
KalMamba: Towards Efficient Probabilistic State
Space Models for RL under Uncertainty

Philipp Becker∗ Niklas Freymuth
Karlsruhe Institute of Technology

Gerhard Neumann

Abstract

Probabilistic State Space Models (SSMs) are essential for Reinforcement Learning
(RL) from high-dimensional, partial information as they provide concise repre-
sentations for control. Yet, they lack the computational efficiency of their recent
deterministic counterparts such as S4 or Mamba. We propose KalMamba, an
efficient architecture to learn representations for RL that combines the strengths
of probabilistic SSMs with the scalability of deterministic SSMs. KalMamba
leverages Mamba to learn the dynamics parameters of a linear Gaussian SSM in a
latent space. Inference in this latent space amounts to standard Kalman filtering
and smoothing. We realize these operations using parallel associative scanning,
similar to Mamba, to obtain a principled, highly efficient, and scalable probabilis-
tic SSM. Our experiments show that KalMamba competes with state-of-the-art
SSM approaches in RL while significantly improving computational efficiency,
especially on longer interaction sequences.

1 Introduction

Deep probabilistic State Space Models (SSMs) are versatile tools widely used in Reinforcement
Learning (RL) for environments with high-dimensional, partial, or noisy observations [22, 34, 38,
5, 25, 41]. They model states and observations as random variables and relate them through a set
of conditional distributions, allowing them to capture uncertainties and learn concise probabilistic
representations for downstream RL applications. Beyond RL, recent deterministic SSMs [16, 48, 15]
offer a powerful new paradigm for general sequence modeling and rival state-of-the-art transformers
while improving computational complexity [15]. These models assume states and observations are
vectors related by deterministic, linear, and associative functions, which allow efficient time-parallel
computations. Such deterministic models are often insufficient for RL with complex observations,
where uncertainty awareness and probabilistic modeling are crucial [10, 34, 23]. In contrast, due to
their nonlinear parameterizations and inference approaches, most existing probabilistic SSMs for RL
and beyond do not feature the favorable scaling behavior of recent deterministic SSMs.

Many real-world applications require both uncertainty awareness and the capability of handling
long sequences. Examples include multi-modal robotics tasks with high-frequency control, long
sequence non-stationary tasks, or complex information-gathering tasks. Consider a robot tasked
with packing objects of unknown properties into a basket. By interacting with each item to infer
and memorize properties such as mass and deformability, the robot refines its understanding of the
scene, enabling it to strategically arrange the objects in the basket. Current deterministic SSMs lack
uncertainty awareness to solve such tasks, while their probabilistic counterparts do not scale to the
required sequence lengths. Thus, the question of how to develop a principled method that combines
the benefits of both paradigms to obtain robust and efficient probabilistic state space models for
long-sequence RL under uncertainty arises.

∗Correspondence to philipp.becker@kit.edu.

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

philipp.becker@kit.edu

Observations
and Actions

Mamba
Backbone

Learned
Dynamics

Time-Parallel Kalman Smoother
Variational
Inference

Filter Smoother

SAC

Figure 1: Overview of KalMamba. The observation-action sequences are first fed through a dynamics
backbone built on Mamba [15] to learn a linear dynamics model for each step. KalMamba then uses
time-parallel Kalman filtering [42] to infer filtered beliefs q(zt|o≤t,a≤t−1) which can be used for
control with a Soft Actor Critic (SAC) [21]. For model training, KalMamba employs an additional
time-parallel Kalman smoothing step to obtain smoothed beliefs q(zt|o≤T ,a≤T). These beliefs
allow training a model that excels in modeling uncertainties due to a tight variational lower bound [5].
Crucially, the smoothing step does not introduce trainable model parameters, enabling the direct use
of the filtered beliefs for downstream RL policy training and execution.

We propose an efficient architecture for RL that equips probabilistic SSMs with the efficiency
of recent deterministic SSMs. Our approach, KalMamba, uses (extended) Kalman filtering and
smoothing [28, 40, 27] to infer belief states over a linear Gaussian SSM in a latent space that uses a
dynamics model based on Mamba [15]. In this approach, Mamba acts as a highly effective general-
purpose sequence-to-sequence model to learn the parameters of a dynamics model. The Kalman
Smoother uses this model to compute probabilistic beliefs over system states. Figure 1 provides a
schematic overview. Mamba is efficient for long sequences as it uses parallel associative scans, which
allow parallelizing associative operators on highly parallel hardware accelerators such as GPUs [44].
Similarly, we formulate both Kalman filtering and smoothing as associative operations [42] and build
efficient parallel scans for filtering and smoothing in PyTorch [39]. With both Mamba and the Kalman
Smoother being parallelizable, KalMamba achieves time-parallel computation of belief states required
for model learning and control. Thus, unlike previous approaches for efficient SSM-based RL [41],
which rely on simplified inference assumptions, KalMamba enables end-to-end model training under
high levels of uncertainty using a smoothing inference and tight variational lower bound [5]. While
using smoothed beliefs for model learning, our architecture ensures a tight coupling between filtered
and smoothed belief states. This inductive bias ensures the filtered beliefs are meaningful, allowing
their use for policy learning and execution where future observations are unavailable.

We evaluate KalMamba on several tasks from the DeepMind Control (DMC) Suite [50], training an
off-the-shelf Soft Actor-Critic [21] on beliefs inferred from both images and states. As baselines, we
compare to Recurrent State Space Models [23] and the Variational Recurrent Kalman Network [5].
Our preliminary experiments show that KalMamba is competitive to these state-of-the-art SSMs
while being significantly faster to train and scaling gracefully to long sequences due to its ability to
be efficiently parallelized. These results indicate KalMamba’s potential for applications that require
forming accurate belief states over long sequences under uncertainty.

To summarize our contributions, we (i) propose KalMamba, a novel probabilistic SSM for RL that
combines Kalman filtering, smoothing, and a Mamba backbone to offer efficient probabilistic infer-
ence, (ii) motivate and compare KalMamba to existing probabilistic SSMs for RL, and (iii) validate
our approach on state- and image-based control tasks, closely matching the performance of state-of-
the-art probabilistic SSMs while being time-parallelizable.

2

2 Related Work

Deterministic State Space Models in Deep Learning. Structured deterministic State Space ap-
proaches [16, 48, 15] recently emerged as an alternative to the predominant Transformer [52]
architecture for general sequence modeling [15]. Their main benefit is combining compute and
memory requirements that scale linearly in sequence length with efficient and parallelizable imple-
mentations. While earlier approaches, such as the Structured State Space Sequence Model (S4) [16]
and others [18, 26] used a convolutional formulation for efficiency, more recent approaches [48, 15]
use associative scans. Such associative scans allow for parallel computations over sequences if all
involved operators are associative, which yields a logarithmic runtime, given enough parallel cores.
However, all these models are deterministic, i.e., they do not model uncertainties or allow sampling
without further modifications. As a remedy, Latent S4 (LS4) [56] extends S4 for probabilistic genera-
tive sequence modeling and forecasting. However, in LS4, the latent states are not Markovian and
are thus hard to use for control. KalMamba exploits the fact that filtering and smoothing in linear
Gaussian state space models can also be formulated as a set of associative operations, which makes
it amenable to parallel scans [42]. To our knowledge, it is the first deep-learning model to do so.
Further, it relies on Mamba [15], a state-of-the-art deterministic state space model, to precompute the
dynamics models required for filtering and smoothing.

Probabilistic State Space Models for Reinforcement Learning. Probabilistic state space models
are commonly and successfully used for reinforcement learning from high dimensional or multimodal
observations [38, 54, 25, 4], under partial observability [5], and for memory tasks [41]. Arguably,
the most prominent approach is the Recurrent State Space Model (RSSM) [23]. After their original
introduction as the basis of a standard planner, they have been improved with more involved parametric
policy learning approaches [22] and categorical latent variables for categorical domains [24]. During
inference, the RSSMs conditions the latent state on past observations and actions, resulting in a
filtering inference scheme. Here, the key architectural feature of RSSMs is splitting the latent state
into stochastic and deterministic parts. The deterministic part is then propagated through time using a
standard recurrent architecture. In its original formulation, the RSSM uses a Gated Recurrent Unit
(GRU) [9]. One line of research focuses on replacing this deterministic path with more efficient
architectures with the TransDreamer [8] approach using a transformer [52] and Recall to Image [41]
using S4 [16]. However, to fully exploit the efficiency of these backbone architectures, both need
to simplify the inference assumptions and can only consider the current observation, which makes
them highly susceptible to noise or missing observations. Opposed to that, the Variational Recurrent
Kalman Network (VRKN) [5] proposes using a smoothing inference scheme that conditions both past
and future actions. This scheme allows the VRKN to work with a fully stochastic latent state and lets
it excel in tasks where modeling uncertainty is crucial. The VRKN uses a locally linear Gaussian State
Space Model in a latent space, performing closed-form Kalman Filtering and smoothing. KalMamba
holistically combines smoothing inference in a fully probabilistic SSM with an efficient temporally
parallelized implementation, resulting in an approach that is robust to noise and efficient.

Probabilistic State Space Models in Deep Learning. Probabilistic state space models are versatile
and commonly used tools in machine learning. Besides classical approaches using linear models [47]
and works using Gaussian Processes [12, 11], most recent methods build on Neural Networks (NNs)
to parameterize generative and inference models using the SSM assumptions [2, 53, 17, 29, 13, 33, 3,
55, 43, 37, 6, 7, 35, 45, 32, 46]. Out of these approaches, those that embed linear-Gaussian SSMs
into latent spaces [53, 20, 13, 3, 7, 6, 45, 32, 46] are of particular relevance to KalMamba. Doing so
allows for closed-form inference using (extended) Kalman Filtering and Smoothing. However, with
the notable exception of the VRKN, these models usually cannot be used to control or even model
systems of similar complexity to those controlled with RSSM-based approaches. Furthermore, some
of them [29, 7] do not allow smoothing, while others [13, 32] model observations in the latent space
as additional random variables which complicates inference and training and prevents principled
usage of the observation uncertainty for filtering. Another class of approaches [20, 6, 45, 46] trains
using regression and are thus not generative. Notably, none of these approaches uses a temporally
parallelized formulation of the filtering and smoothing operations.KalMamba takes inspiration from
many of these approaches and partly follows the VRKN’s design to enable reinforcement learning for
complex systems. However, it combines those ideas with the efficiency of recent deterministic SSMs
using an architecture that enables time-parallel computations.

3

3 State Space Models for Reinforcement Learning

In Reinforcement Learning (RL) under uncertainty and partial observability, State Space Models
(SSMs) generally assume sequences of observations o≤T = {ot}t=0···T which are generated by a
sequence of latent state variables z≤T = {zt}t=0···T , given a sequence of actions a≤T = {at}t=0···T .
The corresponding generative model factorizes according to the hidden Markov assumptions [36],
i.e., each observation ot only depends on the current latent state zt through an observation model
p(ot|zt), and each latent state zt only depends on the previous state zt−1 and the action at−1 through
a dynamics model p(zt|zt−1,at−1).

In order to learn the state space model from data and use it for downstream RL, we need to infer latent
belief states given observations and actions. Depending on the information provided for inference, we
differentiate between the filtered belief q(zt|o≤t,a≤t−1) and the smoothed belief q(zt|o≤T ,a≤T).
The filtered belief conditions only on past information, while the smoothed belief also depends on
future information. Computing these beliefs is intractable for models of reasonable complexity. Thus,
we resort to an autoencoding variational Bayes approach that allows joint training of the generative
and an approximate inference model using a lower bound objective [31].

Table 1: Comparing the inference models and capabilities for
smoothing (Smooth) and time-parallel (Parallel) execution of re-
cent SSMs for RL.

Method Inference Model Smooth Parallel

RSSM [23] q(zt|ht,ot) × ×
R2I [41] q(zt|ot) × ✓
VRKN [5] q(zt|o≤T ,a≤T) ✓ ×
KalMamba q(zt|o≤T ,a≤T) ✓ ✓

The Recurrent State Space
Model (RSSM) [23] assumes
a nonlinear dynamics model,
splitting the state zt into a
stochastic st and a deterministic
part ht which evolve according
to ht = f(ht−1,at−1, st−1)
and st ∼ p(st|ht). Here f is
implemented using a Gated
Recurrent Unit (GRU) [9]. This
results in a nonlinear, autoregres-
sive process that cannot be parallelized over time. Further, RSSMs assume a filtering inference model
q(st|ht,ot), where ht accumulates all information from the past. The RSSM’s inference scheme
struggles with correctly estimating uncertainties as the resulting lower bound is not tight [5]. In tasks
where such uncertainties are relevant, this lack of principled uncertainty estimation causes poor
performance for downstream applications.

As a remedy, the Variational Recurrent Kalman Network (VRKN) [5] builds on a linear Gaussian
SSM in a latent space which allows inferring smoothed belief states q(zt|o≤T ,a≤T) required for
a tight bound. The VRKN removes the need for a deterministic path and improves performance
under uncertainty. However, it linearizes the dynamics model around the mean of the filtered belief,
resulting in a nonlinear autoregressive process that cannot be parallelized.

In contrast, Recall to Image (R2I) [41] builds on the RSSM and improves computational efficiency at
the cost of a more simplistic inference scheme. It uses S4 [16] instead of a GRU to parameterize the
deterministic path f but additionally has to remove the inference’s dependency on ht to allow efficient
parallel computation. The resulting inference model, q(zt|ot) is non-recurrent and neglects all
information from other time steps. Thus, while R2I excels on memory tasks, it is highly susceptible to
noise and partial-observability as the inference cannot account for inconsistent or missing information
in ot.

Our approach, KalMamba, combines the tight variational lower bound of the VRKN with a paral-
lelizable Mamba [15] backbone to learn the parameters of the dynamics. It thus omits the nonlinear
autoregressive linearization process. Combined with our custom PyTorch routines for time-parallel
filtering and smoothing [42], this approach allows efficient training with the VRKNs principled,
uncertainty-capturing objective.

4 KalMamba

On a high level, KalMamba embeds a linear Gaussian State Space Model into a latent space and
learns its dynamics model’s parameters using a backbone consisting of several mamba layers. It
employs a time-parallel Kalman smoother in this latent space to infer latent beliefs for training and
acting. By exploiting the associativity of the underlying operations, we can utilize parallel scans

4

Mamba

. . .

. . .

at−2 at−1 at at+1wt−1 = ϕ(ot−1) wt = ϕ(ot) wt+1 = ϕ(ot+1)

At−1,bt−1,Σt−1 At,bt,Σt At+1,bt+1,Σt+1

mt−1 mt mt+1

Figure 2: Schematic of the Mamba [15] based backbone to learn the system dynamics. It shares the
inference model’s encoder ϕ(ot) and intermediate representation wt. Each wt is then concatenated
to the previous action at−1, fed through a small Neural Network (NN) and given to Mamba model
which accumulates information over time and emits a representation mt(ot≤,a≤t−1) containing
the same information as the filtered belief q(zt|ot≤,a≤t−1). We then concatenate each mt with the
current action at and use another small NN to compute the dynamics parameters At,bt and Σt. This
scheme allows us to use the intermediate representation mt for regularization and we regularize it
towards the filtered belief’s mean using a Mahalanobis regularizer (c.f. Equation 2). Finally, the
small NNs include Monte-Carlo Dropout [14] to model epistemic uncertainty.

for this parallelization. KalMamba employs a tight variational lower bound objective that allows
appropriate modeling of uncertainties in noisy, partial-observable systems. We then use a Soft Actor
Critic [21] approach to learn to act, avoiding autoregressive rollouts for policy learning.

4.1 The KalMamba Model

To connect the original, high-dimensional observations ot to the latent space for inference, we
introduce an intermediate auxiliary observation wt, which is connected to the latent state by an
observation model q(wt|zt) = N (wt|zt,Σw

t) [6, 45]. Here, we assume wt to be observable and
extract it, together with the diagonal observation covariance Σw

t from the observation using an
encoder network; (wt,Σ

w
t) = ϕ(ot). This approach allows us to model the complex dependency

between zt and ot using the encoder while having a simple observation model for inference in the
latent space. Opposed to modeling wt as a random variable [13, 32], modeling it is observable results
in fewer latent variables which simplifies inference and allows direct propagation of the observation
uncertainties from the encoder to the state.

We parameterize the dynamics model as

p(zt+1|zt,at) = N
(
zt+t|At(o≤t,a≤t)zt + bt(o≤t,a≤t),Σ

dyn
t (o≤t,a≤t)

)
(1)

where both At and Σdyn
t are diagonal matrices and we constrain the (eigen)values of A to be between

0.4 and 0.99. This constraint ensures the resulting dynamics are plausible and stable. This approach
effectively linearizes the dynamics parameters At,bt and Σdyn

t around all past observations and
actions. Crucially, the resulting dynamics are linear in zt enabling the closed-form inference of
beliefs using standard Kalman filtering and smoothing.

Parameterizing the dynamics model of Equation 1 naively can lead to poor representations, as
information can bypass the actual SSM through the linearization backbone. To counter this, we
design the backbone architecture as depicted in Figure 2. For each timestep, we concatenate wt and
at−1, transform each resulting vector using a small neural network, feed it through a Mamba [15]
model and linearly project the output to a vector mt of the same dimension as the latent state zt. Each
mt now accumulates the same observations and actions used to form the corresponding filtered belief
q(zt|o≤t,a≤t−1). We then take mt and the action at to compute the dynamics parameters using
another small neural network. This bottleneck introduced by mt allows us to regularize the model as

5

discussed below. Following [5] we further include Monte-Carlo Dropout [14] into this architecture,
as explicitly modeling the epistemic uncertainty is crucial when working with a smoothing inference.

The generative observation model is given by a decoder network p(ot|zt). The observations are
modeled as Gaussian with learned mean and fixed standard deviation. Finally, we assume an initial
state distribution p(z0) that is a zero mean Gaussian with a learned variance Σ0.

Given the latent observation model q(wt|zt), and the shared, pre-computable, linear dynamics model,
we can efficiently infer belief states using extended Kalman filtering and smoothing. Recent work [42]
shows how to formulate such filtering and smoothing as associative operations amenable to temporal
parallelization using associative scans. We implement these operations in PyTorch [39]. Similar to
S5 [48] or Mamba [15] this implementation yields a logarithmic time complexity, given sufficiently
many parallel cores. Additionally, as the dynamics matrix At and all model covariances, i.e., Σdym

t ,
Σobs

t , and Σ0, are diagonal, the same holds for the covariances of the filtered and smoothed beliefs.
Thus we can replace costly matrix operations during Kalman filtering and smoothing with point-wise
operations, which further ensures KalMamba’s efficiency.

4.2 Training the Model

After inserting the state space assumptions of our generative and inference models, the standard
variational lower bound to the data marginal log-likelihood [31] for a single sequence simplifies to [5]

Lssm(o≤T ,a≤T) =

T∑
t=1

(
Eq(zt|o≤T ,a≤T) [log p(ot|zt)]−

Eq(zt−1|o≤T ,a≤T) [KL [q(zt|zt−1,a≥t−1,o≥t) ∥ p(zt|zt−1,at−1)]]

)
.

Due to the smoothing inference, this lower bound is tight and allows accurate modeling of the
underlying system’s uncertainties. To evaluate the lower bound we need the smoothed dynamics
q(zt|zt−1,a≥t−1,o≥t) whose parameters we can compute given the equations provided in [5].

To regularize the Mamba-based backbone used to learn the dynamics, we incentivize mt to correspond
to the filtered mean using a Mahalonobis distance

R(o≤T ,a≤T) =

T∑
t=1

(
mt(o≤t,a≤t−1 − µ+

t

)T (
Σ+

t

)−1 (
mt(o≤t,a≤t−1)− µ+

t

)
, (2)

µ+
t and Σ+

t denote the mean and variance of the filtered belief q(zt|o≤t,a≤t−1). This regularization
discourages the model from bypassing information over the Mamba backbone. This mirrors many
established models such as the classical extend Kalman Filter [27], which linearize directly around
this mean, but still allows associative parallel scanning.

Finally, we add a reward model p(rt|zt), predicting the current reward from the latent state using
a small neural network. While this is not strictly necessary for standard policy learning on top of
the representation, it nevertheless helps the model to focus on task-relevant details and learn a good
representation for control [49, 51]. Including this reward term and the Mahalonobis regularize, the
full maximization objective for a single sequence is given as

LKalMamba(o≤T ,a≤T) = Lssm(o≤T ,a≤T) + Eq(zt|o≤T ,a≤T) [log p(rt|zt)]− αR(o≤T ,a≤T).

4.3 Using KalMamba for Reinforcement Learning

We learn a policy on top of the KalMamba state space representation using Soft Actor Critic (SAC) [21].
Here, we use the mean of the variational filtered belief q(zt|o≤t,a≤t−1) as input for the actor and,
together with the action at for the critic. Importantly, we cannot smooth during acting as future
observations and actions are unavailable. However, while not directly involved in the loss, the filter
belief is still meaningful as the smoothing pass introduces no additional parameters. This inductive
bias induces a tight coupling between filtered and smoothed belief that ensures the reasonableness of
the former. We independently train the KalMamba world model and SAC by stopping the actor’s and
critic’s gradients from propagating through the world model. We use SAC instead of the typical latent

6

Methods: KalMamba RSSM+SAC VRKN+SAC DreamerV3
Ablations: No Mamba No MCD No Regularization

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

Environment Steps (in millions)

E
xp

ec
te

d
R

et
ur

n
Image-Based Observations

0 0.2 0.4 0.6 0.8 1

Environment Steps (in millions)

KalMamba Ablations

Figure 3: Aggregated expected returns for image-based observations. (Left) KalMamba is slightly
worse but overall competitive with the different baselines. Combining either baseline SSM with SAC
matches or exceeds the performance of DreamerV3. (Right) Using Mamba to learn the dynamics is
crucial for good model performance. Similarly, both Monte-Carlo Dropout and the regularization
loss of Equation 2 stabilize the training process and lead to higher expected returns.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

Environment Steps (in millions)

E
xp

ec
te

d
R

et
ur

n

State-Based Noisy Tasks
Methods:
KalMamba
RSSM+SAC
VRKN+SAC
SAC

Figure 4: Aggregated expected returns for the state-based noisy tasks. KalMamba clearly outperforms
the RSSM while almost matching the VRKN’s performance. Naively using SAC is insufficient, which
testifies to the increased difficulty due to the noise.

imagination strategy used with RSSMs, the VRKN and R2I. For all 4 models, rolling out policies in
the latent space is autoregressive but these rollouts can be avoided by using a Q-function directly on
the inferred belief states.

5 Experiments

We evaluate KalMamba on 4 tasks from the DeepMind Control (DMC) Suite, namely
cartpule_swingup, quardruped_walk, walker_walk, and walker_run. We train each task
for 1 million environment steps with sequences of length 32 and run 20 evaluation runs every 20, 000
steps. We report the expected return using the mean and 95% stratified bootstrapped confidence
intervals [1] for 4 seeds per environment. Appendix A provides all hyperparameters. Appendix B
provides per-task results for all experiments.

We compare against Recurrent State Space Models (RSSM) and the Variational Recurrent Kalman
Network (VRKN). To isolate the effect of the SSMs’ representations, we combine both with SAC [21]
as the RL algorithm, instead of using latent imagination [22].

5.1 Standard Image Based Tasks

We first compare on standard image-based observations of the different tasks and include Dream-
erV3 [25] results for reference. The left side of Figure 3 shows the aggregated expected returns. The
results indicate that KalMamba is slightly worse, but overall competitive to the two baseline SSMs
and DreamerV3, while being parallelizable and thus much more efficient to train. Interestingly, both
SSMs work well when combined with SAC, matching or outperforming DreamerV3.

7

Methods: KalMamba RSSM+SAC VRKN+SAC

0
200
400
600
800

1,000
E

xp
ec

te
d

R
et

ur
n

Sequence Length 32 Sequence Length 64

0 5 10 15 20

0
200
400
600
800

1,000

Time (h)

E
xp

ec
te

d
R

et
ur

n

Sequence Length 128

0 5 10 15 20

Time (h)

Sequence Length 256

Figure 5: Wall-clock time evaluations on the state-based noisy walker-walk for KalMamba , the
RSSM, and the VRKN for different training context lengths for 1 million environment steps or up to
24 hours. This time limitation only affected the VRKN training for 256 steps, which reached 650
thousand steps after 24 hours. While all methods work well for short sequences of length 32 (Top
Left), the efficient parallelization of KalMamba allows it to scale gracefully to and even improve
performance for longer sequences of up to 256 steps, where the other methods fail (Bottom Right).

We also conduct ablations for some of the main design choices of KalMamba on the right side
of Figure 3. No Mamba removes the Mamba layers from the dynamics backbone in Figure 2. Similar
to the selection mechanism of Mamba [15] itself, the resulting approach linearizes the dynamics
around the current action and observation, instead of all previous observations and actions. The
results show that this is insufficient for KalMamba, presumably because it uses only a single SSM
layer instead of the stacked layers used by Mamba. Furthermore, No Regularization loss removes
the Mahalanobis regularization from the model and No Monte Carlo Dropout removes Monte-Carlo
Dropout from the dynamics backbone. Here, the results indicate that regularizing mt and explicitly
modeling the epistemic uncertainty are crucial for KalMamba’s performance.

5.2 Low Dimensional Tasks with Observation and Dynamics Noise

To test the models’ capabilities under uncertainties, we use the state-based versions of the tasks and
add both observation and dynamics noise. The observation noise is sampled from N (0, 0.3) and
added to the observation. The dynamics noise is also sampled from N (0, 0.3) and added to the action
before execution. However, unlike exploration noise, this addition happens inside the environment
and is invisible to the world model and the policy. We include SAC without a world model in our
experiments as a baseline to evaluate the difficulty of the resulting tasks.

The results in Figure 4 show that naively using SAC fails in the presence of noise. While the RSSM
manages to improve performance it is still significantly outperformed by VRKN and KalMamba,
which both use the robust smoothing inference scheme. KalMamba needs slightly more environment
steps to converge but ultimately almost matches the VRKN’s performance while being significantly
faster to run.

5.3 Runtime Analysis

To show the benefit of KalMambas efficient parallelization using associative scans, we compare its
wall-clock runtime to that of the SSM baselines on the state-based noisy version of walker-walk
for training sequences of increasing length. The models share a PyTorch implementation and differ
only in the SSM. We run each experiment on a single Nvidia Tesla H100 GPU, for up to 1 million
steps or 24 hours. Figure 5 shows the resulting expected returns. While all models work well

8

Methods: KalMamba RSSM+SAC VRKN+SAC

8 16 32 64 12
8

25
6

51
2

10
24

20
48

0.01

0.1

1

Sequence Length

Ti
m

e
[s

]

SSM Forward Pass

8 16 32 64 12
8

25
6

51
2

10
24

20
48

0.1

1

Sequence Length

Single Batch

Figure 6: Runtime comparison of KalMamba, the RSSM and the VRKN for (Left) a SSM forward
pass and (Right) a single training batch. While the computational cost of both baseline models scales
linearly in the sequence length, KalMamba utilizes associative scans for efficient parallelism and thus
near-logarithmic runtime on modern accelerator hardware.

for the short sequences of length 32 that are used for the main results above, the training time
of the baseline SSMs scales linearly with the sequence length, causing slower convergence and a
time-out after 24 hours and 650 thousand environment steps for the VRKN for a length of 256. In
comparison, KalMamba shows negligible additional training cost for increased sequence lengths.
Further, while the absolute performance of both baselines decreases as the training sequences get
longer, KalMamba slightly improves performance when trained on more than 32 steps. These
results indicate that KalMamba efficiently utilizes long-term context information through its Mamba
backbone, whereas the dynamics models of the baseline SSMs have difficulty with too-long training
sequences.

Investigating this further, we visualize the wall-clock time of a single SSM forward pass and a
single training batch for different sequence lengths in Figure 6. While both the RSSM and VRKN
scale linearly with the sequence length, KalMamba shows near-logarithmic scaling even for longer
sequences thanks to its efficient parallelism. We expect further significant speedups for KalMamba
with a potential custom CUDA implementation, similar to Mamba.

6 Conclusion

We proposed KalMamba, an efficient State Space Model (SSM) for Reinforcement Learning (RL)
under uncertainty. It combines the uncertainty awareness of probabilistic SSMs with recent determin-
istic SSMs’ scalability by embedding a linear Gaussian SSM into a latent space. We use Mamba [15]
to learn the linearized dynamics in this latent space efficiently. Inference in this SSM amounts to
standard Kalman filtering and smoothing and is amenable to full parallelization using associative
scans [42]. During model learning, this allows time-parallel estimation of smoothed belief states,
which allows the efficient usage of principled objectives for uncertainty estimation, especially over
long sequences.

Our experiments on low-dimensional states and image observations indicate that KalMamba can
match the performance of state-of-the-art stochastic SSMs for RL under uncertainty. In terms of
both runtime and performance, KalMamba scales more gracefully to longer training sequences. In
particular, its performance improves with sequence length while it degrades for the baseline SSMs.

Limitations and Future Work. The present work explores KalMamba’s potential in small-scale
experiments, but a more elaborate evaluation of diverse, more realistic tasks would help to explore
our method’s strengths and weaknesses. A thorough comparison of recent baselines is needed
to contextualize KalMamba against existing time-efficient SSMs with simplified, non-smoothing
inference schemes [41]. We additionally aim to refine KalMamba to improve its performance across
wide-ranging tasks. In this context, we plan to model the state with a complex-valued random variable
to expand the range of dynamics models that can be learned. Other ideas include improving the
regularization of the Mamba backbone and investigating more advanced policy learning methods that
make use of the uncertainty in the filtered beliefs.

9

References
[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep reinforcement

learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

[2] E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. Black box variational
inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

[3] E. Banijamali, R. Shu, H. Bui, A. Ghodsi, et al. Robust locally-linear controllable embedding.
In International Conference on Artificial Intelligence and Statistics, pages 1751–1759. PMLR,
2018.

[4] P. Becker, S. Markgraf, F. Otto, and G. Neumann. Joint representations for reinforcement
learning with multiple sensors. arXiv preprint arXiv:2302.05342, 2023.

[5] P. Becker and G. Neumann. On uncertainty in deep state space models for model-based
reinforcement learning. Transactions on Machine Learning Research, 2022.

[6] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann. Recurrent kalman
networks: Factorized inference in high-dimensional deep feature spaces. In International
Conference on Machine Learning, pages 544–552, 2019.

[7] P. Becker-Ehmck, J. Peters, and P. Van Der Smagt. Switching linear dynamics for variational
Bayes filtering. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 553–562. PMLR, 09–15 Jun 2019.

[8] C. Chen, Y.-F. Wu, J. Yoon, and S. Ahn. Transdreamer: Reinforcement learning with transformer
world models. arXiv preprint arXiv:2202.09481, 2022.

[9] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

[11] A. Doerr, C. Daniel, M. Schiegg, N.-T. Duy, S. Schaal, M. Toussaint, and T. Sebastian. Proba-
bilistic recurrent state-space models. In International Conference on Machine Learning, pages
1280–1289. PMLR, 2018.

[12] S. Eleftheriadis, T. Nicholson, M. P. Deisenroth, and J. Hensman. Identification of gaussian
process state space models. In NIPS, pages 5309–5319, 2017.

[13] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A disentangled recognition and nonlinear
dynamics model for unsupervised learning. In Advances in Neural Information Processing
Systems, pages 3601–3610, 2017.

[14] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[15] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

[16] A. Gu, K. Goel, and C. Re. Efficiently modeling long sequences with structured state spaces. In
International Conference on Learning Representations, 2021.

[17] S. Gu, Z. Ghahramani, and R. Turner. Neural adaptive sequential monte carlo. Advances in
Neural Information Processing Systems, 2015:2629–2637, 2015.

[18] A. Gupta, A. Gu, and J. Berant. Diagonal state spaces are as effective as structured state spaces.
Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

10

[19] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[20] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel. Backprop kf: learning discriminative determinis-
tic state estimators. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 4383–4391, 2016.

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[22] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2020.

[23] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[24] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In International Conference on Learning Representations, 2021.

[25] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[26] R. Hasani, M. Lechner, T.-H. Wang, M. Chahine, A. Amini, and D. Rus. Liquid structural
state-space models. In The Eleventh International Conference on Learning Representations,
2022.

[27] A. Jazwinski. Stochastic processes and filtering theory. ACADEMIC PRESS, INC.„ 1970.

[28] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35–45, 1960.

[29] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[31] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[32] A. Klushyn, R. Kurle, M. Soelch, B. Cseke, and P. van der Smagt. Latent matters: Learning
deep state-space models. Advances in Neural Information Processing Systems, 34, 2021.

[33] R. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state space
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[34] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[35] A. Moretti, Z. Wang, L. Wu, and I. Pe’er. Smoothing nonlinear variational objectives with
sequential monte carlo, 2019.

[36] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[37] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. Variational sequential monte carlo. In
International Conference on Artificial Intelligence and Statistics, pages 968–977. PMLR, 2018.

[38] T. D. Nguyen, R. Shu, T. Pham, H. Bui, and S. Ermon. Temporal predictive coding for model-
based planning in latent space. In International Conference on Machine Learning, pages
8130–8139. PMLR, 2021.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

11

[40] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 3(8):1445–1450, 1965.

[41] M. R. Samsami, A. Zholus, J. Rajendran, and S. Chandar. Mastering memory tasks with world
models. In The Twelfth International Conference on Learning Representations, 2024.

[42] S. Särkkä and Á. F. García-Fernández. Temporal parallelization of bayesian smoothers. IEEE
Transactions on Automatic Control, 66(1):299–306, 2020.

[43] F. Schmidt and T. Hofmann. Deep state space models for unconditional word generation.
Advances in Neural Information Processing Systems 31, 31:6158–6168, 2018.

[44] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for gpu computing, 2007.

[45] V. Shaj, P. Becker, D. Buchler, H. Pandya, N. van Duijkeren, C. J. Taylor, M. Hanheide, and
G. Neumann. Action-conditional recurrent kalman networks for forward and inverse dynamics
learning. Conference on Robot Learning, 2020.

[46] V. Shaj, D. Büchler, R. Sonker, P. Becker, and G. Neumann. Hidden parameter recurrent
state space models for changing dynamics scenarios. In International Conference on Learning
Representations, 2022.

[47] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting using
the em algorithm. Journal of time series analysis, 3(4):253–264, 1982.

[48] J. T. Smith, A. Warrington, and S. Linderman. Simplified state space layers for sequence
modeling. In The Eleventh International Conference on Learning Representations, 2022.

[49] N. Srivastava, W. Talbott, M. B. Lopez, S. Zhai, and J. M. Susskind. Robust robotic control
from pixels using contrastive recurrent state-space models. In Deep RL Workshop NeurIPS
2021, 2021.

[50] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[51] M. Tomar, U. A. Mishra, A. Zhang, and M. E. Taylor. Learning representations for pixel-based
control: What matters and why? Transactions on Machine Learning Research, 2023.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[53] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in neural information
processing systems, pages 2746–2754, 2015.

[54] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In 6th Annual Conference on Robot Learning, 2022.

[55] L. Yingzhen and S. Mandt. Disentangled sequential autoencoder. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5670–5679. PMLR, 10–15 Jul 2018.

[56] L. Zhou, M. Poli, W. Xu, S. Massaroli, and S. Ermon. Deep latent state space models for
time-series generation. In International Conference on Machine Learning, pages 42625–42643.
PMLR, 2023.

12

A Hyperparameters and Implementation Details

Table 2 lists all hyperparameters of the KalMamba model and Table 3 lists the hyperparameters of
Soft Actor Critic (SAC) [21] used for control.

Table 2: World Model Hyperparameters

Hyperparameter Low Dimensional DMC Image Based DMC

World Model

Encoder 2× 256 Unit NN with ELU ConvNet from [19, 22] with ReLU
Decoder 2× 256 Unit NN with ELU ConvNet from [19, 22] with ReLU
Reward Decoder 2× 256 Unit NN with ELU
Latent Space Size 230 (30 Stoch. + 200 Det. for RSSM

Mamba Backbone

num blocks 2
d_model 256
d_state 64
d_conv 2
dropout probability 0.1
activation SiLU
pre mamba layers 2× 256 Unit NN with SiLU
post mamba layers VRKN Dynamics Model Architecture from [5] with SiLU

Loss

KL Balancing 0.8 for RSSM, 0.5 for VRKN, KalMamba
Free Nats 3
α (regularization scale) 1, KalMamba only

Optimizer (Adam [30])

Learning Rate 3 · 10−4

Table 3: SAC Hyperparameters

Hyperparameter Low Dimensional DMC Image Based DMC

Actor-Network 2× 256 Unit NN with ReLU 3× 1024 Unit NN with ELU
Critic-Network 2× 256 Unit NN with ReLU 3× 1024 Unit NN with ELU

Actor Optimizer Adam with learning rate 3× 10−4

Critic Optimizer Adam with learning rate 3× 10−4

Target Critic Update Fraction 0.005
Target Critic Update Interval 1

Target Entropy −daction
Entropy Optimizer Adam with learning rate 3× 10−4

Initial Learning Rate 0.1

discount γ 0.99

A.1 Baselines.

Both RSSM+SAC and VRKN+SAC use the same hyperparameters as KalMamba where applicable.
For all other hyperparameters, we use the defaults from [22] and [5] respectively. The SAC baseline
uses the hyperparameters listed in Table 3 and the results for DreamerV3 [25] are provided by the
authors2.

2https://github.com/danijar/dreamerv3

13

https://github.com/danijar/dreamerv3

Methods: KalMamba RSSM+SAC VRKN+SAC DreamerV3

0

200

400

600

800
E

xp
ec

te
d

R
et

ur
n

Cartpole Swingup

0

200

400

600

800
Quadruped Walk

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Environment Steps (in millions)

E
xp

ec
te

d
R

et
ur

n

Walker Walk

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

Environment Steps (in millions)

Walker Run

Figure 7: Task-wise evaluations of the DeepMind Control Suite on image-based observations.
Dreamer-v3 shows a performance similar to RSSM+SAC.

B Additional Results

We provide results for the individual tasks of the Deepmind Control Suite for image-based observa-
tions in Figure 7 and the different KalMamba ablations in Figure 8. Figure 9, shows the per-task
results for the noisy state-based environments.

14

Methods: KalMamba No Mamba No Monte-Carlo Dropout
No Regularization

0

200

400

600

800
E

xp
ec

te
d

R
et

ur
n

Cartpole Swingup

0

200

400

Quadruped Walk

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1,000

Environment Steps (in millions)

E
xp

ec
te

d
R

et
ur

n

Walker Walk

0 0.2 0.4 0.6 0.8 1

0

200

400

600

Environment Steps (in millions)

Walker Run

Figure 8: Task-wise evaluations of the DeepMind Control Suite for different KalMamba ablations.
Monte-Carlo Dropout and the Mahalanobis regularization make the largest difference for the hardest
task in the suite, i.e., quadruped_walk.

Methods: KalMamba RSSM+SAC VRKN+SAC SAC

0

200

400

600

E
xp

ec
te

d
R

et
ur

n

Cartpole Swingup

0

200

400

600

800

Quadruped Walk

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1,000

Environment Steps (in millions)

E
xp

ec
te

d
R

et
ur

n

Walker Walk

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Environment Steps (in millions)

Walker Run

Figure 9: Task-wise evaluations of the DeepMind Control Suite on low-dimensional state representa-
tions. KalMamba performs on par with or better than the RSSM on all tasks, and is only outperformed
by the computationally more expensive VRKN on cartpole_ swingup.

15

	Introduction
	Related Work
	State Space Models for Reinforcement Learning
	KalMamba
	The KalMamba Model
	Training the Model
	Using KalMamba for Reinforcement Learning

	Experiments
	Standard Image Based Tasks
	Low Dimensional Tasks with Observation and Dynamics Noise
	Runtime Analysis

	Conclusion
	Hyperparameters and Implementation Details
	Baselines.

	Additional Results

