

000 VIBEVOICE: EXPRESSIVE PODCAST GENERATION 001 002 WITH NEXT-TOKEN DIFFUSION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Generating long-form, multi-speaker conversational audio like podcasts poses
012 significant challenges for traditional Text-to-Speech (TTS) systems, particularly in
013 scalability, speaker consistency, and natural turn-taking. We present VIBEVOICE,
014 a novel model designed to synthesize expressive, long-form speech with mul-
015 tiple speakers in a zero-shot manner. A core component of our approach is
016 the continuous speech tokenizers operating at an ultra-low frame rate of 7.5.
017 This tokenizer effectively preserves audio fidelity while significantly boosting
018 computational efficiency for processing long sequences. To facilitate training
019 on authentic conversational dynamics, we have developed an annotation pipeline
020 that generates pseudo transcriptions and turn-taking labels for extensive podcast
021 data. Leveraging this data and our efficient tokenizer, VIBEVOICE employs the
022 next-token diffusion framework. This enables VIBEVOICE to: (1) synthesize
023 long-form speech (up to 90 minutes) with up to 4 speakers, surpassing the typical
024 1-2 speaker limits of many prior models; and (2) achieve a high degree of
025 naturalness in turn-taking, pacing, and the rendition of subtle non-lexical cues
026 (such as breaths and lip smacks), which are crucial for listener immersion and
027 capturing the authentic vibe of expressive conversations. Audio samples and code
028 are included in the supplementary material.

029 030 1 INTRODUCTION

031 Recent advancements in Text-to-Speech (TTS) synthesis have achieved remarkable success in gener-
032 ating high-fidelity, natural-sounding speech for single speakers in relatively short utterances (Wang
033 et al., 2023a; Anastassiou et al., 2024; Le et al., 2023; Chen et al., 2024a;b; Du et al., 2024; Jia et al.,
034 2025; Ye et al., 2025; Wang et al., 2025). However, a frontier remains unexplored: the scalable
035 synthesis of long-form, multi-speaker conversational audio, such as podcasts, multi-participant
036 audiobooks, and extended dialogues. While commercial interest in this area is evident, with
037 closed-source applications like Google’s NotebookLM offering podcast generation capabilities,
038 the underlying technical approaches often remain opaque. The demand for automatically generating
039 such complex audio content from text is rapidly increasing, yet it poses substantial, open research
040 challenges that lie beyond the capabilities demonstrated by most publicly available TTS systems.

041 Generating convincing multi-speaker conversations introduces unique hurdles. While traditional
042 systems can technically produce multi-speaker, long-form audio by concatenating individually
043 synthesized utterances (as demonstrated in our experiments), achieving naturalness in speaker
044 interaction remains a significant challenge. Key difficulties include maintaining vocal consistency
045 for each speaker across extended dialogues and capturing the authentic conversational flow,
046 encompassing natural turn-taking, pacing, and subtle non-lexical cues (e.g., breaths, lip smacks)
047 crucial for listener immersion. While previous work like MoonCast (Ju et al., 2025) has
048 demonstrated the feasibility of synthesizing podcasts, the demand for more adaptable, efficient,
049 and higher-fidelity architectures that can generate these interactions end-to-end persists.

050 To address these limitations, we present VIBEVOICE, as illustrated in Figure 1, a novel framework
051 developed for the scalable synthesis of expressive, long-form, multi-speaker speech. Our approach
052 tackles these challenges through a synergistic combination of efficient audio representation,
053 authentic data preparation, and an integrated generative architecture.

Figure 1: Scalable and expressive podcast synthesis with VIBEVOICE. Voice prompts and text scripts provide initial input. VIBEVOICE processes hybrid context features, and its hidden states condition a token level Diffusion Head (D), which predicts acoustic VAE for speech segments, subsequently recovered by acoustic decoder (A).

A cornerstone of VIBEVOICE is its efficient hybrid speech representation strategy, derived from specialized acoustic and semantic tokenizers, both operating at an ultra-low frame rate of 7.5 Hz. The Acoustic Tokenizer aggressively compresses audio while preserving remarkable reconstruction fidelity, and Semantic Tokenizer extracts linguistic content. This decoupled design, with both components leveraging the same highly efficient frame rate, allows for optimized acoustic and semantic feature extraction. These features are then combined to form the rich, yet compact, hybrid input essential for managing long-form content within our generative model. In addition, to generate long conversational speech, we propose to use hybrid speech representation in VIBEVOICE. Moreover, we developed a data processing pipeline that curates and annotates raw podcast data. This provides rich, naturalistic training material, enabling VIBEVOICE to learn realistic intonation, turn-taking, and subtle expressive cues, thereby enhancing perceived audio realism.

VIBEVOICE leverages an end-to-end LLM-based architecture with a diffusion head, drawing inspiration from LatentLM (Sun et al., 2024). The LLM (Yang et al., 2024) handles robust textual understanding and dialogue flow, while the diffusion head (Li et al., 2024b) ensures high-fidelity acoustic generation. This framework achieves scalability through efficient design, employing specialized tokenizers to create a rich yet compact hybrid input for the LLM, and a streamlined diffusion process for well-structured acoustic tokens. This architecture enables VIBEVOICE to synthesize expressive, multi-speaker podcasts with coherence, intelligibility, and engaging conversational dynamics.

2 METHOD

2.1 CONTINUOUS SPEECH TOKENIZERS

We employ two separate tokenizers as input to learn both acoustic and semantic features. It is worth noting that while we use the term ‘tokenizer’ to highlight its role in generating the sequence for the LLM, our Acoustic Tokenizer operates on a continuous latent space (via σ -VAE) rather than a discrete codebook. In our experiments, generating long-form speech benefits from this separate design.

Acoustic Tokenizer adopts the principles of a Variational Autoencoder (VAE) (Kingma & Welling, 2014), specifically drawing inspiration from the σ -VAE variant proposed in LatentLM (Sun et al.,

2024) to mitigate potential variance collapse issues of VAEs when used in autoregressive modeling settings. The process involves an encoder network, parameterized by ϕ , which maps the input audio \mathbf{x} to the parameters of a latent distribution, primarily the mean μ . Notably, variance σ is a pre-defined distribution ($\mathcal{N}(0, C_\sigma)$) in σ -VAE, rather than a learnable distribution in VAE (Kingma & Welling, 2014), as demonstrated in Figure 2. A latent vector \mathbf{z} is then sampled using the reparameterization trick. Following the σ -VAE approach to ensure robust variance for autoregressive modeling, we can formulate this as:

$$\begin{aligned}\mu &= \text{Encoder}_\phi(\mathbf{x}) \\ \mathbf{z} &= \mu + \sigma \odot \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, 1), \sigma \sim \mathcal{N}(0, C_\sigma) \\ \hat{\mathbf{x}} &= \text{Decoder}_\psi(\mathbf{z})\end{aligned}$$

Semantic Tokenizer mirrors the hierarchical architecture of the Acoustic Tokenizer’s encoder, but without VAE components, as its objective is deterministic content-centric feature extraction. The main difference is the training objective, which uses Automatic Speech Recognition (ASR) as the proxy task. During training, its output is decoded by several Transformer decoder layers to predict text transcripts, aligning the semantic encoder’s representations with textual semantics. Refer to Figure 2 for the comparisons.

2.2 VIBEVOICE

VIBEVOICE employs a Large Language Model (LLM) as its core sequence model, integrated with specialized audio encoding and diffusion-based decoding modules to achieve scalable, high-fidelity multi-speaker speech synthesis. The overall inference architecture is depicted in Figure 1.

2.2.1 INPUT REPRESENTATION

Voice Prompt Feature for each speaker $k \in \{1, \dots, N\}$, the provided voice prompt waveform v_k is encoded solely by the Acoustic Tokenizer encoder. This component, analogous to the σ -VAE described in LatentLM (Sun et al., 2024), maps the raw waveform into a sequence of continuous VAE features $\mathcal{Z}_{a,k} = \text{Acoustic}_{\text{VAE}}(v_k)$. Here, $\mathcal{Z}_{a,k} = [\mathbf{z}_{a,k}^1, \dots, \mathbf{z}_{a,k}^{T_k^v}] \in \mathbb{R}^{T_k^v \times d_a}$, where T_k^v is the sequence length for speaker k ’s prompt and d_a is the dimension of the acoustic features. $\mathcal{Z}_{a,k}$ capture the essential timbral and prosodic characteristics required for speaker k .

Text Script Embedding of the dialogue script, consisting of turns W_k for each speaker k , is tokenized into subword units. **Note that script does not include the transcript of the acoustic prompt.** These are then mapped to text embeddings $E_k \in \mathbb{R}^{T_k^s \times d_{llm}}$ using a standard embedding layer, where T_k^s is the script length for speaker k and d_{llm} is the LLM’s hidden dimension.

Prompt Sequence X is formed by concatenating the acoustic-only voice prompt features and the text script embeddings, interleaved with speaker identifiers (Speaker $_k$): $X = [\text{Speaker}_1, \mathcal{Z}_{a,1}, \dots, \text{Speaker}_N, \mathcal{Z}_{a,N}; \text{Speaker}_1, E_1, \dots, \text{Speaker}_N, E_N, \langle S \rangle]$, where $\langle S \rangle$ is a special token of start-of-speech. $\{\mathcal{Z}_{a,k}\}_{k=1, \dots, N}$ are passed through a projection layer to match the LLM’s hidden dimension d_{llm} .

2.2.2 SPEECH GENERATION WITH HYBRID SPEECH REPRESENTATION

The acoustic feature preserves fine-grained acoustic details, while the semantic feature captures higher-level linguistic information. To fully exploit the advantages of both, we propose to use hybrid representation in VIBEVOICE. As illustrated in Figure 1, VIBEVOICE leverages both acoustic and semantic representations throughout the generation process. Specifically, at each generation step,

162 the generated speech segment is predicted as
 163

$$\mathbf{z}_{a,i+1} = \text{VIBEVOICE}(X, z_{p,0}, \dots, z_{p,i}), \quad (1)$$

$$\mathbf{y}_{i+1} = \text{AcousticDec}(\mathbf{z}_{a,i+1}), \quad (2)$$

166 where \mathbf{y}_{i+1} denotes the waveform of speech segment generated at the $(i+1)$ -th step, and $\mathbf{z}_{p,i} \in \mathbb{R}^{d_{\text{lim}}}$ represents the hybrid speech representation. The latter is obtained by combining acoustic and
 167 semantic encodings:
 168

$$\mathbf{z}_{p,i} = W_a \mathbf{z}_{a,i} + W_s \text{Semantic}_{\text{Enc}}(\mathbf{y}_i), \quad (3)$$

171 where $W_a \in \mathbb{R}^{d_{\text{lim}} \times d_a}$ and $W_s \in \mathbb{R}^{d_{\text{lim}} \times d_s}$ are learnable projection matrices. As semantic features are
 172 more close to the text prompt, involving semantic features as the input can stabilize the generation
 173 process, especially for long-form speech.
 174

175 The final generated speech is obtained by concatenating the generated segment at each decoding
 176 step: $Y = \text{concat}(y_0, y_1, \dots, y_T)$. As each speech segment is generated purely based on historical
 177 context, VIBEVOICE is naturally a streaming speech generation model.
 178

2.2.3 DIFFUSION-BASED ACOUSTIC LATENT VAE GENERATION

180 To synthesize speech, VIBEVOICE employs a light diffusion head (Li et al., 2024b) conditioned on
 181 the LLM’s current hidden states. Specifically, the Diffusion Head (D in Figure 1) takes an LLM
 182 hidden state \mathbf{h}_i as condition and predicts the corresponding acoustic VAE $\mathbf{z}_{a,i}$.
 183

184 **Training:** The diffusion process (Ho et al., 2020) learns to reverse a forward process that gradually
 185 adds Gaussian noise $\epsilon \sim \mathcal{N}(0, I)$ to the clean acoustic vae $\mathbf{z}_{a,i}$ over T_{diff} discrete timesteps t :
 186

$$\mathbf{z}_{a,i}(t) = \sqrt{\bar{\alpha}_t} \mathbf{z}_{a,i} + \sqrt{1 - \bar{\alpha}_t} \epsilon \quad (4)$$

187 where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$ is a cumulative product of terms derived from a predefined noise schedule
 188 $\{\beta_s\}_{s=1}^{T_{\text{diff}}}$. A noise prediction network ϵ_θ , constituting the lightweight Diffusion Head (Li et al.,
 189 2024b), is trained to estimate the injected noise ϵ given the noisy feature $\mathbf{z}_{a,i}(t)$, the timestep t , and
 190 the conditioning LLM hidden state \mathbf{h}_i . The objective is to minimize the L2 loss:
 191

$$\mathcal{L}_{\text{Diff}} = \mathbb{E}_{t, \mathbf{z}_{a,i}, \epsilon, \mathbf{h}_i} \|\epsilon - \epsilon_\theta(\mathbf{z}_{a,i}(t), t, \mathbf{h}_i)\|^2 \quad (5)$$

192 Crucially, the diffusion process is trained to predict only the acoustic VAE $\mathbf{z}_{a,i}$. Concurrently,
 193 when the LLM generates the conditioning hidden state \mathbf{h}_i for the diffusion head, it is also tasked
 194 with predicting whether the current speech segment should conclude, effectively determining if a
 195 diffusion termination token (e.g., <E>) should be emitted at this step.
 196

197 **Inference:** During synthesis at step i , the Diffusion Head utilizes Classifier-Free Guidance
 198 (CFG) (Ho & Salimans, 2022) to enhance conditioning. The process starts with random noise and
 199 iteratively denoises it. At each denoising step t , two predictions of the noise are made by the network
 200 ϵ_θ : (1) The conditional prediction, using the current predicted token’s hidden state \mathbf{h}_i ; and (2) The
 201 unconditional prediction, where represents a context derived solely from a special start-of-sequence
 202 token <S>, effectively an unconditional or minimally conditioned generation prompt. The final
 203 noise estimate used for the denoising update is a linear combination of these two:
 204

$$\hat{\epsilon} = \epsilon_\theta(\mathbf{z}_{a,i}(t), t, \mathbf{h}_{\text{<S>}}) + w \cdot (\epsilon_\theta(\mathbf{z}_{a,i}(t), t, \mathbf{h}_i) - \epsilon_\theta(\mathbf{z}_{a,i}(t), t, \mathbf{h}_{\text{<S>}})) \quad (6)$$

205 where w is the guidance scale. $w = 0$ recovers purely unconditional generation (based on <S>),
 206 while $w > 1$ amplifies the conditioning from. This guided noise estimate $\hat{\epsilon}$ is then used to take a step
 207 towards the less noisy feature. This iterative process, typically accelerated using an efficient sampler
 208 like DPM-Solver++ (Lu et al., 2025), eventually yields an estimate of clean acoustic features.
 209

2.3 DATA PREPARATION

210 The development of the proposed VIBEVOICE relies on speech data with consistent long-range
 211 annotations, including transcriptions and speaker turn labels. However, previous methods have
 212 primarily focused on generating short audio segments (Yu et al., 2024; He et al., 2024), which
 213 are not directly applicable to multi-speaker, long-form audio annotation. To address this limitation,
 214

216 we propose a novel automatic annotation pipeline tailored for extended speech data. The pipeline
 217 consists three steps, including **Segmentation and Transcription**, **Diarization**, **Quality Filtering**.
 218 **Detials and evaluations are available in Appendix A.**

219 Note that, compared to previous data processing pipelines (Yu et al., 2024; He et al., 2024; Ding
 220 et al., 2025), our pipeline does not include speech enhancement. This decision is based on
 221 our observation that while speech enhancement can effectively reduce noise, it often introduces
 222 distortion to the speech signal. In particular, emotionally expressive cues such as interjections or
 223 prosodic elements are prone to degradation, which negatively impacts the naturalness of the audio.
 224

225 3 EXPERIMENT

227 3.1 TOKENIZER SETUP

229 **Acoustic Tokenizer** is architected with a mirror-symmetric encoder-decoder structure. The encoder
 230 employs a hierarchical design with 7 stages of modified Transformer blocks (Vaswani et al.,
 231 2017) (using 1D depth-wise causal convolutions instead of self-attention) for efficient streaming
 232 processing. Six downsampling layers achieve a cumulative 3200x downsampling rate from a 24kHz
 233 input, yielding 7.5 tokens/frames per second. Each encoder/decoder component has approximately
 234 340M parameters. The training objective follows the DAC methodology (Kumar et al., 2023),
 235 including its discriminator and loss designs. Key hyperparameters and further training specifics
 236 are detailed in Appendix F.

237 **Semantic Tokenizer**’s encoder mirrors the architecture of the Acoustic Tokenizer for structural
 238 consistency. It is trained exclusively on an ASR proxy task using a cross-entropy loss function.
 239 This objective compels the encoder to capture explicitly semantic and phonetic information. Upon
 240 completion of pre-training, the decoder—which serves only to facilitate this training process—is
 241 discarded. The keys hyperparameters are the same as Acoustic Tokenizer.

243 3.2 VIBEVOICE SETUP

244 We instantiated VIBEVOICE’s core Large Language Model (LLM) using 1.5B and 7B parameter
 245 versions of Qwen2.5 (Yang et al., 2024). The diffusion head (Li et al., 2024b) comprises 4
 246 layers (approx. 123M parameters for 1.5B version). During VIBEVOICE training, the pre-trained
 247 acoustic and semantic tokenizers remained frozen, with only the LLM and diffusion head parameters
 248 being learnable. We employed a curriculum learning strategy for the LLM input sequence length,
 249 progressively increasing from 4,096 to 65,536 tokens over 110k training steps (4,096 tokens for
 250 the first 40k steps, then 16,384 tokens for steps 40k-80k, then 32,768 tokens for steps 80k-100k,
 251 and finally 65,536 tokens for steps 100k-110k). The 7B version discarded the final phase due to
 252 resource limitations. VIBEVOICE was trained on approximately 80 billion tokens from an internal
 253 pseudo-labeled podcast audio collection (Section 2.3). Training a 1.5B model took approximately
 254 170 hours on 64 AMD Instinct MI300X GPUs by using nnscaler training engine (Lin et al., 2024).
 255 Comprehensive training hyperparameters are listed in Appendix F. **During inference, the CFG scale**
 256 **and denoising step are set to 1.3 and 10 respectively. Inference time comparison are at Appendix E.**

257 3.3 EVALUATION SETUP

259 3.3.1 VIBEVOICE EVALUATION

261 **Objective Evaluation:** Recognizing the limitations of existing public benchmarks for the podcast
 262 generation task (e.g., the MoonCast evaluation set (Ju et al., 2025), which contains only four
 263 samples), we developed VIBEVOICE-Eval. This dataset was curated using our data processing
 264 pipeline (described in Section 2.3 and Appendix A) to better capture diverse podcast scenarios,
 265 and it consists of 108 podcast samples with durations ranging from 1 to 30 minutes. Details can be
 266 found in Appendix G.

267 We employed Word Error Rate (WER) and a widely used speaker similarity metric (SIM-O) (Anas-
 268 tassiou et al., 2024; Ju et al., 2025) as objective metrics to assess the quality of podcast generation.
 269 All generated podcasts were annotated using our custom data pipeline. The only difference is that we
 use the ground-truth number of speakers as the number of cluster centers in the diarization process.

Model	Subjective				Objective		
	Realism	Richness	Preference	Average	WER-W	WER-N	SIM-O
Cosyvoice2 (Du et al., 2024)	-	-	-	-	3.45	3.86	0.68
Mooncast (Ju et al., 2025)	-	-	-	-	2.81	3.29	0.562
SesameAILabs-CSM (SesameAILabs, 2025)	2.89 \pm 1.15	3.03 \pm 1.11	2.75 \pm 1.08	2.89 \pm 1.12	2.66	3.05	0.685
Higgs Audio V2 (Boson AI, 2025)	2.95 \pm 1.13	3.19 \pm 1.06	2.83 \pm 1.16	2.99 \pm 1.13	5.94	5.97	0.543
Elevenlabs v3 alpha (Elevenlabs)	3.34 \pm 1.11	3.48 \pm 1.05	3.38 \pm 1.12	3.40 \pm 1.09	2.39	2.47	0.623
Gemini 2.5 pro preview tts (Google)	3.55 \pm 1.20	3.78 \pm 1.11	3.65 \pm 1.15	3.66 \pm 1.16	1.73	2.43	-
VIBEVOICE-1.5B	3.59 \pm 0.95	3.59 \pm 1.01	3.44 \pm 0.92	3.54 \pm 0.96	1.11	1.82	0.548
VIBEVOICE-7B	3.71 \pm 0.98	3.81 \pm 0.87	3.75 \pm 0.94	3.76 \pm 0.93	1.29	1.95	0.692

Table 1: Human subjective and objective evaluation results. WER-W means using Whisper while WER-N means using Nemo. For all subjective metrics and SIM-O, higher scores are better. For WER, lower scores are better. Best results are in **bold**. The first phase subjective evaluation of Cosyvoice2, Mooncast and VIBEVOICE-1.5B can be found in Appendix I.

Since the diarization results may not align perfectly with the input text prompts, we assign speaker labels based on which cluster center has the highest similarity to the speaker embedding of each speech prompt, and then compute SIM-O accordingly.

Subjective Evaluation: In the subjective evaluation, we used eight podcast samples. These samples were based on two-speaker dialogue texts generated by a large language model, covering diverse topics such as technology, art, and travel. The lengths of the samples ranged from 3 to 15 minutes, with an average duration of approximately 7.3 minutes.

For subjective evaluation, we recruited 24 human annotators to provide Mean Opinion Scores (MOS) across three dimensions: **Realism** (how natural and human-like the speech sounds, including prosody, emotion, and the smoothness of speaker turns), **Richness** (the expressiveness of the speech in terms of tone and emotion, including variation and adaptation to context), and **Preference** (overall listener enjoyment and subjective preference, reflecting naturalness, pleasantness, and engagement). The evaluation covered six models with all eight test samples, meaning that each annotator listened to approximately **six hours of audio** in total (roughly equivalent to reviewing 2,160 short utterances of 10 seconds). Detailed definitions for each dimension and the precise 5-point scoring rubrics provided to evaluators are available in Appendix H.

3.3.2 TOKENIZER EVALUATION

The fidelity of audio reconstructed from acoustic tokens is a critical indicator of the tokenizer’s efficacy in preserving essential acoustic information, particularly under high compression rates. To quantify this, we employed a suite of widely recognized objective metrics: PESQ (Rix et al., 2001) to measure overall speech quality, STOI (Taal et al., 2010) to assess speech intelligibility, and UTMOS (Saeki et al., 2022), which yields scores highly correlated with human evaluations. These evaluations were conducted on both the LibriTTS test-clean and test-other datasets (Zen et al., 2019), and LibriSpeech test-clean dataset (Panayotov et al., 2015).

4 RESULTS

4.1 PODCAST GENERATION COMPARISON

We report subjective evaluation results in Table 1 and objective evaluation on the VIBEVOICE-Eval dataset in Table 2, comparing VIBEVOICE with baseline models and ablating different tokenizer configurations and model sizes.

Comparison with Top-tier Models: In human-led subjective assessments, VIBEVOICE-7B attains the highest average score (3.76). It consistently outperformed all other models across the dimensions of Realism (3.71), Richness (3.81), and listener Preference (3.75). Notably, it surpassed strong proprietary models such as Google’s Gemini 2.5 Pro preview TTS (3.66 average) and Elevenlabs v3 alpha (3.40 average), indicating its superior ability to generate natural and engaging conversational audio that is preferred by human listeners. From an objective standpoint, VIBEVOICE also excels. While the 1.5B model delivered the lowest Word Error Rate (WER-W: 1.11), demonstrating superior

Model	Seq. Leng.	1 Speaker		2 Speakers		3 Speakers		4 Speakers		Overall	
		WER-W↓	SIM-O↑	WER-W↓	SIM-O↑	WER-W↓	SIM-O↑	WER-W↓	SIM-O↑	WER-W↓	SIM-O↑
VIBEVOICE-Eval Short (0~12 min) Set											
Cosyvoice2 - Concat	40K	3.14	0.79	3.5	0.73	5.33	0.69	5.83	0.70	4.27	0.73
MoonCast	-	-	-	7.9	0.63	-	-	-	-	-	-
Tokenizer Ablation											
Acoustic (1.5B)	16K	1.06	0.7	6.15	0.7	13.74	0.70	6.46	0.64	6.22	0.68
Hybrid (1.5B)	16K	1.93	0.66	0.79	0.59	2.50	0.64	1.68	0.64	1.84	0.64
VIBEVOICE-1.5B	32K	1.32	0.60	0.91	0.60	4.86	0.56	1.46	0.59	2.11	0.59
VIBEVOICE-1.5B	64K	0.63	0.63	1.92	0.59	1.48	0.58	1.34	0.58	1.22	0.60
VIBEVOICE-7B	32K	0.47	0.76	0.53	0.75	0.68	0.75	1.02	0.72	0.66	0.75
VIBEVOICE-Eval Long (12~30 min) Set											
Cosyvoice2 - Concat	40K	5.76	0.80	4.94	0.75	4.34	0.71	4.77	0.70	4.95	0.74
MoonCast	-	-	-	13.64*	0.67*	-	-	-	-	-	-
VIBEVOICE-1.5B	32K	0.87	0.57	2.08	0.61	1.06	0.57	1.33	0.54	1.33	0.57
VIBEVOICE-1.5B	64K	1.80	0.63	1.59	0.62	0.97	0.60	1.80	0.56	1.55	0.59
VIBEVOICE-7B	32K	1.08	0.79	1.55	0.77	0.84	0.73	1.51	0.71	1.24	0.75

Table 2: Results of VIBEVOICE and baseline models on the VIBEVOICE-Eval dataset for multi-speaker podcast generation. Results are presented for short (0~12 min) and long (12~30 min) duration subsets, across varying speaker counts. Seq. Leng. denotes the LLM training sequence length. “*” denotes use of a sub test segment (12~13 min) as Mooncast may crash on long podcast generation. **Bold** indicates the best result.

intelligibility, the VIBEVOICE-7B model achieved the highest speaker similarity score (SIM-O: 0.692) among all evaluated systems. This highlights its exceptional capability to preserve the unique vocal characteristics of a target speaker while maintaining high content accuracy.

Scalability in Long-Form and Multi-Speaker Synthesis: A key contribution of VIBEVOICE is its capacity to generate coherent, long-form audio with multiple speakers, a significant challenge for existing TTS systems. As shown in Table 2, VIBEVOICE demonstrates remarkable stability and consistency in extended scenarios. For long-duration podcasts (12~30 minutes), VIBEVOICE-7B maintains a very low WER-N of 1.24 and a high SIM-O of 0.75. This contrasts sharply with baseline models; for instance, MoonCast was unable to process the full long-form test set and frequently crashed, as noted in the table. Furthermore, based on supplementary analysis, VIBEVOICE is architected to support up to four distinct speakers for durations of up to 30 minutes. This capability substantially exceeds that of prior work like MoonCast, which is limited to two speakers and up to 10 minutes of audio. This enhanced scalability is a direct result of our novel next-token diffusion framework and low frame rate continuous speech tokenizer, which operates at 7.5 Hz.

4.2 ABLATION STUDIES

Tokenizer Configurations: The choice to employ a hybrid tokenizer that fuses separate acoustic and semantic representations is critical to model performance. The “Tokenizer Ablation” results in Table 2 reveal that an “Acoustic-only” model, while achieving competitive speaker similarity (SIM-O: 0.68), suffers from a significantly degraded multi-speaker WER (6.22 overall). This indicates that while acoustic features alone can preserve speaker timbre, they lack the necessary semantic guidance to maintain content coherence in interactive dialogues. The final “Hybrid” approach consistently strikes a superior balance, dramatically improving intelligibility (WER: 1.84) while maintaining strong speaker identity (SIM-O: 0.64).

Model Scale: Scaling the model from 1.5B to 7B parameters yields substantial and comprehensive performance gains. This is demonstrated by a clear listener preference for the larger model, with the average subjective score (Table 1) increasing from 3.54 to 3.76. This perceptual enhancement is mirrored by dramatic improvements in objective metrics (Table 2), where the overall WER-N dropped from 2.11 to 0.66 and the SIM-O score rose from 0.59 to 0.75. These results confirm that a larger model significantly boosts both perceived audio quality and technical accuracy in speaker preservation.

CFG and DDPM Steps: Figure 3 illustrates the ablation of Classifier-Free Guidance (CFG) scale and DDPM (Ho et al., 2020) denoising steps on inference performance. For WER (Figure 3a), optimal results (e.g., WER of 1.55) are achieved with 10 denoising steps and a CFG scale of 1.25. Using fewer steps (e.g., 5) significantly degrades WER, while excessive steps show diminishing returns. For SIM-O Similarity (Figure 3b), the highest scores (around 0.6) are obtained with as few

Figure 3: Ablation of CFG and DDPM steps on WER and SIM-O. Heatmaps show the effect of DDPM steps (x-axis) and classifier-free guidance (CFG) scale (y-axis) on SIM-O and WER scores.

Model	N_q	Token Rate	Test-clean			Test-other		
			PESQ	STOI	UTMOS	PESQ	STOI	UTMOS
Ground-Truth	-	-	-	-	4.056	-	-	3.483
Encodec (Défossez et al., 2022)	8	600	2.72	0.939	3.04	2.682	0.924	2.657
DAC (Kumar et al., 2023)	4	400	2.738	0.928	3.433	2.595	0.908	2.945
Encodec (Défossez et al., 2022)	4	300	2.052	0.901	2.307	2.052	0.884	2.088
SpeechTokenizer (Zhang et al., 2023)	4	300	1.931	0.878	3.563	1.737	0.837	3.018
DAC (Kumar et al., 2023)	1	100	1.246	0.771	1.494	1.245	0.751	1.499
WavTokenizer (Ji et al., 2025)	1	75	2.373	0.914	4.049	2.261	0.891	3.431
WavTokenizer (Ji et al., 2025)	1	40	1.703	0.862	3.602	1.662	0.834	3.055
Ours (Acoustic)	N/A	7.5	3.068	0.828	4.181	2.848	0.823	3.724

Table 3: Objective evaluation of reconstruction quality on the LibriTTS test-clean and test-other datasets. N_q denotes the number of quantizers; **VIBEVOICE** uses a single continuous σ -VAE. Token Rate indicates the number of tokens/frames generated per second of audio. Higher PESQ, STOI, and UTMOS scores indicate better performance. Best results are in **bold**.

as 5 DDPM steps across all tested CFG scales, with a slight decrease observed as steps increases. **Additional visualizations are provided in Appendix J.**

4.3 RECONSTRUCTION COMPARISON

Table 3 details the objective acoustic reconstruction performance of our tokenizer against existing methods (Défossez et al., 2022; Kumar et al., 2023; Zhang et al., 2023; Ji et al., 2025) on the LibriTTS dataset (Zen et al., 2019). Results on LibriSpeech (Panayotov et al., 2015) can be found in Appendix D. Our acoustic tokenizer, uniquely operating at an ultra-low 7.5 Hz, achieves leading PESQ and UTMOS scores on both test-clean (PESQ: 3.068, UTMOS: 4.181) and test-other (PESQ: 2.848, UTMOS: 3.724) subsets. This demonstrates its capacity for high-fidelity, perceptually excellent audio reconstruction despite aggressive compression, which is a key factor for VIBEVOICE’s scalability with long-form audio. Regarding acoustic tokenizer, while its PESQ and UTMOS scores are strong, its STOI scores (test-clean: 0.828, test-other: 0.823) are comparatively lower. This is likely due to our primary training data (podcasts) not undergoing extensive noise reduction, which can impact STOI’s intelligibility focus more than PESQ/UTMOS’s assessment of overall perceived quality.

5 RELATED WORK

Zero-shot Text-to-Speech (TTS) aims to synthesize speech in a target speaker’s voice using only a brief voice prompt from that speaker, without requiring speaker-specific model fine-tuning. Existing approaches for single-speaker zero-shot TTS can be broadly categorized into multi-stage (Wang et al., 2023a; Anastassiou et al., 2024) and one-stage methods (Le et al., 2023; Chen et al., 2024a;b;

Jia et al., 2025; Ye et al., 2025; Wang et al., 2025; Shen et al., 2023; Ju et al., 2024; Borsos et al., 2023; Zhu et al., 2024). Multi-stage models typically first predict coarse-grained representations, such as semantic tokens (Wang et al., 2023a; Anastassiou et al., 2024), and subsequently employ a non-autoregressive model (Wang et al., 2023a) or a generative diffusion model (Anastassiou et al., 2024) for coarse-to-fine acoustic feature generation. In contrast, one-stage methods simplify this pipeline by directly predicting discrete codes (Wang et al., 2025; Ye et al., 2025), Mel spectrograms (Meng et al., 2024), or continuous VAE latent features (Jia et al., 2025).

While these methods have achieved considerable success for individual utterances, extending zero-shot capabilities to complex, interactive scenarios like multi-party dialogues and podcasts presents significant further challenges. Accurately modeling natural multi-speaker dynamics—including seamless turn-taking, consistent inter-speaker prosody, and subtle paralinguistic cues—is paramount (Schuller et al., 2013; Zhang et al., 2019; Nguyen et al., 2023; Mitsui et al., 2023; Zhang et al., 2024). Furthermore, capturing the spontaneity inherent in natural human conversations, such as filler words, hesitations, and informal speech patterns, remains an important aspect for high-fidelity synthesis (Li et al., 2024a;c).

Podcast Generation inherently grapples with a range of complex challenges, including preserving distinct speaker identities and emotional states over long durations, ensuring natural transitions and interactions among multiple participants, and maintaining a sense of spontaneity in dialogue. A pioneering effort in this direction is NoteboookLM¹, though it lacks an accompanying academic paper or technical report and supports only two fixed speaker voice. Another related work, SpeechSSM (Park et al., 2024), can generate audio up to 16 minutes in length but is limited to single-speaker scenarios. While recent advances such as MoonCast (Ju et al., 2025), FireredTTS2 (Xie et al., 2025), Higgs Audio V2 (Boson AI, 2025), Moss-TTSD (OpenMOSS Team, 2025) and DSM-TTS (Zeghidour et al., 2025) have made notable progress in addressing these multifaceted challenges, there remains a pressing need for more scalable and flexible solutions to podcast generation, such as generation length, number of speakers and generation stability.

Speech Tokenizer has become a cornerstone in modern speech processing, enabling efficient representation of audio for diverse applications. Early works with discrete representations, pioneered by VQ-VAE (van den Oord et al., 2017) and significantly advanced by subsequent neural audio codecs like SoundStream (Zeghidour et al., 2021) and Encodec (Défossez et al., 2022), demonstrated the feasibility of high-quality speech reconstruction with low-bit rate discrete tokens. Then, significant research efforts have been dedicated to improving reconstruction fidelity through advancements in discriminator architectures (Wu et al., 2023; Kumar et al., 2023; Ahn et al., 2024), alongside efforts to further improve compression ratios (Ji et al., 2025; Shechtman & Dekel, 2024) and frame rate (Zeng et al., 2024). Increasingly, there is a trend towards enhancing the semantic properties of the tokenizer’s latent space to better support generative tasks. Some approaches aim to enrich semantic content within a unified encoder structure (Zhang et al., 2023; Défossez et al., 2024), while others explore separate encoders (Wang et al., 2025; Ye et al., 2025).

Our tokenizer builds upon these directions with two key design choices: firstly, it operates at an ultra-low frame rate of 7.5 Hz to achieve substantial compression and efficiency; secondly, it explicitly decouples the acoustic and semantic tokenization pathways, employing distinct tokenizers that specialize in their respective domains to ensure both high-fidelity audio reconstruction and rich semantic grounding for the synthesis process.

6 CONCLUSION

We introduced VIBEVOICE, a novel framework for zero-shot, expressive, long-form, multi-speaker podcast generation. By integrating efficient hybrid speech representations from specialized ultra-low frame rate (7.5 Hz) acoustic and semantic tokenizers with an end-to-end LLM-based next-token diffusion architecture, and leveraging a curated podcast dataset, VIBEVOICE achieves state-of-the-art performance. It scalably synthesizes high-quality audio for up to 90 minutes with up to 4 speakers, demonstrably surpassing existing baselines in both subjective perceptual quality—including naturalness, coherence, and realism—and objective metrics like WER, thereby significantly advancing the capabilities of conversational TTS.

¹<https://notebooklm.google/>

486 REFERENCES
487

488 Sungewan Ahn, Beom Jun Woo, Min Hyun Han, Chanyeong Moon, and Nam Soo Kim. Hilcodec:
489 High-fidelity and lightweight neural audio codec. *IEEE Journal of Selected Topics in Signal*
490 *Processing*, 2024.

491 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
492 Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
493 generation models. *arXiv preprint arXiv:2406.02430*, 2024.

494 Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene Kharitonov, Neil Zeghidour, and Marco
495 Tagliasacchi. Soundstorm: Efficient parallel audio generation. *arXiv preprint arXiv:2305.09636*,
496 2023.

497 Boson AI. Higgs Audio V2: Redefining Expressiveness in Audio Generation. <https://github.com/boson-ai/higgs-audio>, 2025.

498 Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on
499 hierarchical density estimates. In *Pacific-Asia conference on knowledge discovery and data*
500 *mining*, pp. 160–172. Springer, 2013.

501 Jean Carletta, Simone Ashby, Sébastien Bourban, Mike Flynn, Mael Guillemot, Thomas Hain,
502 Jaroslav Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa Kronenthal, et al. The ami meeting
503 corpus: A pre-announcement. In *International workshop on machine learning for multimodal*
504 *interaction*, pp. 28–39. Springer, 2005.

505 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent
506 Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances*
507 *in Neural Information Processing Systems*, 37:24081–24125, 2024a.

508 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
509 Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training
510 for full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):
511 1505–1518, 2022.

512 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
513 Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. *arXiv preprint*
514 *arXiv:2410.06885*, 2024b.

515 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
516 compression. *arXiv preprint arXiv:2210.13438*, 2022.

517 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
518 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time
519 dialogue. Technical report, Kyutai, September 2024.

520 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
521 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

522 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
523 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
524 language models. *arXiv preprint arXiv:2412.10117*, 2024.

525 Elevenlabs. Elevenlabs v3 alpha. <https://elevenlabs.io/docs/models#eleven-v3-alpha>.

526 Yihui Fu, Luyao Cheng, Shubo Lv, Yukai Jv, Yuxiang Kong, Zhuo Chen, Yanxin Hu, Lei Xie,
527 Jian Wu, Hui Bu, et al. Aishell-4: An open source dataset for speech enhancement, separation,
528 recognition and speaker diarization in conference scenario. *arXiv preprint arXiv:2104.03603*,
529 2021.

530 Zhifu Gao, Shiliang Zhang, Ian McLoughlin, and Zhijie Yan. Paraformer: Fast and accurate parallel
531 transformer for non-autoregressive end-to-end speech recognition. In *Interspeech*, pp. 2063–2067.
532 ISCA, 2022.

540 Google. Gemini 2.5 Pro Preview TTS. <https://ai.google.dev/gemini-api/docs/models#gemini-2.5-pro-preview-tts>.
541
542

543 Haohan Guo, Kun Liu, Feiyu Shen, Yi-Chen Wu, Feng-Long Xie, Kun Xie, and Kaituo
544 Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative speech
545 applications. *CoRR*, abs/2409.03283, 2024.

546
547 Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
548 Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset
549 for large-scale speech generation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*,
550 pp. 885–890. IEEE, 2024.

551 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
552 *arXiv:2207.12598*, 2022.

553
554 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
555 *neural information processing systems*, 33:6840–6851, 2020.

556 Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang,
557 Xize Cheng, Zehan Wang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang,
558 Qian Chen, Siqi Zheng, and Zhou Zhao. Wavtokenizer: an efficient acoustic discrete codec
559 tokenizer for audio language modeling. In *The Thirteenth International Conference on Learning*
560 *Representations*, 2025. URL <https://openreview.net/forum?id=yB1V1S2Fd9>.

561
562 Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin
563 Li, Zhen Wei, Yuping Wang, et al. Ditar: Diffusion transformer autoregressive modeling for
564 speech generation. *arXiv preprint arXiv:2502.03930*, 2025.

565
566 Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong
567 Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with
568 factorized codec and diffusion models. *arXiv preprint arXiv:2403.03100*, 2024.

569
570 Zeqian Ju, Dongchao Yang, Jianwei Yu, Kai Shen, Yichong Leng, Zhengtao Wang, Xu Tan, Xinyu
571 Zhou, Tao Qin, and Xiangyang Li. Mooncast: High-quality zero-shot podcast generation. *arXiv*
572 *preprint arXiv:2503.14345*, 2025.

573 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *2nd International*
574 *Conference on Learning Representations*, 2014.

575 Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar.
576 High-fidelity audio compression with improved rvqgan. In *Proceedings of the 37th International*
577 *Conference on Neural Information Processing Systems*, pp. 27980–27993, 2023.

578
579 Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
580 Vimal Manohar, Yossi Adi, Jay Mahadeokar, and Wei-Ning Hsu. Voicebox: Text-guided
581 multilingual universal speech generation at scale. In Alice Oh, Tristan Naumann, Amir Globerson,
582 Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing*
583 *Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,*
584 *New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

585
586 Hanzhao Li, Xinfu Zhu, Liumeng Xue, Yang Song, Yunlin Chen, and Lei Xie. Spontts: modeling
587 and transferring spontaneous style for tts. In *ICASSP 2024-2024 IEEE International Conference*
588 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 12171–12175. IEEE, 2024a.

589
590 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
591 generation without vector quantization. *arXiv preprint arXiv:2406.11838*, 2024b.

592
593 Weiqin Li, Peiji Yang, Yicheng Zhong, Yixuan Zhou, Zhisheng Wang, Zhiyong Wu, Xixin Wu, and
594 Helen Meng. Spontaneous style text-to-speech synthesis with controllable spontaneous behaviors
595 based on language models. *arXiv preprint arXiv:2407.13509*, 2024c.

594 Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li, Saeed Maleki, Xu Cao,
 595 Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang, Lintao Zhang, and Lidong Zhou. nnscaler:
 596 Constraint-guided parallelization plan generation for deep learning training. In *18th USENIX
 597 Symposium on Operating Systems Design and Implementation (OSDI 24)*, pp. 347–363, 2024.

598

599 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 600 solver for guided sampling of diffusion probabilistic models. *Machine Intelligence Research*, pp.
 601 1–22, 2025.

602

603 Lingwei Meng, Long Zhou, Shujie Liu, Sanyuan Chen, Bing Han, Shujie Hu, Yanqing Liu, Jinyu
 604 Li, Sheng Zhao, Xixin Wu, Helen Meng, and Furu Wei. Autoregressive speech synthesis without
 605 vector quantization. *CoRR*, abs/2407.08551, 2024.

606

607 Kentaro Mitsui, Yukiya Hono, and Kei Sawada. Towards human-like spoken dialogue generation
 608 between ai agents from written dialogue. *arXiv preprint arXiv:2310.01088*, 2023.

609

610 Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden
 611 Tomasello, Robin Algayres, Benoit Sagot, Abdelrahman Mohamed, et al. Generative spoken
 612 dialogue language modeling. *Transactions of the Association for Computational Linguistics*, 11:
 613 250–266, 2023.

614

615 OpenMOSS Team. MOSS-TTSD. <https://github.com/OpenMOSS/MOSS-TTSD>, 2025.

616

617 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
 618 corpus based on public domain audio books. In *2015 IEEE International Conference on Acoustics,
 Speech and Signal Processing, ICASSP 2015, South Brisbane, Queensland, Australia, April 19–
 24, 2015*, pp. 5206–5210. IEEE, 2015.

619

620 Se Jin Park, Julian Salazar, Aren Jansen, Keisuke Kinoshita, Yong Man Ro, and RJ Skerry-Ryan.
 621 Long-form speech generation with spoken language models. *arXiv preprint arXiv:2412.18603*,
 622 2024.

623

624 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 625 Robust speech recognition via large-scale weak supervision. In *International conference on
 626 machine learning*, pp. 28492–28518. PMLR, 2023.

627

628 Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
 629 of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
 630 codecs. In *2001 IEEE international conference on acoustics, speech, and signal processing.
 Proceedings (Cat. No. 01CH37221)*, volume 2, pp. 749–752. IEEE, 2001.

631

632 Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi
 633 Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. *arXiv preprint
 634 arXiv:2204.02152*, 2022.

635

636 Björn Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers, Christian
 637 Müller, and Shrikanth Narayanan. Paralinguistics in speech and language—state-of-the-art and
 638 the challenge. *Computer Speech & Language*, 27(1):4–39, 2013.

639

640 SesameAILabs. SesameAILabs CSM Model. <https://github.com/SesameAILabs/csm>,
 641 2025.

642

643 Slava Shechtman and Avihu Dekel. Low bitrate high-quality rvqgan-based discrete speech tokenizer.
 644 In *Annual Conference of the International Speech Communication Association*, 2024.

645

646 Kai Shen, Zeqian Ju, Xu Tan, Yanqing Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang
 647 Bian. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing
 648 synthesizers. *arXiv preprint arXiv:2304.09116*, 2023.

649

650 Yutao Sun, Hangbo Bao, Wenhui Wang, Zhiliang Peng, Li Dong, Shaohan Huang, Jianyong Wang,
 651 and Furu Wei. Multimodal latent language modeling with next-token diffusion. *arXiv preprint
 652 arXiv:2412.08635*, 2024.

648 Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective
 649 intelligibility measure for time-frequency weighted noisy speech. In *2010 IEEE international*
 650 *conference on acoustics, speech and signal processing*, pp. 4214–4217. IEEE, 2010.

651

652 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
 653 learning. In *Neural Information Processing Systems*, 2017.

654

655 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 656 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 657 *Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9*
 658 *December 2017, Long Beach, CA, USA*, pp. 6000–6010, 2017.

659

660 Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
 661 Liu, Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu Wei. Neural codec language models
 662 are zero-shot text to speech synthesizers. *CoRR*, abs/2301.02111, 2023a.

663

664 Hongji Wang, Chengdong Liang, Shuai Wang, Zhengyang Chen, Binbin Zhang, Xu Xiang, Yanlei
 665 Deng, and Yanmin Qian. Wespeaker: A research and production oriented speaker embedding
 666 learning toolkit. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 667 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023b.

668

669 Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang,
 670 Qixi Zheng, Rui Wang, Xiaoqin Feng, et al. Spark-tts: An efficient llm-based text-to-speech
 671 model with single-stream decoupled speech tokens. *arXiv preprint arXiv:2503.01710*, 2025.

672

673 Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
 674 Zhang, Shunsi Zhang, and Zhizheng Wu. Maskgct: Zero-shot text-to-speech with masked
 675 generative codec transformer. *CoRR*, abs/2409.00750, 2024.

676

677 Yi-Chiao Wu, Israel D Gebru, Dejan Marković, and Alexander Richard. Audiodec: An open-source
 678 streaming high-fidelity neural audio codec. In *ICASSP 2023-2023 IEEE International Conference*
 679 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

680

681 Kun Xie, Feiyu Shen, Junjie Li, Fenglong Xie, Xu Tang, and Yao Hu. Fireredtts-2: Towards
 682 long conversational speech generation for podcast and chatbot. *arXiv preprint arXiv:2509.02020*,
 683 2025.

684

685 Detai Xin, Xu Tan, Shinnosuke Takamichi, and Hiroshi Saruwatari. Bigcodec: Pushing the limits of
 686 low-bitrate neural speech codec. *arXiv preprint arXiv:2409.05377*, 2024.

687

688 Hainan Xu, Fei Jia, Somshubra Majumdar, He Huang, Shinji Watanabe, and Boris Ginsburg.
 689 Efficient sequence transduction by jointly predicting tokens and durations. In *International*
 690 *Conference on Machine Learning*, pp. 38462–38484. PMLR, 2023.

691

692 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 693 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 694 *arXiv:2412.15115*, 2024.

695

696 Zhen Ye, Xinfu Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe Liu, Yizhu
 697 Jin, Zheqi DAI, et al. Llasa: Scaling train-time and inference-time compute for llama-based
 698 speech synthesis. *arXiv preprint arXiv:2502.04128*, 2025.

699

700 Fan Yu, Shiliang Zhang, Yihui Fu, Lei Xie, Siqi Zheng, Zhihao Du, Weilong Huang, Pengcheng
 701 Guo, Zhijie Yan, Bin Ma, et al. M2met: The icassp 2022 multi-channel multi-party meeting
 702 transcription challenge. In *ICASSP 2022-2022 IEEE International Conference on Acoustics,*
 703 *Speech and Signal Processing (ICASSP)*, pp. 6167–6171. IEEE, 2022.

704

705 Jianwei Yu, Hangting Chen, Yanyao Bian, Xiang Li, Yi Luo, Jinchuan Tian, Mengyang Liu, Jiayi
 706 Jiang, and Shuai Wang. Autoprep: An automatic preprocessing framework for in-the-wild speech
 707 data. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal*
 708 *Processing (ICASSP)*, pp. 1136–1140. IEEE, 2024.

702 Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi.
 703 Soundstream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech,*
 704 *and Language Processing*, 30:495–507, 2021.

705 Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard
 706 Grave, Patrick Pérez, Laurent Mazaré, and Alexandre Défossez. Streaming sequence-to-sequence
 707 learning with delayed streams modeling. *arXiv preprint arXiv:2509.08753*, 2025.

708 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
 709 Libritts: A corpus derived from librispeech for text-to-speech. *arXiv preprint arXiv:1904.02882*,
 710 2019.

711 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
 712 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv*
 713 *preprint arXiv:2412.02612*, 2024.

714 Leying Zhang, Yao Qian, Long Zhou, Shujie Liu, Dongmei Wang, Xiaofei Wang, Midia Yousefi,
 715 Yanmin Qian, Jinyu Li, Lei He, et al. Covomix: Advancing zero-shot speech generation for
 716 human-like multi-talker conversations. *Advances in Neural Information Processing Systems*, 37:
 717 100291–100317, 2024.

718 Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
 719 speech tokenizer for speech large language models. *arXiv preprint arXiv:2308.16692*, 2023.

720 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
 721 Jingjing Liu, and Bill Dolan. Dialogpt: Large-scale generative pre-training for conversational
 722 response generation. *arXiv preprint arXiv:1911.00536*, 2019.

723 Xinfa Zhu, Wenjie Tian, and Lei Xie. Autoregressive speech synthesis with next-distribution
 724 prediction. *arXiv preprint arXiv:2412.16846*, 2024.

725

726 A DATA PREPARATION PIPELINE

727 The data preparation pipeline contains the following steps:

728 **Segmentation And Transcription** First, we use the silero voice activity detection (VAD) tool to
 729 segment long audio recordings into shorter clips, each with a maximum duration of 30 seconds.
 730 Next, we apply Whisper-large-v3-turbo (Radford et al., 2023) to generate transcriptions with
 731 punctuation, along with word-level timestamps. Since punctuation marks (specifically [.?!]) are
 732 closely related to speaker turns, we further perform semantic-based re-segmentation by splitting
 733 the original audio at their end timestamps. This approach results in more accurate segmentation of
 734 speaker boundaries.

735 **Diarization** We use the vblinkp model from the WeSpeaker toolkit (Wang et al., 2023b) to perform
 736 speech diarization. Specifically, the audio segments obtained from the previous step are first divided
 737 into frames using a window length of 1.5 seconds and a hop size of 0.75 seconds. Speaker
 738 embeddings are then extracted for each frame, and HDBSCAN (Campello et al., 2013) clustering
 739 is applied to assign speaker labels. To enhance clustering consistency, we further merge clusters
 740 whose centroids have a cosine similarity greater than 0.67. Finally, we re-segment the audio based
 741 on the frame-level speaker labels, yielding the final speaker turn annotations.

742 **Quality Filtering** To further ensure the accuracy of the annotations, we apply the following post-
 743 filtering strategies. First, we employ a secondary ASR model (Xu et al., 2023) to re-transcribe
 744 the final segments. If the word error rate (WER) between the primary and secondary ASR outputs
 745 exceeds 20%, the corresponding segment is considered unreliable. If more than 30% of the segments
 746 in a long audio file are marked as unreliable, the entire audio is discarded. Second, we filter out audio
 747 files in which the total duration of speech is less than 60% of the overall audio length. Third, we
 748 discard audio files that contain more than 4 distinct speakers.

749 Table 4 summarizes the open-source toolkits utilized in our data preparation (Section 2.3) and
 750 evaluation (Section 3.3.1). We gratefully acknowledge all contributors to these open-source projects
 751 for their valuable and generous work.

756 Model	757 URL Link
Data Processing Pipeline	
Silero VAD	https://github.com/snakers4/silero-vad
Whisper-large-v3-turbo	https://huggingface.co/openai/whisper-large-v3-turbo
Nemo ASR	https://huggingface.co/nvidia/parakeet-tdt-1.1b
Wespeaker embedding	https://github.com/wenet-e2e/wespeaker https://wenet.org.cn/downloads?models=wespeaker&version=voxblink2_samresnet100.zip
Evaluation	
WER toolkit	https://github.com/QwenLM/Qwen-Audio/blob/main/eval_audio/evaluate_asr.py#L101
SIM-O toolkit	https://github.com/BytedanceSpeech/seed-tts-eval/blob/main/cal_sim.sh

Table 4: List of models and tools used in our data processing pipeline.

Evaluation of Data Pipeline performance: To address the concern of data pipeline evaluation, we provide a comparative evaluation of our pipeline against two well-known audio data pipelines—WhisperX and Emilia—on three widely used public multi-speaker meeting datasets, including AMI Carletta et al. (2005), Alimeeting Yu et al. (2022), Aishell4 Fu et al. (2021), reporting both diarization error rate (DER) and word error rate (WER). (For Emilia, we disabled the data-filtering step because it removes many audio samples.)

From the Table 5, we observe that the proposed data pipeline consistently outperforms both baselines on most datasets in terms of both DER and WER. This demonstrates that our pipeline offers more reliable segmentation, diarization, and transcription under diverse acoustic conditions.

It is worth noting, however, that meeting-style datasets are intrinsically challenging due to far-field microphones, low SNR, frequent speaker changes, and overlapping speech, resulting in significantly higher DER and WER compared to podcast-style data. In fact, we deliberately avoid using any meeting datasets for training VibeVoice to prevent domain mismatch. Additionally, WER is sensitive to text normalization choices (such as punctuation, dates, and URLs), and scores should therefore be interpreted with caution. In this evaluation, punctuation is removed prior to scoring, following common ASR benchmarking protocols (e.g., LibriSpeech, AMI, WenetSpeech). Thus, these metrics mainly serve as partial indicators of pipeline robustness.

In practice, we further assess data quality through manual inspection, including random sampling and visualization of processed segments, as well as downstream TTS performance. The generation quality of VibeVoice provides an implicit but strong validation of the reliability of our data processing pipeline.

796 Model	797 AMI-IHM		797 AMI-SDM		797 AISHELL4		797 AliMeeting		797 ALL	
	798 DER	798 WER	798 DER	798 WER	798 DER	798 WER	798 DER	798 WER	798 DER	798 WER
WhisperX	18.27	24.12	23.05	39.65	14.55	29.69	35.53	36.62	22.00	32.90
Emilia	35.44	47.85	46.55	61.70	16.58	49.40	25.57	54.27	28.30	52.85
Ours	15.46	23.22	17.78	28.40	16.93	18.99	25.34	30.82	18.84	25.43

Table 5: DER and WER comparison across datasets.

B MORE TOKENIZER ABLATIONS

To validate the necessity of our hybrid representation, we analyze the Coupled Tokenizer, an alternative design explored during development. This architecture allows us to investigate the effects of encoding semantic and acoustic features within a single, shared latent space, providing a direct contrast to our final disentangled hybrid approach.

Figure 4: An illustration of the Coupled Tokenizer architecture. A single encoder produces a shared latent representation μ , which is utilized for both speech reconstruction (Acoustic Decoder) and ASR (Semantic Decoder). This design contrasts with our final Hybrid architecture (Figure 2), which employs separate encoders to decouple semantic and acoustic representations.

As shown in Figure 4, the Coupled Tokenizer employs a single encoder to map input waveforms into a shared latent distribution μ . This unified representation serves dual objectives: (1) speech reconstruction via an Acoustic Decoder, and (2) transcript prediction via a Semantic Decoder. This joint optimization aims to capture both acoustic fidelity and semantic content within a unified bottleneck.

Tokenizer	Seq.	1 Speaker		2 Speakers		3 Speakers		4 Speakers		Overall	
		Leng.	WER-W↓ SIM-O↑								
Acoustic	16K	1.06	0.7	6.15	0.7	13.74	0.70	6.46	0.64	6.22	0.68
Coupled	16K	6.79	0.43	1.18	0.47	1.4	0.48	2.6	0.45	3.55	0.45
Hybrid (Final)	16K	1.93	0.66	0.79	0.59	2.50	0.64	1.68	0.64	1.84	0.64

Table 6: Ablation study on tokenizer architectures for podcast generation (no more than 12 minutes). The final Hybrid approach is evaluated against Acoustic-only and Coupled baselines. The results show that our Hybrid approach achieves the best overall balance of WER and higher SIM-O, especially in multi-speaker scenarios.

We evaluated this design on both reconstruction quality and downstream podcast generation performance. Our findings are as follows:

- 1. Reconstruction Quality:** As shown in Table 8, the reconstruction performance of the Coupled Tokenizer (STOI: 0.72, PESQ: 1.92) is substantially lower than that of the acoustic encoder from our Hybrid model (STOI: 0.75, PESQ: 2.98). This suggests that, at low framerates such as 7.5 Hz, forcing a single latent space to encode both abstract semantics and acoustic information fundamentally undermines its ability to retain the fine-grained acoustic details needed for high-fidelity reconstruction.
- 2. Podcast Generation Performance:** The results of integrating the Coupled Tokenizer into our generation framework are detailed in Table 6. While the Coupled model improves content stability over the Acoustic-only baseline (reducing overall WER from 6.22 to 3.55), this improvement comes at a severe cost to speaker identity. The model yields an overall speaker similarity (SIM-O) of just 0.45—the lowest of all settings. This is a direct consequence of its degraded acoustic modeling capability; as evidenced by its poor reconstruction scores (Table 8), the shared latent space fails to preserve the unique acoustic details of a speaker’s voice.

These results clarify the architectural trade-offs summarized in Table 6. The **Acoustic-only** baseline relies on entangled representations; while efficient for single speakers, it fails to disentangle speaker identity from content in multi-speaker scenarios, leading to semantic collapse (WER spikes from 1.06 to 13.74). The **Coupled** model introduces semantic constraints to mitigate this but over-compresses the representation, sacrificing speaker fidelity for content stability. Consequently, our final **Hybrid** architecture proves necessary: by explicitly disentangling semantic structure from acoustic realization, it achieves the optimal balance, maintaining both high intelligibility and robust speaker identity across complex multi-speaker sessions.

864

C MORE BENCHMARK RESULTS

865
 866 We evaluate VIBEVOICE on the SEED test sets (Anastassiou et al., 2024), a widely used benchmark
 867 composed of short utterances. For evaluation, approximately 1,000 English samples and 2,000 Chi-
 868 nese samples are drawn from the CommonVoice dataset, denoted as *test-en* and *test-zh*, respectively.
 869 We compute word error rate (WER) using Whisper-large-v3 for *test-en* and Paraformer (Gao et al.,
 870 2022) for *test-zh*. For speaker similarity (SIM), we adopt a WavLM-large (Chen et al., 2022) model.

871 Table 7 presents the results on the SEED test sets. Although our model is primarily trained on
 872 long-form speech, it demonstrates strong generalization on short-utterance benchmarks. In addition,
 873 by employing a lower frame rate, our model substantially reduces the number of decoding steps
 874 required to synthesize one second of speech.

876 877 Model	878 Frame Rate	879 test-zh		880 test-en	
		881 CER(%) ↓	882 SIM ↑	883 WER(%) ↓	884 SIM ↑
MaskGCT (Wang et al., 2024)	50	2.27	0.774	2.62	0.714
Seed-TTS (Anastassiou et al., 2024)	-	1.12	0.796	2.25	0.762
FireRedTTS (Guo et al., 2024)	25	1.51	0.635	3.82	0.460
CosyVoice 2 (Du et al., 2024)	25	1.45	0.748	2.57	0.652
Spark TTS (Wang et al., 2025)	50	1.20	0.672	1.98	0.584
VIBEVOICE-1.5B	7.5	1.16	0.744	3.04	0.689

885 Table 7: Results on the SEED test sets.
 886
 887888

D MORE RECONSTRUCTION RESULTS

889 The acoustic reconstruction performance on the LibriSpeech test-clean set (Table 8) largely mirrors
 890 and reinforces the conclusions drawn from our LibriTTS evaluations (Table 3).

891 Our dedicated VIBEVOICE Acoustic Tokenizer, operating at an exceptionally low 7.5 fps with a
 892 single quantizer ($N_q = 1$), achieves a UTMOS score of 4.19. This is highly competitive, even
 893 surpassing models like BigCodec (Xin et al., 2024) (UTMOS 4.11 at 80 fps) and achieving similar
 894 perceptual quality to X-codec2 (Ye et al., 2025) (UTMOS 4.13 at 50 fps) and BiCodec (Wang et al.,
 895 2025) (UTMOS 4.18 at 50 fps), despite those operating at nearly 7 times our frame rate. This
 896 underscores its remarkable efficiency in delivering high perceptual quality with significantly fewer
 897 tokens per second, a trend consistent with its leading PESQ and UTMOS performance on LibriTTS.

898 **Conversely, the Coupled tokenizer (demonstrated in Figure 4) demonstrates a notable degradation**
 899 **in reconstruction quality (UTMOS 3.3 on LibriSpeech vs. 4.19 for the acoustic variant).** This
 900 performance, while still reasonable for such an extreme frame rate, is significantly lower than
 901 the dedicated acoustic model. These findings further solidify our rationale for employing separate
 902 acoustic and semantic tokenizers in the final VIBEVOICE architecture to preserve acoustic fidelity.

903

E VIBEVOICE INFERENCE TIME

904 To understand the computational cost associated with generating speech using VIBEVOICE, we
 905 profiled the inference time of its core components on a single NVIDIA A6000 GPU. Table 9
 906 presents a breakdown of the inference cost in milliseconds (ms) per generated segment for different
 907 VIBEVOICE model sizes (1.5B and 7B LLM parameters) and varying numbers of DDPM diffusion
 908 steps (1 and 10) for the diffusion head. The measurements include the time taken by the Large
 909 Language Model (LLM), the Diffusion Head, the Acoustic Decoder, and the Semantic Encoder,
 910 **along with Real-Time Factor (RTF).**

911 As observed from Table 9, the LLM component constitutes the most significant portion of the
 912 inference time, which is expected given its size and autoregressive nature. For the 1.5B model,
 913 the LLM takes approximately 48-54 ms, while for the larger 7B model, this increases to around
 914 59-72 ms. The inference time of the Diffusion Head scales linearly with the number of DDPM
 915 steps; increasing the steps from 1 to 10 results in a roughly 8-9x increase in its processing time.

Model	Frame Rate	N_q	STOI	PESQ	UTMOS
Ground Truth	–	–	–	–	4.09
DAC (Kumar et al., 2023)	600	12	0.95	4.01	4.00
Encodec (Défossez et al., 2022)	600	8	0.94	2.77	3.09
Encodec (Défossez et al., 2022)	150	2	0.85	1.56	1.58
DAC (Kumar et al., 2023)	100	2	0.73	1.13	1.29
SpeechTokenizer (Zhang et al., 2023)	100	2	0.77	1.25	2.28
Mimi (Défossez et al., 2024)	100	8	0.91	2.25	3.56
BigCodec (Xin et al., 2024)	80	1	0.93	2.68	4.11
WavTokenizer (Ji et al., 2025)	75	1	0.90	2.13	3.79
Mimi (Défossez et al., 2024)	75	6	0.89	1.99	3.38
SpeechTokenizer (Zhang et al., 2023)	50	1	0.64	1.14	1.27
Mimi (Défossez et al., 2024)	50	4	0.85	1.64	3.03
WavTokenizer (Ji et al., 2025)	40	1	0.85	1.62	3.57
X-codec2 (Ye et al., 2025)	50	1	0.92	2.43	4.13
BiCodec (Wang et al., 2025)	50	1	0.92	2.51	4.18
VIBEVOICE (Coupled)	7.5	N/A	0.72	1.92	3.3
VIBEVOICE (Acoustic)	7.5	N/A	0.75	2.98	4.19

Table 8: Reconstruction results on LibriSpeech test-clean set. N_q denotes the number of quantizers; **VIBEVOICE** uses a single continuous σ -VAE. Higher PESQ, STOI, and UTMOS scores indicate better performance.

Model	Model Size	Diffusion Step	Inference Cost (ms)				RTF
			LLM	Diffusion Head	Acoustic Decoder	Semantic Encoder	
MoonCast	1.5B	N/A			N/A		1.43
	3B	N/A			N/A		0.72
Higgs Audio V2		1	47.87	2.69	14.96	14.71	0.62
		10	53.80	22.76	14.89	14.59	0.83
VIBEVOICE	1.5B	1	58.71	3.25	14.75	14.52	0.70
	7B	10	71.73	28.87	14.80	14.52	0.97

Table 9: Inference cost (ms) and Real-Time Factor (RTF) comparison between VIBEVOICE and baseline models. Measurements were conducted on a single NVIDIA A6000 GPU with a batch size of 1.

The costs for the Acoustic Decoder and Semantic Encoder remain consistently low and efficient at around 14-15 ms.

Crucially, the Real-Time Factor (RTF) for VIBEVOICE remains consistently below 1.0 across all tested configurations, ranging from 0.62 to 0.97, signifying faster-than-real-time capability. In contrast, the baseline MoonCast exhibits an RTF of 1.43, indicating slower-than-real-time processing. While Higgs Audio V2 achieves a competitive RTF of 0.72, it relies on a parallel generation strategy (processing 3-second audio chunks concurrently). VIBEVOICE achieves comparable or superior efficiency within a strictly streaming framework, making it well-suited for real-time applications and the generation of long-form audio without accumulating latency.

F TRAINING HYPER-PARAMETERS

Table 10 summarizes hyperparameters used for training the Tokenizer (both Acoustic and Semantic variants) and the main VIBEVOICE model.

Stage	Hyper-parameters	Values
Tokenizer	Stages	7
	Blocks per stage	[3, 3, 3, 3, 3, 3, 8]
	Downsampling ratios	[2, 2, 4, 5, 5, 8]
	Adam β	(0.8, 0.99)
	Adam ϵ	1e-6
	LR	3×10^{-4}
	Weight decay	0.01
	Gradient norm clip	1000
	Training steps	300,000
	<i>Acoustic Tokenizer</i>	
VAE	VAE dim	64
	VAE C_σ	0.5
	Batch size	160s
	Sample size	4s
	<i>Semantic Tokenizer</i>	
VIBEVOICE	Batch size	1024 tokens
	Diffusion head layers	4
	Diffusion head FFN ratio	3
	Diffusion beta schedule	Cosine
	Diffusion train steps	1000
	Diffusion loss weight	5
	Adam β	(0.9, 0.95)
	Adam ϵ	1e-8
	Batch size	4M
	Learning rate	1×10^{-4}

Table 10: Summary of training hyperparameters for Tokenizer and VIBEVOICE model stages.

G VIBEVOICE-OBJECTIVE EVALUATION

To rigorously evaluate the capabilities of VIBEVOICE in generating long-form, multi-speaker podcasts, particularly its scalability with varying speaker counts and durations, we curated a dedicated evaluation set named **VIBEVOICE-Eval**. This dataset was constructed using our internal data processing pipeline (as described in Section 2.3 of the main text) from podcast sources not included in the VIBEVOICE training set, ensuring a fair assessment of generalization.

Speaker Numbers	Samples Count	Average Duration (s)	Total Duration (h)
1	30	878	7.32
2	35	905	8.8
3	27	984	7.38
4	16	1210	5.38
Total	108	962	28.9

Table 11: Distribution of the VIBEVOICE-Eval dataset, stratified by the number of speakers per sample. Durations are provided in seconds (average) and hours (total).

1026
 1027 Table 11 details the distribution of the VIBEVOICE-Eval dataset. It comprises a total of 108 distinct
 1028 podcast segments, amounting to approximately 28.9 hours of audio. The dataset is stratified by the
 1029 number of unique speakers present in each segment, ranging from 1 to 4 speakers. As shown, the
 1030 average duration of segments tends to increase with the number of speakers, with 4-speaker segments
 1031 averaging over 20 minutes (1210.81 seconds). This diverse composition allows for a comprehensive
 1032 evaluation of model performance across different levels of conversational complexity and length.

1033 To provide a qualitative illustration of the content within the VIBEVOICE-Eval dataset, below is an
 1034 excerpt from a sample segment featuring 3 speakers. This example showcases typical conversational
 1035 turn-taking and dialogue flow present in the evaluation materials:

Dialogue Example	
1036	Speaker 0: Oh, look. There's Hank and Trash Truck.
1037	Speaker 1: Hi, Walter.
1038	Speaker 2: Hey, Hank. Hey, Trash Truck.
1039	Speaker 1: Hi, Donnie.
1040	Speaker 0: Look at me, Hank. I'm swinging. And you guys thought this rope wasn't strong enough to hold a bear. Mm-hmm. Sure, you can have a turn. I bet it's even strong enough to hold a trash truck.
1041	Speaker 2: Nuh-uh, trash truck. I'm next. Now, come on, Walter, catch up. Oh, it's my turn. Yes!
1042	Speaker 0: Oh. Okay.
1043	Speaker 2: Yes, okay, I'm ready. Now shove me. Somebody shoved me. I want to be shoved. Higher!
1044	Speaker 0: Higher! Woohoo!
1045	Speaker 2: Oh, I can see the top of Trash Truck's head from up here! Ah, ha, ha! Yes! Woo!
1046	Speaker 1: Okay, Donnie. I think it's Trash Truck's turn now.
1047	Speaker 2: No, no, no. It's still my turn. Yes.
1048	Speaker 1: Well, at school, each person gets five pushes for a turn. Then, it's the next person's turn.
1049	Speaker 2: What's a five?
1050	Speaker 0: I don't know. Sounds complicated.
1051	Speaker 1: It's a number. Every time you're pushed on the swing, we count a number. Walter, you keep pushing and Trash Truck and I will count.
1052	Speaker 2: Trash Truck can count?
1053	Speaker 1: Yeah, Trash Truck can count. Show him, Trash Truck.
1054	Speaker 2: Wow, trash truck sure knows his numbers. I mean, hawks. Wow.
1055	Speaker 1: Okay, your turn's up, Donnie.
1056	Speaker 2: Oh, alright. Okay.
1057	Speaker 0: Oh, okay. Who's next?
1058	Speaker 2: Get on up there, trash truck. Come on, buddy.
1059	Speaker 0: See? I told you, the rope is strong.
1060	

H SUBJECTIVE EVALUATION

1061 The annotation interface is designed as the following:

1062
 1063 We conducted subjective evaluations engaging multiple human listeners to assess the quality of
 1064 generated podcasts. Listeners rated samples on a 5-point score across three key dimensions:
 1065 Realism, Richness, and Preference. We used two popular and competitive open-source model:
 1066 SesameAILabs-CSM (SesameAILabs, 2025) and Higgs Audio V2 (Boson AI, 2025), and two
 1067 proprietary dialogue models: Elevenlabs v3 alpha (Elevenlabs) and Gemini 2.5 pro preview
 1068 tts (Google).

1069 Below are the definitions and detailed scoring standards for the six dimensions used in our subjective
 1070 evaluation:

Realism	
1073	Definition: Measures whether the speech sounds naturally generated, rather than 1074 mechanical or overly deliberate. A high score indicates that the speaking style is closer 1075 to the natural rhythm, pauses, intonation, etc., of real human communication.
1076	Scoring Standard:
1077	
1078	
1079	

Figure 5: Annotation interface of subjective evaluation.

- **1 point (Very Poor):** Speech is completely unnatural, sounding very mechanical, stiff, or robotic.
- **2 points (Poor):** Speech is noticeably unnatural, with clear problems in rhythm, pauses, intonation, or tone, sounding quite awkward.
- **3 points (Average):** Speech naturalness is acceptable, with occasional unnatural elements (e.g., improper pauses, flat intonation), but generally acceptable.
- **4 points (Good):** Speech is quite natural and fluent, close to human speech, but may have minor shortcomings in some details.
- **5 points (Very Good):** Speech sounds very natural and fluent, as if a real human is speaking, with excellent naturalness.

Richness

Definition: Measures whether the speech conveys variety and expressiveness in tone and emotion. This includes natural emotional variation according to context, and whether suitable background elements (e.g., natural BGM or sound effects) are incorporated.

Scoring Standard:

- **1 point (Very Poor):** Completely flat and monotonous; no emotion or variation; mechanical delivery.
- **2 points (Poor):** Very limited emotional expression; stiff tone; fails to create a sense of atmosphere or scene.
- **3 points (Average):** Some variation in tone or emotion, but insufficient to convey natural expressiveness; weak emotional coloring.
- **4 points (Good):** Emotionally expressive and relatively natural; noticeable changes in tone and intonation; conveys basic emotions and atmosphere.
- **5 points (Very Good):** Emotionally rich and natural; tone, intonation, and emotional variation match the context; may include well-timed natural sound effects or background elements, creating strong immersion.

Preference								
1134								
1135								
1136 Definition: Measures the listener’s overall subjective preference toward the speech. It								
1137 reflects naturalness, pleasantness, attractiveness, and listenability—not just objective clarity								
1138 or similarity.								
1139								
1140 Scoring Standard:								
1141 • 1 point (Very Poor): Strong dislike; voice is grating, mechanical, or unpleasant;								
1142 almost unbearable to continue listening.								
1143 • 2 points (Poor): Dislike; noticeable problems such as stiffness, monotony, or								
1144 unnaturalness; poor listening experience.								
1145 • 3 points (Average): Neutral; acceptable but not engaging; no strong preference or								
1146 dislike.								
1147 • 4 points (Good): Like; natural and fluent; comfortable to listen to; provides some								
1148 enjoyment.								
1149 • 5 points (Very Good): Strongly like; highly attractive and enjoyable; pleasant								
1150 enough to listen to for a long time.								
1151								
1152								
1153								
1154 <h2>I FIRST-PHASE EVALUATION RESULTS</h2>								
1155								
1156								
1157								
1158								
1159								
1160								

I FIRST-PHASE EVALUATION RESULTS

Model	Subjective						Objective	
	Spontaneity	Coherence	Intelligibility	Quality	Similarity	Realism	WER	SIM-O
Cosyvoice2 (Du et al., 2024)	3.15 ± 1.06	3.09 ± 1.21	3.83 ± 1.02	3.17 ± 1.02	3.15 ± 1.11	3.10 ± 1.03	3.45	0.68
MoonCast (Ju et al., 2025)	3.17 ± 1.06	3.67 ± 1.01	4.00 ± 0.91	3.04 ± 0.9	3.19 ± 1.14	3.02 ± 1.12	2.81	0.56
VIBEVOICE-1.5B	3.86 ± 0.92	3.89 ± 0.94	4.40 ± 0.66	3.97 ± 0.94	3.66 ± 1.05	3.78 ± 0.95	1.11	0.55

Table 12: Subjective and objective evaluation on podcast generation. For all subjective metrics and SIM-O, higher scores indicate better performance. For WER, lower scores are better.

To verify the effectiveness of proposed VIBEVOICE framework, we conducted our first-phase experiment comparing CosyVoice2, MoonCast, and VIBEVOICE-1.5B through both subjective and objective evaluations.

For the subjective evaluation, 20 human evaluators were invited to assess the quality of the generated podcasts. Each evaluator rated samples on a 5-point scale across six key dimensions: Spontaneity, Coherence, Intelligibility, Quality, Similarity (to the voice prompt), and Realism.

For every text input, we generated eight podcasts with each of the three models, yielding an average audio length of 7.3 minutes per sample. In total, each evaluator listened to approximately **2.9** hours of audio—roughly equivalent to reviewing **1,000** short utterances of 10 seconds each.

From Table 12, we can observe that:

(1) VIBEVOICE-1.5B outperforms both CosyVoice2 and MoonCast across all subjective evaluation metrics as well as in WER.

(2) Compared with CosyVoice2, which can only generate relatively short utterances (<30s) and produces long podcasts by concatenating these clips, both MoonCast and VIBEVOICE (with end-to-end podcast generation) demonstrate significantly better coherence, highlighting the effectiveness of E2E podcast generation for maintaining contextual and prosodic consistency.

(3) Another notable finding is that although CosyVoice2 achieves a higher score than VIBEVOICE on the objective SIM-O metric, human evaluators consistently rated VIBEVOICE as having higher similarity. One possible explanation is that SIM-O primarily captures timbre similarity but neglects prosodic features such as intonation, rhythm, and expressiveness. In natural conversations, speakers often exhibit subtle variations in voice due to emotional shifts or pitch dynamics. These variations are typically perceived by human listeners as consistent with the original speaker, but are penalized by SIM-O. **When SIM-O exceeds a certain threshold, it becomes less sensitive to these human-**

1188
 1189 **perceived consistencies, making it insufficient for evaluating speaker identity retention in long-**
 1190 **form, multi-turn speech synthesis.**

1191 **J SPECTRAL ANALYSIS OF DIFFUSION INFERENCE STEPS**

1203
 1204 **Figure 6: Spectrogram analysis of the denoising process. (a) The Voice Prompt** exhibits natural
 1205 environmental textures (background noise, reverb). **(c) At Step=50**, the model aggressively strips
 1206 these non-speech components, yielding a clean but spectrally divergent signal. **(b) Step=10**
 1207 offers the optimal balance, preserving the environmental “atmosphere” necessary for high speaker
 1208 similarity.

1209 Diffusion-based decoding inherently acts as a progressive denoiser. While increasing inference
 1210 steps (T) typically refines signal detail, it also biases the output toward an idealized, “clean” speech
 1211 distribution. However, for “in-the-wild” podcast data, a speaker’s identity is perceptually entangled
 1212 with their acoustic environment (e.g., room reverberation, microphone response, and ambient noise
 1213 floor).

1214 Figure 6 visualizes how this denoising behavior affects acoustic consistency. The voice prompt
 1215 (a) contains visible background spectral textures characteristic of natural recordings. At $T = 50$
 1216 (c), the model aggressively suppresses these non-speech components, producing audio that is
 1217 technically cleaner (akin to a studio recording) but spectrally mismatched from the reference. This
 1218 “over-cleaning” explains the counter-intuitive drop in SIM-O scores at higher steps: the metric
 1219 penalizes the absence of the reference’s environmental noise. In contrast, generation at $T = 10$
 1220 (b) retains these stochastic elements, maintaining the acoustic “atmosphere” of the prompt and thus
 1221 achieving higher similarity scores.

1222 **LLM USAGE STATEMENT**

1223 A large language model (LLM), namely *Gemini 2.5 Pro*, was employed solely for **grammar**
 1224 **checking** of the manuscript. It was also used to generate dialogue text for the subjective evaluation
 1225 of VIBEVOICE.

1226 The LLM did **NOT** contribute to the research design, training data collection, analysis, or
 1227 interpretation of results. The authors bear full responsibility for the accuracy and integrity of all
 1228 content presented in this paper.

1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241