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Abstract

Understanding internal representational shifts that occur from the adapta-
tion of large language models (LLMs) to vision-language models (VLMs)
provides insight into trade-offs in model interpretability, feature reuse, and
task specialization. This paper presents an empirical study on represen-
tational shifts that occur when extending the LLM Gemma?2-2B into its
multimodal successor, PaliGemma2-3B. Our initial performance analysis
reveals that sparse autoencoders (SAEs) trained on Gemma struggle to
reconstruct PaliGemma’s activations, motivating a deeper investigation
into its activation patterns. Across 26 layers, 37% of SAE features show
reduced activation in PaliGemma relative to Gemma. Further experiments
on CIFAR-100 and TruthfulQA reveal that PaliGemma relies heavily on
visual inputs, activating substantially fewer features for text alone. Addi-
tional analyses—including Residual Stream SAE Performance Analysis, Acti-
vation Frequency and Dead Feature Quantification, Cross-Modal Feature Activity
Patterns, and Semantic Robustness under Label Perturbations—provide consis-
tent evidence that PaliGemma’s internal representations are more visually
grounded and less aligned with purely textual features. Our findings sug-
gest key representational trade-offs in feature dynamics when transitioning
from unimodal to multimodal models.

1 Introduction

Artificial Intelligence (AI) systems have rapidly progressed in multimodal tasks such as
image captioning and visual question answering (Radford et al., 2021; Alayrac et al., 2022;
Chen et al., 2022). Vision-language models (VLMs) extend large language models (LLMs)
with vision encoders and cross-modal fusion layers (Li et al., 2023; Wang et al., 2023), but
little is known about how internal representations shift during this adaptation. While prior
work has focused on improving the performance of VLMs (Radford et al., 2021; Alayrac
et al.,, 2022), few studies have examined how feature representations change when LLMs are
adapted to VLMs. While SAEs have uncovered interpretable features in LLMs (Chaudhary
& Geiger, 2024), their behavior in VLMs remains understudied. We address this gap by
analyzing representational changes as Gemma?2-2B is adapted into PaliGemma2-3B. Using
SAEs trained on Gemma, we compare both models on CIFAR-100 (Krizhevsky, 2009) and
Truthful QA (Lin et al., 2022), examining reconstruction loss, activation patterns, layer-wise
similarity, and robustness under noisy supervision and mismatched labels. Our results
reveal substantial shifts in feature dynamics and task behavior across modalities.

2 Related Works

Recent work has focused on adapting large language models (LLMs) into vision-language
models (VLMs) by incorporating visual processing capabilities. Studies such as Radford
et al. (2021), Alayrac et al. (2022), and Li et al. (2023) have demonstrated that integrating
vision components into LLM architectures can significantly improve task performance on
multimodal benchmarks. However, these works primarily evaluate end-task outcomes and
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do not investigate the internal representational changes or feature shifts that occur during
this adaptation process. Our work addresses this gap by directly analyzing feature dynamics
within the residual stream when LLMs are converted into VLMs. Sparse autoencoders
(SAEs) have emerged as a promising tool for interpretability by learning compressed,
sparse representations of internal model activations. By enforcing sparsity, SAEs encourage
the discovery of monosemantic features that are easier to analyze. Huben et al. (2024)
leveraged SAEs to reveal interpretable features in LLMs, but their work did not examine
how these internal features shift in multimodal settings. Our study extends this line of
research by applying SAEs to both text-only and vision-language models, quantifying
cross-modal feature reuse, specialization, and alignment. While prior research on models
like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) has explored cross-modal
embedding alignment, these methods primarily operate at the output level. In contrast, we
analyze sparse internal activations, offering a more granular view of how feature usage
patterns change across modalities. Our work complements these embedding-level studies
by providing a feature-level perspective on multimodal representation learning.

3 Methodology

Our computational and implementation setup is detailed in Appendix A.3.

3.1 Evaluating SAE Generalization Across Models

To evaluate whether an SAE trained on one model can interpret another, we compared
reconstruction loss using matched residual activations. Two SAEs with identical architecture
were trained separately: one on Gemma'’s residuals, the other on PaliGemma’s using text-
only inputs. We then passed shared text inputs through PaliGemma and fed the resulting
residuals into both SAEs. Reconstruction loss was measured via mean squared error between
original and reconstructed residuals. This experiement tests whether the Gemma-trained
SAE generalizes well enough to serve as a diagnostic tool for PaliGemma’s representations.
A small loss gap would suggest that the Gemma-trained SAE generalizes sufficiently well
to be used as a diagnostic lens across both models. We list our SAE hyperparamters used
for training in A 4.

3.2 Residual Stream SAE Performance Analysis

To quantify SAE performance, we compare reconstruction, sparsity, and total losses across
all 26 layers of both Gemma and PaliGemma. We process inputs in batches of 16 to optimize
memory usage.

3.2.1 Loss Metrics

Reconstruction Loss. We use Mean Squared Error to measure the difference between
original activations and SAE reconstructions.

Sparsity Loss. The sparsity penalty ensures that most neurons remain inactive, encouraging
monosemanticity. z; represents the SAE’s latent activations, and ||z;||o denotes the Ly norm,
and A = 1073

N
Sparsity = A ) _||zillo- €]
i=1

Total Loss. The final loss function balances reconstruction and sparsity losses with a
regularization weight a:

L = MSE + a Sparsity. (2

Delta Loss. Delta Loss measures the change in model performance after SAE-based inter-
vention. It is defined as the difference between the patched loss—computed after injecting
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SAE-reconstructed activations—and the original (base) loss on the same input. A higher
Delta Loss indicates greater disruption to the model’s behavior caused by the intervention:

AL = Lpatched — Liage- ®3)

3.2.2 Feature Extraction Pipeline

We register forward hooks on model layers, then use SAEs to encode activations and
calculate reconstruction losses. We then compute and analyze losses for each transformer
layer, storing layer-wise losses and comparisons in structured datasets.

3.3 Activation Frequency and Dead Feature Quantification

We evaluated SAE feature activations by running questions from the Truthful QA dataset
on Gemma and PaliGemma. For each model, we aggregated the total activation counts
of all SAE features across the entire dataset, layer by layer. This resulted in two datasets,
one per model, containing the global count of activations for each SAE feature (indexed by
Layer and Feature Index). We merged these datasets on shared SAE identifiers to enable
feature-wise comparison. For each feature, we computed the relative activation frequency

(RAF), where € = 1 x 10~ prevents division by zero:

PaliGemma Count
RAF = 4
Gemma Count + € @)

Features with zero PaliGemma activations were labeled dead, and those with RAF < 0.1
were labeled low-activation. To visualize trends, we sampled SAE layers 0, 5, 10, 15, and
20—spanning early to late depths—and plotted RAF-sorted features on a log scale to reveal
differences in activation dynamics. All 16,384 features were included per layer, padding
missing entries with RAF = 0. Layers were selected arbitrarily to cover early, middle, and
late model depth, and not performance-driven.

3.4 Cross-Modal Feature Activity Patterns

3.4.1 Global Feature Activation Trends (Layer-wise Counts)

To analyze the distribution of SAE activations across different modalities and models,
we conducted experiments on the CIFAR-100 dataset using three setups: Gemma using
CIFAR Labels, PaliGemma using CIFAR Labels, and PaliGemma using CIFAR Images
corresponding to labels used in the other models. For each CIFAR-100 class, either the class
name or the corresponding image was passed into the model, and we captured residual
activations at every transformer layer. Each captured residual stream was then encoded
using pre-trained Gemma-Scope SAE models, yielding a latent representation z € R per
layer, where d is the SAE latent dimension. To determine active features, we applied a
thresholding rule:

1 if|z;] > 0.1
0 otherwise

Active(z;) = { (5)

For each layer /, we computed the total count of active features by summing over all SAE
latent dimensions:

d
A= ZActive(zi) (6)
i=1

We repeat this across all layers [ and for all classes and inputs of CIFAR-100. We then
aggregated the activation counts to visualize layer-wise activation trends across the three
conditions. The resulting trends reveal how feature activations vary across modalities.
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3.4.2 Top-Activated SAE Features Across Modalities

For each modality (Gemma-Text, Pali-Text, Pali-Image), we identified the top 10 most
frequently activated SAE features by counting how often each feature appeared across the
dataset. Features were ranked by activation frequency and compared across modalities to
assess overlap and divergence.

3.4.3 SAE Representation Alignment via Correlation

To assess cross-modal and cross-model representational similarity, we computed vector cor-
relations between SAE-encoded residual activations a shared concept. We selected the label
apple and extracted the corresponding CIFAR-100 image. This label was processed through
(1) Gemma on text, (2) PaliGemma on text, and (3) PaliGemma on image. Residuals were
extracted at transformer layer 12 and encoded using a pretrained SAE from the Gemma-Scope
suite. To quantify alignment between representations, we computed cosine similarity and
Pearson correlation for Gemma-text vs. Pali-text, Gemma-text vs. Pali-image, and Pali-text
vs. Pali-image. This approach complements activation count comparisons by measuring
directional alignment in SAE space rather than feature frequency alone.

3.4.4 t-SNE Visualization of SAE Activations

To qualitatively assess modality-driven representational shifts, we used t-SNE to visual-
ize SAE-encoded activations from Gemma text, PaliGemma text, and PaliGemma image
inputs at layers 8, 12, and 16. Full preprocessing and projection details are provided in
Appendix A.2.

3.5 Semantic Robustness under Label Perturbations

To investigate how image-label alignment affects SAE feature activations, we analyzed
PaliGemma under paired image-text input conditions. Using CIFAR-100 images of two
distinct classes (e.g., apple and fox), we constructed matched and mismatched pairs (e.g.,
"apple” image with “apple” or "fox” label) and processed the inputs through PaliGemma’s
multimodal encoder. Residual activations were extracted at every transformer layer within
PaliGemma’s text-vision fusion architecture. Each layer’s activations were encoded into
SAE latent vectors z € R? using pre-trained SAEs. We applied a sparsity threshold of
€ = 0.1 to determine active SAE features:

1 if |Zi| > 0.1

Active(z;) = {o otherwise

@)

For each pairing condition (e.g., apple image + apple label or fox image + fox label), we computed
the total number of active SAE features per layer. We also identified the specific activated
feature indices to compare how matching vs. non-matching pairs influence the selection of
particular SAE features in PaliGemma’s encoder.

4 Results and Analysis

4.1 Evaluating SAE Generalization Across Models

We evaluate the reconstruction quality of two SAEs—one trained on Gemma and one trained
on PaliGemma—by measuring their performance on residual activations from PaliGemma
in response to a shared text input. The reconstruction loss, computed as mean squared error
(MSE), quantifies how well each SAE captures the underlying representation space.

As shown in Table 1, the SAE trained on Gemma achieves slightly lower reconstruction loss
on PaliGemma residuals than the SAE trained directly on PaliGemma. This suggests that
the Gemma-trained SAE generalizes well enough to serve as a reliable probe for analyzing
PaliGemma, despite differences in training data or model architecture.
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SAE Type Trained On Recon Loss (MSE)

Gemma SAE Gemma 2.55
Pali SAE PaliGemma 3.10

Table 1: Reconstruction loss on PaliGemma text residuals using Gemma- and Pali-trained
SAEs.

4.2 Performance Analysis

L Patching Loss  Delta Loss Residual MLP
ayer Layer

PG G PG G PG G PG
0 3.81 1.13 0.05 0.06 0 0.155 029 1.11 0.64
5 5.44 1.05 1.69 -0.02 5 110 1.61 0.62 0.66
10 5.85 1.13 2.09 0.06 10 159 195 185 1.19
15 6.56 224 280 117 15 284 500 272 264
20 5.42 2.22 167 115 20 614 926 590 4.83
AVG 549 1.67 1.73  0.586 AVG 370 633 418 4.14

Table 2: Delta Loss (Patched - Baseline) for ~ Table 3: Reconstruction Loss for Gemma (G)
Gemma (G) and PaliGemma (PG). * AVGis and PaliGemma (PG). *AVG is across all lay-

across all layers. ers.
Layer Gemma PaliGemma  Diff Layer Gemma PaliGemma Diff
0 934.06 792.05 142.01 0 120.05 105.22 14.83
5 512.22 114.05 398.17 5 98.72 7511 23.61
10 303.25 116.26 187.00 10 87.31 65.04 22.27
15 325.96 61.10 264.86 15 77.89 50.33 27.56
20 406.22 37.65 368.56 20 70.45 45.98 24.47
AVG 45810 172.49 285.60 AVG 90.08 68.34 21.74

Table 4: Residual Sparsity Loss for Gemma  Table 5: MLP Sparsity Loss for Gemma and
and PaliGemma. * AVG is across all layers. ~ PaliGemma. * AVG is across all layers.

PaliGemma exhibits consistently higher SAE residual reconstruction loss than Gemma'’s
across observed layers, as reported in Table 3. However, MLP reconstruction remain
comparable. The higher reconstruction loss in PaliGemma compared to Gemma indicates
that the SAE trained on Gemma does not capture PaliGemma’s residual activations as
effectively, suggesting a divergence in representational structure between the two models.
Despite lower sparsity loss in PaliGemma, as reported in Tables 4 and 5, this does not reflect
increased sparsity in PaliGemma’s representations. Rather, it indicates that the Gemma-
trained SAE fails to reliably detect features in PaliGemma due to a shift in representation
space, explaining both the reduced sparsity loss and higher residual reconstruction loss.
While Table 2 shows lower Delta Loss in PaliGemma, interpretation is complicated by
its lower baseline loss. Without normalization, the comparison does not clearly indicate
whether PaliGemma is less affected by feature patching.

4.3 Activation Frequency and Dead Feature Quantification

Table 6 shows that PaliGemma maintains full feature coverage but suppresses a substantial
portion of the feature space compared to Gemma, particularly in deeper layers where
fewer features remain highly active. Figure 1 further demonstrates this by showing that
PaliGemma concentrates activations on a small subset of features while suppressing most
others. This shift suggests that PaliGemma relies on a narrower, potentially more specialized
subset of features, likely shaped by its multimodal training. The over-activation of select
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Metric Value
Total SAE Features 283,107
Dead Features (0 activations in 0 (0.00%)
PaliGemma)

Significantly Lower Activation 105,112 (37.13%)
Features

Layers with Most Suppressed Features | Layers 10, 15, 20
Typical Activation Ratio (Suppressed < 0.1
Features)

Layers with Most Over-activated Layers 10, 15, 20
Features

Typical Activation Ratio > 10
(Over-activated Features)

Table 6: Feature suppression statistics for PaliGemma relative to Gemma.

Relative Activation Frequency (Paligemma / Gemma) Across Layers

104 § — Layer 0
Layer 5
— Layer 10
10° { — Layer 15
—— Layer 20

Paligemma / Gemma Activation Ratio
=
2

0 2500 5000 7500 10000 12500 15000
Sorted Feature Index (0 to 16k)

Figure 1: Relative Activation Frequency (PaliGemma / Gemma) across SAE layers.

features in deeper layers may indicate a redistribution of representational load, with certain
features dominating due to cross-modal objectives. These results indicate that PaliGemma
trades feature diversity for more selective activation, potentially improving alignment
between vision and language inputs at the cost of representational breadth.

44 Cross-Modal Feature Activity Patterns
4.4.1 Global Feature Activation Trends (Layer-wise Counts)

Figure 2 shows that PaliGemma activates substantially fewer features on text-only labels
compared to Gemma, but activates many more while processing images, particularly in
deeper layers. This suggests that PaliGemma handles text and image inputs differently:
remaining sparse and selective for text, while engaging a broader set of features for images.
This behavior likely reflects PaliGemma’s multimodal training, which encourages stronger
reliance on visual patterns when they are available. Overall, PaliGemma appears biased
towards image-heavy or multimodal tasks, allocating fewer features when processing text
alone.
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Activated Features per Layer in Gemma and Paligemma

—— PaliGemma - Image
— PaliGemma - Text
—— Gemma - Text

10000 1

8000 1

6000 1

Activated Features Count

2000 1

Layer #

Figure 2: Activated SAE features per layer across three conditions on CIFAR100: Gemma on
text labels (blue), PaliGemma on text labels (green), and PaliGemma on image inputs (red).

4.4.2 Top-Activated SAE Features Across Modalities

Modality Top Features

Gemma Text 373, 9606, 4328, 8153, 12415, 209
2340, 9309, 10291, 16223
PaliGemma Text | 15887, 5877, 15537, 14599, 4467, 1099
6810, 15030, 8578, 2234

PaliGemma Image | 3020, 8072, 8920, 9746, 11794, 13886
16300, 5628, 5695, 6918

Table 7: Top-10 features per modality.

We observed substantial variation in the top-10 most frequently activated SAE features
across modalities. For example, features most active in PaliGemma'’s vision encoder differ
from those used by Gemma on text, despite semantically identical inputs. This suggests that
each model-modality pair relies on a distinct subset of SAE features, reinforcing our claim
that internal representations are not aligned, even when SAE structure and total activation
volume appear consistent.

4.4.3 SAE Representations Alignment via Correlation

Input Pair Cosine Pearson

Gemma Text vs Pali Text 0.0538 0.0520
Gemma Text vs Pali Image  0.0076 0.0066
Pali Text vs Pali Image 0.0879 0.0860

Table 8: SAE similarity between model-modality pairs for the class apple at layer 12.

Table 8 quantifies representational similarity between different model-modality pairs for
the concept apple. While Figure 2 suggests that PaliGemma on images and Gemma on
text exhibit similar overall activation frequencies—implying comparable SAE usage—the
correlation results reveal a different picture. All pairwise cosine and Pearson correlations
are low, indicating that the specific features being activated are not aligned across models or
modalities. This suggests that even when the volume of SAE activity appears similar (as
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in Figure 2), the underlying representations remain semantically and structurally distinct.
Notably, the strongest similarity occurs between PaliGemma’s own text and image inputs,
but even this correlation remains weak, underscoring a fundamental representational gap.

4.5 Semantic Robustness under Label Perturbations

Activated Features per Layer in PaliGemma (Image with Matching Label vs Image with Non-Matching Label)

—— Apple Image with Apple Label
Fox Image with Fox Label

10000

8000

6000 . . 4 ¥
A\ -
\ \

Activated Features Count

2000 /

Layer #

Figure 3: Activated SAE features per layer in PaliGemma when the image-label pair is
correct (red) vs. when labels are randomly shuffled (orange).

Figure 3 shows that PaliGemma activates nearly the same number of SAE features per layer,
regardless of whether the image-text pair is correct. This suggests that SAE activations are
largely image-driven and insensitive to label correctness in terms of feature count. The near-
identical activation patterns suggest that PaliGemma’s SAE activations are overwhelmingly
driven by the image modality. The text label, even when mismatched, does not strongly
influence feature activation count at each layer. This could mean that PaliGemma processes
image and text inputs in parallel, with the image stream dominating the SAE feature space,
while the text has a weaker or more downstream influence. The slight divergence in deeper
layers may reflect cross-modal interaction where some late-stage SAE activations adjust
based on the label. However, this adjustment appears small, suggesting that much of the
cross-modal reasoning happens after SAE processing (e.g., in the MLP head or multimodal
fusion modules). Overall, this result reinforces the idea that the SAE primarily encodes
image-driven representations and that feature sparsity is not highly sensitive to label
correctness at the activation count level.

4.5 t-SNE Visualization of SAE Activations

t-SNE of SAE Layer 8 Activations 200 t-SNE of SAE Layer 12 Activations
® GemmaText e ® se, ® GemmaText
oo ® FPali-mage s g %%f o0, N o Fali-image
1504 Pali-Text 150 L) > ‘

100 4

Component 2
°

—1001 -100 4

"i.' & 4 —-150 1
~150 °
e

T T T T T T T T —200 1, v v T T y T T
—-200 -150 -100 -50 o 50 100 150 200 —-200 -150 —-100 -50 0 50 100 150
Component 1 Component 1
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t-SNE of SAE Layer 16 Activations
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Figure 4: t-SNE projections of SAE activations. Top row: Layer 8 (left) and Layer 12 (right).

Bottom row: Layer 16. Each point is a latent vector from a Gemma-trained SAE, colored by
input modality (Gemma-Text, Pali-Text, Pali-Image).

We visualize SAE-encoded latent space using t-SNE at layers 8, 12, and 16. The resulting
clusters are separable by modality: PaliGemma’s image-based activations form tight clusters,
while text-based activations from both PaliGemma and Gemma occupy broader, distinct
regions. Notably, PaliGemma’s image and text representations remain disjoint, indicating
minimal feature reuse. This supports the hypothesis that PaliGemma encodes inputs in
separate subspaces rather than a shared representation. These results suggest that VLMs
represent visual input in a semantically abstract space overlapping both textual modalities,
offering a potential mechanism for cross-modal alignment via shared latent representations.

5 Limitations and Future Work

While our analysis reveals clear representational shifts between Gemma and PaliGemma, our
inputs are limited to single-token text labels and CIFAR-100 images, which do not capture
the complexity of natural language prompts or multimodal reasoning. Our experiments
also focus on two datasets—CIFAR-100 and TruthfulQA—which may not generalize to
tasks like captioning or Visual Question Answering (VQA; (Antol et al., 2015)). Future work
will explore training SAEs directly on PaliGemma’s image and joint activations, interpret
high-activation features using tools like Neuronpedia (Neuronpedia Contributors, 2024),
and evaluate longer or compositional prompts. We also plan to investigate cross-layer
alignment and use causal patching to trace the influence of specific SAE features on model
behavior.

6 Conclusion

In this work, we investigate the internal feature shifts that occur when LLMs are adapted
into VLMs. By using SAEs, we explore how feature representations evolve during the
transition from the text-only Gemma2-2B to the VLM PaliGemma2-3B. Our findings reveal
substantial differences in how internal representations are structured across models and
modalities. PaliGemma exhibits higher reconstruction loss, lower activation frequency for
many features, and a shift toward modality-specific feature usage. For example, PaliGemma
activates fewer SAE features on text than Gemma, and its top features differ completely
between text and image inputs, even for the same concept. We also observe that PaliGemma
concentrates activations in a smaller subset of SAE layers and features, and shows reduced
sensitivity to text-label mismatches at the activation level. These results suggest a fundamen-
tal reorganization of internal representations during multimodal adaptation. Our analysis
shows that SAEs can capture modality-specific structural shifts, offering a scalable tool for
probing the internals of vision-language models.
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A Appendix

A1 Model and Autoencoder Background
A.1.1 Sparse Autoencoders (SAEs)

Sparse autoencoders (SAEs) are unsupervised neural networks trained to compress and
reconstruct input data while enforcing sparsity in the latent space. In our context, SAEs are
applied to the residual stream activations of transformer-based language models.

Each SAE consists of:

* An encoder that maps a high-dimensional activation vector a € R” to a sparse
latent representation z € R,

* A decoder that reconstructs the input as & = fyec(z).

Sparsity is enforced using a regularization penalty (e.g., Ly or L1 norm) to encourage
monosemantic, interpretable features. All SAEs in this work are trained using the sae-lens
framework (Huben et al., 2024).

A.1.2 Gemma and PaliGemma Architectures

Gemma 2-2B is a 2-billion-parameter decoder-only transformer model released by Google
DeepMind. It contains standard components such as multi-head self-attention, feedforward
MLPs, and residual connections.

PaliGemma 2-3B builds upon Gemma by incorporating a vision encoder and multimodal
training objectives. It supports both text and image inputs through a fusion architecture
that integrates visual and linguistic signals at various layers. Despite structural similarities,
PaliGemma’s internal activations differ substantially from Gemma due to its multimodal
training regime.

In this paper, we train SAEs on residual activations from Gemma and apply them to both
Gemma and PaliGemma to examine representational shifts resulting from multimodal
adaptation.

A.2 Elaboration on t-SNE Methodology

To investigate representational divergence across unimodal and multimodal contexts, we
used t-distributed stochastic neighbor embedding (t-SNE) to project SAE latent activations
into two dimensions. We extract hidden states from Gemma text-only prompts, PaliGemma
text prompts, and PaliGemma image inputs at SAE layers 8, 12, and 16. These hidden
states were passed through pre-trained SAEs to obtain bottleneck activations, which serve
as compressed representations of the model’s internal features.

For each input modality:

1. We obtained the hidden state i1 € R? from the target transformer layer.

2. The hidden state was optionally padded or truncated to match the SAE input
dimension d’, and passed through the encoder:

z = ReLU(Wench + bene),  z € RF 8)

3. We collected z vectors from each modality and visualized their distribution using
t-SNE with default parameters (perplexity = 30, random seed = 42).

To isolate the effect of modality, we used matched prompts (e.g., “A photo of a dog”)
and paired each image with its corresponding label for Gemma and PaliGemma text.
The resulting 2D embeddings allow qualitative inspection of how SAEs separate or align
representations across modalities. Clear clusters imply modality-specific encoding, while
overlap suggests feature reuse or shared abstraction.
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A.3 Computational Setup

All experiments are conducted on an NVIDIA A100 GPU. The implementation utilizes
Hugging Face Transformers (Wolf et al., 2020), SAE-Lens (Bloom et al., 2024), and Py-
Torch (Paszke et al., 2019). This study involves no model training or sampling. All evalua-
tions are conducted on fixed, pretrained model checkpoints without hyperparameter tuning.
All analyses rely solely on publicly available model checkpoints and standard datasets,
independent of any project-specific codebase.

A.4 SAE Hyperparameters

We set the SAE latent dimension to d = 16,384 (matching the model’s residual width), used
a sparsity weight A = 1 x 1075 and balance term a = 0.1, and trained with Adam (learning
rate 1 x 1073, batch size 16) for 50 epochs.
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