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ABSTRACT

Weight-sharing supernet has become a vital component for performance estima-
tion in the state-of-the-art (SOTA) neural architecture search (NAS) frameworks.
Although supernet can directly generate different subnetworks without retraining,
there is no guarantee for the quality of these subnetworks because of weight sharing.
In NLP tasks such as machine translation and pre-trained language modeling, we
observe that given the same model architecture, there is a large performance gap
between supernet and training from scratch. Hence, supernet cannot be directly
used and retraining is necessary after finding the optimal architectures.
In this work, we propose mixture-of-supernets, a generalized supernet formula-
tion where mixture-of-experts (MoE) is adopted to enhance the expressive power
of the supernet model, with negligible training overhead. In this way, different
subnetworks do not share the model weights directly, but do so indirectly through
an architecture-based routing mechanism. As a result, model weights of different
subnetworks are customized towards their specific architectures and the weight
generation is learned by gradient descent. Compared to existing weight-sharing
supernet for NLP, our method can minimize the retraining time, greatly improving
training efficiency. In addition, the proposed method achieves the SOTA per-
formance in NAS for building fast machine translation models, yielding better
latency-BLEU tradeoff compared to HAT, the state-of-the-art NAS for MT. We also
achieve the SOTA performance in NAS for building memory-efficient task-agnostic
BERT models, outperforming NAS-BERT and AutoDistil in various model sizes.

1 INTRODUCTION

Neural architecture search (NAS) can automatically design architectures that achieve high quality on
the natural language processing (NLP) task, while satisfying user-defined efficiency (e.g., latency,
memory) constraints (Wang et al., 2020a; Xu et al., 2021; 2022a). Most straightforward way of NAS
is treating it as the black-box optimization (Zoph et al., 2018; Pham et al., 2018). However, to get the
architecture with the best accuracy, different model architectures need to be repeatedly trained and
evaluated, which makes it impractical unless the dataset is very small. To overcome this issue, weight
sharing is applied between different model architectures (Pham et al., 2018). In this case, supernet
is constructed as the largest model in the search space, and each architecture is a subnetwork of it.
Furthermore, recent works (Cai et al., 2020; Yu et al., 2020) show that with good training strategies,
the subnetworks can be directly used for image classification with high performance (e.g., accuracy
comparable to training the same architectures from scratch). However, it is more challenging to apply
supernet in NLP tasks. In fact, we observed that directly using the subnetworks for NLP tasks can
have a large performance gap. This is consistent with the recent NAS works (Wang et al., 2020a;
Xu et al., 2021) on NLP, which retrain or finetune the architectures after using supernet to find the
architecture candidates. This raises two issues: 1) it is unknown whether the selected architectures
are optimal given the existence of this performance gap; 2) repeated training is still needed if we
want to get the final accuracy of the Pareto front, i.e., the best models for different efficiency (e.g.,
model size or inference latency) budgets. In this work, we focus on improving the weight-sharing
mechanism among subnetworks to minimize the performance gap.
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(a) Standard (b) Layer-wise Mixture-of-Supernet (c) Neuron-wise Mixture-of-Supernet

Figure 1: Choices of linear layers for supernet training. The length and the height of the ‘Linear’
blocks correspond to the number of input and output features of the supernet respectively. The
highlighted portions in blue color correspond to the architecture-specific weights extracted from
the supernet. Different intensities of blue color in the ‘Linear’ blocks of the mixture-of-supernet
correspond to different alignment scores generated by the router.

Supernet Weight sharing Capacity Overall Time (↓) Average BLEU (↑)

HAT (Wang et al., 2020a) Strict Single Set 508 hours 25.93
Layer-wise MoS Flexible Multiple Set 407 hours (20%) 27.21 (4.9%)

Neuron-wise MoS Flexible Multiple Set 394 hours (22%) 27.25 (5.1%)

Table 1: Overall time savings and average BLEU improvements of MoS supernets vs. HAT for
computing pareto front (latency constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De
task. Overall time (single NVIDIA V100 hours) includes supernet training time, search time, and
additional training time for the optimal architectures. Average BLEU is the average of BLEU scores of
architectures in the pareto front (see Table 5 for individual scores). MoS supernets yield architectures
that enjoy better latency-BLEU trade-offs than HAT and have an overall GPU hours (see A.4.10 for
breakdown) savings of at least 20% w.r.t. HAT.

Typically, weight-sharing supernet is trained by repeatedly sampling an architecture from the search
space and training the architecture-specific weights from the supernet (see Figure 1 (a)). In the
standard weight-sharing training (Yu et al., 2020; Cai et al., 2020), the first few output neurons are
directly extracted to form a smaller subnetwork, as shown in Figure 1 (a). Such a supernet has limited
model capacity, which creates two challenges. First, the supernet enforces a strict notion of weight
sharing between architectures, regardless of the difference among these architectures. This leads
to the issue of co-adaptation (Bender et al., 2018; Zhao et al., 2021c) and gradient conflict (Gong
et al., 2021). For instance, given a 5M-parameters model as a subnetwork of a 90M-parameters
model, 5M weights are directly shared in the standard weight-sharing. The optimal shared weights
for the 5M model could be non-optimal for the 90M model, since there could be large gradient
conflicts in optimizing these two models (Gong et al., 2021). Second, the overall capacity of the
architecture allocated by the supernet is limited by the number of parameters of a single DNN, i.e.
the largest subnetwork in the search space. However, the number of subnetworks in the search space
could be very large (e.g., billions). Using a single set of weights to simultaneously parameterize
all of them could be insufficient (Zhao et al., 2021c). Due to these challenges, the gap between the
performance of the supernet and the standalone (from scratch) model is usually large (Wang et al.,
2020a; Ganesan et al., 2021; Yin et al., 2021), which makes the time consuming retraining step of the
optimal architectures mandatory.

To overcome these challenges, we propose a Mixture-of-Supernets (MoS) framework that can perform
architecture-specific weight extraction (e.g., allows a smaller architecture to not share some output
neurons with a larger architecture) and allocate large capacity to an architecture without being limited
by the number of parameters in a single DNN. MoS maintains a set of expert weight matrices and
has two variants: layer-wise MoS and neuron-wise MoS. In layer-wise MoS, architecture-specific
weight matrix is constructed based on a weighted combination of expert weight matrices at the level
of set of neurons corresponding to an expert weight matrix. On the other hand, neuron-wise MoS
constructs the same at the level of an individual neuron in each expert weight matrix. We show the
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effectiveness of the proposed NAS method for building efficient task-agnostic BERT (Devlin et al.,
2019) models and machine translation (MT) models. For building efficient BERT, our best supernet:
(i) closes the gap and improves over SuperShaper (Ganesan et al., 2021) by 0.85 GLUE points, (ii)
improves over NAS-BERT (Xu et al., 2021) and AutoDistil (Xu et al., 2022a) in various model sizes
(≤ 50M parameters). Compared to HAT (Wang et al., 2020a), our best supernet: (i) reduces the
supernet vs. the standalone model gap by 26.5%, (ii) yields a better pareto front for latency-BLEU
tradeoff (100 to 200 ms), and (iii) reduces the number of additional steps to close the gap by 39.8%.
See Table 1 for a summary of the overall time savings and BLEU improvements of MoS supernets for
WMT’14 En-De task. For this task, the supernet training time is 248 hours, while neuron-wise MoS
and layer-wise MoS require additional hours of 14 and 18 hours respectively (less than 8% overhead,
see A.4.10 for breakdown).

Main contributions: (1) We propose a formulation which can generalize weight sharing methods,
including direct weight sharing (e.g., once-for-all network (Cai et al., 2020), BigNAS (Yu et al.,
2020)) and flexible weight sharing (e.g., few-shot NAS (Zhao et al., 2021a)). This formulation allows
us to improve supernet by enhancing the model’s expressive power. (2) We adopt the idea of MoE to
improve the model capability. Specifically, the model’s weights are dynamically generated based
on the activated subnetwork architecture. After training, this MoE can be converted into equivalent
static models. This is because our supernets only depend on the subnetwork architecture, which is
fixed after training. (3) We conduct comprehensive experiments, demonstrating that our supernets
achieve the SOTA NAS results on building efficient task-agnostic BERT and MT models.

2 SUPERNET - FUNDAMENTALS

Supernet is a model that employs weight sharing to parameterize weights for millions of architectures.
Supernet can provide quick performance predictions for various architectures, which reduces the
search cost for NAS significantly. The training objective of the supernet can be formalized as follows.
LetXtr denote the training data distribution. Let x, y denote the training sample and label respectively,
i.e., x, y ∼ Xtr. Let arand denote an architecture uniformly sampled from the search space A. Let
fa denote the subnetwork with architecture a, and f be parameterized by the supernet model weights
W . Then, the training objective of the supernet can be given by,

min
W

Ex,y∼Xtr
Earand∼A[L(farand

(x;W ), y)]. (1)

The above formulation is known as single path one-shot (SPOS) optimization (Guo et al., 2020) of
supernet training. Sandwich training (Yu et al., 2020) is another popular technique for training a
supernet, where the largest architecture (abig), the smallest architecture (asmall), and the architecture
(arand) uniformly sampled from the search space are jointly optimized. The training objective of the
supernet then becomes:

min
W

Ex,y∼Xtr
[Earand∼A[L(farand

(x;W ), y)] + L(fabig
(x;W ), y) + L(fasmall

(x;W ), y)]. (2)

3 MIXTURE-OF-SUPERNETS

Existing supernets typically have limited model capacity to extract architecture-specific weights.
For simplicity, assume the model function fa(x;W ) is a fully connected layer (output o = Wx,
omitting bias term for brevity), where x ∈ nin × 1, W ∈ nout × nin, and o ∈ nout × 1. nin

and nout correspond to the number of input and output features respectively. Then, the weights
(Wa ∈ nouta × nin) specific to architecture a with nouta output features are typically extracted by
taking the first nouta rows1 (as shown in Figure 1 (a)) from the supernet weight W . Assume one
samples two architectures (a and b) from the search space with the number of output features nouta
and noutb respectively. Then, the weights corresponding to the architecture with the smallest number
of output features will be a subset of those of the other architecture, sharing the first |nouta − noutb |
output features exactly. Such a weight extraction technique enforces a strict notion of weight sharing
between architectures, regardless of the global architecture information (e.g., different number of
features for all the other layers) of these architectures. For instance, architectures a and b can have

1Here we assume the number of input features does not change. If it will change, then only the first several
columns of Wa are extracted.
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widely different model capacities (e.g., 5M vs 90M number of architecture-specific parameters). The
smaller architecture (e.g., 5M ) has to share all its weights with the other architecture (e.g., 90M ) and
the supernet (as modeled by fa(x;W )) cannot allocate any weights that are specific to the smaller
architecture only. Another problem with fa(x;W ) is that the overall capacity of the supernet is
bounded by the number of parameters in the largest subnetwork (i.e. W ) from the search space.
However, the supernet weights W need to parameterize a large amount of different subnetworks
in the search space. This is a fundamental limitation of the standard weight sharing mechanism.
Section 3.1 proposes a reformulation to address this limitation, which is instantiated using two
methods (Layer-wise MoS, Section 3.2, Neuron-wise MoS, Section 3.3) and can be dropped into
Transformers (see Section 3.4).

3.1 GENERALIZED MODEL FUNCTION

We can reformulate the function fa(x;W ) to a generalized form g(x, a;E), which takes 2 inputs:
the input data x, and the activated architecture a. E includes the learnable parameters of g. Then, the
training objective of the proposed supernet becomes,

min
E

Ex,y∼XtrEarand∼A[L(g(x, arand;E), y)]. (3)

For the standard weight sharing mechanism mentioned above, E = W and function g just uses a to
perform the “trimming” operation on the weight matrix W , and forwards the subnetwork. To further
minimize the objective equation 3, one feasible way is improving the capacity of the model function
g. However, common ways such as adding hidden layers or hidden neurons are not applicable here,
as we cannot change the final subnetwork architecture of mapping x to fa(x;W ). In this work, we
propose to use the idea of Mixture-of-Experts (MoE) (Fedus et al., 2022) to improve the capacity of g.
Specifically, we dynamically generate the weights Wa according to specific architecture a by routing
to certain weights matrices from a set of expert weights. We call this architecture-routed MoE based
supernet Mixture-of-Supernets (MoS), and design two routing mechanisms for function g(x, a;E).
Due to lack of space, the detailed algorithm for supernet training and search is shown in A.2.

3.2 LAYER-WISE MOS

Assume there are m (number of experts) unique weight matrices ({Ei ∈ Rnoutbig
×ninbig }mi=1, or

expert weights), which are learnable parameters. For simplicity, we only use a single linear layer
as the example. For an architecture a with nouta output features, we propose the layer-wise MoS
that computes the weights specific to the architecture a (i.e. Wa ∈ Rnouta×nin) by performing a
weighted combination of expert weights, Wa =

∑
i α

i
aE

i
a. Here, Ei

a ∈ Rnouta×nin corresponds
to the standard top rows extraction from the ith expert weights. The alignment vector (αa ∈
[0, 1]m,

∑
i α

i
a = 1) captures the alignment scores of the architecture a with respect to each expert

(weights matrix). We encode the architecture a as a numeric vector Enc(a) ∈ Rnenc×1 (e.g., a list of
the number of output features for different layers), and apply a learnable router r(·) (an MLP with
softmax) to produce such scores, i.e. αa = r(Enc(a)). Thus, the generalized model function for the
linear layer (as shown in Figure 1 (b)) can be defined as (omitting bias for brevity):

g(x, a;E) = Wax =
∑
i

r(Enc(a))iEi
ax. (4)

Router r(·) controls the degree of weight sharing (unsharing) between two architectures by modulating
the alignment scores (αa). For example, if m = 2 and a is a subnetwork of the architecture b,
the supernet could allocate weights that are specific to the smaller architecture a only by setting
αa = (1, 0) and αb = (0, 1). In this case, g(x, a;E) only uses weights from E1 and g(x, b;E)
only uses weights from E2, so E1 and E2 can be updated towards the loss from architecture a and
b without conflicts. It should be noted that few-shot NAS (Zhao et al., 2021c) can be seen as a
special case of our framework if the router r is rule-based. In addition, g(·) is essentially an MoE
so that it has stronger expressive power and can lead the objective equation 3 to be smaller. After
the supernet training completes, given an architecture a, the score αa = r(Enc(a)) can be generated
offline. Expert weights are collapsed and the resulting number of parameters for the architecture a
becomes nouta × nina

. Layer-wise MoS induces low degree of weight sharing between differently
sized architectures shown by higher Jensen-Shannon distance between their alignment probability
vectors compared to that of similarly sized architectures. See A.1.1 for more details.
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Supernet MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE (↑)

Standalone 82.61 59.03 86.54 91.52 89.47 90.68 71.53 81.63
Supernet (Sandwich) 82.34 57.58 86.54 91.74 88.67 90.39 73.26 81.50 (-0.13)

Layer-wise MoS (ours) 82.40 57.62 87.26 92.08 89.57 90.68 77.08 82.38 (+0.75)
Neuron-wise MoS (ours) 82.68 58.71 87.74 92.16 89.22 90.49 76.39 82.48 (+0.85)

Table 2: GLUE validation performance of different supernets (0 additional pretraining steps) com-
pared to standalone (1x pretraining budget). The BERT architecture (67M parameters) is the top
model from the pareto front of Supernet (Sandwich) on SuperShaper’s search space. Improvement
(%) in GLUE average over standalone is enclosed in parentheses in the last column. Layer-wise and
neuron-wise MoS perform significantly better than standalone.

3.3 NEURON-WISE MOS

The layer-wise MoS follows a conventional MoE setup, i.e., each expert is a linear layer/module.
The router decides to use which experts combination to forward the input x to, depending on a. In
this case, the degree of freedom of weights generation is m, and the number of parameters grows
by m× |W |, where |W | denotes the number of parameters in the standard supernet. Thus we need
m to be large enough to keep a good flexibility for the subnetwork weights generation, but this will
also introduce too many parameters into the supernet and make the layer-wise MoS hard to train.
This motivates us to use a smaller granularity of weights to represent each expert. Specifically, we
use neurons in DNN as experts. In terms of the weight matrix, neuron-wise MoS uses one row of
matrix to represent an individual expert. In contrast, layer-wise MoS uses an entire weight matrix.
For neuron-wise MoS, the router output βa = r(·) ∈ [0, 1]noutbig

×m for each layer, and the sum of
each row in βa is 1. Similar to layer-wise MoS, we use an MLP to produce the noutbig ×m matrix
and apply softmax on each row. We formulate the function g(x, a;E) for neuron-wise MoS as

Wa =
∑
i

diag(βi
a)E

i
a, (5)

where diag(β) constructs a noutbig × noutbig diagonal matrix by putting β on the diagonal, and βi
a

is the i-th column of βa. Ei is still an noutbig × nin matrix as in layer-wise MoS. Compared to the
layer-wise MoS, the neuron-wise MoS has more flexibility (m× nouta instead of only m) to control
the degree of weight sharing between different architectures, while the number of parameters is still
proportional to m. Neuron-wise MoS provides a more fine-grained control of weight sharing between
subnetworks. We compute gradient conflict using cosine similarity between the supernet gradient and
the smallest subnet gradient, following NASVIT work (Gong et al., 2021). As discussed in A.1.2, we
find that Neuron-wise MoS enjoys lowest gradient conflict compared to Layer-wise MoS and HAT,
shown by highest cosine similarity.

3.4 ADDING g(x, a;E) TO TRANSFORMER

MoS is applicable to a single linear layer, multiple linear layers, and other parameterized layers (e.g.,
layer-norm). Since the linear layer dominates the number of parameters, we follow the approach
used in most MoE work (Fedus et al., 2022). We take the standard weight-sharing based Transformer
(fa(x;W )) and replace the two linear layers in every feed-forward network block with g(x, a;E).

4 EXPERIMENTS - EFFICIENT BERT

4.1 EXPERIMENT SETUP

We discuss application of our proposed supernet for building efficient task-agnostic BERT (Devlin
et al., 2019) models. We focus on the BERT pretraining task, where a language model is pretrained
from scratch to learn task-agnostic text representations using a masked language modeling objective.
The pretrained BERT model can then be directly finetuned on several downstream NLP tasks. We
focus on building BERT models that are highly accurate yet small (e.g., 5M − 50M parameters).
BERT supernet and standalone are pretrained from scratch on Wikipedia and Books Corpus (Zhu
et al., 2015). We evaluate the performance of the BERT model by finetuning on each of the
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Supernet #Params #Steps CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 19.8 79.6 87.3 84.9 85.8 66.7 70.7
AutoDistil (proxy) 6.88M 0 24.8 78.5 85.9 86.4 89.1 64.3 71.5
Neuron-wise MoS 5M 0 28.3 82.7 86.9 84.1 88.5 68.1 73.1

NAS-BERT 10M 125K 34.0 79.1 88.6 86.3 88.5 66.7 73.9
Neuron-wise MoS 10M 0 34.7 81.0 88.1 85.1 89.1 66.7 74.1

AutoDistil (proxy) 26.1M 0 48.3 88.3 90.1 90.0 90.6 69.4 79.5
AutoDistil (agnostic) 26.8M 0 47.1 87.3 90.6 89.9 90.8 69.0 79.1

Neuron-wise MoS 26.8M 0 52.7 88.0 90.0 87.7 89.9 78.1 81.1

NAS-BERT 30M 125K 48.7 84.6 90.5 88.4 90.2 71.8 79.0
Neuron-wise MoS 30M 0 51.0 87.3 91.1 87.9 90.2 72.2 80.0

AutoDistil (proxy) 50.1M 0 55.0 88.8 91.1 90.8 91.1 71.9 81.4
Neuron-wise MoS 50M 0 55.0 88.0 91.9 89.0 90.6 75.4 81.6

Table 3: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil for different model sizes
(≤ 50M parameters) based on GLUE validation performance. Neuron-wise MoS use a search space
of 550 architectures, which is on par with AutoDistil. The third column corresponds to the number
of additional training steps required to obtain the weights for the final architecture after supernet
training. Performance numbers for the baseline models are taken from the corresponding papers. On
average GLUE, neuron-wise MoS can perform similarly or improves over NAS-BERT for different
model sizes without any additional training. Neuron-wise MoS can improve over AutoDistil for most
model sizes in average GLUE. See A.3.3 for the hyperparameters of best architectures.

seven tasks (chosen by AutoDistil (Xu et al., 2022a)) in the GLUE benchmark (Wang et al., 2018).
The architecture encoding, data preprocessing, pretraining settings, and finetuning settings are
discussed in A.3.1. The baseline models are standalone and standard supernet as proposed in
SuperShaper (Ganesan et al., 2021). Our proposed models are layer-wise and neuron-wise MoS. All
the supernets are trained using sandwich training. 2 The parameters m and router’s hidden dimension
are set to 2 and 128, respectively, for MoS supernets.

4.2 SUPERNET VS. STANDALONE GAP

For studying the supernet vs. the standalone gap, the search space is taken from SuperShaper (Ganesan
et al., 2021), which consists of BERT architectures that vary only in the hidden size at each layer
({120, 240, 360, 480, 540, 600, 768}) with fixed number of layers (12) and attention heads (12). The
search space amounts to around 14B architectures. We study the supernet vs. the standalone model
gap for the top model architecture from the pareto front of Supernet (Sandwich) (Ganesan et al.,
2021). Table 2 displays the GLUE benchmark performance of standalone training of the architecture
(1x pretraining budget, which is 2048 batch size * 125,000 steps) as well as architecture-specific
weights from different supernets (0 additional pretraining steps; that is, only supernet pretraining).
The gap between the task-specific supernet and the standalone performance is bridged by MoS (layer-
wise or neuron-wise) for 6 out of 7 tasks, including MNLI (which is a widely used task to indicate
performance of a pretrained language model (Liu et al., 2019; Xu et al., 2022b)). The gap in average
GLUE between the standalone model and the standard supernet is 0.13 points. Notably, equipped
with customization and expressivity properties, the layer-wise and neuron-wise MoS significantly
improve upon the standalone training by 0.75 and 0.85 average GLUE points, respectively.

4.3 COMPARISON WITH SOTA NAS

The state-of-the-art NAS frameworks for building a task-agnostic BERT model are NAS-BERT (Xu
et al., 2021) and AutoDistil (Xu et al., 2022a). 3 The NAS-BERT pipeline includes: (1) supernet
training (with a Transformer stack containing multi-head attention, feed-forward network [FFN] and
convolutional layers in arbitrary positions), (2) search based on the distillation (task-agnostic) loss,
and (3) pretraining the best architecture from scratch (1x pretraining budget, which is 2048 batch

2SuperShaper (Ganesan et al., 2021) observe that SPOS performs poorly compared to sandwich training.
Hence, we do not study SPOS for building BERT models. The learning curve is shown in A.3.2.

3AutoDistil (proxy) outperforms SOTA distillation approaches such as TinyBERT (Jiao et al., 2020) and
MINILM (Wang et al., 2020b) by 0.7 average GLUE points. Hence, we do not compare against these works.
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size * 125,000 steps). The third step has to be executed for every constraint change and hardware
change, which is very expensive. AutoDistil pipeline includes: (1) construct K search spaces and
train supernets for each search space independently, (2a) agnostic-search mode: search based on the
self-attention distillation (task-agnostic) loss, (2b) proxy-search mode: search based on the MNLI
validation score, and (3) extract the architecture-specific weights from the supernet without additional
training. The first step can be expensive as pretraining K supernets can take K times training compute
and memory, compared to training a single supernet. The proxy-search model can unfairly benefit
AutoDistil, as it finetunes all the architectures in its search space on MNLI and uses the MNLI score
to rank the architectures. For fair comparison with SOTA, we exclude MNLI task from evaluation. 4

Our proposed NAS pipeline overcomes all the issues with NAS-BERT and AutoDistil. For comparison
with the SOTA NAS, our search space contains BERT architectures with homogeneous Transformer
layers: hidden size (120 to 768 in increments of 12), attention heads ({6, 12}), intermediate FFN
hidden dimension ratio ({2, 2.5, 3, 3.5, 4}). This search space amounts to 550 architectures,
which is on par with AutoDistil. The supernet is based on neuron-wise MoS. The search uses
the perplexity (task-agnostic) metric to rank the architectures. Unlike NAS-BERT which pretrains
the best architecture from scratch (third step), the final architecture weights are directly extracted
from the supernet without further pretraining. Unlike AutoDistil which pretrains K supernets, the
proposed pipeline pretrains exactly one supernet, which requires significantly less training compute
and memory. Unlike AutoDistil’s proxy setting where MNLI performance guides the search, our
proposed pipeline uses only task-agnostic metric (like AutoDistil’s agnostic). Table 3 shows the
comparison of neuron-wise MoS based supernet with NAS-BERT and AutoDistil for different model
sizes. The performance of NAS-BERT and AutoDistil are taken from the corresponding papers. On
average GLUE, our proposed pipeline: (i) improves over NAS-BERT for 5M , 10M , and 30M model
sizes, without any additional training (100% additional training compute savings, which is 2048 batch
size * 125,000 steps). On average GLUE, our proposed pipeline: (i) improves over AutoDistil-proxy
for 6.88M and 50M model sizes respectively with 1.88M and 0.1M fewer parameters respectively
and (ii) improves over both AutoDistil-proxy and AutoDistil-agnostic for 26M model size. Besides
achieving SOTA results, the main benefit of our method is reducing the heavy workload of training
multiple models in either subnetwork retraining (NAS-BERT) or supernet training (AutoDistil).

5 EXPERIMENTS - EFFICIENT MACHINE TRANSLATION

5.1 EXPERIMENT SETUP

In this section, we discuss the application of proposed supernets for building efficient MT models.
We follow the experimental setup provided by Hardware-aware Transformers (HAT (Wang et al.,
2020a)), which is the SOTA NAS framework for building MT models that enjoy good latency-BLEU
tradeoffs. We focus on three popular MT benchmarks (Bojar et al., 2014; Wikimedia-Foundation,
2019): WMT’14 En-De, WMT’14 En-Fr and WMT’19 En-De, whose dataset statistics are shown
in A.4.1. The architecture encoding, training settings for both supernet and standalone models are the
same, which are discussed in A.4.2. The baseline supernets include: (i) HAT – HAT’s supernet that
uses single path one-shot optimization, and (ii) Supernet (Sandwich) – Supernet that uses sandwich
training. The proposed supernets include: (i) Layer-wise MoS – MoS with layer-wise routing and
sandwich training and (ii) Neuron-wise MoS – MoS with neuron-wise routing and sandwich training.
The parameters m and router’s hidden dimension are set to 2 and 128 respectively for both MoS
variants. See A.4.8 for the rationale behind the choice of ‘m’.

5.2 SUPERNET VS. STANDALONE GAP

HAT’s search space consists of 6M encoder-decoder architectures, with flexible embedding size (512
or 640), decoder layers (1 to 6), self / cross attention heads (4 or 8), and number of top encoder layers
for the decoder to attend to (1 to 3). For a given architecture, supernet performance corresponds to
evaluating the architecture-specific weights extracted from the supernet, while standalone performance
corresponds to evaluating the architecture after training from scratch. For a random sample of

4See A.3.4 for the comparison of neuron-wise MoS against baselines that do not directly tune on the MNLI
task, where we find that neuron-wise MoS improves over baselines consistently in terms of both average GLUE
and MNLI task performance.
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Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet MAE (↓) Kendall (↑) MAE (↓) Kendall (↑) MAE (↓) Kendall (↑)

HAT 1.84 0.81 1.37 0.63 2.07 0.71
Supernet (Sandwich) 1.62 (12%) 0.81 1.37 (0%) 0.63 2.02 (2.4%) 0.87

Layer-wise MoS (ours) 1.61 (12.5%) 0.54 1.24 (9.5%) 0.73 1.57 (24.2%) 0.87
Neuron-wise MoS (ours) 1.13 (38.6%) 0.71 1.2 (12.4%) 0.85 1.48 (28.5%) 0.81

Table 4: Mean absolute error (MAE) and Kendall rank correlation coefficient between the supernet
and the standalone model BLEU performance for 15 random architectures from the MT search space.
Improvements (%) in mean absolute error over HAT are in parentheses. Our supernets enjoy minimal
MAE and comparable ranking quality with respect to the baseline models.

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet / Latency Constraint 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms

HAT 25.26 26.25 26.28 38.94 39.26 39.16 42.61 43.07 43.23
Layer-wise MoS (ours) 26.28 27.31 28.03 39.34 40.29 41.24 43.45 44.71 46.18

Neuron-wise MoS (ours) 26.37 27.59 27.79 39.55 40.02 41.04 43.77 44.66 46.21

Table 5: Latency vs. Supernet BLEU for the models on the pareto front, obtained by performing
search with different latency constraints (100 ms, 150 ms, 200 ms) on the NVIDIA V100 GPU. Our
supernets yield architectures that enjoy better latency-BLEU tradeoffs than HAT.

architectures from the search space, a good supernet must have: (i) minimal mean absolute error
(MAE) and (ii) high rank correlation between the standalone and the supernet performance. Table 4
shows the mean absolute error and Kendall rank correlation coefficient for 15 random architectures
from the search space. Compared to HAT, supernet with sandwich training has better MAE and rank
quality. This result highlights that sandwich training is essential for building good supernet compared
to SPOS for machine translation. Compared to the supernet with sandwich training, our proposed
supernets achieve comparable ranking quality for WMT’14 En-Fr and WMT’19 En-De tasks, while
marginally underperforming for WMT’14 En-De task. Our proposed supernets achieve minimal
MAE on all the three tasks. Specifically, neuron-wise MoS obtains the biggest MAE improvements,
which suggests that additional training steps required to make MAE negligible might be the lowest
for neuron-wise MoS among all the supernet variants (as we show in Section 5.4). We also plot the
supernet and the standalone performance for each architecture, where we find that neuron-wise MoS
particularly excels for almost all the top performing architectures (see A.4.3). The training overhead
for MoS is generally negligible. For example, for WMT’14 En-De task, the supernet training time
(single NVIDIA V100) is 248 hours, while neuron-wise MoS and layer-wise MoS require additional
hours of 14 and 18 hours respectively (less than 8% overhead, see Section A.4.10 for details).

5.3 COMPARISON WITH SOTA NAS

The pareto front from the supernet can be obtained using the evolutionary search algorithm, which
takes the supernet for quickly identifying the top performing candidate architectures, and the latency
estimator, which can quickly discard candidate architectures that have latencies exceeding latency
threshold. The settings for the evolutionary search algorithm and the latency estimator can be seen
in A.4.4. We experiment with 3 latency thresholds: 100 ms, 150 ms, and 200 ms. Table 5 shows
the latency vs. the supernet performance tradeoff for the models in the pareto front from different
supernets. Compared to HAT, the proposed supernets achieve significantly higher BLEU for each
latency threshold across all the datasets, which highlights the importance of architecture specialization
and expressiveness of the supernet. See A.4.6 for the consistency of these trends for different seeds.

5.4 ADDITIONAL TRAINING TO CLOSE THE GAP

The proposed supernets minimize the supernet vs. the standalone MAE gap significantly (as discussed
in Section 5.2), but still do not make the gap negligible. To close the gap for an architecture, one need
to extract the architecture-specific weights from the supernet and perform additional training until
the standalone performance is reached (when the gap becomes 0). A good supernet should require
minimal number of additional steps and time for the architectures extracted from the supernet to close
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Dataset Additional training steps (↓) Additional training time (NVIDIA V100 hours) (↓)
Supernet WMT’14 En-De WMT’14 En-Fr WMT’19 En-De WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

HAT 33K 33K 26K 63.9 60.1 52.3
Laye. MoS 16K (51.5%) 30K (9%) 20K (23%) 35.5 (44.4%) 66.5 (-10.6%) 45.2 (13.5%)
Neur. MoS 13K (60%) 26K (21%) 16K (38.4%) 31.0 (51.4%) 61.7 (-2.7%) 39.5 (24.5%)

Table 6: Average number of additional training steps and time required for the models on the pareto
front to close the supernet vs. standalone gap. Improvements (%) over HAT are shown in parentheses.
Our supernets require minimal number of additional training steps and time to close the gap compared
to HAT for most tasks. See A.4.5 for each latency constraint.

the gap. For additional training, we evaluate the test BLEU of each architecture after every 10K steps
and stop when the test BLEU matches or exceeds the test BLEU of the standalone model. Table 6
displays the average number of additional training required for all the models on the pareto front from
each supernet to close the gap. Compared to HAT, layer-wise MoS provides an impressive reduction
of 9% to 51% in training steps, while neuron-wise MoS provides by far the largest reduction of 21%
to 60%. For the WMT’14 En-Fr task, both MoS supernets require at least 2.7% more time than
HAT to achieve SOTA BLEU across different constraints. These results highlight that architecture
specialization and supernet expressivity are crucial in greatly improving training efficiency of the
subnets extracted from the supernet.

6 RELATED WORK

In this section we briefly discuss existing NAS research in NLP. Evolved Transformer (ET) (So
et al., 2019) is an initial work that searches for efficient MT models using NAS. It uses evolutionary
search which can dynamically allocate training resources for promising candidates. ET requires 2M
GPU hours. HAT (Wang et al., 2020a) propose a weight-sharing supernet as performance estimator.
HAT uses supernet to amortize training cost for candidate MT evaluations needed by evolutionary
search, which reduces overall search cost by 12000x compared to ET. NAS-BERT (Xu et al., 2021)
partitions the BERT-Base model into blocks and trains a weight-sharing supernet to distill each block.
During supernet training, NAS-BERT prunes less promising candidates from the search space using
progressive shrinking. It can quickly identify the top architecture for each efficiency constraint.
NAS-BERT needs to pretrain the top architecture from scratch for every constraint change, which
can be very expensive. SuperShaper (Ganesan et al., 2021) pretrains a weight-sharing supernet for
BERT using masked language modeling objective with sandwich training. The authors find that
SPOS performs poorly compared to the sandwich training objective. AutoDistil (Xu et al., 2022a)
employs few-shot NAS (Zhao et al., 2021b): construct K search spaces of non-overlapping BERT
architectures and train a weight-sharing BERT supernet for each search space. The search is based on
self-attention distillation loss with BERT-Base (task-agnostic search) and MNLI score (proxy search).

In computer vision community, K-shot NAS (Su et al., 2021) generates the weight for each subnet
as a convex combination of different supernet weights in a dictionary with a simplex code. Their
framework is similar to layer-wise MoS with the following key differences. K-shot NAS trains the
architecture code generator and supernet iteratively due to training difficulty, while layer-wise MoS
trains all its components jointly. K-shot NAS has been applied only in convolutional architectures for
image classification tasks. K-shot NAS introduces too many parameters with increase in number of
supernets (K), which is alleviated by neuron-wise MoS due to its granular weight specialization. In
this work, we focus on tasks in NLP (and the relevant baselines), where we find that the supernets lag
behind standalone models significantly in terms of performance. Also, authors of k-shot NAS do not
release the code to reproduce their results. Hence, we do not evaluate against k-shot NAS.

7 CONCLUSION

In this work, we proposed Mixture-of-Supernets, a formulation to improve supernet by enhancing
its expressive power. We showed that the idea of MoE can be adopted to generate flexible weights
for subnetworks. From our extensive evaluation for building efficient BERT and MT models, we
showed that our supernets can: (i) minimize the retraining time thereby improving the NAS efficiency
significantly and (ii) yield high quality architectures satisfying user-defined constraints via NAS.
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Model 1 Model 2 WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

Smallest A (23M ) Largest A (118M ) 0.297 0.275 0.263
Smallest B (23M ) Largest B (118M ) 0.281 0.258 0.245
Smallest A (23M ) Largest B (118M ) 0.284 0.263 0.249
Smallest B (23M ) Largest A (118M ) 0.294 0.27 0.259
Smallest A (23M ) Smallest B (118M ) 0.006 0.008 0.004
Largest A (23M ) Largest B (118M ) 0.014 0.012 0.015

Table 7: Jensen-Shannon distance of Layer-wise MoS alignment vector across models as a weight
sharing measure. Layer-wise MoS induces low degree of weight sharing between differently sized
architectures shown by higher Jensen-Shannon distance between their alignment vectors compared
to that of similarly sized architectures. Note that architectures A and B differ by number of en-
coder/decoder attention heads.

Supernet WMT’14 En-De WMT’19 En-De

HAT 0.522 0.416
Layer-wise MoS 0.515 0.517

Neuron-wise MoS 0.555 0.52

Table 8: Gradient conflict via cosine similarity between the supernet gradient and the smallest subnet
gradient. Neuron-wise MoS enjoys lower gradient conflict, shown via. high cosine similarity.

A APPENDIX

A.1 WEIGHT SHARING AND GRADIENT CONFLICT ANALYSIS

A.1.1 JENSEN-SHANNON DISTANCE OF ALIGNMENT VECTOR AS A WEIGHT SHARING
MEASURE

We use the Jensen-Shannon distance of alignment vector generated by Layer-wise MoS for two
architectures as a proxy to quantify the degree of weight sharing. Ideally, the lower the Jensen-
Shannon distance, the higher the degree of weight sharing and vice-versa. We experiment with
two architectures of 23M parameters (Smallest A and Smallest B) and two architectures of 118M
parameters (Largest A and Largest B). From Table 7, it is clear that Layer-wise MoS induces low
degree of weight sharing between differently sized architectures shown by higher Jensen-Shannon
distance between their alignment vectors. On the other hand, there is a high degree of weight sharing
between similarly sized architectures where Jensen-Shannon distance is significantly low.

A.1.2 COSINE SIMILARITY BETWEEN THE SUPERNET GRADIENT AND THE SMALLEST SUBNET
GRADIENT AS A GRADIENT CONFLICT MEASURE.

We compute gradient conflict using cosine similarity between the supernet gradient and the smallest
subnet gradient, following NASVIT work (Gong et al., 2021). In Table 8, we show that Neuron-wise
MoS enjoys lowest gradient conflict compared to Layer-wise MoS and HAT, shown by highest cosine
similarity.

A.2 DETAILED ALGORITHM FOR SUPERNET TRAINING AND SEARCH

A.2.1 SUPERNET TRAINING ALGORITHM

The detailed algorithm for supernet training is shown in Algorithm 1.

A.2.2 SEARCH ALGORITHM

The detailed algorithm for search is shown in Algorithm 2.
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Algorithm 1 Training algorithm for Mixture-of-Supernets used in MT.
Input: Training data: Xtr, Search space: A,

No. of training steps: num-train-steps, Type of MoS: mos-type
Output: Training Supernet Weights: E

1: E← Random weights from Normal Distribution.
2: for iter ← 1 to num-train-steps do
3: // sample data
4: x, y ∼ Xtr

5: // perform sandwich sampling
6: for a in [arand ∼ A, abig, asmall] do
7: Enc(a) // create the architecture encoding
8: // generate architecture-specific weights
9: if mos-type == Layer wise MoS then

10: Wa =
∑

i r(Enc(a))iEi
a

11: else if mos-type == Neuron wise MoS then
12: Wa =

∑
i diag(βi

a)E
i
a

13: // compute task-specific loss
14: loss← L(Wax, y)
15: loss.backward() // compute gradients
16: Update E using accumulated gradients // learning rule
17: return E

Algorithm 2 Evolutionary search algorithm for Neural architecture search used in MT.
Input: supernet, latency-predictor, num-iterations, num-population,

num-parents, num-mutations, num-crossover, mutate-prob,
latency-constraint

Output: best-architecture
1: // create initial population
2: popu← num-population random samples from the search space
3: for iter ← 1 to num-iterations do
4: // generate parents by picking top candidates
5: cur-parents← top ‘num-parents’ architectures from popu by MoS validation loss
6: // generate candidates via mutation
7: cur-mutate-popu = {}
8: for mi← 1 to num-mutations do
9: cur-mutate-gene←mutate a random example from popu with mutation probability

mutate-prob
10: if cur-mutate-gene satisfies latency-constraint via

latency-predictor then
11: cur-mutate-popu = cur-mutate-popu ∪ cur-mutate-gene
12: // generate candidates via cross-over
13: cur-crossover-popu = {}
14: for ci← 1 to num-crossover do
15: cur-crossover-gene← crossover two random examples from popu
16: if cur-crossover-gene satisfies latency-constraint via

latency-predictor then
17: cur-crossover-popu = cur-crossover-popu ∪

cur-crossover-gene
18: // update population
19: popu = cur-parents ∪ cur-mutate-popu ∪ cur-crossover-popu
20: return top architecture from popu by MoS’s validation loss
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Figure 2: Learning Curve - Training steps vs. Validation MLM loss. ‘Big’ and ‘Small’ correspond to
the largest and the smallest BERT architecture respectively from the search space of SuperShaper.
‘Standalone’ and ‘Supernet’ correspond to training from scratch and sampling from the supernet
respectively. All the supernets are trained with sandwich training.

A.3 ADDITIONAL EXPERIMENTS - EFFICIENT BERT

A.3.1 BERT PRETRAINING / FINETUNING SETTINGS

Pretraining data: The pretraining data consists of text from Wikipedia and Books Corpus (Zhu
et al., 2015). We use the data preprocessing scripts provided by Izsak et al. to construct the tokenized
text.

Supernet and standalone pretraining settings: The pretraining settings for supernet and stan-
dalone models are taken from SuperShaper (Ganesan et al., 2021): batch size of 2048, maximum
sequence length of 128, training steps of 125K, learning rate of 5e−4, weight decay of 0.01, and
warmup steps of 10K (0 for standalone). For experiments with the search space from Super-
Shaper (Ganesan et al., 2021) (Section 4.2), the architecture encoding a is a list of hidden size at each
layer of the architecture (12 elements since the supernet is a 12 layer model). For experiments with
the search space on par with AutoDistil (Xu et al., 2022a) (Section 4.3), the architecture encoding a
is a list of four elastic hyperparameters of the homogeneous BERT architecture: number of layers,
hidden size of all layers, feedforward network (FFN) expansion ratio of all layers and number of
attention heads of all layers (see Table 9 for sample homogeneous BERT architectures).

Finetuning settings: We evaluate the performance of the BERT model by finetuning on each of the
seven tasks (chosen by AutoDistil (Xu et al., 2022a)) in the GLUE benchmark (Wang et al., 2018).
The evaluation metric is the average accuracy (Matthews’s correlation coefficient for CoLA only) on
all the tasks (GLUE average). The finetuning settings are taken from the BERT paper (Devlin et al.,
2019): learning rate from {5e−5, 3e−5, 2e−5}, batch size from {16, 32}, and epochs from {2, 3, 4}.

A.3.2 LEARNING CURVE FOR BERT SUPERNET VARIANTS

Figure 2 shows the training steps versus validation MLM loss (learning curve) for the standalone
BERT model and different supernet based BERT variants. The standalone model and the supernet
are compared for the biggest architecture (big) and the smallest architecture (small) from the search
space of SuperShaper (Ganesan et al., 2021). For the biggest architecture, the standalone model
performs the best. For the smallest architecture, the standalone model is outperformed by all the
supernet variants. In both cases, the proposed supernets (especially neuron-wise MoS) perform much
better than the standard supernet.
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Standalone / Supernet Model Size #Layers #Hidden Size #FFN Expansion Ratio #Heads

BERT 109M 12 768 4 12

AutoDistil (proxy) 6.88M 7 160 3.5 10
Neuron-wise MoS 5M 12 120 2.0 6

Neuron-wise MoS 10M 12 180 3.5 6

AutoDistil (agnostic) 26.8M 11 352 4 10
Neuron-wise MoS 26.8M 12 372 2.5 6

Neuron-wise MoS 30M 12 384 3 6

AutoDistil (proxy) 50.1M 12 544 3 9
Neuron-wise MoS 50M 12 504 3.5 12

Table 9: Architecture comparison of the best architecture designed by the neuron-wise MoS with
AutoDistil (Xu et al., 2022a) and BERT-Base (Devlin et al., 2019).

Supernet #Params #Steps MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 74.4 19.8 79.6 87.3 84.9 85.8 66.7 71.2
Neuron-wise MoS 5M 0 75.5 28.3 82.7 86.9 84.1 88.5 68.1 73.4

NAS-BERT 10M 125K 76.4 34.0 79.1 88.6 86.3 88.5 66.7 74.2
Neuron-wise MoS 10M 0 77.2 34.7 81.0 88.1 85.1 89.1 66.7 74.6

AutoDistil (agnostic) 26.8M 0 82.8 47.1 87.3 90.6 89.9 90.8 69.0 79.6
Neuron-wise MoS 26.8M 0 80.7 52.7 88.0 90.0 87.7 89.9 78.1 81.0

NAS-BERT 30M 125K 81.0 48.7 84.6 90.5 88.4 90.2 71.8 79.3
Neuron-wise MoS 30M 0 81.6 51.0 87.3 91.1 87.9 90.2 72.2 80.2

Neuron-wise MoS 50M 0 82.4 55.0 88.0 91.9 89.0 90.6 75.4 81.8

Table 10: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil (agnostic) for different
model sizes (≤ 50M parameters) based on GLUE validation performance. We include results on
MNLI task. For fair comparison, we drop AutoDistil (proxy), which directly uses MNLI task for
architecture selection. Neuron-wise MoS improves over the baselines in all model sizes, in terms of
average GLUE. For MNLI task, neuron-wise MoS improves over the baselines in most model sizes.

A.3.3 ARCHITECTURE COMPARISON OF NEURON-WISE MOS VS. AUTODISTIL

Table 9 shows the comparison of the BERT architecture designed by our proposed neuron-wise MoS
with AutoDistil.

A.3.4 FAIR COMPARISON OF NEURON-WISE MOS W.R.T SOTA WITH MNLI

We compare neuron-wise MoS with NAS-BERT and AutoDistil (agnostic) for different model sizes
(≤ 50M parameters) based on GLUE validation performance. In Table 10, we include results on
MNLI task. For fair comparison, we drop AutoDistil (proxy), which directly uses MNLI task for
architecture selection. Neuron-wise MoS improves over the baselines in all model sizes, in terms of
average GLUE. For MNLI task, neuron-wise MoS improves over the baselines in most model sizes.

A.4 ADDITIONAL EXPERIMENTS - EFFICIENT MACHINE TRANSLATION

A.4.1 MACHINE TRANSLATION BENCHMARK DATA

Table 11 shows the statistics of three machine translation datasets: WMT’14 En-De, WMT’14 En-Fr,
and WMT’19 En-De.

A.4.2 TRAINING SETTINGS AND METRICS

The training settings for both supernet and standalone models are the same: 40K training steps, Adam
optimizer, a cosine learning rate scheduler, and a warmup of learning rate from 10−7 to 10−3 with
cosine annealing. The best checkpoint is selected based on the validation loss, while the performance
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Dataset Year Source Lang Target Lang #Train #Valid #Test

WMT 2014 English (en) German (de) 4.5M 3000 3000
WMT 2014 English (en) French (fr) 35M 26000 26000
WMT 2019 English (en) German (de) 43M 2900 2900

Table 11: Machine translation benchmark data.

of the MT model is evaluated based on BLEU. The beam size is four with length penalty of 0.6. The
architecture encoding a is a list of following 10 values:

1. Encoder embedding dimension corresponds to embedding dimension of the encoder.

2. Encoder #layers corresponds to number of encoder layers.

3. Average encoder FFN. intermediate dimension corresponds to average of FFN intermediate
dimension across encoder layers.

4. Average encoder self attention heads corresponds to average of number of self attention
heads across encoder layers.

5. Decoder embedding dimension corresponds to embedding dimension of the decoder.

6. Decoder #Layers corresponds to number of decoder layers.

7. Average Decoder FFN. Intermediate Dimension corresponds to average of FFN intermediate
dimension across decoder layers.

8. Average decoder self attention heads corresponds to average of number of self attention
heads across decoder layers.

9. Average decoder cross attention heads corresponds to average of number of cross attention
heads across decoder layers.

10. Average arbitrary encoder decoder attention corresponds to average number of encoder
layers attended by cross-attention heads in each decoder layer (-1 means only attend to the
last layer, 1 means attend to the last two layers, 2 means attend to the last three layers).

A.4.3 SUPERNET VS. STANDALONE PERFORMANCE PLOT

Figure 3 displays the supernet vs. the standalone performance for 15 randomly sampled architectures
on all the three tasks. Neuron-wise MoS excel for almost all the top performing architectures (≥ 26.5
and≥ 42.5 standalone BLEU for WMT’14 En-De and WMT’19 En-De respectively), which indicates
that the models especially in the pareto front can benefit immensely from neuron level specialization.

A.4.4 HAT SETTINGS

Evolutionary search: The settings for the evolutionary search algorithm include: 30 iterations,
population size of 125, parents population of 25, crossover population of 50, and mutation population
of 50 with 0.3 mutation probability.

Latency estimator: The latency estimator is developed in two stages. First, the latency dataset
is constructed by measuring the latency of 2000 randomly sampled architectures directly on the
user-defined hardware (NVIDIA V100 GPU). Latency is the time taken to translate a source sentence
to a target sentence (source and target sentence lengths of 30 tokens each). For each architecture, 300
latency measurements are taken, outliers (top 10% and bottom 10%) are removed, and the rest (80%)
is averaged. Second, the latency estimator is a 3 layer multi-layer neural network based regressor,
which is trained using encoding and latency of the architecture as features and labels respectively.

A.4.5 ADDITIONAL TRAINING STEPS TO CLOSE THE GAP VS. PERFORMANCE

Figure 4, Figure 5, and Figure 6 show the additional training steps vs. BLEU for different latency
constraints on the WMT’14 En-De task, WMT’14 En-Fr and WMT’19 En-De tasks respectively.
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(a) WMT’14 En-De (b) WMT’14 En-Fr

(c) WMT’19 En-De

Figure 3: Supernet vs. Standalone model performance for 15 random architectures from MT search
space. Supernet performance is obtained by evaluating the architecture-specific weights extracted
from the supernet. Standalone model performance is obtained by training the architecture from
scratch to convergence and evaluating it.

(a) 100ms (b) 150ms (c) 200ms

Figure 4: Additional training steps to close the supernet - standalone gap vs. performance for different
latency constraints on the WMT’14 En-De dataset.

(a) 100ms (b) 150ms (c) 200ms

Figure 5: Additional training steps to close the supernet - standalone gap vs. performance for different
latency constraints on the WMT’14 En-Fr dataset.
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(a) 100 ms (b) 150 ms (c) 200 ms

Figure 6: Additional training steps to close the supernet - the standalone gap vs. performance for
different latency constraints on the WMT’19 En-De dataset. For 200 ms latency constraint, neuron-
wise MoS closes the gap without additional training.

Supernet / Pareto Front Model 1 Model 2 Model 3
Seed Latency BLEU Latency BLEU Latency BLEU

HAT (SPOS) 1 96.39 38.94 176.44 39.26 187.53 39.16
HAT (SPOS) 2 98.91 38.96 159.87 39.20 192.11 39.09
HAT (SPOS) 3 100.15 38.96 158.67 39.24 189.53 39.16

Layer-wise MoS 1 99.42 39.34 158.68 40.29 205.55 41.24
Layer-wise MoS 2 99.60 39.32 156.48 40.29 209.80 41.13
Layer-wise MoS 3 119.65 39.32 163.17 40.36 208.52 41.18

Neuron-wise MoS 1 97.63 39.55 200.17 40.02 184.09 41.04
Neuron-wise MoS 2 100.46 39.55 155.96 40.04 188.87 41.15
Neuron-wise MoS 3 100.47 39.57 157.26 40.04 190.40 41.17

Table 12: Stability of the evolutionary search w.r.t. different seeds on the WMT’14 En-Fr task. Search
quality is measured in terms of latency and sampled (direct) supernet performance (BLEU) of the
models in the pareto front.

A.4.6 EVOLUTIONARY SEARCH - STABILITY

We study the initialization effects on the stability of the pareto front outputted by the evolutionary
search for different supernets. Table 12 displays sampled (direct) BLEU and latency of the models in
the pareto front for different seeds on the WMT’14 En-Fr task. The differences in the latency and
BLEU across seeds are mostly marginal. This result highlights that the pareto front outputted by the
evolutionary search is largely stable for all the supernet variants.

A.4.7 IMPACT OF DIFFERENT ROUTER FUNCTION

Table 13 displays the impact of varying the number of hidden layers in the router function for
neuron-wise MoS on the WMT’14 En-De task. Two hidden layers provide the right amount of router
capacity, while adding more hidden layers results in steady performance drop.

A.4.8 IMPACT OF INCREASING THE NUMBER OF EXPERT WEIGHTS ‘M’

Table 14 displays the impact of increasing the number of expert weights ‘m’ for the WMT’14 En-Fr
task, where the architecture for all the supernets is the top architecture from the pareto front of HAT
for the latency constraint of 200 ms. Under the standard training budget (40K steps for MT), the

# layers in router function BLEU (↑)

2-layer 26.61
3-layer 26.14
4-layer 26.12

Table 13: Validation BLEU of different router functions for neuron-wise MoS on the WMT’14 En-De
task.
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Supernet m BLEU (↑) Supernet GPU Memory (↓)

HAT - 39.13 11.4 GB
Layer-wise MoS 2 40.55 15.9 GB
Layer-wise MoS 4 40.33 16.1 GB

Table 14: Impact of increasing the number of expert weights ‘m’ for the WMT’14 En-Fr task. The
architecture is the top model from the pareto front of HAT for the latency constraint of 200 ms.

Supernet BLEU (↑) SacreBLEU (↑)

HAT 26.25 25.68
Layer-wise MoS 27.31 26.7

Neuron-wise MoS 27.59 27.0

Table 15: Performance of supernet as measured by BLEU and SacreBLEU for the latency constraint
of 150 ms on the WMT’14 En-De task.

performance of layer-wise MoS does not seem to improve by increasing ‘m’ from 2 to 4. Increasing
‘m’ introduces too many parameters, which might necessitate a significant increase in the training
budget (e.g., 2 times more training steps than the standard training budget). For fair comparison with
existing literature, we use the standard training budget for all the experiments. We will investigate the
full potential of the proposed supernets by combining larger training budget (e.g., ≥ 200K steps)
and larger number of expert weights (e.g., ≥ 16 expert weights) in future work.

A.4.9 SACREBLEU VS. BLEU

We use the standard BLEU (Papineni et al., 2002) to quantify the performance of supernet following
HAT for a fair comparison. In Table 15, we also experiment with SacreBLEU (Post, 2018), where the
similar trend of MoS yielding better performance for a given latency constraint holds true.

A.4.10 BREAKDOWN OF THE OVERALL TIME SAVINGS

Table 16 shows the breakdown of the overall time savings of MoS supernets versus HAT for computing
pareto front for the WMT’14 En-De task. The latency constraints include 100 ms, 150 ms, 200 ms.
MoS have an overall GPU hours savings of at least 20% w.r.t. HAT, thanks to significant savings in
additional training time (45%-51%).

A.4.11 CODEBASE

We share the codebase in the supplementary material, which can be used to reproduce all the results
in this paper. For both BERT and machine translation evaluation benchmarks, we add a README
file that contains the following instructions: (i) environment setup (e.g., software dependencies), (ii)
data download, (iii) supernet training, (iv) search, and (v) subnet retraining.

Supernet Overall Time (↓) Supernet Training Time (↓) Search Time (↓) Additional Training Time (↓)

HAT 508 hours 248 hours 3.7 hours 256 hours
Layer-wise MoS 407 hours (20%) 262 hours (-5.6%) 4.5 hours (-21.6%) 140 hours (45.3%)

Neuron-wise MoS 394 hours (22%) 266 hours (-7.3%) 4.3 hours (-16.2%) 124 hours (51.6%)

Table 16: Breakdown of the overall time savings of MoS supernets vs. HAT for computing pareto
front (latency constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De task. Overall time
(measured as single NVIDIA V100 hours) includes supernet training time, search time, and additional
training time for the optimal architectures. Savings in parentheses.
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