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ABSTRACT

Large language models (LLMs) generate increasingly human-like text, raising
concerns about misinformation and authenticity. Detecting AI-generated text
remains challenging: existing methods often underperform, especially on short
texts, require probability access unavailable in real-world black-box settings, in-
cur high costs from multiple calls, or fail to generalize across models. We propose
Disrupt-and-Recover (D&R), a recovery-based detection framework grounded
in posterior concentration. D&R disrupts text via model-free Within-Chunk
Shuffling, performs a single black-box LLM recovery, and measures seman-
tic–structural recovery similarity as a proxy for concentration. This design en-
sures efficiency, black-box practicality, and is theoretically supported under the
concentration assumption. Extensive experiments across four datasets and six
source models show that D&R achieves state-of-the-art performance, with AU-
ROC 0.96 on long texts and 0.87 on short texts, surpassing the strongest base-
line by +0.08 and +0.14. D&R further remains robust under source–recovery
mismatch and model variation. Our code and data is available at https:
//anonymous.4open.science/r/1MAdaWTy0xaod5qR.

1 INTRODUCTION

Large language models (LLMs) have rapidly advanced to generate human-like text across domains
such as education, news, scientific writing, and online communication. While these advances create
tremendous opportunities, they also raise serious concerns about misinformation, academic integrity,
and content authenticity, making reliable AI-generated text detection increasingly crucial. However,
this task remains highly challenging. Real-world applications require detectors that can efficiently
scale to large volumes of text with minimal overhead, for example by reducing LLM calls. They
must remain robust to evolving and diverse source models while operating in black-box settings
without probability access. They must also handle varied text lengths, with short texts being par-
ticularly difficult. These challenges underscore the need for a detection framework that is not only
accurate but also efficient, black-box practical, generalizable, and robust.

Despite recent progress, the performance of existing AI-text detectors remains far from satisfactory,
even on common long-text settings. Likelihood- and entropy-based methods (Gehrmann et al., 2019;
Hashimoto et al., 2019) rely on white-box access to model probabilities, making them impractical
for black-box settings. Perturbation- and continuation-based methods (Bao et al., 2024; Yang et al.,
2024) may improve accuracy, and rewriting-based methods (Mao et al., 2024; Park et al., 2025)
avoid probability access, but all require multiple model calls, incurring high computational cost and
showing instability (particularly on short texts). Supervised classifiers (OpenAI, 2019) lack gener-
alization and require costly labels, while watermarking detectors (Zhao et al., 2024) heavily depend
on model providers. Consequently, no existing method simultaneously delivers high performance
while satisfying the demands of efficiency, black-box practicality, generalizability, and robustness.

To address these limitations, we propose Disrupt-and-Recover (D&R), a recovery-based detection
framework grounded in the observation of posterior concentration: when text is disrupted in a way
consistent with LLM pretraining biases, AI-generated text yields LLM-based recoveries that con-
centrate more sharply around the original text Torig, whereas human-written text produces more
dispersed recoveries. D&R follows three key steps: (i) apply a model-free disruption, Within-Chunk
Shuffling (WCS), which aligns with pretraining objectives and constrains recovery to a reduced can-
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In this study, we survey and compare various techniques from the literature that 
enhance training performance without requiring additional annotated real-world 
data. These approaches primarily involve applying annotation-preserving 

transformations to existing datasets or generating synthetic data.

In this work we review and compare different techniques available in the literature 
to improve training results without acquiring additional annotated real-world data. 
This goal is mostly achieved by applying annotation-preserving transformations to 

existing data or by synthetically creating more data.
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In this study, we compare and survey various techniques from the literature that 
enhance training performance without requiring additional annotated real-world 
data. These approaches primarily involve  applying annotation-preserving 
transformations to existing datasets or generating synthetic data.

In this work we review different techniques available in the literature to compare 
results without additional annotated data and to improve training acquiring real-
world. This goal is mostly achieved by creating data synthetically or by applying 
annotation-preserving transformations to existing data more.

Similarity (F1, τ, ρ) = 0.98; 0.99; 0.98 (F1，τ，ρ) = 0.90; 0.76; 0.88

Prediction AI Human

(F1，τ，ρ)
Torig  from AI

Torig  from Human
Classifier

Figure 1: Illustration of D&R. Top: pipeline overview. Bottom: AI vs. Human examples. In
the Shuffled Tshuf, individual chunks are highlighted with alternating solid and dashed underlines.
AI text is recovered with fewer errors/higher similarity (green), whereas Human text shows more
errors/lower similarity (red). The curves below each column schematically show recovery outcomes
across examples: recoveries from AI-generated text concentrate more sharply around Torig, while
those from human-written text are more dispersed.

didate space; (ii) perform a single black-box recovery call, avoiding the inefficiency of multi-call
methods; and (iii) compute semantic and structural recovery similarities between the recovered and
original text, which serve as observable proxies for posterior concentration. These similarities are
then passed to a lightweight binary classifier to output the final prediction. As illustrated in Fig-
ure 1, AI text (left) recovers with higher similarity and more concentrated outcomes near Torig,
while Human text (right) shows lower similarity and more dispersed recoveries. Building on this
concentration assumption, we establish the theoretical foundation of D&R. We then validate its ef-
fectiveness, robustness, and usability through extensive experiments across diverse datasets, source
models, and scenarios.

This paper makes the following four contributions:

• We introduce D&R, a novel detection framework that employs a model-free disruption,
Within-Chunk Shuffling (WCS), conceptually aligned with the inductive biases of LLM
pretraining, and ensures efficiency through a single black-box recovery call.

• We propose the Concentration Assumption and design semantic–structural recovery simi-
larity metrics as faithful proxies for posterior concentration, providing the theoretical ratio-
nale for D&R.

• We conduct extensive experiments against eleven representative baselines across diverse
datasets and source models, showing that D&R achieves state-of-the-art detection and con-
sistently surpasses the strongest baseline (RAIDAR) by a significant margin.

• We further show that D&R remains robust and practical in challenging scenarios, including
short texts, source–recovery model mismatch, and recovery-model variation.

2 RELATED WORK

Zero-shot detectors. Zero-shot detectors avoid large labeled datasets and instead exploit unsu-
pervised signals such as probabilities or perturbations. Likelihood- and entropy-based methods
(Hashimoto et al., 2019; Gehrmann et al., 2019) depend on model probability distributions, making
them inherently white-box detectors. To address these limitations, recent works propose estimating
black-box logits via proxy model tuning (Zeng et al., 2024), utilizing dual-model scoring (Hans
et al., 2024), or analyzing intrinsic features by pre-trained models (Yu et al., 2024). Perturbation-
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based approaches such as DetectGPT (Mitchell et al., 2023) analyze the log-likelihood curvature
of perturbed passages, with the state-of-the-art variant Fast-DetectGPT (Bao et al., 2024) improv-
ing both accuracy and efficiency. NPR (Su et al., 2023) also leverages paraphrasing but measures
residual signals, and is less effective than Fast-DetectGPT. Continuation-based methods such as
DNA-GPT (Yang et al., 2024) truncate the text and regenerate the suffix for comparison. Rewriting-
based RAIDAR (Mao et al., 2024) generates paraphrased versions of entire passages and measures
consistency via edit distances between versions, but it requires multiple model calls, depends on
a specific paraphraser, and is vulnerable to prompt-level manipulations. Among these, RAIDAR
is most relevant to our D&R, as both rely on transformation-consistency—assessing textual con-
sistency under transformations such as paraphrasing or shuffling–recovery. In contrast to existing
generative methods (e.g., perturbation-, continuation-, and rewriting-based ones), D&R achieves
detection with only a single model call.

Non-zero-shot detectors. Non-zero-shot detectors rely on supervised discriminative models trained
with large labeled datasets. Representative examples include RoBERTa-based classifiers (Liu et al.,
2019), and the OpenAI Text Classifier (OpenAI, 2019), alongside recent frameworks utilizing multi-
level contrastive learning (Guo et al., 2024), stylistic alignment (Chen et al., 2025), or out-of-
distribution detection on human texts (Zeng et al., 2025). These approaches can achieve strong
in-domain accuracy but generalize poorly to unseen generation models and require costly labeling
and frequent retraining as LLMs evolve. Another line of work explores watermarking (Zhao et al.,
2024; Kirchenbauer et al., 2023), which embeds detectable signatures during generation. However,
watermarking depends on model providers and is unsuitable for post-hoc detection.

3 METHOD

Our D&R method follows the pipeline shown in Algorithm 1. First, we introduce a semantic-
preserving disruption, Within-Chunk Shuffling, which aligns with LLM pretraining objectives by
constraining the recovery problem to a locally permuted candidate space. Second, we perform a
single LLM call to recover the text. Next, we compute both semantic and structural similarities
between the recovered and source texts, and use these similarities as observable recoverability met-
rics. Finally, we train a binary classifier on the recoverability metrics of labeled AI-generated and
human-written texts, and apply it to obtain detection results.

Algorithm 1 D&R Pipeline

1: Input: Original text Torig; black-box LLMM
2: Output: Prediction y ∈ {Human,AI}
3: for each chunk ci in Torig do
4: cshuf

i ← ShuffleTokens(ci) ▷ Apply Within-Chunk Shuffling
5: end for
6: Tshuf ← Join({cshuf

i }) ▷ Obtain disruption result
7: Trec ←M.Recover(Tshuf) ▷ Single-call recovery
8: F1 ← SemanticSim(Torig, Trec) ▷ Compute semantic similarity
9: (τ, ρ)← StructuralSim(Torig, Trec) ▷ Compute structural similarity

10: y ← Classifier([F1, τ, ρ]) ▷ Predict label
11: return y

Intuitively, recovery outcomes for AI-generated text within this constrained space tend to be highly
concentrated, whereas human-written text yields more dispersed results due to the diversity of writ-
ing processes. This concentration gap can be characterized by the notion of posterior concentration,
which provides the theoretical rationale behind our method and is, in practice, approximated by
recovery similarity metrics.

A key design in D&R is the disruption step, which determines the nature of the subsequent recov-
ery task. We adopt Within-Chunk Shuffling (WCS), where the original text Torig is segmented into
chunks by punctuation marks, and tokens within each chunk are randomly permuted while preserv-
ing chunk order. This disruption requires no model calls and can be implemented with a simple
random shuffling function.

3
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The advantage of WCS is that it constrains recovery to a locally permuted candidate space rather
than the unconstrained generative space, closely aligning with pretraining objectives that emphasize
predicting local token orderings. As a result, recovery under WCS becomes almost effortless for the
LLM, akin to recalling the original token order, leading to recovered texts that lie very close to the
source. In distributional terms, AI-generated text tends to yield recovery outcomes that are highly
concentrated near the original text, i.e., exhibiting strong posterior concentration, whereas human-
written text produces more dispersed recoveries due to greater variability in writing processes.

Formally, as Algorithm 1 shows, we segment Torig into chunks by punctuation, apply a random per-
mutation to the tokens within each chunk, and then join the shuffled chunks to obtain the disrupted
text Tshuf, which is used as the input for the subsequent recovery step.

3.1 RECOVERY WITH A SINGLE LLM CALL

After disruption, the shuffled text Tshuf is passed to a large language model for recovery. We perform
this step with a single LLM call, where the model is prompted to restore token order and reconstruct
a coherent version of the original text Trec. A typical recovery prompt is:

The following text has its tokens shuffled within
punctuation-delimited spans. Please restore the correct
word order without adding or removing words: [INPUT].

This single-call design is both more efficient than multi-call approaches and well aligned with LLM
pretraining priors, as predicting local token order is a task for which pretrained models are already
highly competent. In practice, recovery can be performed either (i) via API calls to black-box
LLMs (e.g., DeepSeek-v3), or (ii) via local inference with smaller models (e.g., Mistral 7B).
Importantly, D&R achieves strong performance in both settings, demonstrating robustness and cost-
effectiveness, a property we further validate in our Recovery-Model Independence experiments (see
Section 4.3). Formally, given disrupted input Tshuf and recovery model M, the recovered text is
obtained as in Algorithm 1.

3.2 RECOVERABILITY METRICS

Given an original text Torig and its recovered counterpart Trec, we quantify recoverability using two
complementary forms of recovery similarity: semantic and structural.

Semantic similarity. We adopt BERTScore (Zhang et al., 2020), which measures token-level seman-
tic overlap by comparing contextual embeddings from a pre-trained transformer (bert-base-uncased,
Devlin et al., 2019). Let m and n denote the number of tokens in Torig and Trec, respectively; {xi}mi=1
and {yj}nj=1 their contextual embeddings; and cos(·, ·) the cosine similarity. Semantic similarity is
defined by the F1 score calculated from BScore’s precision and recall:

Precision (P) =
1

n

n∑
j=1

max
i

cos(xi, yj), Recall (R) =
1

m

m∑
i=1

max
j

cos(xi, yj), F1 =
2PR

P +R
.

Structural similarity. We measure word-order consistency using Kendall’s τ (Kendall, 1938; Chen
et al., 2023) and Spearman’s ρ (Spearman, 1904; Guo et al., 2025), two rank-based correlation
coefficients applied to token orderings. When m ̸= n or tokens repeat, we first construct a one-
to-one alignment A = {(ik, jk)}ℓk=1 ⊆ [m] × [n] (e.g., via token-normalized Longest Common
Subsequence (LCS) with left-to-right stable matching), and then compute ranks rk = ik and sk = jk
for k = 1, . . . , ℓ, where C and D denote the numbers of concordant and discordant pairs among the
aligned indices.

τ =
C −D

1
2 ℓ(ℓ− 1)

, ρ = 1−
6
∑ℓ

k=1(rk − sk)
2

ℓ(ℓ2 − 1)
.

Semantic similarity captures fidelity of meaning, while structural similarity assesses reconstruction
of word order. Together, higher values indicate the recovered text stays closer to the source both
semantically and structurally. Thus, these complementary metrics provide observable signals of
recoverability.
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Sanity check 1. We conducted a lightweight evaluation of our metrics on the ML-ArXiv-Papers
dataset (arXiv.org submitters, 2024) by sampling 1,000 AI-generated and 1,000 human-written texts.
For each text, we computed recovery similarity with three metrics (BERTScore F1, Kendall’s τ ,
and Spearman’s ρ) and plotted their distributions in Figure 2. AI-generated texts consistently ex-
hibit higher average similarity scores than human-written texts, revealing clear distributional gaps
across all metrics. Thus, our recoverability metrics are effective for distinguishing AI-generated
from human-written text.
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Figure 2: Distributions of recovery similarity scores on 1,000 ML-ArXiv-Papers samples. AI-
generated texts show a clear trend toward higher scores than human-written texts across all metrics:
BERTScore F1, Kendall’s τ , and Spearman’s ρ.

Sanity check 2. We conducted another lightweight evaluation on the ML-ArXiv-Papers
dataset (arXiv.org submitters, 2024), varying the temperature of the recovery model to control out-
put concentration, where the temperature is a decoding hyperparameter in the inference API (lower
values yield more concentrated outputs, while higher values yield more dispersed ones). As shown
in Figure 3, recovery similarity scores across all metrics decrease as temperature increases, demon-
strating a positive correlation with posterior concentration. This confirms that our recoverability
metrics provide observable proxies for posterior concentration.
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Figure 3: Recovery similarity scores on 1,000 ML-ArXiv-Papers samples across recovery-model
temperature settings. Scores track posterior concentration: lower temperatures yield higher concen-
tration and similarity, whereas higher temperatures reduce both across all metrics.

3.3 THEORETICAL ANALYSIS AND PROOF

3.3.1 THEORETICAL RATIONALE

Concentration Assumption: Following a disruption that preserves semantics while respecting the
inductive biases of LLM pretraining (e.g., Within-Chunk Shuffling), the distribution of LLM-based
recovery outputs for AI-generated text is more concentrated in the vicinity of the original text,
whereas the distribution for human-written text is more dispersed.

Crucially, since posterior concentration is a distributional property that cannot be directly observed
in a single-call recovery, D&R indirectly estimates it from a single recovery sample Trec by comput-
ing its similarity S to the original text Torig. We prove below that Recovery similarity is a faithful
proxy for posterior concentration, yielding a non-trivial gap between AI-and human-written texts.
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SETUP

Let M be the recovery model, Torig the original text, Tshuf its WCS-disrupted version, and Trec ∼
M(· | Tshuf) a recovered sample. Define a distance d(·, ·)≥ 0 (e.g., normalized Kendall distance)
and a bounded similarity S(·, ·)∈ [0, 1] with S = 1 when texts match.

The posterior is (r, δ)-concentrated if Pr
(
d(Torig, Trec) ≤ r

)
≥ 1 − δ. Assume S is continuous in

d with modulus of continuity ω(·), i.e., S(Torig, u) ≥ 1 − ω(d(Torig, u)), ∀u, with ω(0) = 0
and ω non-decreasing (e.g., ω(t) = Lt).

Theorem 1 (Posterior concentration ⇒ high recovery similarity). If the recovery posterior is
(r, δ)-concentrated, then with probability at least 1−δ, S(Torig, Trec) ≥ 1−ω(r), and consequently,

E
[
S(Torig, Trec)

]
≥ (1− δ)(1− ω(r)).

Proof. Define A = {Trec : d(Torig, Trec) ≤ r}. By posterior concentration, Pr(A) ≥ 1 − δ. For
Trec ∈ A, the continuity of S gives S ≥ 1 − ω(r). For Trec /∈ A, we only know S ≥ 0. Hence
E[S] ≥ (1− ω(r)) Pr(A) ≥ (1− ω(r))(1− δ). □

Theorem 2 (Non-trivial gap under Concentration Assumption). Let T AI
orig and T Human

orig denote AI-
generated and human-written texts. Suppose their recovery posteriors are (rA, δA)- and (rH , δH)-
concentrated, respectively. Assume there exists δ0 > 0 and ϵ > 0 such that the expected similarity
for human text satisfies: E[S(T Human

orig , T Human
rec )] < (1−δ0)(1−ω(rH)), and (1−δA)(1−ω(rA)) ≥

(1 − δH)(1 − ω(rH)) + 2ϵ. Furthermore, assume the compatibility condition δH ≥ δ0 ≥ δH −
ϵ

1−ω(rH) holds and ω(rA) ≤ ω(rH). Then

E[S(T AI
orig, T AI

rec )] ≥ E[S(T Human
orig , T Human

rec )] + ϵ.

Proof. By Theorem 1, E[SAI] ≥ (1−δA)(1−ω(rA)); by the assumption, E[SHuman] < (1−δ0)(1−
ω(rH)). Therefore, E[SAI]−E[SHuman] ≥ (1− δH)(1−ω(rH))+ 2ϵ− (1− δ0)(1−ω(rH)) =
(1− ω(rH))(δ0 − δH) + 2ϵ ≥ ϵ. □

Consequences for Metrics. - Kendall τ : τ = 1−2d, so ω(r) = 2r. - Spearman ρ: If at most fraction
r of ranks are perturbed, then 1 − ρ ≤ cℓr, hence ω(r) = cℓr. - BERTScore F1: WCS preserves
token sets; embedding drift under local permutations is bounded by Lsemr, hence ω(r) = Lsemr.

Takeaway. Theorem 1 shows that posterior concentration entails high recovery similarity: as r → 0
and δ → 0, S → 1. Theorem 2 shows that under the Concentration Assumption, AI texts achieve
strictly higher expected recovery similarity than human texts by margin ϵ. Thus recovery similar-
ity is a faithful proxy for posterior concentration, providing the theoretical foundation for D&R.
We provide a detailed discussion on the validity of the assumptions underlying Theorem 2 in Ap-
pendix A.2.

3.3.2 COMPUTATIONAL OVERHEAD.

The efficiency of D&R stems from requiring only a single black-box LLM call. Its time overhead
is TD&R = Tshuffle + TLLM + Tsimilarity, where the shuffling cost is negligible (Tshuffle ≈ 0) and the
similarity scoring cost is much smaller than an LLM call (Tsimilarity ≪ TLLM), so the overall cost is
dominated by one call. In contrast, existing generative methods (e.g., perturbation-, continuation-, or
rewriting-based) require multiple calls, performing k > 1 queries with overhead Tbaseline ≈ k·TLLM+
Textra, which scales as O(k · TLLM). Thus, D&R lowers detection overhead to O(TLLM), providing
linear efficiency gains without additional assumptions. Empirical validation of these efficiency gains
is provided in Appendix A.4.

4 EXPERIMENTS

We evaluate D&R against representative baselines on long-text datasets, with ablations of recover-
ability metrics, and further analyze its usability and robustness in challenging real-world scenarios
including short texts, source–recovery model mismatch, and recovery LLM variation, providing a
comprehensive assessment of its effectiveness.

6
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4.1 SETTINGS

Datasets and Metrics. To evaluate the performance of the D&R method on paragraph-level AI-
generated text detection, we use six publicly available datasets spanning different text lengths and
domains. Based on average text length, we group them into long texts (>800 words) and short texts
(<350 words), with dataset-wise length distributions shown in Figure 5. The long-text group in-
cludes ML-ArXiv-Papers (research abstracts) (arXiv.org submitters, 2024), CNN-DailyMail (news
articles) (See et al., 2017), IMDB (movie reviews) (Maas et al., 2011), and ROCStories (five-
sentence stories) (Mostafazadeh et al., 2016); the short-text group includes Wikihow (instructional
guides) (Sentence-Transformers, 2020), AG-News (news headlines and summaries) (Zhang et al.,
2015), and Reddit (user-generated posts) (Sentence-Transformers, 2021). For each dataset, we sam-
ple 1,000 human-written texts as negatives and generate AI counterparts of comparable length via
paraphrasing prompts from different source models, ensuring balanced parallel datasets. To mimic
diverse real-world source models, we use six widely adopted LLMs from different providers: GPT-2
(Solaiman et al., 2019), GPT-Neo-2.7B (Black et al., 2021), Qwen-Turbo (Yang et al., 2025), GPT-
4.1 (OpenAI, 2025), Gemini2.5-Flash (Comanici et al., 2025), and Grok3 (xAI, 2025). Detection
performance is measured with the area under the ROC curve (AUROC) (Fawcett, 2006), which
reflects the probability that the detector ranks an AI-generated text above a human-written one.

Baselines. We compare D&R against eleven representative baselines spanning all major families of
AI-generated text detection. These include the rewriting-based RAIDAR (Mao et al., 2024), most
closely related to our method; the perturbation-based Fast-DetectGPT (Bao et al., 2024), the state
of the art in this family; the continuation-based DNA-GPT (Yang et al., 2024); the likelihood-based
method (Hashimoto et al., 2019); recent works such as Binoculars (Hans et al., 2024), DALD (Zeng
et al., 2024), and Text Fluoroscopy (Yu et al., 2024). Finally, we compare against supervised and
learning-based detectors, including the RoBERTa classifier (OpenAI, 2019), Detective (Guo et al.,
2024) , Imitate Before Detect (Chen et al., 2025), and Human-Outlier OOD detection (Zeng et al.,
2025). In the main experiments, we report results against all eleven baselines for comprehensive
coverage. For additional experimental analyses, we focus on the strongest baselines and report
results only against RAIDAR and Fast-DetectGPT. Baseline configurations follow their original
papers, unless otherwise specified.

4.2 MAIN RESULTS

Detection Performance. We compare D&R with eleven representative baselines on four long-text
datasets across six source models, reporting AUROC performance in Table 1 and their visualization
in Figure 4. For fairness, the same transformation model (DeepSeek-v3) is used for RAIDAR’s para-
phrasing and D&R’s recovery. As shown in Table 1, D&R achieves the highest mean AUROC with
the lowest variance (0.9602±0.0351), substantially outperforming all baselines in both accuracy and
stability. Figure 4 further illustrates that D&R’s advantage holds consistently, while baselines not
only perform worse but also fluctuate with dataset and source model shifts. For instance, on ML-
ArXiv-Papers, when the source model changes from GPT-2 to the more advanced Grok-3, RAIDAR
drops from about 0.90 to 0.77, whereas D&R remains stable above 0.95. These results demonstrate
that D&R is a robust and effective zero-shot detector for long-text scenarios.
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Figure 4: AUROC scatter plot on four long-text datasets across six source models, complementing
the averaged results in Table 1.
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Table 1: Mean±SD AUROC on four long-text datasets, averaged over six source models, using
DeepSeek-v3 as the recovery model. The first two entries are traditional methods, while the remain-
ing baselines represent recent state-of-the-art approaches from top venues (NeurIPS, ICML, ACL,
EMNLP, ICLR), followed by our proposed D&R. Detailed per-dataset results are provided in Ap-
pendix A.5.

Dataset RoBERTa-based Likelihood Dald OOD-based

ML-ArXiv-Papers 0.6195±0.1443 0.6628±0.1667 0.7838±0.1441 0.7648±0.1323
CNN-DailyMail 0.6174±0.1456 0.5786±0.1186 0.7336±0.0992 0.6203±0.1703
IMDB 0.6114±0.1273 0.6617±0.1085 0.6941±0.1303 0.8392±0.0773
ROCStories 0.7675±0.1182 0.5852±0.2158 0.6084±0.2515 0.9109±0.0694
Avg. 0.6539±0.1498 0.6221±0.1633 0.7050±0.1313 0.7838±0.1373

Dataset ImBD Text Fluoroscopy DeTeCtive Binoculars

ML-ArXiv-Papers 0.7693±0.0964 0.8266±0.1367 0.7772±0.1123 0.6435±0.1406
CNN-DailyMail 0.8115±0.1248 0.8905±0.0762 0.8295±0.1116 0.5333±0.1044
IMDB 0.8424±0.0957 0.8917±0.0621 0.8452±0.0403 0.6650±0.0910
ROCStories 0.7185±0.1451 0.7399±0.1053 0.8756±0.0917 0.5054±0.1487
Avg. 0.7854±0.0905 0.8372±0.0951 0.8319±0.0890 0.5868±0.0962

Dataset DNA-GPT Fast-DetectGPT RAIDAR D&R(ours)

ML-ArXiv-Papers 0.6400±0.1708 0.7242±0.1456 0.8611±0.0472 0.9266±0.0354
CNN-DailyMail 0.5953±0.1659 0.5838±0.1556 0.8471±0.0759 0.9830±0.0063
IMDB 0.6491±0.1291 0.7277±0.1075 0.8675±0.0552 0.9451±0.0314
ROCStories 0.6231±0.2002 0.6385±0.1855 0.9323±0.0482 0.9861±0.0115
Avg. 0.6269±0.1697 0.6685±0.1583 0.8770±0.0657 0.9602±0.0351

Ablation Study. We examine the contribution of semantic and structural recovery similarities
through an ablation study on four long-text datasets with advanced source models. As shown in
Table 7, removing semantic similarity results in the largest performance drop (↓28.1%), while re-
moving structural similarity also yields a substantial decrease (↓19.8%). The full model achieves an
AUROC of 0.9614, demonstrating that both forms of recovery similarity are indispensable and that
their combination ensures state-of-the-art accuracy and stability. We also experimentally showed
that our Within-Chunk Shuffling (WCS) is optimal compared to global or chunk-order shuffling,
effectively striking an optimal balance in the recovery task difficulty to maximize the concentration
gap, detailed analyses for these experiments are provided in Appendix A.3.2.

4.3 ANALYSIS

Short-text Robustness. Short texts are particularly challenging for AI-generated text detection,
as the limited context amplifies the distributional overlap between human and machine outputs. As
shown in Table 2, D&R achieves the highest mean AUROC with low variance (0.8687±0.0888), sig-
nificantly outperforming RAIDAR and Fast-DetectGPT by margins of 0.14 and 0.21, respectively.
The advantage is most pronounced on earlier source models (GPT-2, GPT-Neo-2.7B), where D&R
attains near-perfect AUROC scores (around 0.99), while on stronger models performance declines
for all methods but D&R still maintains clear margins. These results underscore D&R’s consistent
superiority on short-text detection and its resilience across both weaker and stronger generators.

Source-model Agnosticism (Robustness under Model Mismatch). As transformation-
consistency based detectors, both D&R and RAIDAR rely on a transformation model to recover
or paraphrase the text generated by a source model. Although neither method requires explicit
knowledge of the source model, performance can depend on whether the source and transformation
models are the same. We therefore evaluate two cases: (i) the same-source case (src=trx), an eas-
ier, pseudo–white-box setting in which the detector can implicitly benefit from the source model’s
distributional biases; and (ii) the different-source case (src ̸=trx), a more realistic heterogeneous
pairing. As shown in Table 3, across both settings, our D&R consistently outperforms RAIDAR.
Moreover, under the different-source condition, D&R degrades only 0.1-3.3% degradation (mean
1.9%), whereas RAIDAR drops by 4.2-14.2% (mean 9.4%). These results demonstrate that D&R
is source-agnostic: it does not rely on knowledge of the source model, remaining markedly more
robust than RAIDAR under model mismatch.
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Table 2: AUROC performance on three Short-Text datasets across six source models. For each
dataset, results from two earlier models (GPT-2, GPT-Neo-2.7B) and four more advanced models
(Qwen-Turbo, GPT-4.1, Gemini 2.5, Grok-3) are separated by a dotted line.

Dataset Source Model Method

Fast-DetectGPT RAIDAR D&R (ours)

Wikihow

GPT2 0.7449 0.7800 0.9904
GPT-Neo-2.7B 0.7936 0.7743 0.9987
Qwen-Turbo 0.5193 0.5300 0.7363
GPT4.1 0.4551 0.5700 0.7850
Gemini2.5-Flash 0.4370 0.7550 0.8517
Grok3 0.4719 0.6950 0.7727

AG-News

GPT2 0.7780 0.7231 0.9886
GPT-Neo-2.7B 0.7932 0.7524 0.9982
Qwen-Turbo 0.7542 0.6850 0.7666
GPT4.1 0.5819 0.6735 0.8202
Gemini2.5-Flash 0.6898 0.7776 0.8835
Grok3 0.6439 0.7375 0.7963

Reddit

GPT2 0.7043 0.7649 0.9271
GPT-Neo-2.7B 0.7259 0.7947 0.9586
Qwen-Turbo 0.6852 0.7310 0.7502
GPT4.1 0.6406 0.7429 0.8451
Gemini2.5-Flash 0.7007 0.7810 0.9007
Grok3 0.6916 0.7800 0.8672

Mean±SD 0.6561±0.1129 0.7248±0.0707 0.8687±0.0888

Table 3: AUROC performance under same vs. different Source–Transformation Pairings. The trans-
formation model (trx) is fixed as DeepSeek-v3. For the ‘Same’ case (src=trx), the source model
equals the transformation model; for the ‘Different’ case (src̸=trx), results are averaged over six
diverse source models listed in Table 1.

Dataset RAIDAR D&R (ours)

Same (src=trx) Different (src̸=trx) Same (src=trx) Different (src ̸=trx)

ML-ArXiv-Papers 0.9475 0.8611 ↓9.1% 0.9590 0.9266 ↓3.3%
CNN-DailyMail 0.9875 0.8471 ↓14.2% 0.9943 0.9830 ↓1.1%
IMDB 0.9675 0.8675 ↓10.3% 0.9770 0.9451 ↓3.2%
ROCStories 0.9825 0.9412 ↓4.2% 0.9869 0.9865 ↓0.1%

Average 0.9712 0.8792 ↓9.4% 0.9793 0.9603 ↓1.9%

Recovery-model Independence (API-based vs. Local LLMs). We examine whether D&R de-
pends on the choice of recovery model. In addition to DeepSeek-v3 (the API-based recovery model
used in the main experiments), we evaluate Mistral-7B-Instruct-v0.3 as a locally deployed recov-
ery model. As shown in Table 4, D&R maintains strong performance (mean AUROC 0.9614 vs.
0.9359), with only ∼2.5% degradation when switching from a large API model to a smaller local
model. Importantly, D&R with Mistral-7B still outperforms RAIDAR even when RAIDAR relies on
the larger DeepSeek-v3 as the recovery model (data omitted for brevity). These results demonstrate
that D&R is robust across recovery-model families and scales, and remains practically deployable
even with smaller local models.

Further Robustness and Generalization. To thoroughly evaluate D&R’s applicability, we ex-
tended our experiments to two additional settings: (i) Adversarial Robustness: On the RAID
benchmark (Dugan et al., 2024), D&R retains high efficacy (AUROC 0.87) and proves resilient
against 11 varying attack categories, most notably paraphrasing. (ii) Multilingual Generalization:
Experiments on German, Spanish, and French confirmed that D&R generalizes effectively beyond
English, achieving > 0.93 AUROC on long texts. Detailed results and analyses for these experi-
ments are provided in Appendix A.3.
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Table 4: AUROC performance with two Recovery Models: DeepSeek-v3 (API-based) and Mistral-
7B-Instruct-v0.3 (local).

Dataset Source Model DeepSeek-v3 (API-based) Mistral-7B (Local)

D&R RAIDAR D&R

ML-ArXiv-Papers

Qwen-Turbo 0.8580 0.8375 0.8039
GPT4.1 0.9108 0.8600 0.8656
Gemini2.5-Flash 0.9299 0.9025 0.8972
Grok3 0.9559 0.7700 0.8157

CNN-DailyMail

Qwen-Turbo 0.9800 0.8300 0.9800
GPT4.1 0.9908 0.9125 0.9844
Gemini2.5-Flash 0.9901 0.9325 0.9862
Grok3 0.9856 0.8725 0.9784

IMDB

Qwen-Turbo 0.9584 0.8400 0.9381
GPT4.1 0.9456 0.8600 0.9289
Gemini2.5-Flash 0.9890 0.9475 0.9713
Grok3 0.9688 0.9275 0.9398

ROCStories

Qwen-Turbo 0.9667 0.8725 0.9522
GPT4.1 0.9851 0.9150 0.9758
Gemini2.5-Flash 0.9849 0.9500 0.9818
Grok3 0.9842 0.8875 0.9752

Mean±SD 0.9614±0.0350 0.8823±0.0475 0.9359±0.0579

5 CONCLUSION

Disrupt-and-Recover (D&R) provides an efficient, black-box practical, and theoretically grounded
framework for AI-text detection, achieving state-of-the-art accuracy and robustness across diverse
settings, with particularly strong gains on short texts. Beyond these empirical results, D&R high-
lights posterior concentration as a guiding principle, opening new directions for disruption–recovery
approaches across broader modalities and detection tasks. Detecting extremely short texts remains
challenging as limited context obscures the concentration gap. Future work will address this via
finer-grained disruption and retrieval-augmented signals to enhance sensitivity.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (ChatGPT and Gemini) as assistive tools in
the preparation of this paper. Their role was strictly limited to language refinement, including
grammar correction, sentence restructuring, and style polishing. All substantive research contri-
butions—including hypothesis formulation, experimental design and execution, result analysis, and
conclusions—are solely the work of the authors.

A.2 DISCUSSION ON THE VALIDITY OF ASSUMPTIONS IN THEOREM 2

In this section, we provide a detailed breakdown of the assumptions underlying Theorem 2, dis-
cussing the specific conditions under which they hold and the rationale behind them.

Assumption 1 (Upper Bound of Expected Similarity for Human-Written Text). There exist
δ0 > 0 and ϵ > 0 such that:

E[S(T Human
orig , T Human

rec )] < (1− δ0)(1− ω(rH)) (1)

When It Holds: This assumption holds if the recovery distribution of human text satisfies two
theoretical properties:

1. Posterior concentration: Pr(A) ≥ 1− δH , where A = {d(T Human
orig , T Human

rec ) ≤ rH}, as
per Theorem 1.

2. Negligible excess similarity: For the concentrated subset, the excess similarity is negligible,
i.e., α = E[S | A]−(1−ω(rH)) = o(1−ω(rH)); and for the deviated subset, the similarity
is negligible, i.e., β = E[S | Ac] = o(1− ω(rH)).

Rationale: Human text inherently lacks the specific pretraining biases of LLMs (often exhibiting
more flexible semantics and diverse structures). Consequently, even well-recovered human text can-
not achieve the “exact consistency” typical of AI text (justifying the bound on α), while deviated
recoveries typically result in near-zero similarity (justifying β). The expectation decomposition
E[SHuman] = E[S | A] Pr(A) + E[S | Ac] Pr(Ac) mathematically derives the upper bound, ensur-
ing theoretical rigor.

Assumption 2 (Gap in Theoretical Lower Bounds for AI-Generated Text).
(1− δA)(1− ω(rA)) ≥ (1− δH)(1− ω(rH)) + 2ϵ (2)

When It Holds: This assumption holds for standard LLMs (e.g., GPT-4, Gemini) under normal
generation settings (implying a high probability of occurrence):
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1. Practical condition: AI text is generated with standard parameters (e.g., temperature≤ 1.0,
without random token insertion).

2. Theoretical condition: δA ≤ δH , rA ≤ rH , and 2ϵ is less than or equal to the intrinsic
AI-human lower bound gap.

Rationale: LLMs are pretrained to optimize local token predictability. This objective leads to
inherently stronger posterior concentration (smaller deviation radius rA and higher probability mass
1− δA) compared to human text, creating a natural distributional gap.

Assumption 3 (Compatibility Condition).

δH ≥ δ0 ≥ δH −
ϵ

1− ω(rH)
(3)

When It Holds: This assumption holds for all valid parameter tunings (providing a 100% chance
of a non-empty interval):

1. Practical condition: ϵ is set to a small conceptual margin (e.g., 0.03–0.08), aligned with
observed AI-human generation differences.

2. Theoretical condition: ϵ ≤ δH(1 − ω(rH)). This is naturally satisfied since δH > 0 for
human text and 1− ω(rH) > 0 for any reasonable radius rH > 0.

Rationale: This interval serves to balance Assumptions 1 and 2. A value for δ0 can always be
chosen within this range (e.g., δ0 = δH − ϵ

2(1−ω(rH)) ) to strictly avoid mathematical contradictions.

Summary. The assumptions may fail only in extreme edge cases (e.g., AI text generated by non-
pretrained/random models, or human text intentionally mimicking AI patterns). However, they hold
universally in standard AI-text detection tasks. Our sanity checks confirm their practical applicabil-
ity, while the theoretical conditions ensure a high probability of occurrence in real-world scenarios.

A.3 EXTENDED EXPERIMENTAL ANALYSIS

In this section, we present comprehensive evaluations concerning adversarial robustness, the abla-
tion of disruption strategies, and multilingual generalization to further validate the effectiveness of
D&R.

A.3.1 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

To evaluate the robustness of D&R against adversarial attempts to evade detection, we utilized the
RAID (Dugan et al., 2024). We tested D&R against 11 diverse attack types, ranging from character-
level perturbations (e.g., homoglyphs) to high-level semantic obfuscations (e.g., paraphrasing).

As shown in Table 5, D&R maintains strong performance across all attack categories. Even under
Paraphrase attacks—typically considered the most challenging for detection—D&R maintains a
strong AUROC of 0.8210. Furthermore, for character-level attacks (e.g., Homoglyph, Zero Width
Space), performance remains robust (> 0.83). These results indicate that our disruption-recovery
mechanism relies on intrinsic posterior concentration rather than surface-level artifacts, making it
difficult to fool via simple perturbations.

Table 5: Robustness of D&R on the RAID Dataset (AUROC). The method maintains high detection
performance across various attack types.

Attack Type AUROC Attack Type AUROC

None (Clean) 0.8736 Homoglyph 0.8352
Insert Paragraphs 0.8428 Number 0.8641
Alternative Spelling 0.8564 Paraphrase 0.8210
Article Deletion 0.8627 Whitespace 0.8505
Synonym 0.8139 Upper/Lower 0.8479
Perplexity Misspelling 0.8643 Zero Width Space 0.8322
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A.3.2 ABLATION STUDY OF WITHIN-CHUNK SHUFFLING AND RECOVERY SIMILARITY

To verify the necessity of our Within-Chunk Shuffling (WCS) strategy, we compared it against
two alternative disruption mechanisms:

Global Shuffling: Randomly shuffling all tokens in the text.

Chunk-Order Shuffling: Shuffling the order of chunks while keeping tokens within chunks intact.

Table 6 presents the results across four datasets.

Table 6: Ablation Study Results comparison (Avg. AUROC on 4 Datasets).

Disruption Method ML-ArXiv CNN-DM IMDB ROCStories Avg.

D&R (Global Shuffling) 0.5421 0.5833 0.5612 0.5390 0.5564
D&R (Chunk-Order Shuffling) 0.7130 0.7544 0.7205 0.7811 0.7423
D&R (WCS - Ours) 0.9266 0.9830 0.9451 0.9861 0.9602

• Global Shuffling: The severe disruption destroys all semantic context, making recovery
impossible for both AI and Human texts. Since both fail to be recovered, they become
indistinguishable, dropping performance to random guessing (∼0.55).

• Chunk-Order Shuffling: Preserving internal token order makes the task trivial, allowing
both AI and Human texts to be recovered with high fidelity. This “ceiling effect” causes
their recoverability scores to converge, significantly reducing discriminability.

• WCS (Ours): WCS proves to be the optimal disruption strategy. It disrupts local token
order to challenge the model while preserving semantic anchors, thereby maximizing the
observable “concentration gap” between AI and Human text.

Table 7: Ablation study of D&R by removing Semantic or Structural Recovery Similarity.

Dataset Source Model w/o SemanticSim w/o StructuralSim D&R

ML-ArXiv-Papers

Qwen-Turbo 0.6529 0.7342 0.8580
GPT4.1 0.6616 0.7268 0.9108
Gemini2.5-Flash 0.7029 0.7311 0.9299
Grok3 0.7272 0.7611 0.9559

CNN-DailyMail

Qwen-Turbo 0.6567 0.7465 0.9800
GPT4.1 0.6627 0.7151 0.9908
Gemini2.5-Flash 0.6955 0.7731 0.9901
Grok3 0.6653 0.7072 0.9856

IMDB

Qwen-Turbo 0.7112 0.8560 0.9584
GPT4.1 0.7011 0.8551 0.9456
Gemini2.5-Flash 0.7013 0.8806 0.9890
Grok3 0.7159 0.8716 0.9688

ROCStories

Qwen-Turbo 0.6581 0.7158 0.9667
GPT4.1 0.6561 0.7410 0.9851
Gemini2.5-Flash 0.8022 0.7910 0.9849
Grok3 0.6796 0.7256 0.9842

Average 0.6906 ↓28.1% 0.7707 ↓19.8% 0.9614

A.3.3 MULTILINGUAL GENERALIZATION

To demonstrate that D&R is not limited to English, we extended our experiments to German (DE),
Spanish (ES), and French (FR). We utilized the MLSUM (Scialom et al., 2020) dataset for long
texts and the Amazon (Keung et al., 2020) reviews dataset for short texts, averaging results across
diverse source models.

As detailed in Table 8, D&R achieves consistently high performance across all tested languages
(AUROC > 0.93 for long texts). Even on challenging short texts, it maintains robust performance
(> 0.83). This confirms that the principle of posterior concentration is not an artifact of English-
centric training but holds across different languages.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Multilingual Performance (Avg. AUROC) on long (MLSUM) and short (Amazon) texts.

Language Long Text (MLSUM) Short Text (Amazon)

German (DE) 0.9306 0.8313
Spanish (ES) 0.9556 0.8604
French (FR) 0.9377 0.8592

Overall Avg ∼0.94 ∼0.85

A.4 EFFICIENCY COMPARISON

To quantify the practical benefits of our single-call framework, we compared the average latency
and estimated cost of D&R against RAIDAR, the most competitive baseline which requires multiple
generation calls.

As shown in Table 9, D&R drastically reduces computational overhead. Specifically, the single-
call design lowers the average latency from 15 seconds to 2 seconds per sample and reduces the
estimated API cost from $5 to $0.2 per 1,000 samples. This confirms that D&R is not only accurate
but also highly efficient for large-scale deployment.

Table 9: Efficiency comparison between the multi-call baseline (RAIDAR) and our single-call
method (D&R). Cost is estimated per 1,000 samples.

Method Avg Latency (s) Est. Cost ($/1k samples) Calls per Sample
RAIDAR 15 $5 ∼5 calls
D&R (Ours) 2 $0.2 1 call

A.5 ADDITIONAL RESULTS

In this section, we present comprehensive performance data to supplement the main experimen-
tal results. Tables 10, 11, 12, and 13 provide the detailed AUROC breakdown on four long-text
datasets, namely ML-ArXiv-Papers, CNN-DailyMail, IMDB, and ROCStories, respectively. This
table expands upon the summarized results in the main text, demonstrating D&R’s consistent supe-
riority across diverse source models and text domains.Table 14 reports the TPR scores at fixed FPR
threshold of 1% and 5%.

Table 10: AUROC on ML-ArXiv-Papers datasets across six source models.

ML-ArXiv-Papers

Source Model RoBERTa Likelihood DNA-GPT Fast-Detect RAIDAR Dald

GPT2 0.9333 0.9206 0.8679 0.9489 0.9033 0.9432
GPT-Neo-2.7B 0.6245 0.8193 0.8741 0.8334 0.8933 0.9786
Qwen-Turbo 0.5137 0.7112 0.6309 0.8038 0.8375 0.7210
GPT4.1 0.5406 0.5352 0.4966 0.5878 0.8600 0.6326
Gemini2.5-Flash 0.5613 0.4703 0.4826 0.6115 0.9025 0.7477
Grok3 0.5441 0.5206 0.4882 0.5596 0.7700 0.6798

Source Model OOD ImBD Binoculars Text-Flu DeTeCtive D&R(ours)

GPT2 0.9608 0.6944 0.7856 0.9772 0.9433 0.9660
GPT-Neo-2.7B 0.8483 0.6103 0.7487 0.9701 0.8283 0.9390
Qwen-Turbo 0.7935 0.8192 0.7821 0.7980 0.7581 0.8580
GPT4.1 0.6995 0.8259 0.5500 0.8286 0.7666 0.9108
Gemini2.5-Flash 0.6156 0.8220 0.5699 0.7817 0.6416 0.9299
Grok3 0.6712 0.8439 0.4248 0.6038 0.7250 0.9559

A.6 DATASET DETAILS

ML-ArXiv-Papers. This dataset consists of abstracts from research papers in the computer science
domain, particularly in machine learning, sourced from the ArXiv platform. The text is characterized
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Table 11: AUROC on four CNN-DailyMail datasets across six source models.

CNN-DailyMail

Source Model RoBERTa Likelihood DNA-GPT Fast-Detect RAIDAR Dald

GPT2 0.9392 0.8234 0.9126 0.8760 0.8367 0.8662
GPT-Neo-2.7B 0.6084 0.5390 0.7041 0.8760 0.8367 0.8486
Qwen-Turbo 0.5705 0.6163 0.5618 0.5675 0.8300 0.6876
GPT4.1 0.5212 0.4796 0.4625 0.4240 0.9125 0.6441
Gemini2.5-Flash 0.5288 0.5339 0.4531 0.5419 0.9325 0.6741
Grok3 0.5363 0.4799 0.4778 0.4249 0.8725 0.6808

Source Model OOD ImBD Binoculars Text-Flu DeTeCtive D&R(ours)

GPT2 0.9000 0.7303 0.6822 0.9509 0.9000 0.9734
GPT-Neo-2.7B 0.7666 0.6284 0.5993 0.9495 0.7666 0.9734
Qwen-Turbo 0.6346 0.7485 0.5519 0.7617 0.6346 0.9800
GPT4.1 0.8726 0.8852 0.4004 0.8876 0.8726 0.9908
Gemini2.5-Flash 0.9131 0.9592 0.5471 0.8606 0.9131 0.9901
Grok3 0.8900 0.9175 0.4186 0.9324 0.8900 0.9856

Table 12: AUROC on four IMDB datasets across six source models.

IMDB

Source Model RoBERTa Likelihood DNA-GPT Fast-Detect RAIDAR Dald

GPT2 0.8579 0.8340 0.8314 0.9034 0.7833 0.9257
GPT-Neo-2.7B 0.7000 0.7867 0.8290 0.8115 0.8467 0.7451
Qwen-Turbo 0.5156 0.5901 0.5841 0.5862 0.8400 0.5509
GPT4.1 0.5465 0.6174 0.5267 0.6257 0.8600 0.6072
Gemini2.5-Flash 0.5309 0.5398 0.5601 0.7422 0.9475 0.6834
Grok3 0.5178 0.6027 0.5633 0.6975 0.9275 0.6525

Source Model OOD ImBD Binoculars Text-Flu DeTeCtive D&R(ours)

GPT2 0.9646 0.7780 0.7611 0.7888 0.9183 0.9036
GPT-Neo-2.7B 0.8336 0.6828 0.7523 0.8357 0.8150 0.9056
Qwen-Turbo 0.8428 0.8739 0.5431 0.9424 0.8155 0.9584
GPT4.1 0.8319 0.8493 0.5756 0.9040 0.8091 0.9456
Gemini2.5-Flash 0.7389 0.9442 0.7051 0.9403 0.8650 0.9890
Grok3 0.8234 0.9261 0.6527 0.9388 0.8483 0.9688

Table 13: AUROC on ROCStories datasets across six source models.

ROCStories

Source Model RoBERTa Likelihood DNA-GPT Fast-Detect RAIDAR Dald

GPT2 0.8563 0.8833 0.9199 0.8655 0.9856 0.8915
GPT-Neo-2.7B 0.8918 0.8533 0.8811 0.8862 0.9833 0.9613
Qwen-Turbo 0.6254 0.5385 0.5312 0.5625 0.8725 0.5025
GPT4.1 0.6710 0.4999 0.5132 0.5105 0.9150 0.4411
Gemini2.5-Flash 0.7476 0.2809 0.4066 0.4888 0.9500 0.4229
Grok3 0.7131 0.4553 0.4866 0.5175 0.8875 0.4311

Source Model OOD ImBD Binoculars Text-Flu DeTeCtive D&R(ours)

GPT2 0.9956 0.4360 0.4381 0.6024 0.9691 0.9970
GPT-Neo-2.7B 0.9982 0.6708 0.7982 0.6152 0.9883 0.9988
Qwen-Turbo 0.8448 0.7582 0.4974 0.8257 0.7533 0.9667
GPT4.1 0.8689 0.7774 0.4225 0.8129 0.8316 0.9851
Gemini2.5-Flash 0.8833 0.8575 0.4501 0.7432 0.8916 0.9849
Grok3 0.8745 0.8110 0.4261 0.8400 0.8199 0.9842
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Table 14: TPR (%) at Fixed FPR Thresholds. Detailed performance breakdown across different
source models for both long and short text settings.

Dataset Metric Qwen GPT Gemini Grok

Long Text TPR@1%FPR 74.8 81.8 90.8 79.5
TPR@5%FPR 85.4 89.8 93.8 94.6

Short Text TPR@1%FPR 49.8 57.6 53.8 47.9
TPR@5%FPR 64.7 73.6 70.6 69.8

by its professional language, rigorous structure, and strong logical coherence, representing a formal
academic writing style.

CNN-DailyMail. Comprising news articles from CNN and Daily Mail, this dataset is rich in factual
statements and coherent narrative structures. The text is of high quality and written in accessible
language, making it a common benchmark for news summarization and text generation research.

IMDB. The IMDB dataset contains a large collection of user-written movie reviews. These texts
are highly subjective, feature rich linguistic expression, and convey strong sentimental polarity and
personalized styles.

ROCStories. This dataset is composed of five-sentence stories centered around everyday life sce-
narios. These texts exhibit clear narrative structures and causal relationships, embodying the char-
acteristics of short, narrative-driven text.

Wikihow. This dataset contains texts extracted from “How-to” guides on wikiHow. The content is
concise, presented in a formal style, and typically structured as clear, step-by-step instructions.

AG-News. Consisting of news headlines and short descriptions, this dataset exemplifies the style of
short news text. It is highly condensed, formally structured, and logically coherent.

Reddit. This dataset is a collection of user-generated post titles and summaries from the Reddit
platform. The language is colloquial and diverse in style, with a free and irregular structure that
reflects the nature of social media communication.
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Figure 5: Average-text-length distributions for the long- and short-text datasets.
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