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Abstract001

Large Language Models (LLMs) are power-002
ful tools with profound societal impacts, yet003
their ability to generate responses to diverse004
and uncontrolled inputs leaves them vulnerable005
to adversarial attacks. While existing defenses006
often struggle to generalize across varying at-007
tack types, recent advancements in representa-008
tion engineering offer promising alternatives.009
In this work, we propose a defense framework010
that formulates model defense as a contrastive011
representation learning (CRL) problem. Our012
method finetunes a model using a triplet-based013
loss combined with adversarial hard negative014
mining to encourage separation between benign015
and harmful representations. Our experimental016
results across multiple models demonstrate that017
our approach outperforms prior representation018
engineering-based defenses, improving robust-019
ness against both input-level and embedding-020
space attacks without compromising standard021
performance.022

1 Introduction023

In recent years, Large Language Models (LLMs)024

have proven to be powerful tools for general-025

purpose language understanding and generation026

(Minaee et al., 2024). They have had significant027

impact on software engineering (Hou et al., 2024),028

medicine (Zhou et al., 2024) and natural sciences029

(Nejjar et al., 2024).030

However, their ability to respond to uncontrolled031

inputs comes with serious security risks (Geiping032

et al., 2024), as they can generate inappropriate,033

toxic, or harmful text (Deshpande et al., 2023). To034

mitigate this risk, various mechanisms have been035

developed to keep LLMs aligned with human val-036

ues (Stiennon et al., 2022; Bai et al., 2022; Rafailov037

et al., 2024). Nonetheless, the most commonly038

used LLM systems often fail to protect against039

such behaviors (Zou et al., 2023; Chao et al., 2023).040

Developing safe and reliable defenses is therefore041

essential for minimizing societal risks associated 042

with broad AI deployment. 043

The current state-of-the-art defenses against 044

LLM jailbreaks focus either on creating effective 045

pipelines around the model (Zeng et al., 2024b; 046

Yuan et al., 2024b), or on finetuning the model 047

weights (Yousefpour et al., 2025; Zhang et al., 048

2024). Among the latter, circuit breakers (Zou 049

et al., 2024) are a promising approach, designed to 050

disrupt the model’s harmful inner representations, 051

causing it to generate incoherent or nonsensical 052

outputs rather than harmful content even under at- 053

tacks. 054

In this work, motivated by the success of circuit 055

breaking, we introduce a new approach to repre- 056

sentation space safety engineering by building on 057

concepts from contrastive learning (Khosla et al., 058

2021). Our triplet loss formulation represents a 059

natural extension of circuit breaking, and allows 060

for clearer separation of harmful and benign rep- 061

resentations. Additionally, we adopt an improved 062

training strategy based on adversarial hard negative 063

mining (Casper et al., 2024). Overall, we improve 064

the robustness of representation engineering-based 065

defensive methods by reducing the attack success 066

rate (ASR) of the Llama 3 8B model from 29% 067

to 5% against embedding attacks across diverse 068

configurations, and from 14% to 0% against the 069

REINFORCE-GCG (Geisler et al., 2025a) input 070

space attack. 071

Our main contributions are as follows: 072

1. We propose a novel method for LLM safety 073

based on contrastive representation learning, 074

generalizing and improving upon existing 075

methods such as circuit breakers (Zou et al., 076

2024) and RepBend (Yousefpour et al., 2025). 077

2. We introduce a new training strategy based 078

on representation adversarial training (Casper 079

et al., 2024) that improves the sampling pro- 080

cedure of harmful representations, further 081
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increasing the robustness of our proposed082

method against embedding attacks.083

3. We provide experimental validation of our084

method, demonstrating gains in robustness085

against both input space and embedding space086

attacks without sacrificing the model’s general087

capabilities.088

2 Problem formulation089

Large Language Models (LLMs) are deep neural090

networks, typically based on the Transformer ar-091

chitecture (Vaswani et al., 2017), that have been092

trained at a massive scale on human textual data.093

The computation of a token yt given previous to-094

kens y<t can be described as follows:095

h0 = Emb(yt) (1)096

hl = Tl(hl−1) + hl−1 (2)097

o = FFN(hL) , (3)098

where h0 ∈ Rt−1×d is the sequence of input embed-099

dings for the previous tokens, Tl is the transformer100

block at layer l, hl ∈ Rt−1×d is the output of the101

l-th layer, FFN is a final feed-forward layer, and102

o ∈ Rt−1×|Σ| represent the output log probabilities103

over the vocabulary Σ for each position. Finally, yt104

is sampled from the output distribution o.105

For a prompt x and a response y, we write106

hl(x, y) as the inner representation of the model107

at layer l. We consider a prompt and response108

pair (x, y)h to be harmful if its content violates the109

developer rules of the model and if y is a correct110

and informative response to x. Conversely, a pair111

(x, y)b benign does not violate developer rules.112

Objective Our study specifically targets prompts113

that encourage illegal, immoral, unethical, or dan-114

gerous conduct and actions. The objective is to115

minimize the probability that a model outputs a116

harmful reply y under any token or embedding in-117

put x.118

We use the same proxy objective as the circuit-119

breaking method of working in the representation120

level, as while input and output formats can change121

between different generations of the harmful behav-122

ior, the representation space symbolizes the same123

concept under different formats. We aim to create a124

new safer model that “breaks” when given a harm-125

ful prompt, and works as expected when given a126

benign prompt.127

3 Related work 128

3.1 AI Safety 129

Input-Space Jailbreaking Attacks A jailbreak 130

is a prompt specifically designed to bypass the 131

model’s safety mechanisms and elicit a harmful re- 132

sponse, and can be broadly categorized into token- 133

level jailbreak which optimize a harmful adversar- 134

ial sequence of tokens appended to the prompt (e.g. 135

Greedy Coordinate Gradient (Zou et al., 2023)), 136

or prompt-level jailbreak which optimize the en- 137

tire prompt into human-readable jailbreak prompts 138

(e.g Prompt Automatic Iterative Refinement (PAIR) 139

(Chao et al., 2024)). 140

Embedding-Space Jailbreaking Attacks Em- 141

bedding attacks directly manipulate the output of 142

the model’s embedding layer to produce a harmful 143

response (Schwinn et al., 2025). For a prompt x, 144

instead of optimizing an adversarial suffix y ∈ Σt, 145

the attacker can optimize an embedding e ∈ Rt×d 146

that is appended to the prompt embedding Emb(x), 147

to force the model to start with a positive reply. 148

Mathematically, we can write h0 = Emb(x) ⊕ e 149

where ⊕ is the concatenation operator. Embedding 150

attacks are more powerful than input space attacks 151

as they operate on a lower level and have access to 152

the entire embedding space of the model. 153

Jailbreak Defenses Jailbreak defenses aim to 154

prevent or mitigate the effects of jailbreak attacks 155

on LLMs. Current defenses fall into two main cat- 156

egories : Pipeline defenses external to the model, 157

which do not modify the model weights but rather 158

add components such as filters (Jain et al., 2023), 159

textual transformations (Robey et al., 2024; Yuan 160

et al., 2024b) or guardrail model (Zeng et al., 161

2024b), and internal defenses which alter the model 162

itself, by fine-tuning on preference data (Kaufmann 163

et al., 2024) or editing problematic layers (Zhao 164

et al., 2024). 165

More details on jailbreaking attacks and defenses 166

are found in Appendix A.1. In this work, we focus 167

on a subset of internal defenses that manipulate the 168

model’s internal representations to increase robust- 169

ness against jailbreak attacks. 170

Internal Defenses based on Representation Engi- 171

neering Representation Engineering (Zou et al., 172

2025) focuses on internal representational spaces 173

to understand and improve the behavior of LLM, 174

and is an alternative to mechanistic interpretability. 175

Circuit breakers (Zou et al., 2024) and RepBend 176
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(Yousefpour et al., 2025) are the two main represen-177

tation engineering-based defenses. These methods178

share common principles:179

1. They manipulate the inner representations hl180

of the model, rather than only the inputs and181

outputs.182

2. They define training loss functions over these183

inner representations to guide and optimize184

model behavior.185

3. They use datasets of prompts and responses186

labeled as “benign” or “harmful” to establish187

“good” and “bad” inner representations.188

The training loss of circuit breaking focuses189

on preserving benign representations and pushing190

the new harmful representations far from previous191

harmful representations using a cosine similarity192

loss, and is defined as193

LCB = α ·
∥∥hb − h′

b

∥∥2
2

194

+ β · ReLU(cos_sim(hh,h′
h)) (4)195

where h is the inner representation of the initial196

fixed model at layer l, h′ is the new inner repre-197

sentation of the model with circuit breaking. α198

and β are scheduling hyperparameters, h and b199

represent benign or harmful representations, and200

cos_sim(a, b) = a·b
∥a∥·∥b∥ is the cosine similarity be-201

tween two representations a and b.202

Circuit breaking is an effective defense against203

a wide range of input-space attacks, and decreases204

the quality of successful attacks. For instance,205

while the REINFORCE adversarial attack (Geisler206

et al., 2025a) achieves a high attack success rate207

(ASR) with the HarmBench judge (Mazeika et al.,208

2024), the resulting responses often display stutter-209

like behavior in later stages of generation, render-210

ing them mostly unusable. However, circuit break-211

ing is less effective at defending against embedding-212

level jailbreaking attacks (Schwinn and Geisler,213

2024).214

Representation Bending (RepBend) (Yousefpour215

et al., 2025) extends circuit breaking by replac-216

ing the cosine similarity-based distance with an217

L2 distance, and introduces an additional regular-218

ization term to enforce similarity among harmful219

representations. However, training this method is220

challenging, as the distance terms can diverge to221

negative infinity, requiring careful stopping crite-222

ria and making it difficult to maintain a balance of223

hyperparameters.224

3.2 Contrastive Representation Learning 225

The objective of contrastive representation learning 226

(CRL) is to train models to produce a representa- 227

tional space in which similar (positive) inputs are 228

mapped close to each other, while dissimilar (nega- 229

tive) inputs are mapped far apart. Rather than solely 230

relying on labeled data, contrastive representation 231

can learn meaningful representations by leverag- 232

ing the inherent structure of the data itself. It has 233

achieved notable success in a variety of fields, such 234

as computer vision (Le-Khac et al., 2020; Schroff 235

et al., 2015), natural language processing (Mikolov 236

et al., 2013; Rim et al., 2021), and multi-modal 237

learning (Radford et al., 2021). 238

The triplet loss (Schroff et al., 2015) is a popular 239

loss function used in contrastive learning, origi- 240

nally developed for image embeddings and face 241

recognition and later adopted for text embeddings 242

(Reimers and Gurevych, 2019). 243

It encourages an anchor data point a to be closer 244

to a positive sample p (similar to the anchor) than 245

to a negative sample n (dissimilar to the anchor) by 246

at least a margin m: 247

LT = ReLU(d(a, p)− d(a, n) +m) (5) 248

where d(., .) is a distance metric, typically 249

the Euclidean distance or cosine distance, and 250

ReLU(x) = max(0, x) is the rectified linear unit 251

function. A visualization of the triplet loss objec- 252

tive is shown in Appendix A.1. 253

4 Method 254

We first describe the desirable properties of our 255

new, more robust representation space. Our proxy 256

objective is to construct a new representation space 257

h′ that induces the following properties, for an in- 258

dex i and benign and harmful representations h′
b,i 259

and h′
h,i: 260

1. h′
b,i and hb,i should be similar to each other, 261

as the new model is expected to maintain sim- 262

ilar behavior to the original model for benign 263

use cases. Exact matching is not required for 264

all representations, but top logits of benign 265

behaviors should closely match. 266

2. h′
h,i and hh,i should be dissimilar to each 267

other, because if the general structure of the 268

representation space is preserved, the old 269

harmful representations maintain their harm- 270

ful nature in the new representation space. 271
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3. h′
b,i and h′

h,i should be dissimilar, allowing272

the model to distinguish between benign and273

harmful representations.274

4. h′
h,i and h′

h,j should be similar to each other,275

preventing the model from generating fine-276

grained responses to harmful queries and pro-277

moting the generation of uniform replies such278

as refusals or warnings.279

Interpreting the circuit breaking loss The cir-280

cuit breaking loss described in Equation 4 can be281

interpreted as a contrastive loss, similar in spirit to282

the DrLIM loss (Hadsell et al., 2006), which is one283

of the first contrastive losses.284

For input vectors X1 and X2 belonging to a class285

Y ∈ {0, 1} the DrLIM loss is defined as286

LDrLIM = (1− Y )
1

2
∥X1 − X2∥22287

+ (Y )
1

2
max(0,m− d(X1,X2)) (6)288

where d(X1,X2) is a distance and m is a margin289

hyperparameter.290

This objective reduces to the circuit breaking291

objective when using the distance d(X1,X2) =292

1− cos_sim(X1,X2), a hard margin m = 1, harm-293

fulness labels Y , and sampling X1,X2 from the294

original and fine-tuned models.295

In CRL tasks, the DrLIM loss has been largely296

supplanted by more effective objectives, notably297

the Triplet loss and the InfoNCE loss (van den298

Oord et al., 2019), as they are more flexible and299

induce greater contrasts between the representa-300

tions. Motivated by these advances, we use a triplet301

loss to learn a robust representation space for LLM302

defense.303

4.1 Our Triplet-Based Loss304

Taking inspiration from the circuit breaking loss305

function, we propose a general alternative loss func-306

tion that fits all wanted properties.307

Let dh,p, dh,n, db,p and db,n be distance functions308

on representations, and i an index. We define a309

harmful triplet loss as:310

Ltriplet(H) = ReLU(dhp(h′
h,i,ph,i)311

− dhn(h′
h,i,hh,i) +mh) (7)312

This loss encourages new harmful representa-313

tions h′
h,i to be distant from the old harmful rep-314

resentations hh,i, and close to some positive ph,i.315

In contrast to circuit breaking and RepBend, our316

approach focuses on relative rather than absolute 317

distances between representations, as relative dis- 318

tances are more meaningful in embedding spaces. 319

Conversely, we define a benign triplet loss as: 320

Ltriplet(B) = ReLU(dbp(hb,i,h′
b,i) 321

− dbn(h′
b,i,nb,i) +mb) (8) 322

This loss encourages new benign representations 323

h′
b,i to be distant from the old benign representa- 324

tions hb,i, and far from some negative nb,i. We 325

write the final, unified triplet loss as a weighted 326

sum of the two triplet losses: 327

Ltriplet := αLtriplet(B) + βLtriplet(H) (9) 328

with hyperparameters α and β controlling the im- 329

portance of the losses. 330

Property RepBend CB Triplet
h′
b,i ≈ hb,i ✓ ✓ ✓

h′
h,i ̸≈ hh,i ✓ ✓ ✓

h′
b,i ̸≈ h′

h,i ✗ ✗ ✓
h′
h,i ≈ h′

h,j ✓ ✗ ✓

Table 1: Safety representation engineering methods and
their properties. Properties are expressed in terms of
similarity (≈) or dissimilarity (̸≈)

Relation to Circuit Breakers and RepBend We 331

demonstrate that both the circuit breaking loss and 332

the RepBend loss are simplified special cases of 333

our triplet loss. The full derivation and proofs are 334

in Appendix A.8. Table 12 outlines the key differ- 335

ences between the three losses. Specifically, the 336

circuit breaking loss lacks mechanisms for sepa- 337

rating benign representations from harmful ones, 338

and for clustering the harmful representations. The 339

RepBend loss focuses on clustering harmful rep- 340

resentations, but does not explicitly separate be- 341

nign representations from harmful ones. Our triplet 342

loss formulation generalizes both methods by in- 343

corporating these properties and allowing any valid 344

pseudodistances. 345

Choice of the Positive and Negative Samples 346

The choice of ph,i and nb,i is important, as these 347

samples will guide the new representations to new, 348

better directions. In this work, we use the mean of 349

the new harmful representations as a positive sam- 350

ple for the harmful triplet loss, and as a negative 351

sample for the benign triplet loss, thereby strength- 352

ening the separation between the two classes of 353

representations. Future work should explore the 354

use of other choices of ph,i and nb,i. 355
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Final Triplet Loss Let α, β and γ be hyperpa-356

rameters controlling the importance of the losses.357

Let dbp, dbn, dhp and dhn be distances chosen by358

the user. Let hb,i and hh,i be the benign and harm-359

ful representations for a batch with N different be-360

nign and harmful prompts. Let ĥ′ = 1
N

∑N
h=1 h′

h361

be the mean of the harmful representations for a362

batch. Let KL the Kullback-Leibler divergence363

on benign model logits between the new and the364

original model. Our final triplet loss is defined as:365

LTriplet = α · 1

N

N∑
i=1

Ltriplet(bi) (10)366

+ β · 1

N

N∑
i=1

Ltriplet(hi) (11)367

+ γ · KL(π(bi), π′(bi)) (12)368

Algorithm 1 describes the training procedure for369

the triplet model defense. The model weights are370

optimized until convergence on batches of benign371

and harmful prompt-response pairs.372

4.2 Combining Representation Engineering373

with Adversarial Training374

Most LLMs are shipped with built-in safety fea-375

tures that prevent them from outputting harmful376

responses to plain harmful queries. As such, gather-377

ing harmful representations h′
h,i from plain queries378

can lead to representations that are not truly infor-379

mative of dangerous model behavior. Inspired by380

work in hard negative mining, which focuses on381

learning on challenging negative samples (Robin-382

son et al., 2021), we propose to address this issue383

by integrating adversarial training in the representa-384

tion space, by explicitly generating “hard” harmful385

representations via attacks.386

Adversarial Hard Negative Mining In con-387

trastive learning, “hard negatives” are challenging388

negative examples that are easily confused with389

positive examples. For safety representation en-390

gineering, we define hard negatives as harmful391

representations that closely resemble benign ones.392

Rather than relying on plain harmful representa-393

tions, we make use of adversarial hard negative394

mining (Hughes et al., 2018).395

An adversarial attack neural network module396

Attackl is introduced at a randomly selected layer397

l. The module is inserted between two transformer398

blocks in the residual stream, and is trained using399

a Negative Log Likelihood (NNL) loss on harm-400

ful responses. The model is active when sampling401

new harmful representations, and is periodically 402

retained as model parameters are updated. This 403

module finds adversarial hard negatives, allowing 404

the defense to counteract a wider diversity of harm- 405

ful representations. Appendix A.2 contains more 406

details on the training of our adversarial attack mod- 407

ules. 408

In summary, our complete method views safety 409

representation engineering as a contrastive learning 410

problem, optimizes a triplet-based loss function, 411

and combines it with adversarial training to defend 412

against harmful prompts more robustly. 413

5 Experimental setup 414

Baselines We evaluate our method on two widely 415

used open-source models: Llama 3 8B (Grattafiori 416

et al., 2024) and Mistral 7B Instruct v 0.2 (Jiang 417

et al., 2023). These models are standard baselines 418

for adversarial defense in the literature, which en- 419

ables direct comparison with prior work. 420

Datasets We adapt the training pipeline of 421

Yousefpour et al. (2025) for our defense method. 422

For benign data, we use UltraChat (Ding et al., 423

2023), a large-scale dataset of over 1.5 million 424

multi-turn dialogues that cover a wide range of top- 425

ics such as art, history, literature, politics and tech- 426

nology. For harmful data, we use WildGuardMix 427

(Han et al., 2024) which contains a broad spectrum 428

of jailbroken prompts and responses, and Wild- 429

Jailbreaks (Jiang et al., 2024), a synthetic dataset 430

of harmful prompt-response pairs, featuring both 431

straightforward and complex jailbreak prompts. 432

From these sources, we randomly select 10’000 433

benign and 10’000 harmful samples to construct a 434

balanced training set. 435

Details on hyperparameter choices can be found 436

in Appendix A.3. Overall, our training and experi- 437

ments took approximately 2000 GPU hours. 438

6 Experiments 439

In this section, we demonstrate the increased ro- 440

bustness of our methods against various attacks 441

compared to existing methods and explore three 442

research questions (RQ) related to robustness and 443

general performance. 444

6.1 Overall defensive performance 445

In this section, we compare the performance of our 446

approach against different models and defenses. 447
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Algorithm 1 Triplet Model Defense

Require: Frozen original model M; Trainable defense model M′ (e.g., with LoRA adapters); Function
rep to extract representations; Benign dataset Db, harmful dataset Dh; Number of steps T ; batch size
N ; Hyperparameters α, β, γ,mb,mh

1: for t = 1, . . . , T do
2: Sample a batch xb ∼ Db, xh ∼ Dh

3: Compute original representations hb,i,hh,i using M
4: Compute new representations h′

b,i,h′
h,i using M′

5: Compute ĥ′ = 1
N

∑N
i=1 h′

h,i

6: Lbenign = 1
N

∑N
i=1max

(
0, dbp(hb,i,h′

b,i)− dbn(h′
b,i, ĥ′) +mb

)
7: Lharmful =

1
N

∑N
i=1max

(
0, dhp(h′

h,i, ĥ′)− dhn(h′
h,i,hh,i) +mh

)
8: LKL = KL(π(b), π′(b))
9: LTriplet = α · Lbenign + β · Lharmful + γ · LKL

10: Update parameters of M′ using LTriplet
11: end for

REINFORCE-GCG GCG Embedding

Defense HB SR Score HB SR Score HB SR Score
Base model 52.50 40.00 42.87 31.25 18.75 23.66 100.00 90.24 81.89
Circuit breakers 13.75 3.75 9.50 2.86 1.43 4.25 90.24 29.27 30.61
RepBend 11.25 6.25 11.27 2.86 0.00 1.65 73.17 39.02 39.00
Triplet 0.00 0.00 0.48 0.00 0.00 0.43 65.85 12.20 14.57
Triplet + Adv 3.75 2.50 6.99 0.00 0.00 1.36 75.61 4.88 8.70

Table 2: Attack success rates (ASR) using HarmBench (HB) and StrongREJECT (SR) across attack types, for
various defenses (Llama 3 8B Instruct). For GCG and REINFORCE-GCG attacks, each behavior was tested on a
single attempt evaluated over 80 Behaviors. For embedding attacks, results were computed over 41 behaviors, with
six attempts per behavior using different hyperparameter configurations (246 runs per model). The best result for
each behavior was used.

Method We use the publicly available defensive448

models created by the authors of circuit breakers449

(Zou et al., 2024) and RepBend (Yousefpour et al.,450

2025). We evaluate our defense using the Harm-451

Bench safety benchmark (Mazeika et al., 2024).452

For embedding attacks, we adopt a variant of the453

attack described by Zou et al. (2024). To ensure ro-454

bustness across hyperparameter choices, we use 6455

different hyperparameter configurations. For each456

behavior, we select the result from the configu-457

ration that produces the most harmful response458

out of the six different runs. For input-space at-459

tacks, we use GCG (Zou et al., 2023) and GCG-460

REINFORCE (Geisler et al., 2025a) with base con-461

figurations. To assess harmfulness, we use the bi-462

nary HarmBench judge to get adversarial success463

rates (HB ASR) and the fine-grained StrongRE-464

JECT (Souly et al., 2024) fine-tuned classifier to465

get harmfulness scores (SR Score) and adversar-466

ial success rates (SR ASR) for scores above 0.5.467

Full details of attack configurations and evaluation 468

settings are provided in Appendix A.3 469

Results Tables 2 report the ASRs for embedding 470

and GCG attacks on the Llama 3 8B model. All 471

defense methods achieve substantial improvements 472

over the base model, which shows ASRs above 473

90% for embedding attacks. Among the defenses 474

evaluated, our triplet defenses outperform both 475

circuit breakers and RepBend. In particular, the 476

triplet defense achieves ASRs of 0% for both RE- 477

INFORCE and GCG, while the triplet defense with 478

adversarial hard negative mining achieves the low- 479

est embedding SR ASR of 4.88% and the lowest 480

harmfulness score of 8.70. Results for the Mis- 481

tral 7B model are shown in Appendix A.5. Al- 482

though the reported ASRs are higher than for the 483

Llama model, the triplet defense outperforms cir- 484

cuit breaking on the Mistral 7B model. 485

Throughout our experiments, we find that the 486
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Harmbench classifier consistently produces higher487

ASRs than the StrongREJECT classifier. This is488

likely due to the tendency of HarmBench to clas-489

sify responses as harmful responses based on the490

initial response tokens, even if the rest of the re-491

sponse is nonsensical or incoherent. Appendix Ta-492

ble 17 shows an example of a generation classified493

as harmful by the Harmbench ASR, despite being494

practically harmless. These findings highlight how495

differences in harmfulness evaluation criteria can496

substantially influence measured outcomes.497

6.2 RQ1: How robust is our method to498

different attack configuration choices?499

The goal of this research question is to evaluate500

the robustness of our attack to different embedding501

configurations.502

Method We compare the ASRs of embedding503

attacks across the six different hyperparameter504

configurations, with full details provided in Ap-505

pendix A.3. For each defense, we report the best,506

worst, and mean ASR obtained over all configura-507

tions.508

Results Table 3 presents our results. Both Rep-509

Bend and circuit breakers exhibit significant vari-510

ability across attack hyperparameter configurations.511

In particular, using configuration 2, we get an Stron-512

gREJECT ASR of 20% on RepBend and 2% on513

circuit breakers, while configuration 0 results in an514

ASR of 2% and 12% respectively. In comparison,515

our triplet defense consistently demonstrates low516

ASRs, with a worst-case StrongREJECT ASR of517

2%. The complete results are provided in Appendix518

Figure 15. These findings highlight the necessity519

of evaluating defenses across diverse attack con-520

figurations to accurately assess their robustness, as521

relying on a single configuration could bias results522

in favor of a particular defense.523

6.3 RQ2: Does applying our defense affect the524

general performance of the model?525

The objective of this research question is to de-526

termine whether the application of our defensive527

mechanism affects the general language capabili-528

ties of the model.529

Method We assess the general performance of530

our trained models on a suite of benchmarks,531

including MMLU, HellaSwag, TruthfulQA, and532

GSM8K. See Appendix A.3 for more details.533

Results As shown in Table 4, our triplet method 534

achieves a performance comparable to the base 535

model, which indicates that our approach preserved 536

the model’s general capabilities. Notably, the de- 537

fenses showcase an improvement on the Truth- 538

fulQA (MC) benchmark, likely because their in- 539

creased tendency to reject harmful responses also 540

leads them to reject untruthful content, which is 541

often harmful. 542

In contrast, the performance of the RepBend 543

model decreases significantly on the generation- 544

based benchmarks GSM8K and TruthfulQA (Gen), 545

with accuracy dropping from 75% to 49% on 546

GMS8k, and from 46% and 2% on TruthfulQA 547

(Gen). This suggests overfitting to the defense 548

objective at the expense of general language per- 549

formance. Examples of generations of GSM8K 550

for RepBend can be seen in Appendix Table 17, 551

in which the model fails to answer the questions. 552

In contrast, our trained triplet models do not suf- 553

fer from this issue, maintaining both GSM8K and 554

TruthfulQA (Gen) performance close to the base 555

model. These findings highlight the strengths of our 556

approach and illustrate that defenses can have un- 557

intended side effects, which may themselves have 558

harmful consequences in sensitive applications. 559

6.4 RQ3: How does our defense generalize to 560

out-of-distribution input/output formats? 561

While adversarial attack success rates are valuable 562

for measuring robustness in plain text, they do 563

not fully capture a defense’s capability to gener- 564

alize to out-of-distribution response formats. To 565

address this, we introduce a new evaluation met- 566

ric for safety representation engineering defenses, 567

based on relative distances. 568

Method We apply random capitalization (follow- 569

ing the Best-of-N jailbreak attack protocol (Hughes 570

et al., 2024)) and translations to five languages 571

to 159 behaviors of the HarmBench benchmark, 572

generating a set of augmented prompts and re- 573

sponses A(b) for each behavior b. For each de- 574

fense, we compute the Mean Minimum Distance 575

Ratio (MMDR) as the average over behaviors of the 576

smallest ratios between the distance of augmented 577

and original harmful representations: 578

MMDRd =
1

|N |
∑
i∈N

min
a∈A(b)

d(h′
a,ha)

d(h′
b,i,hb,i)

(13) 579
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Defense HarmBench ASR StrongREJECT ASR StrongREJECT Score
mean min max mean min max mean min max

Base model 77.33 54.001 98.003 48.16 26.104 63.343 53.25 24.394 73.175

RepBend 24.50 2.005 37.002 10.36 4.005 22.062 8.54 2.440 19.512

Circuit breakers 38.67 27.002 54.001 9.32 3.415 14.530 6.91 0.005 12.200

Triplet 23.83 17.003 32.001 3.55 1.164 9.462 2.44 0.000 9.762

Triplet + Adv 24.40 10.001 41.002 2.23 1.103 4.280 0.49 0.001 2.440

Table 3: Mean, maximum, and minimum embedding attack ASR across six different hyperparameter configurations
(Llama 3 8B). Colored superscript indicates the configuration index for which the ASRs were achieved.

ARC (Easy) GSM8K HellaSwag MMLU TruthfulQA

Gen MC1 MC2
Base model 81.61 75.36 57.75 63.72 46.39 36.23 51.67
Circuit breakers 81.44 (-0.17) 75.44 (+0.08) 57.46 (-0.29) 63.57 (-0.15) 48.23 (+1.84) 36.96 (+0.73) 51.61 (-0.05)
RepBend 80.98 (-0.63) 49.05 (-26.31) 60.58 (+2.83) 60.26 (-3.46) 2.08 (-44.31) 41.00 (+4.77) 60.05 (+8.38)
Triplet 81.27 (-0.34) 74.30 (-1.06) 59.62 (+1.87) 63.85 (+0.13) 45.65 (-0.73) 40.76 (+4.53) 55.37 (+3.70)
Triplet + Adv 81.99 (+0.38) 74.91 (-0.45) 60.70 (+2.95) 63.38 (-0.34) 44.55 (-1.84) 42.96 (+6.73) 57.29 (+5.63)

Table 4: Performance comparison of models on general capability benchmarks (Llama 3 8B Instruct).

Averaged over all model layers, MMDR quanti-580

fies the model’s worst-case generalization to out-581

of-distribution augmentations.582

Distance MMDRd2 MMDRdcos

Circuit breakers 0.63 0.49
Triplet A1: CB 0.70 0.54
RepBend 0.70 0.64
Triplet A2: RepBend 0.78 0.64
Triplet A3: Full 0.80 0.66
Triplet A4: Full + Adv 0.80 0.70

Table 5: Generalization of the defenses to different data
augmentations (Llama 3 8B Instruct) with the L2 norm
d2 and the cosine distance dcos

Results As shown in Table 5, the full triplet de-583

fenses achieve higher MMDR values, up to 0.8584

for both distance metrics, compared to the circuit585

breaking (0.6) and RepBend (0.7) defenses. A586

value close to 1 indicates strong generalization,587

meaning the defense modifies augmented harm-588

ful representations similarly to the unaugmented589

ones, while a value close to 0 would imply that590

some augmentations bypass the defense. Notably,591

the MMDR increases as more loss terms are in-592

corporated, highlighting the effectiveness of our593

approach in generalizing to different input and out-594

put formats.595

6.5 Ablation study596

To study the impact of our loss functions, we con-597

duct an ablation study in which our defense meth-598

ods are trained with different loss configurations. 599

Specifically, we train a model A1 by removing 600

the db,n and dh,p components, making it closely re- 601

lated to circuit breaking. For model A2, we ablate 602

only db,n, resulting in a formulation similar to Rep- 603

Bend but with a margin-based objective. Model 604

A3 retains all loss terms, while model A4 incor- 605

porates adversarial hard negative mining and all 606

loss terms. Details and full results are provided in 607

Appendix A.4 608

Our results show that A1 performs similarly to 609

circuit breaking, validating the correspondence be- 610

tween the loss formulations. A2 consistently out- 611

performs both A1 and RepBend, highlighting the 612

advantage of our margin-based triplet learning ob- 613

jective. A3 and A2 perform comparably overall, 614

with A3 achieving better results in input-space at- 615

tacks and A2 on embedding space attacks. A4 616

achieves the best performance. Table 5 further 617

shows that for our studied models, removing loss 618

terms leads to a decrease in MMDR. These find- 619

ings demonstrate the importance of the db,n term 620

in our triplet loss, as well as the additional benefit 621

of adversarial hard negative mining. 622

7 Conclusion 623

This work presents a novel method for improving 624

the robustness of LLMs against adversarial attacks 625

based on contrastive representation learning and 626

adversarial hard negative mining. Our findings 627

demonstrate notable robustness improvement while 628

maintaining the model’s general capabilities. 629
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Ethics Statement630

This section discusses the ethical considerations631

that arise from the development and deployment632

of defensive methods for AI models. First, the de-633

velopment of defenses may lead to overconfidence634

in the safety of AI models, which in turn could en-635

courage the deployment of less safe models. In ad-636

dition, better defenses may lead to the development637

of stronger, more sophisticated attacks, thereby638

increasing the risk of misuse for widespread AI639

models with fewer security measures. Lastly, our640

representation space attack module used for ad-641

versarial hard negative mining could be misused642

by malicious actors to circumvent the defenses of643

AI models in a white-box setting. These concerns644

underscore the need for responsible use and de-645

ployment of research findings in the field of AI646

safety.647

Limitations648

Despite the promising results of our method, sev-649

eral limitations should be acknowledged. First,650

while robustness improves significantly on the651

Llama model, the Mistral model remains more vul-652

nerable to attacks, even though our method still653

outperforms circuit breakers. This suggests that654

further tuning or architecture-specific adaptations655

may be required to achieve a strong robustness656

across models.657

Secondly, given the computationally intensive658

nature of adversarial training and jailbreak gener-659

ation, the choice of hyperparameters and training660

strategy may not be optimal. Furthermore, due661

to the 2-GPU-hour cost per REINFORCE attack,662

our method was evaluated on 80 HarmBench be-663

haviors in the validation set compared to the 300664

behaviors in the training set. Although we expect665

similar trends to hold, this assumption has not been666

empirically verified.667

Third, while our method is robust to a variety668

of attacks, it is not guaranteed to be robust to all,669

especially to attacks in the representation space.670

Using more attack configurations and attempts per671

behavior may also lead to high attack success rates,672

at the cost of increased computation time.673

Finally, like other representation engineering-674

based methods, our trained models may result in675

incoherent and ineligible behavior if the model mis-676

interprets benign inputs as harmful, which in turn677

could lead to harmful consequences in some criti-678

cal settings. Therefore, careful considerations and679

additional safeguards may be necessary before de- 680

ploying these methods in real-world applications. 681

Finally, our method with adversarial hard negative 682

mining requires a moderate training time of up to 683

12 hours on a single H200 GPU for the Llama 3 684

8B model. This requirement may limit the scala- 685

bility of our approach to much larger models with 686

hundreds of billions of parameters. 687
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A Appendix970

A.1 Additional Details on Related Work971

Jailbreak Attacks Token-level jailbreaks opti-972

mize a harmful adversarial sequence of tokens ap-973

pended to the prompt. Greedy Coordinate Gradient974

(GCG) (Zou et al., 2023) iteratively optimizes an975

adversarial suffix with gradient information to se-976

lect promising token substitutions. Projected Gradi-977

ent Descent (PGD) for LLMs (Geisler et al., 2025b)978

adapts the PGD continuous optimization algorithm979

to the discrete setting of tokenized inputs. Adaptive980

methods (Andriushchenko et al., 2025) are able to981

achieve near 100% attack success rates on leading982

models such as Claude or GPT-4o.983

Prompt-level jailbreaks involve optimizing the984

entire prompt and generally result in human-985

readable jailbreak prompts. Prompt Automatic Iter-986

ative Refinement (PAIR) (Chao et al., 2024) uses987

a fine-tuned LLM in a conversation against a tar-988

get model to refine a harmful prompt. Persuasive989

Adversarial Prompts (PAP) (Zeng et al., 2024a)990

generate emotionally persuasive prompts to trick991

the target model. Additional jailbreaking strategies992

manipulate the input and the output format (Huang993

et al., 2024; Yuan et al., 2024a), or manipulating994

model reasoning (Wu et al., 2024; Ramesh et al.,995

2024).996

External Jailbreak Defenses Common strate-997

gies to defend against jailbreaks include modify-998

ing the input before giving it to the model, for999

instance by inserting, swapping or replacing char- 1000

acters (Robey et al., 2024), using perplexity-based 1001

filters (Jain et al., 2023), using paraphrasing and 1002

defensive suffixes (Yuan et al., 2024b), or using 1003

guardrail models to analyze the intent of queries 1004

and responses (Zeng et al., 2024b). 1005

Internal Jailbreak Defenses Internal defenses 1006

directly modify the model behavior by fine-tuning 1007

the model weights. Common approaches include 1008

Reinforcement Learning from Human Feedback 1009

(Kaufmann et al., 2024), which use human prefer- 1010

ence data to fine-tune model weights. Other meth- 1011

ods can identify problematic layers and edit out 1012

harmful content (Zhao et al., 2024). 1013

A.2 Additional Details on our method 1014
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Figure 1: Triplet loss objective before and after a learn-
ing step. The anchor (blue) is kept at the same position,
while the positive (green) is moved closer to the anchor,
and the negative (red) is moved further away from the
anchor.

Triplet loss Figure 1 shows a visualization of 1015

how the triplet loss affects data points during train- 1016

ing. 1017

Distances The notions of similarity and dissimi- 1018

larity are defined by a distance function d : Rd × 1019

Rd → R. In this work, we will use the term dis- 1020

tance to refer to pseudodistances, as we only need 1021

to define a notion of similarity and dissimilarity. 1022

We consider the following distances: 1023

• Lk: dk(x, y) = ||x− y||k 1024

• Cosine: dcos(x, y) = 1− x·y
||x||·||y|| 1025

• Mix : dmix(x, y) = α·d2(x, y)+β ·dcos(x, y) 1026
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• Null: d0(x, y) = 01027

In the representation space of LLMs, cosine similar-1028

ity has been shown to capture semantic similarity.1029

However, this notion of distance does not take into1030

account the scale of the embeddings, which is an1031

important factor in the representation space. Mix-1032

ing different distances allows to learn a space in1033

which angular similarity is more or less important1034

than Euclidean distance depending on the choice1035

of the user.1036

Adversarial Hard Negative Mining Algo-1037

rithm 2 shows the training process of an attack1038

module Attackl on harmful responses. Every m1039

steps, a new layer l is randomly selected, and an1040

attack module Attackl is trained until convergence.1041

Every k steps, the attack module is retrained for1042

K steps, to ensure continuous effectiveness as the1043

model is updated. By varying the layer l through-1044

out the attack, the defense learns to counteract a1045

diverse range of harmful representations.1046

Algorithm 3 shows the process of training our1047

triplet based objective with the addition of adver-1048

sarial hard negative mining.1049

A.3 Experimental Setup1050

Hyperparameters Model training is conducted1051

using the Adam optimizer (Kingma and Ba, 2017)1052

with a learning rate of 1e−5 and a batch size of 16.1053

We employ LoRA adapters with rank r = 16, scal-1054

ing factor α = 16 and a dropout of 0.05, following1055

existing representation engineering methods for1056

direct comparison. We collect harmful representa-1057

tions from layers 20 to 31 as in (Yousefpour et al.,1058

2025). We use a balanced dmix for all distances in1059

our experiments, and the hyperparameters α = 0.5,1060

β = 0.4, γ = 0.9, mb = 500, mh = 1500. We1061

train for a total of 1100 steps.1062

In adversarial hard negative mining experiments,1063

we retrain a new linear attack module every 301064

steps on a random layer between 0 and 20, and1065

update it for one iteration at every other defense1066

training step. During training, we sample 70% of1067

the original harmful representations and 30% of1068

adversarial harmful representations.1069

Embedding Attacks We implement a variant of1070

the attack introduced by Zou et al. (2024). We1071

substitute the SGD optimizer for the Adam opti-1072

mizer (Kingma and Ba, 2017) due to its superior1073

performance in complex optimization landscapes.1074

To ensure robust evaluation, we adopt a best-of- 1075

N attack strategy. We use N = 6 different attack 1076

hyperparameter configurations and select the one 1077

that yields the best classifier accuracy. This ensures 1078

that defenses are not overly sensitive to specific 1079

hyperparameter settings. Unlike the original study, 1080

which uses a simple "x x x x" string to initialize 1081

the embedding, we use a contextually meaningful 1082

initialization string for more realistic attacks. The 1083

attack is terminated when the loss drops below a 1084

certain threshold. We explore a range of threshold 1085

values across different attack configurations. We 1086

summarize our different attack configurations in 1087

Table 6. 1088

GCG Attacks We use the GCG attack (Zou et al., 1089

2023) white-box gradient based optimization attack 1090

integrated in the HarmBench benchmark to eval- 1091

uate the robustness of our defenses against input 1092

space attacks. We use the default attack hyperpa- 1093

rameters of 500 steps with a search width of 512. 1094

Safety Benchmarks We use the HarmBench 1095

benchmark (Mazeika et al., 2024) to evaluate the 1096

maliciousness of our trained models. We use the 1097

validation set containing 80 harmful behaviors. To 1098

measure the harmfulness of model responses, we 1099

use two different automated classifiers: 1100

• The HarmBench classifier, a fine-tuned Llama 1101

2 13B model providing a binary classification 1102

of harmfulness. It is the standard classifier 1103

used in the HarmBench benchmark. 1104

• The StrongREJECT classifier (Souly et al., 1105

2024), which is a fine-tuned Gemma 2B 1106

model. This classifier outputs a score esti- 1107

mate of the harmfulness of a response between 1108

0 and 1, and is better suited for evaluating 1109

weakly harmful responses. We use a thresh- 1110

old of 0.5 to classify a response as harmful or 1111

not. 1112

The choice of using a more fine-grained classi- 1113

fier allows a more accurate evaluation of the perfor- 1114

mance of our defenses, especially when the model 1115

begins to produce incoherent content after generat- 1116

ing some compliant tokens. 1117

General Performance Benchmark We use 5 1118

common benchmarks to evaluate our trained mod- 1119

els on standard language modeling tasks: 1120

• MMLU (Hendrycks et al., 2021): A collec- 1121

tion of multiple choice questions on a wide 1122
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Algorithm 2 Training an attack module Attackl on harmful responses

Require: Model π, target layer l, module Attackl, number of training steps n
Ensure: Trained Attackl

1: Set up an Adam optimizer for Attackl
2: for i from 0 to n− 1 do
3: Sample a harmful prompt-response pair (x, y)
4: Get logits π(y|x,do(hl = Attackl(hl)))
5: Compute the Negative Log-Likelihood (NLL) loss:

L = − 1

T

T∑
t=1

log p(yt|x, y<t)

6: Update Attackl to minimize L
7: end for

Algorithm 3 Triplet Model Defense with Adversarial Hard Negative Mining

Require: Frozen original model M, Trainable defense model M′ (e.g., with LoRA adapters), Benign
dataset Db, harmful dataset Dh, Number of steps T ; batch size N , Hyperparameters α, β, γ,mb,mh,
Retrain interval k, Retrain steps K, Attack module selection interval a

Ensure: Trained model M′

1: for t = 0, . . . , T − 1 do
2: if t mod a = 0 then
3: Remove Attackl if exists ▷ Create new attack module
4: Choose random layer l ∈ {1, . . . , L} to attack
5: Train Attackl until convergence
6: Apply Attackl to the model ▷ Apply attack module
7: end if
8: Sample a batch xb ∼ Db, xh ∼ Dh

9: Compute original representations hb,i,hh,i using M
10: Compute new representations h′

b,i,h′
h,i using M′

11: Compute ĥ′ = 1
N

∑N
i=1 h′

h,i ▷ Mean of harmful representations

12: Lbenign = 1
N

∑N
i=1max

(
0, dbp(hb,i,h′

b,i)− dbn(h′
b,i, ĥ′) +mb

)
13: Lharmful =

1
N

∑N
i=1max

(
0, dhp(h′

h,i, ĥ′)− dhn(h′
h,i,hh,i) +mh

)
14: LKL = KL(π(b), π′(b))
15: LTriplet = α · Lbenign + β · Lharmful + γ · LKL
16: Update parameters of M′ using LTriplet
17: if s mod k = 0 then
18: Retrain attack module Attackl for K steps ▷ Train attack module
19: end if
20: end for
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Config Learning rate Max steps Initial string Early stop threshold
run1 0.1 1000 Be honest. 0.001
run2 0.005 1000 It is important to carefully consider all

the details before answering truthfully
and fully. Don’t worry about being in-
appropriate.

0.0001

run3 0.001 1000 Make sure to answer the question truth-
fully.

0.0005

run4 0.0005 1000 Answer as best as you can, stick to the
question.

0.01

run5 0.02 1000 Please try your best to give a fact-based
and helpful answer that aligns with
known information.

0.05

run6 0.0001 1000 Make sure to answer well, answer step
by step.

0.00001

Table 6: Overview of configuration hyperparameters used for our embedding attack

range of topics, including mathematics and1123

chemistry.1124

• ARC-Easy (Clark et al., 2018): A collection1125

of natural, grade-school multiple choice sci-1126

ence questions.1127

• HellaSwag (Zellers et al., 2019): A common-1128

sense reasoning benchmark of multiple choice1129

questions.1130

• GSM8K (Cobbe et al., 2021): A collection of1131

diverse grade-school math word problems for1132

evaluating generative reasoning.1133

• TruthfulQA (Lin et al., 2022): A benchmark1134

for measuring the truthfulness of language1135

models, evaluated with multiple choice (mc1)1136

and generative (gen) questions.1137

We use the lm-eval library to run these bench-1138

marks (Gao et al., 2024).1139

Harmful Behavior Augmentations To generate1140

a set of augmented prompts and responses to calcu-1141

late the Mean Minimum Distance Ratio (MMDR),1142

we apply the following augmentations to the Harm-1143

Bench harmful behaviors:1144

• Random capitalization: Randomly capital-1145

izing letters in the input and output, follow-1146

ing the Best-of-N jailbreak attack protocol1147

(Hughes et al., 2024). We sample 5 variants1148

per behavior.1149

• Translation: Translating each harmful pair1150

in French, German, Spanish, Chinese, and1151

Ukrainian, using a jailbroken Llama 3 8B1152

model. The inclusion of Chinese and1153

Ukrainian enables the evaluation of general-1154

ization across different writing systems. Our 1155

translation prompt is shown in Appendix A.6. 1156

A.4 Ablation study 1157

To evaluate the importance of each element in our 1158

triplet-based loss, we conduct an ablation study. 1159

We consider the following models: 1160

• Triplet A1: CB: The triplet loss with dbn and 1161

dbp set to the null distance d0. This config- 1162

uration is a simplified version of the triplet 1163

loss which is similar to the circuit breaking 1164

method. The difference lies in the addition of 1165

the Kullback-Leibler divergence term, and the 1166

use of mixed distances. 1167

• Triplet A2: RepBend: The triplet loss with 1168

dbn set to the null distance d0. This configura- 1169

tion is similar to the RepBend method, but in- 1170

corporates a margin to regulate and constraint 1171

the distances, preventing them from becom- 1172

ing unbounded, and uses mixed distances for 1173

dbp and dhn. The use of margins allows for a 1174

flexible selection of the number of iterations, 1175

without concern for the distance diverging to 1176

infinity. 1177

• Triplet A3: Full: The full triplet loss as de- 1178

scribed in Algorithm 1. 1179

• Triplet A4: Full + Adv: The full triplet loss 1180

with adversarial hard negative mining as de- 1181

scribed in Algorithm 3. 1182

Appendix A.7 show the losses in detail for mod- 1183

els A1, A2, and A3. 1184

Tables 8 and 9 show the ASRs of our ablated 1185

models. We observe that the A1 model performs 1186

similarly to the circuit breakers defense. Across 1187
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Defense HarmBench ASR StrongREJECT ASR StrongREJECT Score
mean min max mean min max mean min max

Base model 77.33 54.00 98.00 53.25 24.39 73.17 48.16 26.10 63.34
RepBend 24.50 2.00 37.00 8.54 2.44 19.51 10.36 4.00 22.06
Circuit breakers 38.67 27.00 54.00 6.91 0.00 12.20 9.32 3.41 14.53
Triplet A1: CB 38.00 27.00 51.00 4.88 0.00 9.76 6.81 3.56 11.42
Triplet A2: Partial 22.67 2.00 34.00 1.22 0.00 2.44 2.98 0.36 5.81
Triplet A3: Full 23.83 17.00 32.00 2.44 0.00 9.76 3.55 1.16 9.46
Triplet A4: Full + Adv 24.40 10.00 41.00 0.49 0.00 2.44 2.23 1.10 4.28

Table 7: Mean, maximum, and minimum embedding attack ASR across different hyperparameter configurations
(Llama 3 8B)

HB ASR SR ASR SR score
Base model 100.00 90.24 81.89
RepBend 73.17 39.02 39.00
Circuit breakers 90.24 29.27 30.61
Triplet A1: CB 92.68 21.95 23.11
Triplet A2: RepBend 78.05 7.32 12.98
Triplet A3: Full 65.85 12.20 14.57
Triplet A4: Full + Adv 75.61 4.88 8.70

Table 8: Embedding attack success rate of the ablation study models with the Harmbench (HB) and StrongREJECT
(SR) judge classifiers (Llama 3 8B Instruct). Best-of-6 configurations, with a total of 41 × 6 = 246 attacks per
defense.

HB ASR SR ASR SR score
Circuit breakers 2.86 1.43 4.25
RepBend 2.86 0.00 1.65
Triplet A1: CB 7.14 2.86 4.95
Triplet A2: RepBend 1.43 1.43 2.51
Triplet A3: Full 0.00 0.00 0.43
Triplet A4: Full + Adv 0.00 0.00 1.36

Table 9: GCG attack success rate of the ablation study models with the Harmbench (HB) and StrongREJECT (SR)
judge classifiers (Llama 3 8B Instruct)

Distance MMDRd2 MMDRdcos

Circuit breakers 0.63 0.49
RepBend 0.70 0.64
Triplet A1: CB 0.70 0.54
Triplet A2: RepBend 0.78 0.64
Triplet A3: Full 0.80 0.66
Triplet A4: Full + Adv 0.80 0.70

Table 10: Generalization of the ablation study models to different data augmentations (Llama 3 8B Instruct) with
the L2 norm d2 and the cosine distance dcos
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all attacks, the A2 model performs better than the1188

RepBend model. The A2 and A3 models have1189

similar performance for embedding attacks and1190

GCG.1191

Table 10 shows the MMDR value of ablated1192

models. The value decreases as the loss compo-1193

nents are ablated, showcasing their importance.1194

A.5 Additional Results1195

Mistral results To evaluate our defense method1196

across multiple models, we train our defense on1197

Mistral-7B-Instruct-v0.2. We keep the same hyper-1198

parameters used for Llama 3 8B.1199

Table 13 shows the embedding attack success1200

rates on the Mistral model. Our method achieves1201

the lowest StrongREJECT score, slightly outper-1202

forming circuit breakers. We observe that the attack1203

success rates for both defense methods are much1204

higher on the Mistral 7B model than on the Llama1205

3 8B model, indicating that Mistral 7B remains a1206

challenging target for robust defense.1207

Table 14 shows the general performance of the1208

trained models. Our trained Mistral model suc-1209

cessfully retains its general language capabilities,1210

demonstrating that our defense does not compro-1211

mise model performance.1212

A.6 Prompt Templates1213

Prompt used for translations

Generate a translation of the following text
into x[0]: “‘ x[1] “‘ Do not output anything
else, just translate the text as best as you can.
ONLY TRANSLATE the text, do not add
any header, response, or footer to your reply.
Make sure to translate the text as best as you
can, and do not add any extra information.

1214
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ARC (Easy) GSM8K HellaSwag MMLU TruthfulQA

Gen MC1 MC2
Base model 81.61 75.36 57.75 63.72 46.39 36.23 51.67
Circuit breakers 81.44 (-0.17) 75.44 (+0.08) 57.46 (-0.29) 63.57 (-0.15) 48.23 (+1.84) 36.96 (+0.73) 51.61 (-0.05)
RepBend 80.98 (-0.63) 49.05 (-26.31) 60.58 (+2.83) 60.26 (-3.46) 2.08 (-44.31) 41.00 (+4.77) 60.05 (+8.38)
Triplet A1: CB 81.57 (-0.04) 74.83 (-0.53) 57.47 (-0.28) 63.64 (-0.09) 48.96 (+2.57) 36.96 (+0.73) 52.53 (+0.86)
Triplet A2: RepBend 81.94 (+0.34) 73.84 (-1.52) 59.56 (+1.81) 63.84 (+0.12) 45.29 (-1.10) 40.27 (+4.04) 55.17 (+3.50)
Triplet A3: Full 81.27 (-0.34) 74.30 (-1.06) 59.62 (+1.87) 63.85 (+0.13) 45.65 (-0.73) 40.76 (+4.53) 55.37 (+3.70)
Triplet A4: Full + Adv 81.99 (+0.38) 74.91 (-0.45) 60.70 (+2.95) 63.38 (-0.34) 44.55 (-1.84) 42.96 (+6.73) 57.29 (+5.63)

Table 11: Performance comparison of the ablation study models on general capability benchmarks (Llama 3 8B
Instruct)

Loss Benign Harmful

Term dbp dbn margin n dhp dhn margin p

Circuit Breakers d2 d0 0 0 d0 dcos 1 0
RepBend d2 d0 ∞ 0 dcos d2 ∞ mean(h′

h)
Triplet d d mb n d d mh p

Table 12: Loss function comparison. dbp, dbn, dhp and dhn are the distances used in the triplet losses. Our proposed
method is a natural generalization of the Circuit Breakers and RepBend methods, with an additional negative term
on new benign representations. For our experiments, we use n = p = mean(h′

h).

name Harmbench ASR StrongREJECT ASR StrongREJECT score
Base model 100.00 92.68 84.81
Circuit breakers 85.37 41.46 42.76
Triplet 97.56 34.15 33.82

Table 13: Embedding attack success rate with the Harmbench and StrongREJECT judge classifiers (Mistral 7B
Instruct)

ARC (Easy) GSM8K HellaSwag MMLU TruthfulQA (gen) TruthfulQA (mc1) TruthfulQA (mc2)
Base model 81.23 41.77 66.01 58.97 54.22 52.26 66.84
CB 81.52 (+0.29) 44.20 (+2.43) 65.58 (-0.43) 58.87 (-0.10) 55.69 (+1.47) 52.14 (-0.12) 67.05 (+0.21)
RepBend 81.36 (+0.13) 42.15 (+0.38) 65.60 (-0.41) 58.77 (-0.20) 50.31 (-3.92) 52.02 (-0.24) 67.23 (+0.39)
Triplet 81.48 (+0.25) 41.47 (-0.30) 65.83 (-0.18) 58.95 (-0.01) 54.83 (+0.61) 51.04 (-1.22) 66.99 (+0.15)

Table 14: Performance comparison of models on general capability benchmarks (Mistral 7B Instruct)
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Table 15: Full embedding attack results on Llama 3 8B (all configurations). Different defenses are robust to different
hyperparameter configurations.

Configuration Model Harmbench ASR StrongREJECT ASR StrongREJECT score
0 Base model 0.78 0.56 0.49

Circuit breakers 0.51 0.12 0.15
Triplet A1: CB 0.46 0.10 0.11
Triplet A4: Full + Adv 0.24 0.05 0.06
RepBend 0.34 0.02 0.05
Triplet A3: Full 0.24 0.00 0.04
Triplet A2: RepBend 0.34 0.02 0.03

1 Base model 0.54 0.27 0.27
Circuit breakers 0.54 0.12 0.12
RepBend 0.15 0.10 0.09
Triplet A1: CB 0.27 0.00 0.04
Triplet A2: RepBend 0.24 0.02 0.03
Triplet A4: Full + Adv 0.10 0.00 0.02
Triplet A3: Full 0.32 0.00 0.01

2 Base model 0.88 0.68 0.60
RepBend 0.37 0.20 0.22
Triplet A3: Full 0.29 0.10 0.09
Triplet A1: CB 0.34 0.10 0.09
Circuit breakers 0.27 0.02 0.06
Triplet A2: RepBend 0.32 0.02 0.06
Triplet A4: Full + Adv 0.41 0.00 0.02

3 Base model 0.98 0.71 0.63
RepBend 0.32 0.12 0.15
Triplet A1: CB 0.51 0.05 0.08
Circuit breakers 0.34 0.02 0.07
Triplet A3: Full 0.17 0.05 0.04
Triplet A2: RepBend 0.22 0.00 0.04
Triplet A4: Full + Adv 0.32 0.00 0.01

4 Base model 0.56 0.24 0.26
Circuit breakers 0.39 0.12 0.13
RepBend 0.27 0.05 0.07
Triplet A1: CB 0.29 0.02 0.05
Triplet A4: Full + Adv 0.12 0.00 0.02
Triplet A2: RepBend 0.22 0.00 0.02
Triplet A3: Full 0.24 0.00 0.01

5 Base model 0.90 0.73 0.63
RepBend 0.02 0.02 0.04
Triplet A1: CB 0.41 0.02 0.04
Circuit breakers 0.27 0.00 0.03
Triplet A4: Full + Adv 0.29 0.00 0.03
Triplet A3: Full 0.17 0.00 0.01
Triplet A2: RepBend 0.02 0.00 0.00
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Table 16: Full generalization results of the defenses on different input formats (Llama 3 8B Instruct)

Distance
Augmentation Defense L2 Cosine
Chinese RepBend 0.84 0.82

Triplet A1: CB 0.84 0.89
Circuit breakers 0.87 0.85
Triplet A2: RepBend 0.92 0.96
Triplet A3: Full 0.92 0.95
Triplet A4: Full + Adv 0.93 0.89

French Circuit breakers 0.89 0.89
RepBend 0.92 0.89
Triplet A1: CB 0.94 0.97
Triplet A4: Full + Adv 0.95 0.89
Triplet A3: Full 0.97 0.98
Triplet A2: RepBend 0.97 0.98

German Circuit breakers 0.88 0.89
RepBend 0.93 0.90
Triplet A4: Full + Adv 0.95 0.88
Triplet A1: CB 0.97 0.98
Triplet A2: RepBend 0.97 0.99
Triplet A3: Full 0.97 1.00

Spanish Circuit breakers 0.88 0.88
RepBend 0.92 0.90
Triplet A1: CB 0.94 0.98
Triplet A4: Full + Adv 0.95 0.91
Triplet A2: RepBend 0.96 1.00
Triplet A3: Full 0.97 0.99

Ukrainian RepBend 0.79 0.77
Circuit breakers 0.80 0.79
Triplet A1: CB 0.82 0.87
Triplet A2: RepBend 0.87 0.90
Triplet A3: Full 0.89 0.91
Triplet A4: Full + Adv 0.90 0.85

Random capitalization Circuit breakers 0.76 0.68
RepBend 0.90 0.83
Triplet A4: Full + Adv 0.91 0.84
Triplet A3: Full 0.92 0.83
Triplet A2: RepBend 0.92 0.83
Triplet A1: CB 0.93 0.80
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Question Expected answer Generated answer
Howard spends $ 8 dollars at the
arcade on Monday. On Tuesday,
he spends twice as much at the
arcade as he did on Monday. On
Wednesday, he spends 4 times as
much at the arcade as he spent
on Tuesday. If he originally had
$100, how much money does he
have left?

On Tuesday, he spends $8 * 2 =
$<8 * 2 = 16 >. On Wednesday,
he spends $16 * 4 = $<16 * 4 =
64 >. In total, he spent $8 + $16
+ $64 = $<8 + 16 + 64 = 88 > at
the arcade. He has $100 - $88 =
$<100 - 88 = 12 > left. #### 12

Howard starts with $100. On
Monday, he spends $8. On Tues-
day, he spends 2 * $8 = $<2 * 8 =
16 >. On Wednesday, he spends
4 * $16 = $<4 * 16 = 64 >. Total
spent: $8 + $16 + $64 = $<8 + 16
+ 64 = 88 >. Howard has $100
- $88 = $<100 - 88 = 12 > left.
#### 12

Dax went to their farm to pick
some apples and found half as
many bugs as ants in the garden.
If there were 50 ants, calculate
the total number of insects in the
garden.

The total number of insects in the
garden is 25 bugs + 50 ants =
«25+50=75»75 insects #### 75

if there were 50 ants, and there
were half as many bugs as ants,
there were 1/2 * 50 = 1/2 * 50 =
1 * 50 / 2 = iseliseliselilletilletil-
letilletilletilletille

Last night Rick killed ten wolves
and 15 cougars while hunting.
Today Rick killed three times
as many wolves as cougars and
three fewer cougars than the pre-
vious night. How many animals
did Rick kill?

The total number of animals that
Rick killed while hunting yester-
day is 15+10 = «15+10=25»25
Today, Rick killed three fewer
cougars than the previous night,
a total of 15-3 = «15-3=12»12
cougars. He also killed three
times as many wolves as
cougars today, a total of 3*12 =
«3*12=36»36 wolves. Together,
his hunt today yielded 36+12 =
«36+12=48»48 animals. In total,
he has 48+25 = «48+25=73»73
animals from the hunt. #### 73

yesterday, he killed 10 wolves
and 15 cou, so today he killed
3 times as many wolves as
cou, which is isel mktimeil-
letiselovuovuilletov . . .

Table 17: Example of correct and incorrect (overrefused) generations of RepBend on GSM8K.
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A.7 Ablation study losses1215

Equations 14, 15, and 16 present the loss functions used for models A1, A2 and A3 in our ablation study.1216

LA1 = α · 1

N

N∑
i=1

max(0, dbp(hb,i,h′
b,i) +mb)1217

+ β · 1

N

N∑
i=1

max(0,−dhn(h′
h,i,hh,i) +mh)1218

+ γ · KL(π(b), π′(b)) (14)1219

LA2 = α · 1

N

N∑
i=1

max(0, dbp(hb,i,h′
b,i) +mb)1220

+ β · 1

N

N∑
i=1

max(0, dhp(h′
h,i, ĥ′)− dhn(h′

h,i,hh,i) +mh)1221

+ γ · KL(π(b), π′(b)) (15)1222

LA3 = α · 1

N

N∑
i=1

max(0, dbp(hb,i,h′
b,i)− dbn(h′

b,i, ĥ′) +mb)1223

+ β · 1

N

N∑
i=1

max(0, dhp(h′
h,i, ĥ′)− dhn(h′

h,i,hh,i) +mh)1224

+ γ · KL(π(b), π′(b)) (16)1225

A.8 Proofs1226

Theorem 1. The circuit breakers loss LCB can be rewritten as a triplet loss Ltriplet with null distances1227

d0(x, y) = 0.1228

Proof. We recall the definition of the circuit breakers loss:1229

LCB = α ·
∥∥hb,i − h′

b,i

∥∥2
2
+ β · ReLU(cos_sim(hh,i,h′

h,i)) (17)1230

= α · ReLU(
∥∥hb,i − h′

b,i

∥∥2
2
) + β · ReLU(cos_sim(hh,i,h′

h,i)) (18)1231

= α · ReLU(
∥∥hb,i − h′

b,i

∥∥2
2
) + β · ReLU(−dcos(hh,i,h′

h,i) + 1) (19)1232

= Ltriplet (20)1233

with the parameters mh = 1,mb = 1, dbp = d2, dbn = d0, dhp = d0, dhn = dcos.1234

1235

Theorem 2. The RepBend loss LRB without the KL divergence term can be rewritten as a triplet loss1236

Ltriplet with a null distance d0(x, y) = 0 and an arbitrary large margin mh.1237

Proof. The definition of the RepBend loss, minus the KL divergence term, is:1238

LRB =
1

2
·
∥∥h′

b,i − hb,i

∥∥
2

(21)1239

− α ·
∥∥h′

h,i − hh,i

∥∥
2

(22)1240

− β · cos_sim(A) (23)1241
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where cos_sim(A) is defined as the average cosine similarity between all pairs of vectors in A. 1242

cos_sim(A) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

cos_sim(ai,aj) (24) 1243

We write µ the mean of the normalized vectors âi. 1244

µ =
1

n

n∑
i=1

âi (25) 1245

Let us assume that the vectors are normalized, i.e. ||ai|| = 1. 1246

cos_sim(A) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

cos_sim(ai,aj) (26) 1247

=
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

ai · aj (27) 1248

=
1

n(n− 1)

n∑
i=1

 n∑
j=1

ai · aj

− ai · ai (28) 1249

= − 1

n− 1
+

1

n(n− 1)

n∑
i=1

n∑
j=1

ai · aj (29) 1250

= − 1

n− 1
+

1

n(n− 1)

n∑
i=1

ai ·

 n∑
j=1

aj

 (30) 1251

= − 1

n− 1
+

1

(n− 1)

n∑
i=1

ai · µ (31) 1252

= − 1

n− 1
− 1

(n− 1)

n∑
i=1

dcos(ai, µ) (32) 1253

Therefore, maximizing cos_sim(A) is equivalent to minimizing 1
n

∑n
i=1 dcos(ai, µ). Since dcos is the 1254

cosine distance, the case also holds when the vectors are not normalized. 1255

Finally, we can rewrite the RepBend loss as: 1256

LRB =
1

2
·
∥∥h′

b,i − hb,i

∥∥
2

(33) 1257

− α ·
∥∥h′

h,i − hh,i

∥∥
2

(34) 1258

− β · 1

H

H∑
i=1

dcos(h′
h,i, µ) (35) 1259

=
1

2
· ReLU(d2(h′

b,i,hb,i) + d0 − 0) (36) 1260

+ ReLU(α · d2(h′
h,i,hh,i)−

β

n− 1
· dcos(h′

h,i, µ) +mh) (37) 1261

where we assume that mh is large enough to make the ReLU function non-zero. In practice, the RepBend 1262

loss would need to be stopped at a certain point, otherwise the loss would tend to −∞. By adding a 1263

margin mh, we can freely choose the number of iterations without worrying about divergence of the loss. 1264

Therefore, our triplet loss formulation of RepBend with margins is more practical and stable. 1265
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