
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Adversarial Cheap Talk

Anonymous Authors1

Abstract
Adversarial attacks in reinforcement learning
(RL) often assume highly-privileged access to the
learning agent’s parameters, environment or data.
Instead, this paper proposes a novel adversarial
setting called a Cheap Talk MDP in which an Ad-
versary has a minimal range of influence over the
Victim. Parameterised as a deterministic policy
that only conditions on the current state, an Adver-
sary can merely append information to a Victim’s
observation. To motivate the minimum-viability,
we prove that in this setting the Adversary cannot
occlude the ground truth, influence the underly-
ing dynamics of the environment, introduce non-
stationarity, add stochasticity, see the Victim’s
actions, or access their parameters. Additionally,
we present a novel meta-learning algorithm to
train the Adversary, called adversarial cheap talk
(ACT). Using ACT, we demonstrate that the re-
sulting Adversary still manages to influence the
Victim’s training and test performance despite
these restrictive assumptions. Affecting train-time
performance reveals a new attack vector and pro-
vides insight into the success and failure modes
of existing RL algorithms. More specifically, we
show that an ACT Adversary is capable of harm-
ing performance by interfering with the learner’s
function approximation and helping the Victim’s
performance by appending useful features. Fi-
nally, we demonstrate that an ACT Adversary can
append information during train-time to directly
and arbitrarily control the Victim at test-time in a
zero-shot manner.

1. Introduction
Learning agents are often trained in settings where adver-
saries may have some control over part of the agent’s obser-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

vations. However, the adversary cannot usually influence
the dynamics of the underlying environment or the reward
signal (at least not without cost). For example, it is often
possible to append arbitrary tags to content which is later
used to train recommender systems. Similarly, an adversary
could rent space on interactive bulletin boards near busy
traffic intersections to influence data sets which are used
for training self-driving cars. Another instance occurs in
financial markets, where an adversary can change the state
of the order-book by submitting orders far out of the money.
While all of these are examples of useless features from an
information point of view, under the current paradigm of
end-to-end deep learning it is common practice to include
a superset of useful features as part of the input and to let
the model learn which features actually matter. This paper
demonstrates that an actor can heavily influence the be-
haviour and performance of learning agents by controlling
information only in these “useless” features.

Most past work in adversarial attacks assumes that the ad-
versary can influence the environment dynamics (Huang
et al., 2017; Gleave et al., 2020). For example, perturbing
images and observations could be used to obscure or alter
relevant information, such as the ball’s location in a Pong
game (Kos and Song, 2017). Furthermore, many attacks
require access to the trained agent’s weights and parameters
to generate the adversarial inputs (Wang et al., 2021). Fi-
nally, most of these attacks only cause the victim’s policy
to fail arbitrarily instead of giving the adversary full control
over the victim’s policy at test time (Gu et al., 2017; Kiourti
et al., 2020; Salem et al., 2020; Ashcraft and Karra, 2021).

In contrast, our work, which is inspired by recent advance-
ments in the field of opponent shaping (Lu et al., 2022), in
Section 3 proposes a novel, minimum-viable setting to shape
a learning agent, called “Cheap Talk MDP”. In this setting,
the Adversary can only append information to the observa-
tion of a Victim as a deterministic function of the current
state. The Adversary does not have access to the Victim’s
parameters, actions, or even samples from the Victim’s pol-
icy. In Section 4, we prove that the Adversary cannot change
the dynamics of the underlying environment nor alter the
reward functions. Nor can it inject stochasticity into the
environment (deterministic) or introduce non-stationarity
(function of the current state only). Furthermore, we prove
that Adversaries cannot influence tabular Victims in this

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2022

(a) (b) (c)

Figure 1: Visualizations of the training curves of the Victim across different number of dimensions of the messages for (a)
Cartpole, (b) Pendulum, and (c) Reacher. Error bars denote the standard error across 10 seeds of Victims trained against a
single trained Adversary.

setting in Proposition 1; Adversaries can therefore only in-
terfere with a Victim through their function approximator.
In this sense, our setting represents a bare minimum range
of influence, as further justified in Appendix B.3.

In Section 4, we also introduce a new meta-learning algo-
rithm to train the Adversary, called adversarial cheap talk
(ACT). With an extensive set of experiments in Section 5,
we demonstrate that an ACT Adversary can influence a
Victim to achieve a number of outcomes:

1. We show that the ACT Adversary can prevent the Vic-
tim from solving a task, resulting in low rewards dur-
ing training. We provide empirical evidence that the
Adversary sends messages which induce catastrophic
interference in the Victim’s neural network.

2. Conversely, an ACT Adversary can learn to send useful
messages that improve the Victim’s training process,
resulting in higher rewards during training.

3. Finally, we introduce a training scheme that allows
the ACT Adversary to arbitrarily control the Victim at
test-time, in a zero-shot manner.

Related Work For an in-depth discussion on related work,
we point the reader to Appendix A. Next, we continue by
introducing the basic concepts and algorithms to understand
our contributions.

2. Background
2.1. Reinforcement Learning

A Markov decision process (MDP) consists of a tuple
D = ⟨S,A,P,R, γ⟩, where S denotes the state space, A
represents the action space, P : S×A×S 7→ [0, 1] denotes
the state transition probability function, R : S × A 7→ R
is the reward function and γ ∈ [0, 1) denotes the discount

factor. At every timestep t, an agent samples an action
from its stochastic policy at ∼ πθ (· | st), where at ∈ A,
st ∈ S and θ denotes the policy parameterization. The agent
then receives a reward based on the action taken in the cur-
rent state: rt = R (st, at). Finally, a new state is sampled
according to the transition function st+1 ∼ P (· | st, at), re-
sulting in a trajectory τθ := ((s0, a0, r0) , (s1, a1, r1) , . . .).
The agent’s goal is to maximize its expected discounted
return under policy πθ:

J(θ) = Eπθ

[∞∑
t=0

γtrt

]
. (1)

3. Problem Setting
In this work, we consider two agents that interact in a setting
we call a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩. Here
M denotes the space of messages. We refer to the agent
observing the message as the Victim with transition and
reward functions P,R independent from M. The agent
appending the message is called the Adversary, endowed
with a deterministic policy (function) f : S → M to append
messages and an objective function J to optimise (details
below).

The Victim is a “standard” reinforcement learning agent,
selecting actions according to its policy at ∼ πθ(· | s, f(s)),
where a ∈ A, s ∈ S. The Victim optimises its policy πθ
with respect to parameters θ, to maximise its expected return
J defined in Equation 1.

By contrast, the Adversary may only act by appending a
message fϕ(s) to s at every step, where fϕ : S → M is
a deterministic policy (function) of the current state and ϕ
are the Adversary’s parameters. These parameters may only
be updated between full training / testing episodes of the
Victim; the function remains static during episodes to avoid
introducing non-stationarity. The Adversary’s objective
function J may be picked arbitrarily, and need not even be

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2022

differentiable if it is optimised using ES.

In the train-time setting we focus on both the allied setting,
where Adversary and Victim objectives are equal, J =
J , and the adversarial setting where objectives are zero-
sum, J = −J . In the test-time setting we use an entirely
different objective, such as reaching for an arbitrary circle
in Reacher (see Figure 3c). This incentivises the Adversary
to manipulate the Victim into maximising J , even if at the
cost of the Victim’s original objective J .

4. Method
4.1. Meta-Training Procedure

Our method treats the problem setting as a meta-learning
problem. The Adversary’s parameters ϕ are only updated
after a full training (and testing) run of the Victim’s pa-
rameters θ. Note that ϕ is static during the whole training
run (inner loop) of θ and only gets updated once the inner
loop completes. In the outer loop, we optimise the Adver-
sary’s objective J with respect to ϕ using ES as a black-box
optimization technique.

4.2. Train-Time Manipulation

When influencing the agent’s performance during train-time,
we consider the allied and the adversarial settings. Pseu-
docode is provided in Algorithm 1 (see Appendix D, where
E is the number of Victim training episodes and N is the
ES population size. Letting c = 1 for allied and c = −1 for
adversarial, the Adversary’s objective is c times the Victim’s
mean reward accumulated over training.

4.3. Zero-Shot Test-Time Manipulation

In zero-shot test-time manipulation, the Adversary attempts
to maximise its objective J during some notion of test-
time starting at time I . In practice, we introduce a separate
Adversary for test-time, parameterized by its own set of
parameters ψ. However, both the train-time Adversary ϕ
and test-time Adversary ψ have identical objective function
J . The train-time Adversary wants to create a backdoor
to make the Victim susceptible to manipulation at test-time.
The test-time Adversary wants to use this backdoor to con-
trol the Victim. The test-time Adversary ψ operates zero-
shot because it has not seen the specific, trained test-time
parameters of the Victim θ′ of the current meta-episode
before interacting with it.

Theoretical Results For the theoretical results, we point the
reader to Appendix B.1 and B.2. Moreover, in Appendix
B.3, we informally show that removing any component from
a Cheap Talk MDP would either nullify all possibility of in-
fluence or make the setting so limited as to be uninteresting.

5. Experiments and Results
We evaluate ACT on three different environments: Cartpole,
Pendulum, and Reacher (Brockman et al., 2016). The Vic-
tim is trained with Proximal Policy Optimisation (Schulman
et al., 2017, PPO), a state-of-the-art RL algorithm. The
Adversary is trained using ES (Salimans et al., 2017).

Training details are provided in Appendix E. Note that the
PPO implementation uses observation normalisation, so
each dimension of the observation has a mean of zero and
a standard deviation of one. We also include videos of the
Victim’s performance and visualizations of the Adversary’s
outputs in the Supplementary Materials for each of the sce-
narios below.

5.1. Train-Time Influence

Figure 1 show the results of training Victims alongside
different Adversaries. It is evaluated on four different Ad-
versaries:

1. Ally: meta-trained to maximize the Victim’s mean re-
ward throughout training.

2. Adversary: meta-trained to minimize the Victim’s
mean reward throughout training.

3. Random Adversary: randomly initialise and fix the
Adversary’s parameters ϕ.

4. Zeroes Adversary: appends only zeroes as messages.

Ally. The Ally manages to assist the Victim to learn and
converge faster – this is likely done by appending useful
features of the environment. Interestingly, in Figure 5b
Appendix C, we show that this Adversary even outperforms
an Oracle that outputs the optimal policy logits as messages.

We hypothesise that the Adversary may be inducing catas-
trophic interference within the environment, which was
observed by Fedus et al. (2020) in Atari 2600 games. In
Figure 6 Appendix C, we demonstrate that the Adversary
induces catastrophic interference in both the Adversarial
setting by influencing the correlation between gradient up-
dates between different parts of a single inner loop episode.
We also study how the cheap-talk channel size affects the
performance of the Adversary in Figure 5a Appendix C.

5.2. Zero-Shot Test-Time Manipulation

In the setting of zero-shot test-time manipulation, the Ad-
versary’s objective is to maximize the score of a goal-
conditioned objective. As a consequence, the Adversary
needs to learn to introduce a backdoor during train-time
and use the backdoor during test-time to fully control the

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2022

(a) (b) (c)

Figure 2: Training curves of the different agents in (a) Goal-Conditioned Cartpole (b) Goal-Conditioned Pendulum (c)
Goal-Conditioned Reacher. The ablations show that the train- and test-time Adversarieslearn near-optimal performance in
comparison to the oracles. Error bars denote the standard error across 10 seeds of Victim trained against a single trained
Adversary.

Victim. We describe the environment-specific rewards and
how these goals are parameterized in Figure 3, Appendix C.

To better understand the capability of our model, we inves-
tigate four different Adversary-Victim settings. These four
settings serve as ablations to study the individual and joint
performance of the train- and test-time Adversaries.

1. Direct Oracle: In this baseline, there is no cheap talk.
We simply train a PPO agent to maximize the goal-
conditioned return. It can observe the full state and
directly output actions in the environment.

2. Zero-Shot Adversary: First, we train a Victim θ
alongside a train-time Adversary ϕ. We then evalu-
ate the return of the test-time Adversary ψ according
to the goal-conditioned return (as described in Algo-
rithm 2). The test-time Adversary ψ operates zero-shot,
because it was not trained with the specific, trained in-
stance of the Victim θ before interacting with it. It is
thus represented by a horizontal line in Figure 2.

3. Oracle with Learned Adversary: First, we optimize
the Victim θ by training it alongside our train-time
Adversary ϕ. Then, instead of ES, we use PPO to
train the test-time Adversary ψ∗ against the Victim
θ. Unlike the zero-shot Adversary, the oracle ψ∗ is
allowed to train against the pretrained and fixed Victim
θ to maximize its returns, as described in Algorithm 4
in Appendix D.

4. Oracle with Random Adversary: First, we obtain a
Victim θ by training it alongside a random train-time
Adversary, ϕrandom, with randomly initialized and fixed
parameters. Next, we use PPO to train the test-time
Adversary ψ∗ to maximize the goal-conditioned return.

All results are shown in Figure 2. We can use the Direct
Oracle as a baseline to measure how effective the train-time

Adversary ϕ and test-time Adversary ψ are at achieving the
maximal possible return jointly. As Figure 2 shows, the
ES optimized train- and test-time Adversariesperform near-
optimally. We investigate this further in Figure 4, Appendix
C, where we compare the range and variance of Victims
trained with ES optimized Adversariesϕ and Victims trained
with random Adversaries ϕrandom across different message
values.

6. Conclusion & Future Work
In this paper, we propose a novel, minimum-viable, adver-
sarial setting for RL agents, where the Adversary can only
influence the Victim over messages, and can only do so with
deterministic function that only depends on the current state.

By training a Adversary with adversarial cheap talk (ACT),
we show that appending to the observations of a learning
agent, even with strong constraints, is sufficient to dras-
tically improve or decrease a learning agent’s train-time
performance or introduce a backdoor to control the learn-
ing agent at test time completely. Our test-time ablation
studies demonstrate that the train- and test-time Adversaries
achieve near-optimal performance individually as well as
jointly, when compared against strong oracle baselines. We
also provide in-depth analysis on how the Adversaries work.

As RL models become more widespread, we believe prac-
titioners must consider this new class of minimum viable
attacks. Therefore, we propose identifying and filtering
out seemingly-superfluous information as the first defence
measure. In future work we will investigate different de-
fence strategies, such as the identification of messages, and
larger-scale input settings.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2022

References
C. Ashcraft and K. Karra. Poisoning deep reinforce-

ment learning agents with in-distribution triggers. arXiv
preprint arXiv:2106.07798, 2021.

E. Bengio, J. Pineau, and D. Precup. Interference and gener-
alization in temporal difference learning. In Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pages 767–777, 2020.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym,
2016.

K. Cao, A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls,
and S. Clark. Emergent communication through nego-
tiation. In 6th International Conference on Learning
Representations, 2018.

V. P. Crawford and J. Sobel. Strategic information transmis-
sion. Econometrica, 50(6):1431–1451, 1982.

J. Farrell. Cheap talk, coordination, and entry. The RAND
Journal of Economics, 18(1):34–39, 1987.

W. Fedus, D. Ghosh, J. D. Martin, M. G. Bellemare, Y. Ben-
gio, and H. Larochelle. On catastrophic interference
in atari 2600 games. arXiv preprint arXiv:2002.12499,
2020.

J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson,
P. Abbeel, and I. Mordatch. Learning with opponent-
learning awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, pages 122–130, 2018.

J. N. Foerster, Y. M. Assael, N. de Freitas, and S. White-
son. Learning to communicate with deep multi-agent
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, volume 29, pages 2137–2145,
2016.

A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and
S. Russell. Adversarial policies: Attacking deep rein-
forcement learning. In 8th International Conference on
Learning Representations, 2020.

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and
P. Abbeel. Adversarial attacks on neural network policies.
In 5th International Conference on Learning Representa-
tions, Workshop Track Proceedings, 2017.

P. Kiourti, K. Wardega, S. Jha, and W. Li. Trojdrl: Evalua-
tion of backdoor attacks on deep reinforcement learning.
In 57th ACM/IEEE Design Automation Conference, pages
1–6, 2020.

J. Kos and D. Song. Delving into adversarial attacks on deep
policies. In 5th International Conference on Learning
Representations, Workshop Track Proceedings, 2017.

R. T. Lange. evosax: Jax-based evolution strategies, 2022.

D. Lenton, F. Pardo, F. Falck, S. James, and R. Clark. Ivy:
Templated deep learning for inter-framework portability.
arXiv preprint arXiv:2102.02886, 2021.

A. Letcher, D. Balduzzi, S. Racanière, J. Martens, J. N.
Foerster, K. Tuyls, and T. Graepel. Differentiable game
mechanics. J. Mach. Learn. Res., 20:84:1–84:40, 2019a.

A. Letcher, J. N. Foerster, D. Balduzzi, T. Rocktäschel, and
S. Whiteson. Stable opponent shaping in differentiable
games. In 7th International Conference on Learning
Representations, 2019b.

C. Lu, T. Willi, C. Schroeder de Witt, and J. Foerster. Model-
free opponent shaping. arXiv preprint arXiv:2205.01447,
2022.

C. Lyle, M. Rowland, and W. Dabney. Understanding and
preventing capacity loss in reinforcement learning. arXiv
preprint arXiv:2204.09560, 2022.

A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang. Dy-
namic backdoor attacks against machine learning models.
arXiv preprint arXiv:2003.03675, 2020.

T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution
strategies as a scalable alternative to reinforcement learn-
ing. arXiv preprint arXiv:1703.03864, 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

X. Song, Y. Jiang, S. Tu, Y. Du, and B. Neyshabur. Ob-
servational overfitting in reinforcement learning. In 8th
International Conference on Learning Representations,
2020.

H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat,
and J. Modayil. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2022

L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song.
BACKDOORL: backdoor attack against competitive re-
inforcement learning. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
pages 3699–3705, 2021.

T. Willi, J. Treutlein, A. Letcher, and J. Foerster. COLA:
consistent learning with opponent-learning awareness.
arXiv preprint arXiv:2203.04098, 2022.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2022

A. Related Work
A.1. Test-Time Adversarial Attacks

Most work investigating adversarial attacks on deep RL systems focus on attacks at test-time, i.e. those that assume a fully
trained, static policy. Gleave et al. (2020) learn adversarial policies to attack a pretrained agent at test-time. In contrast
to our method, the adversarial agent can directly interact with the environment and the victim agent, thus introducing
non-stationarity and assuming sampling access to the (static) victim. Also, they do not investigate adversarial agents that
affect training performance. Huang et al. (2017) also investigate adversarial attacks to influence test-time performance. In
contrast to our work, they directly perturb the observation space and do not simply append to it, thus assuming access to the
observation space of the victim. Kos and Song (2017) also attack test-time performance by directly perturbing observations.

A.2. Backdoor Attacks

Backdoor attacks in reinforcement learning aim to introduce a vulnerability during train-time, which can be used at test-time.
Backdoors can be static, meaning they get activated with fixed patterns, or dynamic, which is when the backdoor gets
activated by context-dependent patterns (Salem et al., 2020). For static backdoors, the adversary often directly perturbs
the observation space (Gu et al., 2017; Kiourti et al., 2020; Ashcraft and Karra, 2021). To introduce dynamic backdoors,
the threat model assumes that the adversary has full control over the training process of the agent, giving the adversary the
ability to introduce backdoors at train-time (Wang et al., 2021). In contrast, in our threat model, we assume a minimal range
of influence by only appending to the observations. Furthermore, instead of perturbing the observations directly, Wang
et al. (2021) deploy the adversarial agent directly in the environment. Interacting with the environment directly allows the
adversary to introduce non-stationarity and stochasticity. In contrast, our setting does not allow the Adversary to introduce
either.

A.3. Failure Modes in Deep Reinforcement Learning

Previous works have shown that using neural networks as function approximators in reinforcement learning often results in
multiple failure modes due to the non-stationarity of value function bootstrapping (van Hasselt et al., 2018). In particular,
works have shown that catastrophic interference (Bengio et al., 2020) and capacity loss (Lyle et al., 2022) often occur, even
within a single episode of an environment (Fedus et al., 2020). Song et al. (2020) shows that deep reinforcement learning
algorithms can often overfit to spurious correlations in the observation space. By appending to the observation space, we
learn to induce the observational failure modes described in these works.

A.4. Opponent Shaping / Cheap Talk

Our method is closely related to the field of opponent shaping. Originally, most opponent shaping algorithms assumed
white-box access to their opponents to shape the flow of the opponent’s gradient (Foerster et al., 2018; Letcher et al., 2019a;b;
Willi et al., 2022). Instead, Lu et al. (2022) introduce a method to shape opponents without white-box access. However,
they still deploy an agent to interact directly in the environment. In contrast, we propose a method to shape other agents
without having to interact in the environment at all, solely by appending messages through a cheap talk channel. Cheap
talk is communication that incurs no cost, is non-binding (it can be ignored and does not limit the agent’s action space),
and is unverifiable (meaning any information, true or false, can be communicated) (Farrell, 1987). In RL terms, a cheap
talk channel is a part of the state space which can be observed by other agents but does not alter transition dynamics or
reward functions. Cheap talk channels (Crawford and Sobel, 1982) in deep reinforcement learning have been used to learn
emergent communication (Foerster et al., 2016) and to solve coordination problems (Cao et al., 2018). To the best of our
knowledge, this paper is the first to use a cheap talk channel (and only a cheap talk channel) to shape learning agents.

B. Proofs
B.1. Proof of Proposition 1

In this section, we further justify the claim that our setting represents the bare minimum range of influence. To begin, we
prove that Adversaries cannot influence tabular Victims in Cheap Talk MDPs; Adversaries can therefore only interfere with
a Victim through their function approximator.

Proposition 1. For any deterministic Adversary f : S → M, the return of a tabular Victim initialised uniformly along the

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2022

M axis is independent from f . Moreover, any Victim which is guaranteed to converge to optimal policies in MDPs will, for
any Cheap Talk MDP, converge to a policy whose expected return is the optimal return for the original no-channel MDP –
even in non-tabular settings and regardless of initialisation.

Proof. We begin with the tabular case.

Tabular Victims. In a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩, a tabular Victim arbitrarily orders states as {s1, . . . , sd}
and messages as {m1, . . . ,mk}, where d = |S| and k = |M|, and stores policies πt(· | si,mj) at time t of the learning
process for all i ∈ [d], j ∈ [k]. The argument follows identically for value functions. Assuming uniform initialisation along
the M axis means that

π0(· | si,mj) = π0(· | si,mj′)

for all j, j′ ∈ [k]. Now consider any two Adversaries f, g and their influence on two copies of the same Victim V,W with
respective policies π, χ. The only states encountered in the environment are of the form (s, f(s)) and (s, g(s)) respectively,
so Victims only update the corresponding policies

πt(· | si, f(si)) and χt(· | si, g(si)) .

We prove by induction that these quantities are equal for all t. The base case holds by uniform initialisation along M;
assume the claim holds for all fixed 0 ≤ t ≤ T . The Victims update their policies at time T + 1 according to the same
learning rule, as a function of the transitions and returns under current and past policies πt and χt respectively. Transitions
take the form (s, f(s), a, s′, f(s′)) for V and (s, g(s), a, s′, g(s)) for W , which have identical probabilities and returns
because

πt(a | si, f(si)) = χt(a | si, g(si)) ;
P(s′, f(s′) | s, f(s), a) = P(s′, g(s′) | s, g(s), a) ;

R(s, f(s), a) = R(s, g(s), a)

by inductive assumption and independence of P,R from M. This probability- and return-preserving bijection between
transitions, as well as being copies with identical initialisation in the environment, implies that policies πT (· | si, f(si)) =
χT (· | si, g(si)) are updated identically to

πT+1(· | si, f(si)) = χT+1(· | si, g(si))

as required to complete induction. Note that this could not necessarily be accomplished in non-tabular settings, where
updating parameters θ of the function approximator for some state si may alter the policy on some other state sj . It now
follows that trajectories τ = (sk, f(sk), ak)k for V and ω = (sk, g(sk), ak)k for W have identical probabilities and hence
produce identical returns

Eτ∼πt [R(τ)] = Eω∼χt
[R(ω)]

at any timestep t of the learning process, concluding independence from Adversaries.

Optimally Convergent Victims. By assumption, the Victim is guaranteed to converge to an optimal policy π̄ in the Cheap
Talk MDP ⟨S,A,P,R,M, f,J , γ⟩, since a Cheap Talk MDP is itself an MDP with an augmented state space S ×M and
augmented transition/reward functions that are defined to be independent from M. Now π̄ naturally induces a policy π
on the no-channel MDP, given by π(· | s) := π̄(· | s, f(s)), and in particular Q(s, a) = Q̄(s, f(s), a) by independence of
transitions and rewards from M. Optimality of π follows directly from the Bellman equation

Q(s, a) = Q̄(s, f(s), a) = Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q̄(s′, f(s′), a′)

]
= Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q(s′, a′)

]
.

Now trajectories τ̄ = (sk, f(sk), ak)k and τ = (sk, ak)k have identical probability and return under π and π̄ respectively,
so the Victim has expected return

Eτ̄∼π̄ [R(τ̄)] = Eτ∼π [R(τ)]

which is the optimal expected return of the original no-channel MDP.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2022

B.2. Proof of Proposition 2

For completeness, we also formally prove our claims from the introduction regarding what the Adversary cannot do in
Cheap Talk MDPs.

Proposition 2. In a Cheap Talk MDP, the Adversary cannot (1) occlude the ground truth, (2) influence the environment
dynamics / reward functions, (3) see the Victim’s actions or parameters, (4) inject stochasticity, or (5) introduce non-
stationarity.

Proof. Mostly by definition. Formally, consider a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩ as defined in Section 3. For a
fixed training / testing run of the Victim on the MDP, the Adversary outputs a message f(s) at each step according to a fixed
deterministic function f : S → M.

(1) The message is appended to the state s and the Victim acts with full visibility of the ground truth (state) s according to
its policy: a ∼ π(· | s, f(s)).

(2) The transition and reward functions P,R are defined to be independent from M. Formally we have P(· | s,m, a) =
P(· | s,m′, a) for all m,m′ ∈ M (similarly for R), so the Adversary’s choice of message m = f(s) cannot influence
P or R.

(3) f : S → M is defined as a function of S only, so the Adversary cannot condition its policy based on the Victim’s
actions or parameters (i.e. it cannot see them for all practical purposes).

(4) f is a deterministic function, so π(· | s, f(s)) is a distribution only on actions A. The transition and reward functions
are independent from f , so they are distributions only on state-action pairs S ×A. It follows that the Adversary injects
no further stochasticity into the MDP.

(5) f is static for a fixed training / testing run, so st = st′ implies f(st) = f(st′) for all timesteps t, t′ in the run. It follows
that any given Victim policy π is stationary, namely π(· | st, f(st)) = π(· | st′ , f(st′)) for all st = st′ . Since P and
R are stationary (as defined by a standard MDP) and independent from M, their stationarity is also preserved.

B.3. Informal Justification of Minimality

Finally, let us informally show that removing any component from a Cheap Talk MDP would either nullify all possibility of
influence or make the setting so limited as to be uninteresting.

(1) Removing the set M or the policy f : S → M entirely would result in the Victim being completely independent from
the Adversary, since nothing would be appended to its observation.

(2) Restricting the capacity of M to a certain number of bits would further restrict an Adversary’s range of influence, so
one could say that the truly minimum-viable setting is to impose a set of size |M| = 1. However, cheap talk is still
cheap talk when varying capacity, and there is no reason to arbitrarily restrict the size to 1 if we are to apply our setting
to complex environments likely requiring more than a single bit of communication to witness interesting results.

(3) Not allowing Adversaries to see states, namely removing S as inputs to f , yields a function f : {0} → M which
always outputs the same messagef(0) = m ∈ M. This is equivalent to the previous restriction of imposing a set M of
size 1, since in this case any function f : S → M would have to output the unique element f(s) = m for all input
states s.

(4) The Adversary must have some objective function J in order for an adversarial setting to make sense – removing
it would remove the Adversary’s rationale for existence, since it would have no incentive to learn parameters that
influence the Victim according to some goal.

(5) Restricting the function class of objectives J is a valid minimisation of the setting, but simply restricts our interesting
the setting itself. The setting should at the very least allow for adversarial objectives of the form J = −J as we
consider in the train-time setting. In test-time, our aim is to show how Adversaries can exert arbitrary control over
Victims despite cheap talk restrictions, and we therefore consider more general objective functions.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2022

C. Experiments and Results Additional Material

(a) (b) (c)

Figure 3: Visualizations of our goal-conditioned environments (a) In Cartpole, the Adversary’s target is a randomly selected
point on the x-axis, indicated by the yellow box. (b) In Pendulum, the Adversary’s goal is a randomly selected angle
indicated by the yellow pole. (c) In Goal-Conditioned Reacher, the Adversary’s goal is a specific point, denoted by the
yellow circle, while the Victim’s goal is the blue circle.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2022

(a) (b)

(c) (d)

Figure 4: We train 10 different Victims alongside the Learned ϕ (a & c), as well as 10 different Victims alongside a randomly
generated ϕ (b & d) in the Pendulum environment. (a) and (b) show the mean of the policy output across the 10 Victims as
we vary the value of the message in a fixed randomly selected state. Notably, the policies trained with the learned ϕ achieve
a much wider range of outputs. (c) and (d) show the variance of the policy output across the 10 Victims. Notably, the policies
trained with the learned ϕ display very little variance, implying that the learned ϕ shapes the Victim in a consistent way.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2022

(a) (b)

Figure 5: (a) Ablations on the different number of cheap talk dimensions for the Adversary in Cartpole (b) Comparing the
ally with an Adversary that outputs the optimal logits in Cartpole. Error bars denote the standard error across 10 seeds of a
Victim trained against a single meta-trained Adversary.

(a) (b) (c)

Figure 6: To perform this analysis, we collect each Victim’s experience buffer, before the agents have converged in training,
and split each one into 10 bins, ordered by the time-step within the environment. We then calculate the gradient update the
agents would perform on each of these bins. In the Adversarial setting (a), the gradient updates performed for transitions
sampled early in an episode can interfere with the gradient updates performed for transitions later in an episode. Meanwhile,
in the Allied setting (c), those gradient updates are positively correlated, suggesting that the gradient updates aid each other.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2022

D. Pseudocode

Algorithm 1 Train-time ACT

1: Set c = ±1 for allied / adversarial
2: Initialize Adversary parameters ϕ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: for n = 0 to N do
6: Initialize Victim parameters θ
7: rewards = []
8: for e = 0 to E do
9: s = env.reset()

10: while not done do
11: s̄ = [s, fϕn(s)]
12: a ∼ πθ(· | s̄)
13: r, s, done = env.step(a)
14: rewards.append(r)
15: end while
16: Update θ with PPO to maximise J
17: end for
18: Jn = c · sum(rewards)/len(rewards)
19: end for
20: Update ϕ using ES to maximise J
21: end for

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2022

Algorithm 2 Test-time ACT

1: Initialize train-time ACT parameters ϕ
2: Initialize test-time ACT parameters ψ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: Sample ψn ∼ ψ + σϵn where ϵ1, ..., ϵN ∼ N (0, I)
6: for n = 0 to N do
7: Initialize policy params θ
8: rewards = []
9: for e = 0 to E do

10: s = env.reset()
11: while not done do
12: m = fϕn(s)
13: s̄ = [s, m]
14: a ∼ πθ(· | s̄)
15: r, s = env.step(a)
16: end while
17: Update θ using PPO to maximise J
18: end for
19: for i = 0 to I do
20: s = env.reset()
21: while not done do
22: m = fψn(s)
23: s̄ = [s, m]
24: a ∼ πθ(· | s̄)
25: r, s, done = env.step(a)
26: rSt = RS(s, a)
27: rewards.append(rSt)
28: end while
29: end for
30: end for
31: Update ϕ using ES to maximise J
32: Update ψ using ES to maximise J
33: end for

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2022

Algorithm 3 Test-time Oracle PPO ACT

1: Initialize train-time ACT parameters ϕ
2: Obtain trained ϕ, θ from Algorithm 2
3: Initialize test-time ACT parameters ψ∗

4: for i = 0 to I do
5: s = env.reset()
6: while not done do
7: m ∼ πψ∗(· | s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s, done = env.step(a)
11: rSt = RS(s, a)
12: rewards.append(rSt)
13: end while
14: Update ψ∗ using PPO to maximise J
15: end for

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2022

Algorithm 4 Test-time Random Shaper

1: Initialize train-time ACT parameters ϕrandom
2: Initialize policy params θ
3: rewards = []
4: for e = 0 to E do
5: s = env.reset()
6: while not done do
7: m = fϕrandom(s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s = env.step(a)
11: end while
12: Update θ using PPO to maximise J
13: end for
14: Initialize test-time ACT parameters ψ∗

15: for i = 0 to I do
16: s = env.reset()
17: while not done do
18: m ∼ πψ∗(· | s)
19: s̄ = [s, m]
20: a ∼ πθ(· | s̄)
21: r, s = env.step(a)
22: rSt = RS(s, a)
23: rewards.append(rSt)
24: end while
25: Update ψ∗ using PPO to maximise J
26: end for

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2022

E. Hyperparameter Details
We train thousands of agents per minute on a single V100 GPU by vectorising both the PPO algorithm itself and the
environments using Jax (Bradbury et al., 2018). This allows us to JIT-compile the full training pipeline and perform
end-to-end deep RL training completely on GPUs. We adapt the environment implementations from Brockman et al. (2016)
and Lenton et al. (2021) and use the ES implementation from Lange (2022). This compute setup allows us to efficiently
perform outer-loop ES on the full training trajectories of inner-loop PPO agents. For example, in Cartpole, we run 8192 PPO
Victims alongside 8192 train-time Adversariesand 8192 test-time Adversaries, each over four instances of the environment
on a single V100 GPU. Over 1024 generations of ES, this results in training 8,388,608 PPO agents from scratch in 2 hours
on 4 V100 GPUs.

We report the hyperparameter values used for each environment in our experiments.

Table 1: Important parameters for the Cartpole environment

Parameter Value
State Size 4
message Size 2
Number of Environments 4
Maximum Grad Norm 0.5
Number of Updates 32
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2022

Table 2: Important parameters for the Pendulum environment

Parameter Value
State Size 3
message Size 2
Number of Environments 16
Maximum Grad Norm 0.5
Number of Updates 128
Update Period 256
Outer Discount Factor γ 0.95
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.005
Learning Rate 0.02
Population Size 768
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 1
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 1
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2022

Table 3: Important parameters for the Reacher environment

Parameter Value
State Size 10
message Size 4
Number of Environments 32
Maximum Grad Norm 0.5
Number of Updates 256
Update Period 128
Outer Discount Factor γ 0.99
Number of Epochs per Update 10
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.0005
Learning Rate 0.004
Population Size 128
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 128
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 128
IA Activation Function ReLU
Number of Rollouts 4

	Introduction
	Background
	Reinforcement Learning

	Problem Setting
	Method
	Meta-Training Procedure
	Train-Time Manipulation
	Zero-Shot Test-Time Manipulation

	Experiments and Results
	Train-Time Influence
	Zero-Shot Test-Time Manipulation

	Conclusion & Future Work
	Related Work
	Test-Time Adversarial Attacks
	Backdoor Attacks
	Failure Modes in Deep Reinforcement Learning
	Opponent Shaping / Cheap Talk

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Informal Justification of Minimality

	Experiments and Results Additional Material
	Pseudocode
	Hyperparameter Details

