long and short text settings.
923
924
925
926

Dataset	Metric	Qwen	GPT	Gemini	Grok
Long Text	TPR@1%FPR	74.8	81.8	90.8	79.5
	TPR@5%FPR	85.4	89.8	93.8	94.6
Short Text	TPR@1%FPR	49.8	57.6	53.8	47.9
	TPR@5%FPR	64.7	73.6	70.6	69.8

927
928 by its professional language, rigorous structure, and strong logical coherence, representing a formal
929 academic writing style.
930

931 **CNN-DailyMail.** Comprising news articles from CNN and Daily Mail, this dataset is rich in factual
932 statements and coherent narrative structures. The text is of high quality and written in accessible
933 language, making it a common benchmark for news summarization and text generation research.

934 **IMDB.** The IMDB dataset contains a large collection of user-written movie reviews. These texts
935 are highly subjective, feature rich linguistic expression, and convey strong sentimental polarity and
936 personalized styles.

937 **ROCStories.** This dataset is composed of five-sentence stories centered around everyday life sce-
938 narios. These texts exhibit clear narrative structures and causal relationships, embodying the char-
939 acteristics of short, narrative-driven text.

940 **Wikihow.** This dataset contains texts extracted from “How-to” guides on wikiHow. The content is
941 concise, presented in a formal style, and typically structured as clear, step-by-step instructions.

943 **AG-News.** Consisting of news headlines and short descriptions, this dataset exemplifies the style of
944 short news text. It is highly condensed, formally structured, and logically coherent.

945 **Reddit.** This dataset is a collection of user-generated post titles and summaries from the Reddit
946 platform. The language is colloquial and diverse in style, with a free and irregular structure that
947 reflects the nature of social media communication.

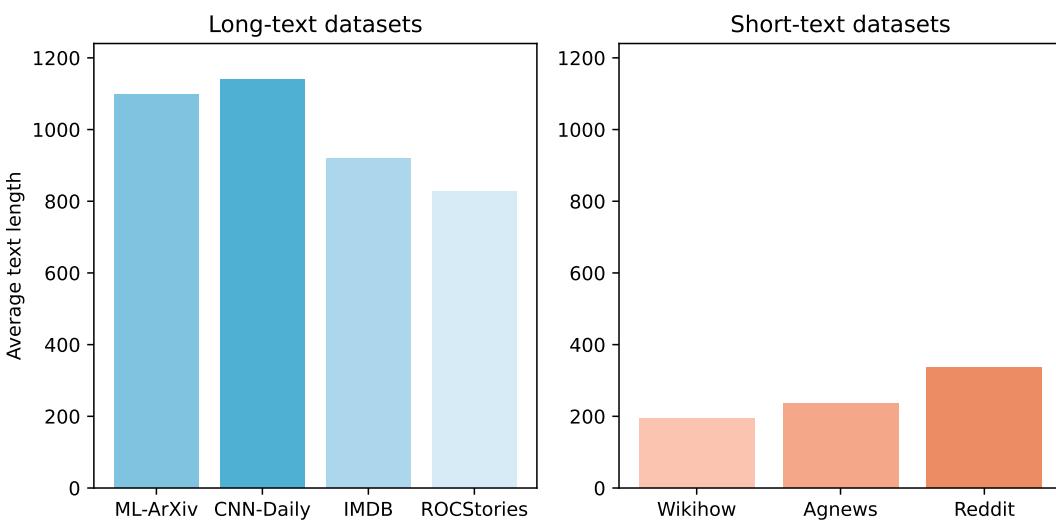


Figure 5: Average-text-length distributions for the long- and short-text datasets.