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ABSTRACT

High-resolution imagery is often hindered by limitations in sensor technology,
atmospheric conditions, and costs. Such challenges occur in satellite remote sens-
ing, but also with handheld cameras, such as our smartphones. Hence, super-
resolution aims to enhance the image resolution algorithmically. Since single-
image super-resolution requires to solve an inverse problem, such methods must
exploit strong priors, e.g. learned from high-resolution training data, or be con-
strained by auxiliary data, e.g. by a high-resolution guide from another modality.
While qualitatively pleasing, such approaches often lead to ”hallucinated” struc-
tures that do not match reality. In contrast, multi-image super-resolution (MISR)
aims to improve the (optical) resolution by constraining the super-resolution pro-
cess with multiple views taken with sub-pixel shifts. Here, we propose SuperF,
a test-time optimization approach for MISR that leverages coordinate-based neu-
ral networks, also called neural fields. Their ability to represent continuous sig-
nals with an implicit neural representation (INR) makes them an ideal fit for the
MISR task. The key characteristic of our approach is to share an INR for multiple
shifted low-resolution frames and to jointly optimize the frame alignment with
the INR. Our approach advances related INR baselines, adopted from burst fusion
for layer separation, by directly parameterizing the sub-pixel alignment as opti-
mizable affine transformation parameters and by optimizing via a super-sampled
coordinate grid that corresponds to the output resolution. Our experiments yield
compelling results on simulated bursts of satellite imagery and ground-level im-
ages from handheld cameras, with upsampling factors of up to 8. A key advantage
of SuperF is that this approach does not rely on any high-resolution training data.

1 INTRODUCTION

The spatial resolution of imaging is often limited by sensor capabilities, atmospheric interference,
and acquisition costs, affecting various domains including satellite remote sensing, smartphone pho-
tography, and medical imaging. Super-resolution (SR) aims to overcome such physical constraints
algorithmically. Single-image super-resolution (SISR) methods tackle this inverse problem by re-
lying on strong priors, typically learned from extensive high-resolution (HR) datasets (Ledig et al.,
2017; Zhang et al., 2023), or through auxiliary guidance from complementary modalities (De Lutio
et al., 2019; 2022; Metzger et al., 2023; Mei et al., 2025). Although SISR methods can produce
visually appealing results, their reliance on learned priors often leads to hallucinated structures that
diverge from the true underlying scene (Cohen et al., 2024). This may be tolerable for smartphone
applications, but not for applications in medicine and science.

To mitigate some of these issues, multi-image super-resolution (MISR) has emerged as a special
case of super-resolution by incorporating additional information from multiple low-resolution (LR)
images captured with slight sub-pixel shifts (Tsai & Huang, 1984; Irani & Peleg, 1991; Elad &
Feuer, 1997). As sub-pixel shifts vary across the repeated LR frames, the discretization introduces
different aliasing artifacts in each frame. While these artifacts seem to be noise in the LR data, they
can be leveraged as complementary information to compute the shared underlying high-resolution
image (Wronski et al., 2019).

While MISR can be approached with supervised learning-based methods (Bhat et al., 2021a;b)
when large training datasets with paired LR and HR data are available, MISR can also be achieved

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

align

Output:
HR RGB 

loss

Pooled to match 
LR frames

Targets: 
multiple shifted 

LR frames

Coordinate 
transform

(affine) 

loss

loss
Po

si
tio

na
l e

nc
od

in
g

Input:  
coordinates
on HR grid

D
ec

od
er

av
g 

po
ol

av
g 

po
ol

av
g 

po
ol

align

align

INR: 
implicit neural 
representation

fixed base frame

frozen parameters updated parameters

Figure 1: Illustration of the proposed method. SuperF achieves multi-image super-resolution by
sharing an implicit neural representation (INR) across multiple low-resolution (LR) frames with sub-
pixel shifts. The LR frames are aligned by jointly optimizing an affine coordinate transformation for
each LR frame, together with the parameters of a coordinate-based multi-layer perceptron (MLP)
that decodes the input coordinates to RGB values. Hence, leveraging the continuous characteristics
of INRs for both the sub-pixel alignment in the pixel coordinate space and for representing the
underlying high-resolution (HR) signal.

by test-time optimization (TTO) approaches that do not require offline training (Wronski et al., 2019;
Lafenetre et al., 2023). The latter are particularly interesting, since HR data acquisition is expensive
and the creation of large training datasets by pairing of LR images and HR data is non-trivial (Bhat
et al., 2021a). Typically, MISR is associated with bursts of images captured in rapid succession.
Repeated observations in satellite remote sensing also provide a multi-frame scenario with longer
time intervals.1

In this work, we introduce SuperF, a test-time optimization approach for MISR leveraging the con-
tinuous field of implicit neural representations (INR). SuperF shares an INR across multiple shifted
LR frames, while jointly estimating the frame-specific alignment. Iteratively refining both the align-
ment and the shared neural representation effectively reconstructs the underlying high-resolution
image on a continuous field (see Fig. 1 for an illustration of the proposed method).

INRs are coordinate-based neural networks, also called neural fields2, typically parameterized by
multi-layer perceptrons (MLPs) that map continuous input coordinates (such as 2D image locations)
directly to signals like RGB pixel intensities. Optimizing the parameters of such an MLP on an
image implicitly encodes the image within its weights. Beyond image representation, INRs have
been successfully adopted for data compression (Strümpler et al., 2022; Kwan et al., 2024), 3D shape
modeling (Park et al., 2019; Mescheder et al., 2019), novel-view synthesis with neural radiance
fields (NeRF) (Mildenhall et al., 2020), and burst fusion for denoising (Pearl et al., 2022) or layer
separation of obstructions and background scenes (Nam et al., 2022; Chugunov et al., 2024).

The common unsupervised way to solve the MISR problem is to map the series of LR frames to
a HR image, for example using steerable kernel regression (Wronski et al., 2019; Lafenetre et al.,
2023). Instead of using the LR frames as an input to our model, we draw inspiration from the guided
super-resolution work by De Lutio et al. (2019) and turn the problem formulation up-side down and
treat the LR frames as reconstruction targets. While Nam et al. (2022) have explored such directions
for burst fusion and layer separation tasks, their method was not designed to accurately solve sub-
pixel frame alignment, which we show is crucial for MISR. Here, we build on these great ideas and

1Like prior work we use the terms burst and multi-frame interchangeably (Wronski et al., 2019).
2We note that the term neural fields is used differently in computational neuroscience (Amari, 1977).
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design INRs dedicated for the MISR task. By directly parameterizing the affine transformations
for the frame alignment and by introducing a supersampling strategy, we improve the sub-pixel
alignment and consequently the MISR performance.

We empirically validate the proposed SuperF algorithm on bursts obtained from satellite imagery as
well as ground-level images from handheld cameras. In both cases, SuperF gave compelling results.
A key aspect of our approach is that it is a TTO method that avoids the need for large amounts of
high-resolution training data. This also minimizes the risk of hallucinating high-resolution struc-
tures, as opposed to supervised learning based approaches. Our contributions are summarized as
follows:

1. We propose SuperF, a test-time optimization method for MISR based on implicit neural
representations. We demonstrate that jointly optimizing the sub-pixel frame alignment
with an MLP shared across frames is both simple and key to adopt INRs to the MISR task.

2. Our method yields an improved sub-pixel alignment and continuous representation of the
high-resolution signal, by directly parameterizing the affine transformations and by opti-
mizing the INR with a supersampling strategy.

3. We introduce SatSynthBurst, a synthetic satellite burst dataset for MISR research and
demonstrate that our proposed approach generalizes to different domains including ground-
level bursts from handheld cameras and satellite image bursts.

2 RELATED WORK

2.1 MULTI-IMAGE SUPER-RESOLUTION (MISR)

Existing MISR approaches contain both learning-free and learning-based methods. They are less
prone to hallucinate structures compared to SISR. Test-time optimization (TTO) is applied to exploit
natural hand tremors in handheld smartphone photography to capture bursts of slightly shifted raw
images. Wronski et al. (2019) propose a steerable kernel regression that enables the direct RGB
reconstruction without explicit demosaicing and improving resolution and signal-to-noise ratio, a
technology built into the ‘pixel’ phone. This approach was later reimplemented and adapted for
satellite burst applications (Lafenetre et al., 2023).

Like SISR approaches that aim to learn priors from large training datasets, the MISR problem
has also been approached with both supervised (Bhat et al., 2021a;b; Cornebise et al., 2022) and
self-supervised (Nguyen et al., 2022) learning. Deep neural network architectures for burst super-
resolution were proposed to learn the alignment of multiple noisy RAW inputs in latent space via
optical flow and the fusion with attention-based modules (Bhat et al., 2021a). Bhat et al. (2021b)
proposed a deep reparameterization of the MISR problem and formulated the reconstruction objec-
tive in a learned latent space.

In this work, we propose a TTO approach leveraging the continuous nature of INR by jointly op-
timizing the alignment of low-resolution frames in a continuous coordinate space. Hence, our ap-
proach does neither require any high-resolution training data, nor a pre-processing step to register
the LR frames. We compare our results with the approach proposed by Lafenetre et al. (2023),
which is the closest state-of-the-art TTO approach and, at the same time, the only publicly available
implementation. Since their high-resolution test data is not publicly available, we compare results
on two different datasets. A handheld burst dataset (Bhat et al., 2021a) and a new synthetic satellite
image burst dataset based on open high resolution images (Cornebise et al., 2022). As opposed to
prior work that focuses on one domain, we demonstrate that our approach generalizes to different
domains including satellite and ground-level image bursts.

2.2 IMPLICIT NEURAL REPRESENTATIONS (INR)

Recent advances in INRs have demonstrated the strength of representing continuous signals across
various tasks (Essakine et al., 2025), but the development of INR has mainly been driven by 3D
shape modeling (Park et al., 2019; Mescheder et al., 2019) and novel-view synthesis (Mildenhall
et al., 2020). These techniques have been adopted for multi-view satellite data (Derksen & Izzo,
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2021; Xiangli et al., 2022), species distribution modelling (Cole et al., 2023), and medical imaging
to e.g. model 3D MIR volumes (Wu et al., 2021).

Recently INRs have been studied for single-image SR at arbitrary-scales (Chen et al., 2021; Cao
et al., 2023; Chen et al., 2023; Zhu et al., 2025). Notably, Chen et al. (2021) propose the Local
Implicit Image Function (LIIF) that models RGB values at arbitrary scaling factors. They devised
a supervised learning approach that combines the explicit representation from a learned embedding
with a local INR that is anchored in the nearest neighbor embeddings. Extending along this line of
work, Becker et al. (2025) propose Thera, a neural heat field that explicitly models the point spread
function (PSF) to enable analytically correct anti-aliasing at any resolution.

Here we bring forward an approach to leverage the continuous characteristics of INRs for multi-
image SR. As opposed to prior work on INR for SISR, we do not investigate a supervised approach.
Since it is challenging to build training datasets for multi-image super-resolution, we propose a
TTO-based solution that does not require any high-resolution training data, but optimizes an INR
on multiple shifted LR frames. Key to our proposed approach is the joint optimization of the INR
with the alignment of the LR frames, which allows us to share an INR across frames leading to a
continuous representation of the underlying high-resolution signal.

Closest to our work is the NIR approach presented by Nam et al. (2022). Although originally devel-
oped to fuse bursts for layer separation, NIR also serves as an INR baseline for the MISR task. Our
method differs in three components. First, while NIR estimates transformation matrices Tt = g(t)
using a separate ReLU MLP g conditioned on the frame index t, we directly parametrize the trans-
formation matrices as part of the model. Second, to improve sub-pixel alignment, we introduce a
supersampling strategy to optimize the model on a high-resolution coordinate grid that is subse-
quently downsampled for supervision with the LR frames (similar strategies have been proposed to
enhance details in novel view synthesis (Wang et al., 2022)). Finally, following prior MISR work
(Wronski et al., 2019), rather than estimating transformations for all frames, we use the base frame
as the reference coordinate system to relatively align all other LR frames. This reduces the degrees
of freedom and facilitates evaluation with high-resolution reference data by avoiding misalignment.

3 METHODOLOGY

We describe images by functions [0, 1)d → Rnc mapping coordinates to intensities. In our appli-
cation, we consider two-dimensional RGB frames in homogeneous coordinates, i.e., d = 3 and
nc = 3. Our input are T low-resolution frames y(1)

LR , . . . ,y
(T )
LR in discretized form, i.e., we are given

the values at a finite discrete set of points W ⊂ [0, 1)d. Our goal is to find an approximation ŷHR
of the underlying high-resolution signal yHR at points V ⊂ [0, 1)d. Typically, V and W are grid
points and |V| > |W| because the y(t)

LR are sampled with a lower resolution than the target resolution
defined by V .

Our approach is based on the assumption that y(t)
LR(v) ≈ φ ∗ yHR(A

(t)v), where A(t) is an affine
transformation matrix and φ is a boxcar filter. Convolution with the boxcar filter implements a
spatial average pooling. The affine transformation matrix models misalignments by rotation and
translation in the homogeneous coordinate system. In contrast to standard registration methods, our
goal is to also exploit misalignments by sub-pixel shifts, i.e., smaller than ∥wi − wj∥∞ for any
wi,wj ∈ W .

3.1 IMPLICIT NEURAL REPRESENTATION (INR) SHARED ACROSS FRAMES

To optimize an implicit representation of an image, we make use of a coordinate-based multi-layer
perceptron (MLP). The MLP model is denoted by fθ with learnable parameters θ. It is optimized to
output the intensities ŷ (e.g., RGB pixel values) for the corresponding input coordinate v ∈ [0, 1)d.

To share the implicit neural representation for T shifted low-resolution frames, we need to align
them on a sub-pixel scale. To achieve this, we make use of the continuous nature of INRs and
optimize the parameters of affine transformation matrices Â(t) that are applied to transform the
input coordinates for each frame t. Following prior work (Wronski et al., 2019), we use the base
frame as the reference coordinate system and set Â(1) = I , where I is the identity matrix (see
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Fig. 1). The coordinates v correspond to the high-resolution grid of the base frame:

ŷ
(t)
θ (v) = fθ(Â

(t)v) (1)

The transformation matrices Â(t) are directly parameterized by two translation parameters ∆x(t)

and ∆y(t) as well as one rotation angle α(t) for each frame. In contrast, Nam et al. (2022) proposed
to estimate transformation matrices with another MLP for burst fusion.

3.2 OPTIMIZATION WITH LOW-RESOLUTION FRAMES

We propose a supersampling strategy to improve the sub-pixel alignment and consequently the im-
plicit neural representation of the HR signal. During optimization, we run the INR at the high-
resolution grid v corresponding to the resolution of the super-resolved output. Since we only have
the y(t)

LR available for the optimization, we need to match the output of the INR to the low-resolution
frames. That is, we want to find θ and Â(t) such that

ŷ
(t)
LR, θ(v) = φ ∗ fθ(A(t)v) (2)

equals y(t)
LR(v) on v ∈ W . We fix the boxcar filter φ, which is implied by different resolutions of the

discretized HR output and the given LR images. Ultimately, we optimize for multiple low-resolution
frames by averaging a point-wise loss ℓ across the T frames:

argminL(θ, Â(1), . . . , Â(T )) =
1

T

T∑
t=1

∑
v∈W

ℓ
(
ŷ
(t)
LR, θ(v),y

(t)
LR(v)

)
(3)

In practice, the convolution with the boxcar filter and the sampling at grid points W is simply
implemented by an average pooling. We use MLPs with ReLU activation functions and stochastic
gradient descent with mini batches of frames.

3.3 UNCERTAINTY ESTIMATION

To account for noise in the LR frame targets, we investigate the role of modelling the heteroscedastic
uncertainty, that is, pixel-wise uncertainty in the LR targets. By switching from the mean squared
error (MSE) to the Gaussian negative log-likelihood (GNLL), we optimize an additional uncertainty
decoder to model a pixel-wise variance. This allows the model to minimize the loss by increasing
the variance in noisy pixels, instead of forcing it to minimize the reconstruction error. This decoder
is shared across all LR frames and takes as input both the decoded output and the LR frame to
predict a pixel-wise variance map for each LR frame. In practice, we use another small MLP with
3 layers as the uncertainty decoder and treat the output as the log-variance and apply an exponential
activation to guarantee that the variance is positive.

3.4 INPUT TRANSFORMS FOR HIGH-RESOLUTION REPRESENTATIONS

Since we can only optimize the model on low-resolution ‘views’ of the underlying high-resolution
signal, the MLP is prone to output only the low-frequencies of the signal. Hence, to recover high-
frequencies captured by the multiple LR frames, we need to steer the MLP to output high-frequency
details. In general, coordinate-based MLPs exhibit a spectral bias. The networks prioritize the
reconstruction of low-frequency components of the target signal, whereas high-frequency details
emerge only slowly during the convergence of optimization. Several approaches have been proposed
to overcome this spectral bias (Sitzmann et al., 2020; Saragadam et al., 2023). We rely on the
commonly used Fourier features (Tancik et al., 2020) as a positional encoding. The feature map
γ : [0, 1)d → R2m is based on a random set of sine and cosine basis functions:

γ(v) =
[
cos(2πbT

1 v), . . . , cos(2πb
T
mv), sin(2πbT

1 v), . . . , sin(2πb
T
mv)

]T
(4)

Each bi ∈ Rd, i = 1, . . . ,m, is sampled from an isotropic multi-variate Gaussian distribution
N (0, σ2I), where the scale σ is a hyperparameter controlling the range of the sampled frequencies.
We show that this hyperparameter is sensitive to the domain (e.g., satellite images vs. ground-level
burst images), but the same value performs well across all samples within a domain.3

3Tancik et al. (2020) establish the relation between σ2 and the bandwidth of the neural tangent kernel mod-
elling the resulting MLP. They argue that a wider kernel supports the learning of high frequency components,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 DATASETS

Our experiments are based on datasets from two domains: remote sensing and handheld cameras (see
examples in Fig. 2). First, we create a synthetic burst dataset from high-resolution satellite images to
study various characteristics and the sensitivity of our proposed approach. Second, we demonstrate
that our SuperF approach also generalizes to ground-level bursts from handheld cameras.

SatSynthBurst (satellite imagery). To study MISR for satellite imagery bursts we constructed
a synthetic burst dataset derived from 20 open high-resolution satellite images selected from the
WorldStrat dataset (Cornebise et al., 2022) (see examples in Appendix). For each high-resolution
sample, we generate 16 low-resolution frames with scale factors 2, 4, and 8, by randomly sampling
sub-pixel shifts. Our dataset provides one LR base frame that is spatially aligned with the HR test
images, a missing feature of existing datasets. This framework allows to study the influence of dif-
ferent upsampling factors keeping the HR resolution fixed. Furthermore, it gives us control over
the sub-pixel shifts, and noise intensity. Although, our approach does not require the true parame-
ters of the misalignment, they allow us to monitor the optimization dynamics when estimating the
alignment. To realistically simulate the image formation process, we use spectral variations and
additive Gaussian noise in all experiments (if not further specified). We follow the best practices for
generating synthetic super-resolution data to mimic the modulation transfer function (MTF) of the
Sentinel-2 sensor described by Lanaras et al. (2018). Details in the Appendix section A.1.

SyntheticBurst (ground-level imagery). To evaluate on handheld bursts of ground-level scenes,
we make use of the SyntheticBurst data provided by Bhat et al. (2021a) and e.g. used by Bhat et al.
(2021b). We select 50 out of the 300 provided ground level bursts that provide interesting high-
resolution structures, i.e., we remove for example bursts that are crops of homogeneous areas such
as building walls or skies. Each burst consists of 14 LR frames, originally at a scale factor of ×8.
To study different upsampling factors, we vary the HR output resolution by downsampling the HR
reference images, but we keep the LR frames as provided to avoid changing the underlying noise
model. Since this dataset does not provide a base LR frame aligned with the the HR test image, we
run a brute force postprocessing to improve the alignment of the predictions before computing the
error metrics (see Appendix section A.3).

4.2 EXPERIMENTAL SETUP

We follow standard practices in super-resolution and report Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) (using AlexNet), computed using the implementation by Bhat et al. (2021a). All exper-
iments are implemented in PyTorch and executed on a single NVIDIA H100 GPU with 80 GB of
VRAM (note, our experiments typically need around 1GB of VRAM). If not further specified, all
experiments use the AdamW optimizer with a base learning rate of 2 × 10−3, which is decayed to
1× 10−6 over 2000 iterations using a cosine annealing schedule and a batch size of 1 frame.

During evaluation, a 16-pixel boundary is cropped from all sides to reduce edge artifacts. We addi-
tionally apply color matching as a post-processing step, following Bhat et al. (2021a), to correct for
global color and intensity shifts between the reconstruction and the ground truth. The scale hyper-
parameter of the Fourier feature positional encoding is set to 10 for the SatSynthBurst and to 3 for
the SyntheticBurst dataset.

4.3 COMPARISON TO EXISTING TEST-TIME OPTIMIZATION APPROACHES

Baseline approaches. As we propose a TTO approach, we compare to a state-of-the-art TTO
approach for MISR, a steerable kernel regression method by Lafenetre et al. (2023), which is an
adapted version of the approach described by Wronski et al. (2019). We also compare to a burst
fusion approach by Nam et al. (2022) (named NIR) and adapt it as a MISR baseline. Although

but that a too wide kernel can lead to aliasing artifacts. They conclude that the parameter is problem dependent
and has to be tuned.
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Table 1: Comparison with TTO baselines. PSNR (↑) for different upscaling factors. Note that
the SatSynthBurst fixes the HR output resolution while SyntheticBurst fixes the resolution of the
LR frames. Hence, as the upsampling factor increases, we only expect lower performance metrics
for SatSynthBurst. Experimental setup: upsampling factors ×2, ×4, ×8, 16 LR frames. Standard
deviation across samples is given in parentheses and the number of iterations in square brackets.

SatSynthBurst SyntheticBurst
×2 ×4 ×8 ×2 ×4 ×8

Bilinear 34.69 (3.50) 29.71 (3.64) 26.62 (3.68) 27.66 (3.50) 26.12 (3.72) 25.44 (3.82)
Lafenetre et al. (2023) 33.46 (3.62) 27.70 (3.79) 24.88 (3.71) 27.02 (3.29) 26.46 (3.05) 25.19 (2.97)
Nam et al. (2022) [2k] 26.26 (3.91) 24.63 (4.41) 23.85 (3.79) 23.62 (4.43) 22.69 (4.41) 22.28 (4.40)
Nam et al. (2022) [5k] 25.65 (5.82) 24.99 (4.12) 23.61 (2.97) 24.46 (4.31) 23.39 (4.32) 22.93 (4.33)
Ours MSE [2k] 36.73 (1.66) 32.94 (1.83) 28.87 (2.32) 29.38 (3.43) 27.90 (3.94) 27.08 (3.97)
Ours GNLL [2k] 37.06 (1.96) 33.36 (2.03) 28.84 (2.24) 27.30 (3.57) 26.74 (3.70) 25.98 (3.80)

developed for burst fusion for layer separation tasks, it is related to our method as it uses an INR
with a built-in frame alignment (as introduced in section 2.2). To study the effect of each proposed
methodological component, we integrate the NIR approach in our framework to keep all other com-
ponents, that are design choices, the same. Thus, for both our SuperF and NIR, we use i) the same
INR encoder (i.e., Fourier features with a ReLU MLP instead of Siren), ii) an affine matrix (instead
of a homography), and iii) the same batch optimization. As proposed by Nam et al. (2022), we run
NIR for up to 5k iterations. For reference we also report the performance of a bilinear upsampling
of the LR base frame. We report results of our approach with both the MSE and GNLL loss as
described in section 3.3.

Comparison results. We present quantitative results in Table 1 and Appendix Table 5 and show
qualitative comparison in Fig. 2 (and Appendix Fig. 9–11). We see that our approach outperforms
both baselines using both loss function. While the MSE performs better on the ground-level bursts,
the GNLL loss yields a systematic improvement on the satellite image bursts, across several upsam-
pling factors (see Table 1). While the approach by Lafenetre et al. (2023) improves compared to the
bilinear baseline in terms of LPIPS, it does not yield better PSNR nor SSIM.

Qualitatively, the methods by both Lafenetre et al. (2023) and Nam et al. (2022) seem to be able
to smooth and hence denoise the ground-level bursts, but lead to overly smooth results (Fig. 2).
Furthermore, we observed that for some satellite scenes, NIR produces a constant output and col-
lapses at the beginning of the optimization. Our proposed approach yields pleasing results that can
deal with the high noise-level in the ground-level bursts and represent the high-resolution signal in
satellite scenes.

4.4 ABLATION STUDIES AND SENSITIVITY ANALYSES

To understand the individual components of our proposed methodology, we evaluate the perfor-
mance gradually turning on each component in Table 2. We start with using our implementation
of the INR with just a single LR frame (first row), but compare the resulting high-resolution recon-
struction. This base experiment corresponds to an INR without using i) the Fourier feature positional
encoding (FF); ii) the multiple LR frames (multi-frame); iii) the optimization of the alignment of
the LR frames (align); iv) the estimated heteroscedastic uncertainty (GNLL).

We confirm that the positional encoding is a crucial aspect for INR also in the MISR setup. How-
ever, optimization on a single LR frame is not able to recover any high-resolution details and, in
fact, performs similar to a bilinear upsampling when used with the FF encoding (comparing Table 2
with Appendix Table 5). Next, we evaluate the performance of optimizing a shared INR on multiple
LR frames without optimizing their alignment (third row). Compared to optimizing with a single
LR frame, this leads to an even lower performance – a result of the sub-pixel shifts which blurs
the signal. Only by optimizing the sub-pixel alignment together with the shared INR, our proposed
approach is able to leverage the information in multiple LR frames, which leads to substantial im-
provement in performance (fourth row). These results hold systematically for both domains, satellite
images (SatSynthBurst) and ground-level bursts (SyntheticBurst). Lastly, we find that the modelling
of heteroscedastic uncertainty can only lead to an improved performance for the satellite image

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LR Sample Bilinear Lafenetre NIR Ours (MSE) HR Reference

Figure 2: Qualitative comparison with upsampling factor ×4. From left to right, we show: one
low-resolution (LR) frame, bilinear upsampling, steerable kernel regression (Lafenetre et al., 2023),
NIR (Nam et al., 2022), our SuperF approach, and the high-resolution (HR) reference.

Table 2: Ablation studies. We study the importance of the individual components of our proposed
approach. The base experiment (first row) corresponds to an INR without: i) the Fourier feature posi-
tional encoding (FF); ii) using multiple LR frames, i.e. a single frame (multi-frame); iii) optimizing
the alignment the LR frames (align); iv) without estimating the heteroscedastic uncertainty, i.e. us-
ing MSE instead of GNLL. Experimental setup: upsampling factor ×4, 16 LR frames. Standard
deviation across samples shown in parentheses.

SatSynthBurst SyntheticBurst
FF multi-frame align GNLL PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
✗ ✗ ✗ ✗ 24.98 (4.17) 0.545 (0.174) 0.629 (0.134) 25.94 (4.52) 0.676 (0.149) 0.509 (0.150)
✓ ✗ ✗ ✗ 29.92 (2.91) 0.744 (0.063) 0.190 (0.044) 26.63 (3.59) 0.659 (0.124) 0.412 (0.115)
✓ ✓ ✗ ✗ 27.87 (3.08) 0.643 (0.116) 0.360 (0.078) 24.61 (4.52) 0.628 (0.161) 0.501 (0.139)
✓ ✓ ✓ ✗ 33.03 (2.01) 0.865 (0.025) 0.113 (0.035) 29.67 (4.65) 0.807 (0.104) 0.232 (0.103)
✓ ✓ ✓ ✓ 33.48 (2.19) 0.873 (0.025) 0.098 (0.033) 27.91 (4.53) 0.762 (0.114) 0.271 (0.095)

bursts that consist of variations in brightness, contrast, and Gaussian noise. The GNLL loss does not
improve on the ground-level bursts, which could be caused by non-Gaussian noise in this data.

Effect of the proposed components. To understand which of the proposed components lead to
an advancement over the closest method by Nam et al. (2022), we investigate the effect by turning
each component on and off individually in Table 3. We find that using a direct paremetrization of
the affine transformation parameters, instead of using another MLP to estimate the transformation
is most crucial, followed by the supersampling strategy, to reduce the sub-pixel alignment error and
MISR performance. Fixing the base frame is also complementary, but only when using our direct
parametrization. Combined, all three components substantially improve super-resolution perfor-
mance and reduce the sub-pixel alignment error (MSE).

Sensitivity analyses Our method mainly depends on one key hyperparameter, the scale of the
Fourier features σ2, as described in section 3.4. We show that our algorithm is sensitive to this
parameter in Appendix Fig. 6 and 7 and that the best Fourier feature scale depends on the domain.
For the satellite image bursts an optimal scale is 10 and for the ground-level bursts it is 3. However,
the optimal setting does not depend on the loss and the same setting generalizes across samples in
the same domain. Furthermore, we investigate the sensitivity to the number of LR frames in the
Appendix section C.2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effect of the proposed components to advance the NIR baseline (Nam et al., 2022) on the
SatSynthBurst dataset (without spectral augmentations). The first row is the NIR baseline without
any of our contributions. Variants incrementally add or remove: i) direct parameterization of T
(“Direct T ”), ii) training with supersampling (“SS”), and iii) using a fixed base frame (“FBF”).

Method Direct T SS FBF PSNR ↑ SSIM ↑ LPIPS ↓ Align. Err. ↓ Iter.

NIR (Nam et al., 2022) ✗ ✗ ✗ 25.02 0.559 0.596 2.836 2000

✓ ✗ ✗ 26.82 0.658 0.299 0.010 2000
✗ ✓ ✗ 25.41 0.519 0.584 0.566 2000
✗ ✗ ✓ 24.99 0.551 0.607 4.024 2000

✗ ✓ ✓ 25.25 0.484 0.595 3.546 2000
✓ ✗ ✓ 27.01 0.665 0.296 0.010 2000
✓ ✓ ✗ 32.72 0.876 0.187 0.010 2000

SuperF (ours) ✓ ✓ ✓ 35.66 0.921 0.173 0.009 2000

4.5 DISCUSSION

Our proposed MISR approach, which jointly optimizes the alignment of LR frames and a shared
INR, exhibits several advantageous characteristics: i) While existing approaches require a pre-
alignment step, SuperF directly works on large shifts by optimizing the alignment in continuous
coordinate space (see Appendix section C.4). ii) As a TTO approach, there is no need for any high-
resolution training data. This allows SuperF to be applied to new domains without any pretraining.
However, some limitations exist.

Limitations. Run time may limit certain applications. Although our compact MLP is fairly
memory-efficient, the iterative optimization process takes several seconds in our experiments (run-
ning non-optimized code). This may pose limitations for mobile device applications, but is less
critical for remote sensing scenarios and other scientific and medical applications. A possible way
to reduce the number of iterations needed may be to learn the initialization of the INR as shown by
Tancik et al. (2021). Real-world data can be highly noisy. For instance, satellite imagery may also
partially be affected by cloud cover and handheld ground-level bursts may depict changing scenes.
We assume that the observations capture the same scene. Occlusions and other drastic changes be-
tween frames introduce noise, which requires further analyses. However, our uncertainty estimation
module may help to be robust to such noise. Risk of overfitting increases when setting the Fourier
features scale hyperparameter too high. While this parameter depends on the domain, it is rather
robust across samples within a domain. INR decoders that avoid such a positional embedding such
as SIREN (Sitzmann et al., 2020) or WIRE (Saragadam et al., 2023) might be possible alternatives.

Impact on society. The ability to super-resolve publicly available real data like Sentinel-2 (see
Appendix Fig. 8) enables a vast range of applications anywhere on Earth. This approach can support
efforts to address critical societal challenges such as climate adaptation, biodiversity conservation,
and food security, for example, by facilitating environmental monitoring of deforestation, tree cover,
tree counting, and mapping agricultural fields. However, these technological advances also carry the
potential for misuse, including in the context of geopolitical conflicts or resource exploitation.

5 CONCLUSION

We bring forward an approach to leverage the continuous characteristics of implicit neural repre-
sentations for multi-image super-resolution. The key characteristic of SuperF is to jointly optimize
the sub-pixel alignment of multiple low-resolution frames while sharing an INR across all frames.
SuperF improves upon existing INR-based burst fusion approaches by optimizing INRs with a di-
rect parameterization of the affine transformations and using a supersampling strategy, which leads
to improved sub-pixel alignment and thus MISR performance. As a TTO method, SuperF does
not require any high-resolution training data, which facilitates the applicability to new domains and
minimizes the risk of hallucinating high-resolution structures.
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A DATASET CREATION AND EVALUATION PROCEDURE

In this section we provide details on i) the downsampling of high-resolution satellite images to
create synthetic bursts of slightly shifted low-resolution images and ii) the postprocessing needed
for evaluating the predicted high-resolution images.

A.1 CREATION OF THE SATSYNTHBURST DATASET (SATELLITE IMAGERY)

We constructed a synthetic burst dataset derived from 20 open high-resolution satellite images se-
lected from the WorldStrat dataset (Cornebise et al., 2022) (see examples in Fig. 3). The high-
resolution images from Airbus SPOT 6/7 satellite with a ground sampling distance (GSD) of up
to 1.5 m are published under a CC BY-NC 4.0 license4, which allows us to publicly redistribute
our SatSynthBurst datasets under the same license for non-commercial purposes. We aim to simu-
late low-resolution images comparable to the Sentinel-2 mission, but at varying spatial resolutions
allowing to study downsampling factors s of 2, 4, and 8. To simulate variation in the imaging
conditions that could occur between images captured over several weeks, we incorporate spectral
augmentations and additive Gaussian noise. Additionally, we follow the work by Lanaras et al.
(2018) for generating synthetic super-resolution data using the modulation transfer function (mtf )
of the Sentinel-2 sensor. Hence, before downsampling, we blur the high-resolution images with a
Gaussian filter of standard deviation u = 1/s pixels, which emulates the mtf of Sentinel-2 and,
thus, the effective point spread function (psf ) which is described as psf =

√
−2 log(mtf)/π2. This

is followed by an average pooling with a window size of s× s.
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Figure 3: Examples of the SatSynthBurst dataset (factor ×4). The top row shows the underlying
high-resolution (HR) image. Below we show four slightly misaligned low-resolution (LR) frames.

A.2 POSTPROCESSING FOR EVALUATION

We follow common practice in evaluating MISR results and use a spectral alignment proposed by
Bhat et al. (2021a) to correct any spectral mismatch between the high-resolution prediction and the
test image. Metrics like the PSNR and SSIM are rather sensitive to small misalignments, whereas
LPIPS is more robust. Furthermore, we follow the evaluation protocol of Bhat et al. (2021a) and

4https://creativecommons.org/licenses/by-nc/4.0/ (accessed: 2025-05-20)
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Figure 4: Examples of the SyntheticBurst dataset (factor ×8). The top row shows the underlying
high-resolution (HR) image. Below we show four slightly misaligned low-resolution (LR) frames.

mask out a buffer of 16 boundary pixels to avoid the effect of any boundary artifacts in the dataset
(specifically, the SyntheticBurst dataset).

A.3 EVALUATION ON SYNTHETICBURST (GROUND-LEVEL IMAGERY)

Unlike our SatSynthBurst dataset, the SyntheticBurst dataset (Bhat et al., 2021a) does not provide a
base frame which is spatially aligned with the high-resolution test image (see examples in Fig. 4).
Thus, an additional postprocessing step is needed, before a predicted HR image can be evaluated
on the given HR test image. Therefore, we employ a brute force spatial alignment strategy to align
the predicted image with the test image using an affine transformation consisting of rotation and a
spatial translation. Our strategy selects the optimal translation within a 4×4 pixel neighborhood and
the optimal rotation angle within a range of [0, 4] degrees.

We have experimented with the alignment strategy presented by Bhat et al. (2021a), that uses a
trained PWC-Net (Sun et al., 2018) to estimate the optical flow from the prediction to the reference
test image. However, this led to artifacts in the warped prediction, which is why we chose the brute
force postprocessing.

B IMPLEMENTATION DETAILS

We summarize the hyperparameter settings for both datasets in Table 4. The only hyperparameter
that is differs between datasets is the Fourier feature scale.

C ADDITIONAL RESULTS

C.1 COMPARISON OF BASELINES WITH ADDITIONAL METRICS

We provide additional evaluation metrics including PSNR, SSIM, and LPIPS for the baseline com-
parison in Table 5.
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Table 4: Hyperparameter settings.

Hyperparameters SatSynthBurst SyntheticBurst
LR resolution 128 / 64 / 32 48
HR resolution 256 96 / 192 / 384

Optimizer AdamW
Learning rate sched. Cosine annealing
Learning rate base 2× 10−3

Learning rate min 1× 10−6

Weight decay 0.05
Adam β (0.9, 0.999)
Batch size 1 LR frame per iteration
Training iterations 2000

Fourier feature scale 10 3
positional encoding dim 256
INR decoder MLP (4 layers, ReLU, dim=256)

Uncertainty decoder MLP (3 layers, ReLU, dim=128)

Table 5: Comparison of test-time optimization methods. Ours uses Fourier feature with scale
10 for SatSynthBurst (satellite) and scale 3 for SyntheticBurst (ground-level). Experimental setup:
upsampling factor ×4, 16 LR frames. Standard deviation across samples is given in parentheses and
the number of iterations in square brackets.

SatSynthBurst SyntheticBurst
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bilinear 29.71 (3.64) 0.746 (0.104) 0.382 (0.043) 26.12 (3.72) 0.703 (0.121) 0.455 (0.077)
Lafenetre et al. (2023) 27.70 (3.79) 0.680 (0.130) 0.261 (0.055) 26.46 (3.05) 0.664 (0.121) 0.384 (0.118)
Nam et al. (2022) [2k] 24.63 (4.42) 0.539 (0.175) 0.595 (0.076) 22.69 (4.41) 0.576 (0.171) 0.616 (0.089)
Nam et al. (2022) [5k] 24.99 (4.13) 0.544 (0.167) 0.587 (0.082) 23.39 (4.32) 0.606 (0.165) 0.574 (0.090)
Ours MSE [2k] 32.94 (1.83) 0.853 (0.035) 0.287 (0.054) 27.90 (3.95) 0.774 (0.102) 0.385 (0.070)
Ours GNLL [2k] 33.35 (2.03) 0.834 (0.043) 0.312 (0.057) 26.73 (3.70) 0.730 (0.109) 0.425 (0.077)

C.2 SENSITIVITY TO THE NUMBER OF LR FRAMES

We study the sensitivity to the number of available LR frames in Fig. 5. This is a critical aspect for
both application domains. Handheld bursts might be limited in the number of frames since the scene
might change for long overall exposure times. Satellite imagery like Sentinel-2 are captured with
a revisit period of ≈5 days. We thus need to consider longer time windows to obtain multi-frame
satellite images. However, longer time windows may lead to changing appearance of the scene due
to activity on the ground or seasonality, which will hinder MISR. Furthermore, cloud-free images
may be scarce, depending on the geographic region.

For the SatSynthBurst dataset, we observe that the PSNR saturates with 8 samples for the factor ×2,
but keeps increasing slightly when using 16 samples for the larger upsampling factors. In contrast,
the PSNR for the ground-level bursts keeps improving with more frames even for the factor ×2.
Additional frames may help to reduce the high noise level in the ground-level bursts.

C.3 SENSITIVITY TO FOURIER FEATURE SCALE

As shown in the main paper, our method is sensitive to the Fourier feature scale, and the optimal
hyperparameter depends on the domain, i.e. satellite imagery and ground-level bursts. We show the
qualitative effect of the different Fourier features scales in Fig. 7. Setting the scale too low leads
to over-smoothing, whereas setting it too high leads to grainy artifacts. However, we find that a
single parameter setting performs well across samples within a domain. We use the optimal setting
for upsampling factor 4 for all experiments including factor 2 and 8 (see hyperparameter setting in
Table. 4).
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Figure 5: Sensitivity to the number of LR frames. From left to right, we report PSNR for upsam-
pling factors 2, 4, and 8 by varying the number of LR frames on the horizontal axis.
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(c) Upsample 8×

Figure 6: Sensitivity analysis of the Fourier feature scale. The optimal hyperparameter depends
on the domain, i.e. satellite imagery (SatSynthBurst in blue) and ground-level bursts (SyntheticBurst
in red) require different settings. However, the optimal setting is invariant to the loss. For Synthet-
icBurst we see a small difference between the upsamling factor experiments. However, we note that
the two datasets differ in the strategy of creating different upsampling factors. The SyntheticBurst
varies the HR output resolution with a fixed resolution of the LR frames. Hence, the absolute output
resolution may affect the optimal Fourier feature scale. In contrast, the SatSynthBurst dataset fixes
the HR output resolution and varies the resolution of the LR frames.

C.4 ABILITY TO ALIGN LARGE SHIFTS WITHOUT PRE-PROCESSING

While existing methods (Wronski et al., 2019; Lafenetre et al., 2023) rely on a pre-alignment proce-
dure to first reduce the misalignment to sub-pixel shifts, our method can directly work on multi-pixel
shifts. Although the PSNR drops consistently with increased shifts, when comparing the results of
bursts with sub-pixel shifts against bursts with shifts up to 4 LR pixels (see Table 6), our method
keeps outperforming the baseline. However, our method breaks in the extreme case with upsam-
pling factor 8, i.e. the shifts of 4 LR pixels correspond to 32 pixels in the high-resolution image
of size 256×256 pixels (i.e., >12% relative shift). Further investigation is needed to study if this
issue could be resolved with a different hyperparameter setting, e.g. by increasing the number of
iterations or the learning rate.

Table 6: Comparing sub-pixel with large misalignments (PSNR). We compare our SuperF results
on bursts with sub-pixel shifts, i.e. max shifts of 1.0 LR pixels, vs. bursts with large shifts up to 4.0
LR pixels. Experimental setup: upsampling factor ×2, ×4, ×8; 16 LR frames. Standard deviation
across samples shown in parentheses.

SatSynthBurst
×2 ×4 ×8

Bilinear 34.73 (3.65) 29.81 (3.88) 26.83 (4.03)

max shift: 1.0 LR pixels Ours MSE 39.93 (2.49) 35.50 (2.39) 29.49 (2.71)
max shift: 4.0 LR pixels Ours MSE 38.24 (2.56) 31.49 (4.13) 18.28 (6.37)
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Figure 7: Effect of the Fourier feature scale σ for MSE (upsampling factor ×4). The optimal
hyperparameter depends on the domain, i.e. satellite imagery and ground-level bursts require differ-
ent settings. Setting the scale too low leads to over-smoothing, whereas setting it too high leads to
grainy artifacts.

C.5 QUALITATIVE RESULTS FOR REAL SENTINEL-2 SATELLITE IMAGE DATA

We demonstrate that our method can be applied to real world satellite images from the publicly avail-
able Sentinel-2 satellite images. We use 8 Sentinel-2 images included in the WorldStrat (Cornebise
et al., 2022) kaggle dataset. Many of the time series included in the WorldStrat dataset are affect
by noise due to lighting variation, partial cloud cover and cloud shadows, changing landcover (e.g.
crops), or seasonal variations like snow cover. In these scenarios, our assumption of repeated obser-
vations of the same scene does not hold and further development is needed to account for such high
noise levels.

LR Bilinear Prediction HR

Figure 8: Qualitative examples using real satellite images. We demonstrate that our method can
align and super-resolve real satellite images from the Sentinel-2 mission by an upsampling factor of
approx. 6 using clean time series from the WorlStrat dataset (Cornebise et al., 2022).

C.6 QUALITATIVE RESULTS FOR DIFFERENT UPSAMLING FACTORS

We provide additional qualitative comparisons for both satellite image and ground-level image bursts
at upsampling factor ×2 (Fig. 9), ×4 (Fig. 10), and ×8 (Fig. 11). We note that the two datasets
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differ in the strategy of creating versions with different upsampling factors. The SatSynthBurst
dataset fixes the HR output resolution and varies the resolution of the LR frames. Hence, we expect
lower performance metrics for SatSynthBurst as the upsampling factor increases. In contrast, the
SyntheticBurst varies the HR output resolution with a fixed resolution of the LR frames. Thus, the
metrics are not comparable across upsampling factors.

We find that for the satellite imagery, our results for the upsampling factor ×8 start to become grainy.
This may be a result of overfitting with a suboptimal hyperparameter setting for the Fourier feature
scale.

D USE OF LARGE LANGUAGE MODELS

We used LLMs as search engines to support literature research and as coding assistants.
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LR Sample Bilinear Lafenetre NIR Ours (MSE) HR Reference

Figure 9: Qualitative comparison with upsampling factor ×2. From left to right, we show: one
low-resolution (LR) frame, bilinear upsampling, steerable kernel regression (Lafenetre et al., 2023),
NIR (Nam et al., 2022), our SuperF approach, and the high-resolution (HR) reference.
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LR Sample Bilinear Lafenetre NIR Ours (MSE) HR Reference

Figure 10: Qualitative comparison with upsampling factor ×4. From left to right, we show: one
low-resolution (LR) frame, bilinear upsampling, steerable kernel regression (Lafenetre et al., 2023),
NIR (Nam et al., 2022), our SuperF approach, and the high-resolution (HR) reference.
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LR Sample Bilinear Lafenetre NIR Ours (MSE) HR Reference

Figure 11: Qualitative comparison with upsampling factor ×8. From left to right, we show: one
low-resolution (LR) frame, bilinear upsampling, steerable kernel regression (Lafenetre et al., 2023),
NIR (Nam et al., 2022), our SuperF approach, and the high-resolution (HR) reference.
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