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Abstract

This paper presents our enhanced BioT5+
method for the Language + Molecules shared
task at the ACL 2024 Workshop. The task
involves “translating” between molecules and
natural language, including molecule caption-
ing and text-based molecule generation using
the L+M-24 dataset. Our method consists of
three stages. In the first stage, we distill data
from various models. In the second stage, com-
bined with extra version of the provided dataset,
we train diverse models for subsequent vot-
ing ensemble. We also adopt Transductive En-
semble Learning (TEL) to enhance these base
models. Lastly, all models are integrated us-
ing a voting ensemble method. Experimental
results demonstrate that BioT5+ achieves su-
perior performance on L+M-24 dataset. On
the final leaderboard1, our method (team name:
qizhipei) ranks first in the text-based molecule
generation task and second in the molecule
captioning task, highlighting its efficacy and ro-
bustness in translating between molecules and
natural language. The pre-trained BioT5+ mod-
els are available at https://github.com/Qiz
hiPei/BioT5.

1 Introduction

With the development of Large Language Models
(LLMs) (Touvron et al., 2023a,b; OpenAI, 2023;
Taori et al., 2023; Chowdhery et al., 2023), the in-
tegration of molecules with natural language has
garnered increasing attention in recent research
efforts (Edwards et al., 2021, 2022; Zeng et al.,
2022; Luo et al., 2023; Tang et al., 2023; Liu et al.,
2023b; Zhao et al., 2023; Liu et al., 2023a,d,c; Pei

* Corresponding authors: Lijun Wu (apeterswu@gmail.
com) and Rui Yan (ruiyan@ruc.edu.cn)

1https://language-plus-molecules.github.io/#
leaderboard

Table 1: Statistics of L+M-24 dataset. We use B to rep-
resent molecule-text paired datasets and D to represent
datasets only containing molecules or text.

Split Symbol mol2text text2mol

#Training B 126,864 126,864
#Training-extra B+ 533,953 533,953
#Validation Bvalid 33,696 33,696
#Test Dtest 21,942 21,805

et al., 2023, 2024a). Notably, two critical genera-
tive tasks have emerged: molecule captioning (i.e.,
mol2text) and text-based molecule generation (i.e.,
text2mol) (Edwards et al., 2022). These tasks are
pivotal for biologists and chemists, as they facil-
itate the interpretation and creation of molecular
structures through natural language descriptions.

To leverage the advantages of natural language
for molecular design and understanding (Zhang
et al., 2024; Liao et al., 2024; Pei et al., 2024b;
AI4Science and Quantum, 2023), Language +
Molecules Workshop at ACL 2024 has been or-
ganized. A shared molecule-text translation task
and the corresponding paired dataset are presented
to accelerate research in this field.

1.1 Dataset Description

In the provided L+M-24 dataset, each sample is a
molecule-text pair, with the molecule represented
by SMILES (Weininger, 1988; Weininger et al.,
1989) and the text generated from collected molec-
ular properties based on templates written by GPT-
4 (OpenAI, 2023). An extra version of L+M-24
is also available, with each molecule having five
additional captions. We use the training split of
this version (i.e., training-extra) and remove dupli-
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cates. The fundamental statistics of the L+M-24
are shown in Table 1, with more details about its
construction described in Edwards et al. (2024).

1.2 Task Description

Mol2text The goal of the mol2text task is to
generate a caption for a given molecule. Partic-
ipants are required to submit generated captions
for the test split of mol2text. Evaluation metrics
include widely used text generation metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005), in addi-
tion to the Text2Mol metric (Edwards et al., 2021,
2022). These metrics assess the similarity between
the generated molecular captions and the ground
truth. Classification metrics including Precision,
Recall, and F-1 value are also used to evaluate
property-specific mol2text results.

Text2mol The goal of the text2mol task is to
generate a molecule that fits a given descrip-
tion. Participants are required to submit the gen-
erated molecule SMILES for the test split of
text2mol. Evaluation metrics include BLEU (Pap-
ineni et al., 2002), exact match percentages, Leven-
shtein distance, fingerprints (FTS) similarity score
(MACCS (Durant et al., 2002), RDK (Landrum
et al., 2023), Morgan (Rogers and Hahn, 2010)),
FCD score (Preuer et al., 2018), Text2Mol (Ed-
wards et al., 2021, 2022) score, and validity. These
metrics evaluate the similarity between the gener-
ated molecule and the ground truth.

1.3 Overview of our Method

Our proposed method, enhanced version of
BioT5+, is designed to tackle the mol2text and
text2mol tasks using a comprehensive three-stage
approach. The first stage involves data distilla-
tion, where we generate synthetic datasets from
trained models to enrich the training data. In the
second stage, we perform diverse training by fine-
tuning various models on different combinations
of distilled and extra datasets. We also employ
Transductive Ensemble Learning (TEL) to further
enhance these models by leveraging unlabeled data.
In the final stage, we integrate these models us-
ing a voting ensemble method, which selects the
best predictions based on perplexity scores. This
multi-faceted strategy ensures that our models are
robust, diverse, and capable of achieving superior
performance across both tasks.

2 Methodology

In this section, we give a detailed introduction to
our three-stage methodology.

Notations. We use SELFIES (Krenn et al., 2020)
as the sequence representation of the molecule.
Compared to SMILES, SELFIES is a more robust
molecular representation, which is beneficial for
molecule generation tasks such as text2mol, as it
ensures the generation of 100% valid molecules.
The SMILES in the L+M-24 dataset are converted
to corresponding SELFIES using selfies toolkit2.
Let M and T denote molecular SELFIES and
text descriptions, respectively, and M and T de-
note the corresponding collection of all sequences.
Let B = {(mi, ti)}|B|i=1 represent the molecule-
text pairs from the training split of L+M-24, and
B+ = {(mi, ti)}|B+|

i=1 represent the molecule-text
pairs from training-extra split, where mi ∈ M,
ti ∈ T , and |B| and |B+| represent the size of
B and B+, respectively. Let Dm = {mj}|D

m|
j=1

denote the collection of molecules from the Pub-
Chem (Kim et al., 2019) database, where mj ∈ M
and |Dm| = 800K represents the number of sam-
pled molecules. The text in T follows a specific
format, so we directly use Dt = {tj}|B+|

j=1 , where
the text tj ∈ B+.

Our goal is to develop a mol2text translation
model f : M 7→ T , which generates a caption
from T for a given molecule from M , and a re-
verse text2mol translation model g : T 7→ M. In
this paper, all models follow the T5 (Raffel et al.,
2020)-large architecture. Our method consists of
the following three stages:

Stage-1: Data Distillation. First, we train a
mol2text translation model f0 and a text2mol trans-
lation model g0 on B. Then, we use f0 and g0 to
build the synthetic dataset:

Bself = {(m, f0(m)) | m ∈ Dm}
∪ { (g0(t), t ) | t ∈ Dt } .

To further improve the diversity of the distilled
data, we also use the officially provided Meditron-
7B (Chen et al., 2023) mol2text model3 fmed to
build another synthetic dataset:

Bmed = {(m, fmed(m)) | m ∈ Dm} .
2https://github.com/aspuru-guzik-group/selfi

es
3https://huggingface.co/language-plus-molecul

es/Meditron7b-smiles2caption-LPM24
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 11.30
MolT5-Small 70.9 51.2 74.5 55.8 54.4 70.1 10.79
MolT5-Base 73.8 53.5 75.0 55.9 53.9 71.8 8.53
MolT5-Large 76.9 55.6 77.7 58.0 55.7 74.3 10.06
Meditron-7B 79.2 57.6 79.7 60.2 57.5 75.7 11.91
BioT5+ 79.8 57.9 81.2 61.7 58.4 77.7 11.36

Table 2: Results for mol2text task on the validation set of L+M-24.

Overall Biomedical Light+Electro Human Interaction Agr.+Industry Held-out Combos
Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

MolT5-Small 29.83 3.48 3.12 15.13 4.18 4.29 12.42 4.85 3.27 46.77 0.57 0.56 45.00 4.32 4.36 0.00 0.00 0.00
MolT5-Base 35.36 5.18 4.69 14.58 4.84 4.97 16.08 5.82 3.36 63.94 5.01 5.18 46.85 5.05 5.27 0.00 0.00 0.00
MolT5-Large 33.32 7.72 6.95 15.27 7.94 7.82 16.96 10.90 7.39 62.77 5.99 6.27 38.29 6.06 6.31 0.00 0.00 0.00
Meditron-7B 25.27 11.56 16.8 23.86 14.91 35.00 26.51 16.48 17.49 29.54 7.52 7.07 21.18 7.35 7.40 12.35 0.29 0.56
BioT5+ 35.50 20.69 20.93 56.91 38.22 39.27 36.20 27.43 28.22 29.46 9.09 8.42 19.41 8.03 7.82 17.61 0.73 1.40

Table 3: Results for property-specific mol2text task on the validation set of L+M-24.

Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1
X-icides Toxins Light Electricity X-inhibitors anti-X

MolT5-Small 0.00 0.00 0.00 0.00 0.00 0.00 24.85 9.69 6.54 0.00 0.00 0.00 3.42 0.43 0.09 1.96 0.00 0.00
MolT5-Base 0.00 0.00 0.00 67.45 8.51 8.84 28.00 11.51 6.52 4.17 0.12 0.20 2.20 0.58 0.11 9.70 0.23 0.15
MolT5-Large 0.00 0.00 0.00 69.42 10.29 10.85 15.77 12.28 8.16 18.14 9.52 6.62 8.90 2.28 1.13 4.32 1.16 0.61
Meditron-7B 0.00 0.00 0.00 48.79 11.75 11.05 29.10 20.64 20.64 23.93 12.33 14.34 35.69 19.91 22.65 14.79 9.34 8.98
BioT5+ 0.00 0.00 0.00 47.93 13.42 12.55 38.29 30.32 30.68 34.12 24.53 25.76 48.00 31.05 32.58 33.96 13.04 15.34

X-modulator X-agonist X-antagonist X-treatment X-disease X cancer
MolT5-Small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.49 1.99 1.70 87.44 50.08 49.94 71.86 21.03 24.27
MolT5-Base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 58.90 2.25 1.80 94.61 55.16 59.18 45.06 25.49 24.54
MolT5-Large 21.30 0.58 0.88 5.91 1.96 1.23 14.30 0.58 0.42 14.27 2.67 2.22 97.18 81.07 81.86 65.76 52.06 51.56
Meditron-7B 42.43 21.24 24.98 39.19 23.23 26.35 34.22 18.98 21.15 28.75 11.35 15.13 97.34 81.11 82.02 79.80 68.65 72.62
BioT5+ 55.32 42.83 44.76 53.02 36.96 37.09 50.06 32.79 34.18 46.83 18.99 24.47 96.61 81.75 82.05 77.77 73.48 75.25

Table 4: Results for selected subproperty group-specific mol2text task on the validation set of L+M-24.

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
MolT5-Small 66.82 48.29 72.80 54.44 53.33 68.14
MolT5-Base 69.83 50.56 73.34 54.55 52.86 69.86
MolT5-Large 73.63 53.20 75.79 56.47 54.42 72.16
Meditron-7B 75.16 54.72 77.97 58.75 56.33 73.69
BioT5+ 75.58 54.77 79.41 59.89 57.46 75.43

Table 5: Results for mol2text task on the test set of L+M-24.

Table 6: Model combinations. B+ → B means the
model is first trained on B+ followed by B.

Model Dataset Initialization

f0, g0 B BioT5+

f1, g1 B ∪ B+ BioT5+
f2, g2 B ∪ Bself BioT5+
f3, g3 B ∪ Bmed BioT5+
f4, g4 B+ → B BioT5+

f∗
1 , g

∗
1 B∗

f1, g1
f∗
2 , g

∗
2 B∗

f2, g2
f∗
3 , g

∗
3 B∗

f3, g3
f∗
4 , g

∗
4 B∗

f4, g4

In summary, despite B, we have three additional
synthetic datasets: B+, Bself , and Bmed.

Stage-2: Diverse Training. Based on the
datasets mentioned above, we train various types of

mol2text and text2mol models on different combi-
nations of these datasets, as shown in Table 6. We
first train {fi}4i=1 based on the distilled datasets in
Stage-1. Then we adopt the Transductive Ensem-
ble Learning (TEL) method to get {f∗

i }4i=1, which
involves predicting labels for unlabeled data and
subsequently fine-tuning models on these predic-
tions to enhance performance (Wang et al., 2020).
Taking the mol2text models as an example (the
text2mol models follow a similar process), for each
fi in {fi}4i=1, we select τ top-performing check-
points {fij}τj=1 based on their validation BLEU
scores from its training trajectory. We use {fij}τj=1

to caption the molecules from Bvalid and Dtest, re-
sulting in two synthetic datasets:

Bvalid,i = {(m, fij(m)) | m ∈ Bvalid, 1 ≤ j ≤ τ} ,
Btest,i = {(m, fij(m)) | m ∈ Dtest, 1 ≤ j ≤ τ} .

Then we fine-tune model f∗
i on

B∗
= ∪4

i=1{Bvalid,i ∪ Btest,i}, where f∗
i is

initialized from fi. f∗
i generally performs better



Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.00 11.26 100.0
MolT5-Small 56.56 0.00 56.34 64.22 58.10 37.44 NaN 0.49 80.52
MolT5-Base 68.38 0.00 44.79 76.03 65.23 47.46 NaN 7.06 100.0
MolT5-Large 56.42 0.00 55.40 75.70 65.01 39.51 17.52 7.69 99.44
Meditron-7B 69.40 0.01 46.49 77.16 69.34 50.07 2.46 7.80 99.63
BioT5+* 73.97 0.01 40.87 77.69 70.51 51.58 3.22 13.83 100.0
BioT5+ 73.10 0.01 41.47 78.06 70.93 51.49 3.29 13.73 100.0

Table 7: Results for text2mol task on the validation set of L+M-24. * denotes model from TEL in Stage-2.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Uniqueness↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.0 23.05 100.0 100.0
MolT5-Small 22.80 0.00 54.14 8.99 5.19 3.48 NaN 5.79 10.14 39.79
MolT5-Base 29.51 0.00 48.91 38.78 19.73 14.21 NaN 21.60 5.13 100.0
MolT5-Large 24.37 0.00 63.44 41.56 24.23 15.71 NaN 23.77 12.72 97.82
Meditron-7B 28.04 0.00 53.44 40.90 27.42 16.82 3.91 22.46 74.81 98.58
BioT5+* 33.35 0.10 43.65 41.52 28.05 17.53 3.52 22.91 51.05 100.0
BioT5+ 31.89 0.10 46.14 42.57 29.50 18.01 3.88 23.77 48.22 100.0

Table 8: Results for text2mol task on the subset of held-out combinations from the validation set of L+M-24.
* denotes model from TEL in Stage-2.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Validity↑
MolT5-Small 55.44 0.0 57.21 63.06 56.83 36.69 nan 81.03
MolT5-Base 67.04 0.0 45.71 74.61 63.7 46.29 nan 99.89
MolT5-Large 55.31 0.0 56.47 74.14 63.4 38.54 17.63 99.12
Meditron 68.84 0.01 46.47 75.59 67.66 48.72 2.44 99.54
BioT5+ 73.17 0.01 41.05 76.05 68.70 50.05 3.13 100.0

Table 9: Results for text2mol task on the test set of L+M-24.

than fi as f∗
i due to its ability to leverage the

collective knowledge and complementary strengths
of ensemble learning, leading to improved
generalization and robustness. The comparison
between fi and f∗

i is shown in Table 10. In total,
as shown in Table 6, we obtain eight types of
models {fi}4i=1 and {f∗

i }4i=1 in Stage-2.

Stage-3: Voting Ensemble. In the final stage,
we combine the strengths of the models trained
in Stage-2 through a voting ensemble approach.
This method leverages multiple models to improve
the reliability and accuracy of the predictions. We
illustrate this process using the mol2text test dataset
as an example, but the same methodology applies
to text2mol and validation datasets.

Let F = {f̂j}|F|
j=1, where f̂j is derived from

the Stage-2 models in Table 6. Each f̂j generates
captions for the molecules in Dtest, resulting in a
corresponding set of datasets:

S =
{
Dtest,j =

{
(m, f̂j(m)) | m ∈ Dtest

}
| f̂j ∈ F

}
.

For each dataset in S, we compute the perplexity
(PPL) score of each caption using all models in F .
The perplexity of a model f̂j on a molecule-text

pair (m, t) is defined as:

PPLf̂j
(m, t) = exp

(
− 1

N

N∑
i=1

logPf̂j
(ti | t<i,m)

)
,

where N is the length of the caption t, and Pf̂ j(ti |
t<i,m) is the probability of the i-th token in
the caption given the preceding tokens and the
molecule m. Next, we average the PPL scores
across all models in F for each molecule-text pair
in each dataset in S. The average perplexity for
a given molecule-text pair (m, t) in the dataset
Dtest,j is calculated as:

PPL(m, t) =
1

|F|

|F|∑
k=1

PPLf̂k
(m, t).

Finally, for each molecule m in the test dataset
Dtest, we select the caption t̂(m) with the lowest
average PPL from each dataset in S as the final pre-
diction: t̂(m) = argmin(m,t)∈S PPL(m, t). This
selection process ensures that we leverage the most
reliable caption according to the ensemble’s evalu-
ation. By using this voting ensemble approach, we
improve the robustness and accuracy of the predic-
tions, leveraging the strengths of multiple models
trained in Stage-2.



Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
BioT5+† 79.53 57.44 80.69 61.10 57.98 76.86
BioT5+* 79.63 57.70 80.95 61.18 58.11 77.06
BioT5+ 79.79 57.87 81.23 61.70 58.38 77.71

Table 10: Ablation results for mol2text task on the validation set of L+M-24. † denotes the model before TEL in
Stage-2. * denotes the model after TEL in Stage-2.

Model Configuration. Following Pei et al.
(2024a), we pre-train a large version of BioT5+
with 789M parameters, which is an enhanced ver-
sion of BioT5 (Pei et al., 2023) with improved
molecular understanding capabilities. As in Ta-
ble 6, model {fi}4i=0 are fine-tuned from this pre-
trained BioT5+ model, and model {f∗

i }4i=1 are fine-
tuned from {fi}4i=1. We employ a greedy decoding
strategy for all results, which selects the token with
the highest probability at each time step without
incorporating randomness or exploring multiple
hypotheses.

3 Experiments

In this section, we present our main results for
the mol2text and text2mol tasks. Baseline results
on the validation set are derived from Edwards
et al. (2024), and test set results are sourced from
the official leaderboard. An ablation study is also
conducted in Section 4 to demonstrate the efficacy
of our methodology.

Mol2text. Results on the validation set are shown
in Table 2, and results for the test set are shown
in Table 5. Our method achieves the best perfor-
mances on all metrics except for Text2Mol (Ed-
wards et al., 2021, 2022) metric, with a BLEU-2
of 79.80 on the validation set and 75.58 on the
test set. For the Text2Mol score on the valida-
tion set, both Meditron (Chen et al., 2023) and
our method exceed the ground truth score (11.30),
with our method slightly underperforming Med-
itron. The property-specific and selected subprop-
erty group-specific results on the validation set are
presented in Table 3 and Table 4, where our method
also outperforms the baselines in nearly all metrics.
These results show that the generated captions of
our method are highly accurate.

Text2mol. Unlike mol2text, our voting ensemble
in Stage 3 for the text2mol task does not improve all
metrics simultaneously. Therefore, we also report
the BioT5+* results which is the model from TEL
in Stage-2. Results on the validation and test sets
are presented in Table 7 and 9. Results on the sub-

set of held-out combinations from the validation set
are shown in Table 8. Our method achieves supe-
rior performances in most metrics, demonstrating
its efficacy and generalization ability.

4 Ablation Study

To validate the effectiveness of our TEL train-
ing and voting ensemble, we conduct an ablation
study for the mol2text task on the validation set of
L+M-24. The results, shown in Table 10, indicate
that the model after TEL (BioT5+*) yields better
results than model before TEL (BioT5+†). The
BioT5+ model, derived from voting ensemble in
Stage-3, achieves the best results overall.

5 Conclusion

In this paper, we introduce our enhanced BioT5+
model for the shared task of the Language +
Molecules Workshop at ACL 2024. We adopt
a three-stage approach: data distillation, diverse
training, and voting ensemble. Our method ef-
fectively leverages diverse datasets and advanced
ensemble techniques to enhance model perfor-
mance in both molecule captioning and text-based
molecule generation tasks. Experimental results
show that our approach achieves superior perfor-
mance across various evaluation metrics, highlight-
ing the potential of our enhanced BioT5+ model
for integrating molecules and text.
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