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Adversarial Cheap Talk
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Abstract
Adversarial attacks in reinforcement learning
(RL) often assume highly-privileged access to the
learning agent’s parameters, environment or data.
Instead, this paper proposes a novel adversarial
setting called a Cheap Talk MDP in which an Ad-
versary has a minimal range of influence over the
Victim. Parameterised as a deterministic policy
that only conditions on the current state, an Adver-
sary can merely append information to a Victim’s
observation. To motivate the minimum-viability,
we prove that in this setting the Adversary cannot
occlude the ground truth, influence the underly-
ing dynamics of the environment, introduce non-
stationarity, add stochasticity, see the Victim’s
actions, or access their parameters. Additionally,
we present a novel meta-learning algorithm to
train the Adversary, called adversarial cheap talk
(ACT). Using ACT, we demonstrate that the re-
sulting Adversary still manages to influence the
Victim’s training and test performance despite
these restrictive assumptions. Affecting train-time
performance reveals a new attack vector and pro-
vides insight into the success and failure modes
of existing RL algorithms. More specifically, we
show that an ACT Adversary is capable of harm-
ing performance by interfering with the learner’s
function approximation and helping the Victim’s
performance by appending useful features. Fi-
nally, we demonstrate that an ACT Adversary can
append information during train-time to directly
and arbitrarily control the Victim at test-time in a
zero-shot manner.

1. Introduction
Learning agents are often trained in settings where adver-
saries may have some control over part of the agent’s obser-
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vations. However, the adversary cannot usually influence
the dynamics of the underlying environment or the reward
signal (at least not without cost). For example, it is often
possible to append arbitrary tags to content which is later
used to train recommender systems. Similarly, an adversary
could rent space on interactive bulletin boards near busy
traffic intersections to influence data sets which are used
for training self-driving cars. Another instance occurs in
financial markets, where an adversary can change the state
of the order-book by submitting orders far out of the money.
While all of these are examples of useless features from an
information point of view, under the current paradigm of
end-to-end deep learning it is common practice to include
a superset of useful features as part of the input and to let
the model learn which features actually matter. This paper
demonstrates that an actor can heavily influence the be-
haviour and performance of learning agents by controlling
information only in these “useless” features.

Most past work in adversarial attacks assumes that the ad-
versary can influence the environment dynamics (Huang
et al., 2017; Gleave et al., 2020). For example, perturbing
images and observations could be used to obscure or alter
relevant information, such as the ball’s location in a Pong
game (Kos and Song, 2017). Furthermore, many attacks
require access to the trained agent’s weights and parameters
to generate the adversarial inputs (Wang et al., 2021). Fi-
nally, most of these attacks only cause the victim’s policy
to fail arbitrarily instead of giving the adversary full control
over the victim’s policy at test time (Gu et al., 2017; Kiourti
et al., 2020; Salem et al., 2020; Ashcraft and Karra, 2021).

In contrast, our work, which is inspired by recent advance-
ments in the field of opponent shaping (Lu et al., 2022), in
Section 3 proposes a novel, minimum-viable setting to shape
a learning agent, called “Cheap Talk MDP”. In this setting,
the Adversary can only append information to the observa-
tion of a Victim as a deterministic function of the current
state. The Adversary does not have access to the Victim’s
parameters, actions, or even samples from the Victim’s pol-
icy. In Section 4, we prove that the Adversary cannot change
the dynamics of the underlying environment nor alter the
reward functions. Nor can it inject stochasticity into the
environment (deterministic) or introduce non-stationarity
(function of the current state only). Furthermore, we prove
that Adversaries cannot influence tabular Victims in this
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(a) (b) (c)

Figure 1: Visualizations of the training curves of the Victim across different number of dimensions of the messages for (a)
Cartpole, (b) Pendulum, and (c) Reacher. Error bars denote the standard error across 10 seeds of Victims trained against a
single trained Adversary.

setting in Proposition 1; Adversaries can therefore only in-
terfere with a Victim through their function approximator.
In this sense, our setting represents a bare minimum range
of influence, as further justified in Appendix B.3.

In Section 4, we also introduce a new meta-learning algo-
rithm to train the Adversary, called adversarial cheap talk
(ACT). With an extensive set of experiments in Section 5,
we demonstrate that an ACT Adversary can influence a
Victim to achieve a number of outcomes:

1. We show that the ACT Adversary can prevent the Vic-
tim from solving a task, resulting in low rewards dur-
ing training. We provide empirical evidence that the
Adversary sends messages which induce catastrophic
interference in the Victim’s neural network.

2. Conversely, an ACT Adversary can learn to send useful
messages that improve the Victim’s training process,
resulting in higher rewards during training.

3. Finally, we introduce a training scheme that allows
the ACT Adversary to arbitrarily control the Victim at
test-time, in a zero-shot manner.

Related Work For an in-depth discussion on related work,
we point the reader to Appendix A. Next, we continue by
introducing the basic concepts and algorithms to understand
our contributions.

2. Background
2.1. Reinforcement Learning

A Markov decision process (MDP) consists of a tuple
D = ⟨S,A,P,R, γ⟩, where S denotes the state space, A
represents the action space, P : S×A×S 7→ [0, 1] denotes
the state transition probability function, R : S × A 7→ R
is the reward function and γ ∈ [0, 1) denotes the discount

factor. At every timestep t, an agent samples an action
from its stochastic policy at ∼ πθ (· | st), where at ∈ A,
st ∈ S and θ denotes the policy parameterization. The agent
then receives a reward based on the action taken in the cur-
rent state: rt = R (st, at). Finally, a new state is sampled
according to the transition function st+1 ∼ P (· | st, at), re-
sulting in a trajectory τθ := ((s0, a0, r0) , (s1, a1, r1) , . . .).
The agent’s goal is to maximize its expected discounted
return under policy πθ:

J(θ) = Eπθ

[ ∞∑
t=0

γtrt

]
. (1)

3. Problem Setting
In this work, we consider two agents that interact in a setting
we call a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩. Here
M denotes the space of messages. We refer to the agent
observing the message as the Victim with transition and
reward functions P,R independent from M. The agent
appending the message is called the Adversary, endowed
with a deterministic policy (function) f : S → M to append
messages and an objective function J to optimise (details
below).

The Victim is a “standard” reinforcement learning agent,
selecting actions according to its policy at ∼ πθ(· | s, f(s)),
where a ∈ A, s ∈ S. The Victim optimises its policy πθ
with respect to parameters θ, to maximise its expected return
J defined in Equation 1.

By contrast, the Adversary may only act by appending a
message fϕ(s) to s at every step, where fϕ : S → M is
a deterministic policy (function) of the current state and ϕ
are the Adversary’s parameters. These parameters may only
be updated between full training / testing episodes of the
Victim; the function remains static during episodes to avoid
introducing non-stationarity. The Adversary’s objective
function J may be picked arbitrarily, and need not even be
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differentiable if it is optimised using ES.

In the train-time setting we focus on both the allied setting,
where Adversary and Victim objectives are equal, J =
J , and the adversarial setting where objectives are zero-
sum, J = −J . In the test-time setting we use an entirely
different objective, such as reaching for an arbitrary circle
in Reacher (see Figure 3c). This incentivises the Adversary
to manipulate the Victim into maximising J , even if at the
cost of the Victim’s original objective J .

4. Method
4.1. Meta-Training Procedure

Our method treats the problem setting as a meta-learning
problem. The Adversary’s parameters ϕ are only updated
after a full training (and testing) run of the Victim’s pa-
rameters θ. Note that ϕ is static during the whole training
run (inner loop) of θ and only gets updated once the inner
loop completes. In the outer loop, we optimise the Adver-
sary’s objective J with respect to ϕ using ES as a black-box
optimization technique.

4.2. Train-Time Manipulation

When influencing the agent’s performance during train-time,
we consider the allied and the adversarial settings. Pseu-
docode is provided in Algorithm 1 (see Appendix D, where
E is the number of Victim training episodes and N is the
ES population size. Letting c = 1 for allied and c = −1 for
adversarial, the Adversary’s objective is c times the Victim’s
mean reward accumulated over training.

4.3. Zero-Shot Test-Time Manipulation

In zero-shot test-time manipulation, the Adversary attempts
to maximise its objective J during some notion of test-
time starting at time I . In practice, we introduce a separate
Adversary for test-time, parameterized by its own set of
parameters ψ. However, both the train-time Adversary ϕ
and test-time Adversary ψ have identical objective function
J . The train-time Adversary wants to create a backdoor
to make the Victim susceptible to manipulation at test-time.
The test-time Adversary wants to use this backdoor to con-
trol the Victim. The test-time Adversary ψ operates zero-
shot because it has not seen the specific, trained test-time
parameters of the Victim θ′ of the current meta-episode
before interacting with it.

Theoretical Results For the theoretical results, we point the
reader to Appendix B.1 and B.2. Moreover, in Appendix
B.3, we informally show that removing any component from
a Cheap Talk MDP would either nullify all possibility of in-
fluence or make the setting so limited as to be uninteresting.

5. Experiments and Results
We evaluate ACT on three different environments: Cartpole,
Pendulum, and Reacher (Brockman et al., 2016). The Vic-
tim is trained with Proximal Policy Optimisation (Schulman
et al., 2017, PPO), a state-of-the-art RL algorithm. The
Adversary is trained using ES (Salimans et al., 2017).

Training details are provided in Appendix E. Note that the
PPO implementation uses observation normalisation, so
each dimension of the observation has a mean of zero and
a standard deviation of one. We also include videos of the
Victim’s performance and visualizations of the Adversary’s
outputs in the Supplementary Materials for each of the sce-
narios below.

5.1. Train-Time Influence

Figure 1 show the results of training Victims alongside
different Adversaries. It is evaluated on four different Ad-
versaries:

1. Ally: meta-trained to maximize the Victim’s mean re-
ward throughout training.

2. Adversary: meta-trained to minimize the Victim’s
mean reward throughout training.

3. Random Adversary: randomly initialise and fix the
Adversary’s parameters ϕ.

4. Zeroes Adversary: appends only zeroes as messages.

Ally. The Ally manages to assist the Victim to learn and
converge faster – this is likely done by appending useful
features of the environment. Interestingly, in Figure 5b
Appendix C, we show that this Adversary even outperforms
an Oracle that outputs the optimal policy logits as messages.

We hypothesise that the Adversary may be inducing catas-
trophic interference within the environment, which was
observed by Fedus et al. (2020) in Atari 2600 games. In
Figure 6 Appendix C, we demonstrate that the Adversary
induces catastrophic interference in both the Adversarial
setting by influencing the correlation between gradient up-
dates between different parts of a single inner loop episode.
We also study how the cheap-talk channel size affects the
performance of the Adversary in Figure 5a Appendix C.

5.2. Zero-Shot Test-Time Manipulation

In the setting of zero-shot test-time manipulation, the Ad-
versary’s objective is to maximize the score of a goal-
conditioned objective. As a consequence, the Adversary
needs to learn to introduce a backdoor during train-time
and use the backdoor during test-time to fully control the
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(a) (b) (c)

Figure 2: Training curves of the different agents in (a) Goal-Conditioned Cartpole (b) Goal-Conditioned Pendulum (c)
Goal-Conditioned Reacher. The ablations show that the train- and test-time Adversarieslearn near-optimal performance in
comparison to the oracles. Error bars denote the standard error across 10 seeds of Victim trained against a single trained
Adversary.

Victim. We describe the environment-specific rewards and
how these goals are parameterized in Figure 3, Appendix C.

To better understand the capability of our model, we inves-
tigate four different Adversary-Victim settings. These four
settings serve as ablations to study the individual and joint
performance of the train- and test-time Adversaries.

1. Direct Oracle: In this baseline, there is no cheap talk.
We simply train a PPO agent to maximize the goal-
conditioned return. It can observe the full state and
directly output actions in the environment.

2. Zero-Shot Adversary: First, we train a Victim θ
alongside a train-time Adversary ϕ. We then evalu-
ate the return of the test-time Adversary ψ according
to the goal-conditioned return (as described in Algo-
rithm 2). The test-time Adversary ψ operates zero-shot,
because it was not trained with the specific, trained in-
stance of the Victim θ before interacting with it. It is
thus represented by a horizontal line in Figure 2.

3. Oracle with Learned Adversary: First, we optimize
the Victim θ by training it alongside our train-time
Adversary ϕ. Then, instead of ES, we use PPO to
train the test-time Adversary ψ∗ against the Victim
θ. Unlike the zero-shot Adversary, the oracle ψ∗ is
allowed to train against the pretrained and fixed Victim
θ to maximize its returns, as described in Algorithm 4
in Appendix D.

4. Oracle with Random Adversary: First, we obtain a
Victim θ by training it alongside a random train-time
Adversary, ϕrandom, with randomly initialized and fixed
parameters. Next, we use PPO to train the test-time
Adversary ψ∗ to maximize the goal-conditioned return.

All results are shown in Figure 2. We can use the Direct
Oracle as a baseline to measure how effective the train-time

Adversary ϕ and test-time Adversary ψ are at achieving the
maximal possible return jointly. As Figure 2 shows, the
ES optimized train- and test-time Adversariesperform near-
optimally. We investigate this further in Figure 4, Appendix
C, where we compare the range and variance of Victims
trained with ES optimized Adversariesϕ and Victims trained
with random Adversaries ϕrandom across different message
values.

6. Conclusion & Future Work
In this paper, we propose a novel, minimum-viable, adver-
sarial setting for RL agents, where the Adversary can only
influence the Victim over messages, and can only do so with
deterministic function that only depends on the current state.

By training a Adversary with adversarial cheap talk (ACT),
we show that appending to the observations of a learning
agent, even with strong constraints, is sufficient to dras-
tically improve or decrease a learning agent’s train-time
performance or introduce a backdoor to control the learn-
ing agent at test time completely. Our test-time ablation
studies demonstrate that the train- and test-time Adversaries
achieve near-optimal performance individually as well as
jointly, when compared against strong oracle baselines. We
also provide in-depth analysis on how the Adversaries work.

As RL models become more widespread, we believe prac-
titioners must consider this new class of minimum viable
attacks. Therefore, we propose identifying and filtering
out seemingly-superfluous information as the first defence
measure. In future work we will investigate different de-
fence strategies, such as the identification of messages, and
larger-scale input settings.
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A. Related Work
A.1. Test-Time Adversarial Attacks

Most work investigating adversarial attacks on deep RL systems focus on attacks at test-time, i.e. those that assume a fully
trained, static policy. Gleave et al. (2020) learn adversarial policies to attack a pretrained agent at test-time. In contrast
to our method, the adversarial agent can directly interact with the environment and the victim agent, thus introducing
non-stationarity and assuming sampling access to the (static) victim. Also, they do not investigate adversarial agents that
affect training performance. Huang et al. (2017) also investigate adversarial attacks to influence test-time performance. In
contrast to our work, they directly perturb the observation space and do not simply append to it, thus assuming access to the
observation space of the victim. Kos and Song (2017) also attack test-time performance by directly perturbing observations.

A.2. Backdoor Attacks

Backdoor attacks in reinforcement learning aim to introduce a vulnerability during train-time, which can be used at test-time.
Backdoors can be static, meaning they get activated with fixed patterns, or dynamic, which is when the backdoor gets
activated by context-dependent patterns (Salem et al., 2020). For static backdoors, the adversary often directly perturbs
the observation space (Gu et al., 2017; Kiourti et al., 2020; Ashcraft and Karra, 2021). To introduce dynamic backdoors,
the threat model assumes that the adversary has full control over the training process of the agent, giving the adversary the
ability to introduce backdoors at train-time (Wang et al., 2021). In contrast, in our threat model, we assume a minimal range
of influence by only appending to the observations. Furthermore, instead of perturbing the observations directly, Wang
et al. (2021) deploy the adversarial agent directly in the environment. Interacting with the environment directly allows the
adversary to introduce non-stationarity and stochasticity. In contrast, our setting does not allow the Adversary to introduce
either.

A.3. Failure Modes in Deep Reinforcement Learning

Previous works have shown that using neural networks as function approximators in reinforcement learning often results in
multiple failure modes due to the non-stationarity of value function bootstrapping (van Hasselt et al., 2018). In particular,
works have shown that catastrophic interference (Bengio et al., 2020) and capacity loss (Lyle et al., 2022) often occur, even
within a single episode of an environment (Fedus et al., 2020). Song et al. (2020) shows that deep reinforcement learning
algorithms can often overfit to spurious correlations in the observation space. By appending to the observation space, we
learn to induce the observational failure modes described in these works.

A.4. Opponent Shaping / Cheap Talk

Our method is closely related to the field of opponent shaping. Originally, most opponent shaping algorithms assumed
white-box access to their opponents to shape the flow of the opponent’s gradient (Foerster et al., 2018; Letcher et al., 2019a;b;
Willi et al., 2022). Instead, Lu et al. (2022) introduce a method to shape opponents without white-box access. However,
they still deploy an agent to interact directly in the environment. In contrast, we propose a method to shape other agents
without having to interact in the environment at all, solely by appending messages through a cheap talk channel. Cheap
talk is communication that incurs no cost, is non-binding (it can be ignored and does not limit the agent’s action space),
and is unverifiable (meaning any information, true or false, can be communicated) (Farrell, 1987). In RL terms, a cheap
talk channel is a part of the state space which can be observed by other agents but does not alter transition dynamics or
reward functions. Cheap talk channels (Crawford and Sobel, 1982) in deep reinforcement learning have been used to learn
emergent communication (Foerster et al., 2016) and to solve coordination problems (Cao et al., 2018). To the best of our
knowledge, this paper is the first to use a cheap talk channel (and only a cheap talk channel) to shape learning agents.

B. Proofs
B.1. Proof of Proposition 1

In this section, we further justify the claim that our setting represents the bare minimum range of influence. To begin, we
prove that Adversaries cannot influence tabular Victims in Cheap Talk MDPs; Adversaries can therefore only interfere with
a Victim through their function approximator.

Proposition 1. For any deterministic Adversary f : S → M, the return of a tabular Victim initialised uniformly along the
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M axis is independent from f . Moreover, any Victim which is guaranteed to converge to optimal policies in MDPs will, for
any Cheap Talk MDP, converge to a policy whose expected return is the optimal return for the original no-channel MDP –
even in non-tabular settings and regardless of initialisation.

Proof. We begin with the tabular case.

Tabular Victims. In a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩, a tabular Victim arbitrarily orders states as {s1, . . . , sd}
and messages as {m1, . . . ,mk}, where d = |S| and k = |M|, and stores policies πt(· | si,mj) at time t of the learning
process for all i ∈ [d], j ∈ [k]. The argument follows identically for value functions. Assuming uniform initialisation along
the M axis means that

π0(· | si,mj) = π0(· | si,mj′)

for all j, j′ ∈ [k]. Now consider any two Adversaries f, g and their influence on two copies of the same Victim V,W with
respective policies π, χ. The only states encountered in the environment are of the form (s, f(s)) and (s, g(s)) respectively,
so Victims only update the corresponding policies

πt(· | si, f(si)) and χt(· | si, g(si)) .

We prove by induction that these quantities are equal for all t. The base case holds by uniform initialisation along M;
assume the claim holds for all fixed 0 ≤ t ≤ T . The Victims update their policies at time T + 1 according to the same
learning rule, as a function of the transitions and returns under current and past policies πt and χt respectively. Transitions
take the form (s, f(s), a, s′, f(s′)) for V and (s, g(s), a, s′, g(s)) for W , which have identical probabilities and returns
because

πt(a | si, f(si)) = χt(a | si, g(si)) ;
P(s′, f(s′) | s, f(s), a) = P(s′, g(s′) | s, g(s), a) ;

R(s, f(s), a) = R(s, g(s), a)

by inductive assumption and independence of P,R from M. This probability- and return-preserving bijection between
transitions, as well as being copies with identical initialisation in the environment, implies that policies πT (· | si, f(si)) =
χT (· | si, g(si)) are updated identically to

πT+1(· | si, f(si)) = χT+1(· | si, g(si))

as required to complete induction. Note that this could not necessarily be accomplished in non-tabular settings, where
updating parameters θ of the function approximator for some state si may alter the policy on some other state sj . It now
follows that trajectories τ = (sk, f(sk), ak)k for V and ω = (sk, g(sk), ak)k for W have identical probabilities and hence
produce identical returns

Eτ∼πt [R(τ)] = Eω∼χt
[R(ω)]

at any timestep t of the learning process, concluding independence from Adversaries.

Optimally Convergent Victims. By assumption, the Victim is guaranteed to converge to an optimal policy π̄ in the Cheap
Talk MDP ⟨S,A,P,R,M, f,J , γ⟩, since a Cheap Talk MDP is itself an MDP with an augmented state space S ×M and
augmented transition/reward functions that are defined to be independent from M. Now π̄ naturally induces a policy π
on the no-channel MDP, given by π(· | s) := π̄(· | s, f(s)), and in particular Q(s, a) = Q̄(s, f(s), a) by independence of
transitions and rewards from M. Optimality of π follows directly from the Bellman equation

Q(s, a) = Q̄(s, f(s), a) = Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q̄(s′, f(s′), a′)

]
= Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q(s′, a′)

]
.

Now trajectories τ̄ = (sk, f(sk), ak)k and τ = (sk, ak)k have identical probability and return under π and π̄ respectively,
so the Victim has expected return

Eτ̄∼π̄ [R(τ̄)] = Eτ∼π [R(τ)]

which is the optimal expected return of the original no-channel MDP.
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B.2. Proof of Proposition 2

For completeness, we also formally prove our claims from the introduction regarding what the Adversary cannot do in
Cheap Talk MDPs.

Proposition 2. In a Cheap Talk MDP, the Adversary cannot (1) occlude the ground truth, (2) influence the environment
dynamics / reward functions, (3) see the Victim’s actions or parameters, (4) inject stochasticity, or (5) introduce non-
stationarity.

Proof. Mostly by definition. Formally, consider a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩ as defined in Section 3. For a
fixed training / testing run of the Victim on the MDP, the Adversary outputs a message f(s) at each step according to a fixed
deterministic function f : S → M.

(1) The message is appended to the state s and the Victim acts with full visibility of the ground truth (state) s according to
its policy: a ∼ π(· | s, f(s)).

(2) The transition and reward functions P,R are defined to be independent from M. Formally we have P(· | s,m, a) =
P(· | s,m′, a) for all m,m′ ∈ M (similarly for R), so the Adversary’s choice of message m = f(s) cannot influence
P or R.

(3) f : S → M is defined as a function of S only, so the Adversary cannot condition its policy based on the Victim’s
actions or parameters (i.e. it cannot see them for all practical purposes).

(4) f is a deterministic function, so π(· | s, f(s)) is a distribution only on actions A. The transition and reward functions
are independent from f , so they are distributions only on state-action pairs S ×A. It follows that the Adversary injects
no further stochasticity into the MDP.

(5) f is static for a fixed training / testing run, so st = st′ implies f(st) = f(st′) for all timesteps t, t′ in the run. It follows
that any given Victim policy π is stationary, namely π(· | st, f(st)) = π(· | st′ , f(st′)) for all st = st′ . Since P and
R are stationary (as defined by a standard MDP) and independent from M, their stationarity is also preserved.

B.3. Informal Justification of Minimality

Finally, let us informally show that removing any component from a Cheap Talk MDP would either nullify all possibility of
influence or make the setting so limited as to be uninteresting.

(1) Removing the set M or the policy f : S → M entirely would result in the Victim being completely independent from
the Adversary, since nothing would be appended to its observation.

(2) Restricting the capacity of M to a certain number of bits would further restrict an Adversary’s range of influence, so
one could say that the truly minimum-viable setting is to impose a set of size |M| = 1. However, cheap talk is still
cheap talk when varying capacity, and there is no reason to arbitrarily restrict the size to 1 if we are to apply our setting
to complex environments likely requiring more than a single bit of communication to witness interesting results.

(3) Not allowing Adversaries to see states, namely removing S as inputs to f , yields a function f : {0} → M which
always outputs the same messagef(0) = m ∈ M. This is equivalent to the previous restriction of imposing a set M of
size 1, since in this case any function f : S → M would have to output the unique element f(s) = m for all input
states s.

(4) The Adversary must have some objective function J in order for an adversarial setting to make sense – removing
it would remove the Adversary’s rationale for existence, since it would have no incentive to learn parameters that
influence the Victim according to some goal.

(5) Restricting the function class of objectives J is a valid minimisation of the setting, but simply restricts our interesting
the setting itself. The setting should at the very least allow for adversarial objectives of the form J = −J as we
consider in the train-time setting. In test-time, our aim is to show how Adversaries can exert arbitrary control over
Victims despite cheap talk restrictions, and we therefore consider more general objective functions.
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C. Experiments and Results Additional Material

(a) (b) (c)

Figure 3: Visualizations of our goal-conditioned environments (a) In Cartpole, the Adversary’s target is a randomly selected
point on the x-axis, indicated by the yellow box. (b) In Pendulum, the Adversary’s goal is a randomly selected angle
indicated by the yellow pole. (c) In Goal-Conditioned Reacher, the Adversary’s goal is a specific point, denoted by the
yellow circle, while the Victim’s goal is the blue circle.
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(a) (b)

(c) (d)

Figure 4: We train 10 different Victims alongside the Learned ϕ (a & c), as well as 10 different Victims alongside a randomly
generated ϕ (b & d) in the Pendulum environment. (a) and (b) show the mean of the policy output across the 10 Victims as
we vary the value of the message in a fixed randomly selected state. Notably, the policies trained with the learned ϕ achieve
a much wider range of outputs. (c) and (d) show the variance of the policy output across the 10 Victims. Notably, the policies
trained with the learned ϕ display very little variance, implying that the learned ϕ shapes the Victim in a consistent way.
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(a) (b)

Figure 5: (a) Ablations on the different number of cheap talk dimensions for the Adversary in Cartpole (b) Comparing the
ally with an Adversary that outputs the optimal logits in Cartpole. Error bars denote the standard error across 10 seeds of a
Victim trained against a single meta-trained Adversary.

(a) (b) (c)

Figure 6: To perform this analysis, we collect each Victim’s experience buffer, before the agents have converged in training,
and split each one into 10 bins, ordered by the time-step within the environment. We then calculate the gradient update the
agents would perform on each of these bins. In the Adversarial setting (a), the gradient updates performed for transitions
sampled early in an episode can interfere with the gradient updates performed for transitions later in an episode. Meanwhile,
in the Allied setting (c), those gradient updates are positively correlated, suggesting that the gradient updates aid each other.
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D. Pseudocode

Algorithm 1 Train-time ACT

1: Set c = ±1 for allied / adversarial
2: Initialize Adversary parameters ϕ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: for n = 0 to N do
6: Initialize Victim parameters θ
7: rewards = []
8: for e = 0 to E do
9: s = env.reset()

10: while not done do
11: s̄ = [s, fϕn(s)]
12: a ∼ πθ(· | s̄)
13: r, s, done = env.step(a)
14: rewards.append(r)
15: end while
16: Update θ with PPO to maximise J
17: end for
18: Jn = c · sum(rewards)/len(rewards)
19: end for
20: Update ϕ using ES to maximise J
21: end for
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Algorithm 2 Test-time ACT

1: Initialize train-time ACT parameters ϕ
2: Initialize test-time ACT parameters ψ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: Sample ψn ∼ ψ + σϵn where ϵ1, ..., ϵN ∼ N (0, I)
6: for n = 0 to N do
7: Initialize policy params θ
8: rewards = []
9: for e = 0 to E do

10: s = env.reset()
11: while not done do
12: m = fϕn(s)
13: s̄ = [s, m]
14: a ∼ πθ(· | s̄)
15: r, s = env.step(a)
16: end while
17: Update θ using PPO to maximise J
18: end for
19: for i = 0 to I do
20: s = env.reset()
21: while not done do
22: m = fψn(s)
23: s̄ = [s, m]
24: a ∼ πθ(· | s̄)
25: r, s, done = env.step(a)
26: rSt = RS(s, a)
27: rewards.append(rSt )
28: end while
29: end for
30: end for
31: Update ϕ using ES to maximise J
32: Update ψ using ES to maximise J
33: end for



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2022

Algorithm 3 Test-time Oracle PPO ACT

1: Initialize train-time ACT parameters ϕ
2: Obtain trained ϕ, θ from Algorithm 2
3: Initialize test-time ACT parameters ψ∗

4: for i = 0 to I do
5: s = env.reset()
6: while not done do
7: m ∼ πψ∗(· | s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s, done = env.step(a)
11: rSt = RS(s, a)
12: rewards.append(rSt )
13: end while
14: Update ψ∗ using PPO to maximise J
15: end for
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Algorithm 4 Test-time Random Shaper

1: Initialize train-time ACT parameters ϕrandom
2: Initialize policy params θ
3: rewards = []
4: for e = 0 to E do
5: s = env.reset()
6: while not done do
7: m = fϕrandom(s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s = env.step(a)
11: end while
12: Update θ using PPO to maximise J
13: end for
14: Initialize test-time ACT parameters ψ∗

15: for i = 0 to I do
16: s = env.reset()
17: while not done do
18: m ∼ πψ∗(· | s)
19: s̄ = [s, m]
20: a ∼ πθ(· | s̄)
21: r, s = env.step(a)
22: rSt = RS(s, a)
23: rewards.append(rSt )
24: end while
25: Update ψ∗ using PPO to maximise J
26: end for
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E. Hyperparameter Details
We train thousands of agents per minute on a single V100 GPU by vectorising both the PPO algorithm itself and the
environments using Jax (Bradbury et al., 2018). This allows us to JIT-compile the full training pipeline and perform
end-to-end deep RL training completely on GPUs. We adapt the environment implementations from Brockman et al. (2016)
and Lenton et al. (2021) and use the ES implementation from Lange (2022). This compute setup allows us to efficiently
perform outer-loop ES on the full training trajectories of inner-loop PPO agents. For example, in Cartpole, we run 8192 PPO
Victims alongside 8192 train-time Adversariesand 8192 test-time Adversaries, each over four instances of the environment
on a single V100 GPU. Over 1024 generations of ES, this results in training 8,388,608 PPO agents from scratch in 2 hours
on 4 V100 GPUs.

We report the hyperparameter values used for each environment in our experiments.

Table 1: Important parameters for the Cartpole environment

Parameter Value
State Size 4
message Size 2
Number of Environments 4
Maximum Grad Norm 0.5
Number of Updates 32
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4
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Table 2: Important parameters for the Pendulum environment

Parameter Value
State Size 3
message Size 2
Number of Environments 16
Maximum Grad Norm 0.5
Number of Updates 128
Update Period 256
Outer Discount Factor γ 0.95
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.005
Learning Rate 0.02
Population Size 768
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 1
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 1
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4
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Table 3: Important parameters for the Reacher environment

Parameter Value
State Size 10
message Size 4
Number of Environments 32
Maximum Grad Norm 0.5
Number of Updates 256
Update Period 128
Outer Discount Factor γ 0.99
Number of Epochs per Update 10
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.0005
Learning Rate 0.004
Population Size 128
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 128
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 128
IA Activation Function ReLU
Number of Rollouts 4
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