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Abstract
Physical Neural Networks (PNNs) are energy-efficient alternatives to their digital
counterparts. Because they are inherently variable, noisy and hardly differen-
tiable, PNNs require tailored training methods. Additionally, while the properties
of PNNs make them good candidates for edge computing, where memory and
computational ressources are constrained, most of the training algorithms devel-
oped for training PNNs focus on supervised learning, though labeled data could
not be accessible on the edge. Here, we propose to use Self-Supervised Learning
(SSL) as an ideal framework for training PNNs4 : 1. SSL globally eliminates the
reliance on labeled data and 2. as SSL enforces the network to extract high-level
concepts, networks trained with SSL should result in high robustness to noise and
device variability. We investigate and show with simulations that the later proper-
ties effectively emerge when a network is trained on MNIST in the SSL settings
while it does not when trained supervisely. We also explore and show empiri-
cally that we can optimize layer-wise SSL objectives rather than a single global
one while still achieving the performance of the global optimization on MNIST
and CIFAR-10. This could allow local learning without backpropagation at all,
especially in the scheme we propose with stochastic optimization. We expect this
preliminary work, based on simulations, to pave the way of a robust paradigm for
training PNNs and hope to stimulate interest in the community of unconventional
computing and beyond.

1 Introduction
Unconventional hardware holds the potential for substantial energy savings and faster inference
compared to standard digital hardware to sustain the current boom of deep learning [20]. How-
ever, PNNs, being analog, variable, and noisy, demand tailored training methods. Currently, three
approaches co-exist: first training a digital model on a digital hardware and then transfer them on
analog systems for doing inference[25], in-situ training, and mixed training with hardware-in-the-
loop [34]. However, it is important to notice for our study that most prior work focuses on super-
vised learning5 where a global supervised objective, often a classification loss function, is optimized
through different methods.

In this paper, we question the standard approach of using end-to-end supervised learning for training
PNNs, for two main reasons. First, constraining physical systems as mere classifiers may underuti-
lize their potential benefits. PNNs can exhibit diverse, complex behaviors, akin to feature extractors,
rather than classifiers, as demonstrated in reservoir computing and in-sensor computing. This subtle
nuance could drive significant advancements in the field but also lead to hardware more robust to
noise. The second is more a practical concern but not least. While edge computing is a prominent
application for PNNs, collecting labeled data on the edge for on-device training may be unrealizable.
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Self-supervised learning (SSL) is a multifaceted learning framework that is used to train neural
networks as feature extractors rather than classifiers. SSL achieves this by solving pretext tasks
tailored to downstream tasks. For the specific case of computer vision, SSL relies on strong data
augmentation applied on input data to extract semantic concepts rather than high-frequency features
that do not generalize well.

In this paper, we explore and report preliminary results on the potential benefits of using the SSL
framework in the realm of training and using PNNs. Our contributions are the following:

1. Question and raise awareness of the unconventional computing community about the
majority use of supervised learning methods for training PNNs.

2. Investigate and highlight the desirable emergent properties of SSL for trainng PNNs:
On a toy task, training a MLP on MNIST, we show that using SSL instead of supervised
learning directly leads to a network that is more robust to device variability, internal noise
and sparser architecture. All these features are highly desirable for PNNs as they often
suffer from device variability, device noise.

3. Propose a path toward backprop-free layer-wise training of PNNs: We investigate a
path toward 100% backpropagation-free optimization by proposing to optimize layer-wise
SSL objectives. We perform simulations on MNIST and CIFAR-10 and report accuracies
obtained with networks trained layer-wise on par with networks trained with a global SSL
objective. This highlights the potential of such methods for local-learning. While SSL
relies on non-linear projectors and thus still requires local backpropagation, we finally pro-
pose a way toward backpropagation-free local optimization.

The results presented in this paper are preliminary but are surprising and convincing enough that we
hope it will trigger interest in the unconventinal computing community, as was our first intention
writing this paper.

2 Related works
Self-supervised learning (for computer vision): Instead of explicitly training a network in the
supervised way on a specific task, self-supervised learning [1] aims at compressing the information
contained in input data while focusing on their semantic [8, 28]. A network is ”pre-trained” on a
pretext task that allows to extract semantic features that are used as the input for downstream tasks:
e.g. classification, segmentation, etc. Recent works heavily rely on joint-embedding architectures
[5, 37, 2] (Fig. 1.a) where the network have jointly access to two augmented views (that conserve
the semantics of the input) of the same input data. The SSL training procedure simultaneously
maximizes a similarity objective computed between the resulting two embeddings and optimize a
regularization objective that avoids the feature collapse issue. During training, the representation
vectors (h = f(x)) are fed to a non-linear projector to produce embedding vectors (z = g(h)) that
has been shown to improve the performance [5], and is discarded after pre-training.

Training Physical Neural Networks: Training PNNs is a wide field that includes noise-aware
[36, 13, 19], quantization-aware and hardware-aware training methods [25], methods that embrace
the no-ideal and noisy nature of the actual hardware. It also includes methods to train PNNs in-situ
with backpropagation [34] while it is generally impossible to do.

Local learning with global feedback: Many works attempt to get rid of backpropagation for
training neural networks while still optimizing a global objective by using local updates, whether it is
for more bio-plausibility, for computational efficiency or for hardware constraints. [16, 17, 23, 7, 6]
propose local learning with random projections of either the target or the error signal to the layer
level. [27] leverage the property of convergent energy-based models to backpropagate the error
signal through the symmetric bi-directional synapses and compute local updates. [14] propose to
project targets or learning signals along with the data in a forward way and optimize the similarity
between intermediate representation vectors and the targets at each layer.

Greedy local learning without global feedback: Other works on local learning propose to get
rid of the feedback signal and propose different greedy layer-wise training algorithms. Early works
[3, 32] were motivated for such greedy layer-wise trainings methods when no good initialization
schemes for the parameters were known which impeded end-to-end training with backpropagation.
Recently there is a renew interest for greedy layer(block)-wise training methods for two reasons.
Training very large models on multiple devices requires to synchronize the different devices for
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the forward and the backward passes when using end-to-end backpropagation. Local learning [24,
9, 35] allows desynchronization of the different forward and backward passes on different devices
hence faster training. But greedy layer-wise training methods are also very appealing for training
unconventional hardware with simple local learning rules [11, 14]. In a very recent work [22], the
authors propose to use Forward-Forward-like learning rule to optimize digital linear layers placed
in-between fixed-non-linear physical transformations which allows them do deep physical reservoirs
computing by optimizing intermediate objectives.
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Figure 1: Self-supervised learning paradigm: a. Joint-embeddings non-contrastive self-supervised
learning framework. b-e: We trained three MLPs on MNIST with different frameworks: 1. super-
vised learning without data augmentations, 2. supervised learning with data augmentations and 3.
self-supervised learning (VicREG [2] objective) with heavy data augmentations. We evaluate dif-
ferent metrics on the trained networks and report the test error evaluated on the test set of MNIST.
All noise injected here is centered gaussian noise with varying standard deviation. b. Robustness to
parameters deviation from ideality after training. c. Robustness to activation noise after training. d.
Robustness to pre-activation noise after training. e. Robustness of the networks to mean activation
magnitude-based pruning. f. Robustness of the networks to weights magnitude-based pruning. g.
Averaged activation sparsity of the networks.

3 Self-supervised learning for PNNs
Self-supervised learning focus on learning semantic information rather than high-frequency features
which a network trained in the supervised settings could overfit on. Hence, a network trained in
the SSL settings is more robust to some input perturbations [10] but we can also expect the same
network trained with SSL to be more robust to internal perturbations - either on the parameters or the
activations: SSL could serve as an implicit noise-aware training paradigm. Additionally, because of
the redundancy reduction objectives optimized in methods such as Barlow Twins [37] or VicREG
[2], we can expect both the final representation vector and the internal state of the network to be
sparse. All these potential features are highly sought after for training (and deploying for inference)
PNNs as they imply less parameters, less neurons (so less area and less energy consumption) and
robustness to device variability and noise, which are common feautre in today’s PNNs. In this
section we investigate these features and show the promising use of SSL for training PNNs.
Experimental setup: We focus our investigation on a toy task: training a 4-layers Multilayer
Perceptron (MLP) on MNIST, each layer has 1000 neurons and we use ReLU as the activation
function. We train it with 3 different methods:
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1. End-to-end supervised backpropagation - we minimize the Cross-entropy loss between the
output on the network and the target of the input. We do not use data augmentation tech-
niques for this experiment.

2. End-to-end supervised backpropagation with data augmentation - same as above but with
data augmentation techniques for this experiment (see Supplementary for details).

3. End-to-end self-supervised learning with backpropagation - we optimize the VicREG ob-
jective: we project the activations of the last layer to an embedding space with a 3 layers
MLP (256 neurons per layer, all layers except the last one use ReLU) (see Fig. 1.a for a
schematic of the architecture). We extensively use data augmentation techniques (denoted
as T in Fig. 1.a ) as required for SSL.

For all the experiments, we proceed as follow: we first train the networks within their specific
training framework (SSL or supervised learning). Once the networks are trained, we discard the
last classifier layer of the networks trained in the supervised settings, the last hidden layer acting
as the representation vector similarly to the network trained with SSL. This allow to investigate
the behavior of each network for feature extraction. Except for computing the intrisinc sparsity
of the networks, we supervisely train a new linear classifier on the activations vector of the last
hidden layer. We do it three times so we report the mean error and the standard deviation. For
evaluating the robustness to noise, we add centered gaussian noise to both the parameters and the
neurons. This type of noise is general enough for describing many cases and already used for
real-life unconventional devices such as memristors [4], but in future work focused on a specific
hardware, we should use the relevant type of noise. While we report the lowest test error on MNIST
with the network trained with SSL (∼ 0.6%) compared to the supervised settings without data
augmentation (∼ 1.8%) and to the supervised settings with data augmentation (∼ 0.8%), we do not
report the actual test error if Fig. 1b-f but rather the absolute variation of the test error compared
to that obtained after the initial training of the networks. This allows to compare the trend of each
network rather than the absolute performance of each training settings.
Results:

• Sparsity of the activations: We compute the average number of non-activated neurons (ie
neurons whose activation is 0) in each layer on the entire test set of MNIST. We report the
results in Fig. 1.g. The network trained with SSL is much sparser than the networks trained
in the supervised settings. This indicates that SSL alone allows to trained sparser networks
which results in more hardware efficient models for deployment.

• Robustness to parameters variations: We apply a random additive perturbations to the
trained weights before training the linear classifiers. This allows to simulate the non-ideal
deployment of the trained weights on hardware for performing inference, we do not mimic
random noise at each inference. In Fig. 1.b we report the variation in test error for an
increasing value of the standard deviation of the non-ideality. While not too significant, we
see that the network trained with SSL can tolerate a bit more variability at programming
time than the networks trained in the supervised settings. We provide more explanation on
this behavior in Appendice A.

• Robustness to (pre-)activation noise: At each inference, we apply a random additive
perturbations to the pre-activations or activations of the neurons (except in the linear classi-
fiers). This allows to simulate noisy parameters or neurons during inference. In Fig. 1.c-d
we report the variation in test error for an increasing value of the standard deviation of the
noise. In both cases, the network trained with SSL can handle a significant higher level
of noise compared to the networks trained in the supervised settings. SSL allows the net-
work to be much more tolerant to the internal random noise and hence should be a robust
way to train a PNNs which obviously exhibits internal random noise (that obviously differs
depending on the physics of the hardware [19]).

• Robustness to neurons pruning: We prune the neurons based on their average activation
computed on the whole training set compared to a pruning threshold. We show in Fig. 1.e
the significant advantage of using SSL for training a network compared to supervisely train
it as the network trained with SSL can tolerate much more neuron-sparse graph than the
supervisely trained-counterparts. This finding is in line with the first observation in Fig.
1.g which shows the sparsity of the activations of the different networks.

• Robustness to parameters pruning: We prune the parameters with a vanilla absolute
magnitude-based pruning method for different magnitude thresholds, that we translate into
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a sparsity metric. In Fig. Fig. 1.f. we report the variation of test for different weight sparsity
levels. Here, we do not see any benefits of using SSL to trained a network compared to
supervisely learning.

Overall, we have shown that using SSL for training a neural networks naturaly lead to features that
are highly desirable for PNNs such a robustness to parameters variability, (pre-)activation noise and
sparsity of the graph. While we have only worked on a toy vision task we expect those results
to hold for deeper networks trained on harder tasks. Not only SSL can improve the training of
standard PNNs with respect to the hardware caracteristics, but it could also be proved to improve
”smart-sensors” [33]which are essentially designed to extract the most important features of the
input. SSL can already be integrated with the Physics-Aware-Training framework [34] and used
to train actual PNNs. However, end-to-end backpropagation, as used in this Section, could be not
realizable on the edge because of the memory and computational ressources required. In the next
section we investigate alternatives to end-to-end optimization with backpropagation and alternatives
to backpropagation altogether.

4 Toward local learning with Layer-wise SSL

Training neural networks with local objectives instead of a global one have always garnered attention
in the ML community. While initially motivated for initializing the parameters of the network when
end-to-end backpropagation from scratch was failing [32, 3], the optimization of local objectives
is recently experiencing a revival of interest for two distincts reasons: training large-scale models
on distributed devices without the requirement on the synchronization of the forward and backward
passes on the different devices that dramatically slows down the training process [15, 9], and for
a reason that interest us most: training Physical Neural Networks that we cannot directly trained
with end-to-end backpropagation. Thus, recent proposals for such ”Forward-forward” training algo-
rithms [11], ie greedy layer-wise training schemes are very appealing. Yet, most of these algorithms
optimize empirical objectives [11, 6, 14] and except the later, do not scale well to tasks harder than
MNIST. Meanwhile, [31, 18, 24, 35, 12, 26, 29] realize greedy layer or block-wise by optimiz-
ing well-defined objectives based or inspired by representation learning. Recent works in the SSL
field [37, 2] shed new insights on these ”forward-forward” algorithms: they could simply be special
derivations of the general self-supervised learning framework. Needless to say that the positive vs.
negative data used in the Forward-forward paper [11] is a contrastive self-supervised algorithm. But,
more insightful, the proposed maximization (or minimization) of the goodness function, which the
sum of the square activity of each layer, is an equivalent objective of the self-covariance objective
optimized in VicREG [2]. SoftHebb [12] also optimizes such a kind of objective via the soft-winner-
take-all applied as the activation of each layer. SignalProp can also be regarded as a special case of
a joint-embedding SSL only in that case, one representation vector is fixed and similar for data of
the same class which eventually enforce each layer to cluster data from the class together. Finally,
[24] optimizes a layer-wise similarity objective between input of the class, which allows to cluster
similar input in each layer while an additional parallel layer-wise supervised classification loss is
also optimized. The similarity objective between inputs of the same classe enforces invariance as
the corresponding term in self-supervised methods.

Those insights motivated us to further explore the implementation of greedy layer-wise training
through the optimization of local layer-wise non-contrastive SSL objectives, which objectives (vari-
ance, invariance and covariance) could be more directly translated to actual physical properties than
contrastive methods. This idea follows that of [29] that proposed earlier this year to optimize blocks
of a ResNet with block-wise SSL objectives rather than an global optimization. Importantly, the
authors achieve near state-of-the-art accuracy on ImageNet without a global optimization. In this
Section we present our ongoing efforts to implement layer-wise SSL training and preliminary re-
sults.

Experimental setup: All the simulations we have performed follow the following protocol (see
Fig. 2.a): we pre-train a network (MLP or CNN) by sequentially optimizing layer-wise VicREG
objectives [2], starting from the first layer to the last one. The activations vectors of each layer
are fed to non-linear projectors whose outputs are used to compute the layer-wise SSL objectives.
Between each layer of the network we detach the computational graph so the gradient is local-only.
In parallel to the pre-training optimization, we train linear classifiers on top of each layer to assess
the performance of each layer. We provide the simulations details in Appendix C.
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MNIST CIFAR-10

MLP (4 fc) CNN (2c) MLP - SPSA (1fc) CNN (4c)

Test accuracy (%) 99.25 99.36 96.6 77 (76)

Table 1: Test accuracy on MNIST and CIFAR-10 for MLPs and CNNs trained with a layer-wise
SSL objective. fc stands for the number of fully-connected layers in the MLPs models and c denotes
the number of convolutional layers in the CNN models. In parenthesis we report the accuracy we
got with a end-to-end optimization with backpropagation of a global SSL objective).

a b c

Layer-wise SSL

End-to-end SSL

Encoder (Physical neural network layers)
(MLP, CNN, ...)

Projectors
(MLP - 3 layers)

Representations
(for downstream tasks)

1st layer

Layer-wise
SSL objective

1

Layer-wise
SSL objective

2

Layer-wise
SSL objective

3

Layer-wise
SSL objective

4

2nd layer 3rd layer 4th layer

Stopgrad

Figure 2: Principle and implementation of Layer-wise SSL: a. We compute a SSL objective for
each layer of the network to be trained. The brown layers denote potentially PNN layers while the
orange ones denote the layers of the non-linear projectors (still digital layers). b. Train and test
error (%) as a function of the depth of the different neural networks (MLPS and CNNs) trained on
MNIST (top) and CIFAR-10 (bottom). c. Trained weights of the first layer of two networks trained
with VicREG. Top is with layer-wise optimization, bottom is end-to-end optimization.

Results: The global accuracy obtained on each task is reported in Table 1 and the accuracy-layer
dependance for each task is reported in Fig. 1.b-c. MLP - MNIST: The network achieves a pe-
formance close to that of the end-to-end SSL optimization (reported in Section 3) on MNIST. We
also see that stacking layers improve the test accuracy which indicates that even a greedy layer-wise
optimization allows to train a relatively deep (4 layers) MLP on MNIST. Interestingly, the weights
learnt with layer-wise SSL are qualitatively similar to the weights learnt with end-to-end global SSL
(Fig. 2.c). CNN - MNIST: Again we achieved a very high accuracy on MNIST and show that stack-
ing 2 layers perform better than a single one. CNN - CIFAR-10: Again, we achieve a test accuracy
similar to that achieved with end-to-end global SSL optimization (reported between the parentesis
in Table 1) on a 4-convolutional layers CNN which indicates the promising use of layer-wise SSL
trainings of deep neural networks. MLP - MNIST - SPSA (no backprop) While the previous re-
sults still rely on local backpropagation as we used trained non-linear projectors, here we investigate
the use of stochastic optimization for the parameters of layer. We use fixed non-linear projectors
and used Simultaneaous Perturbations Stochastic Optimization (SPSA) [30] to update the weights
of each layer. However, optimizing a multi-objectives SSL objective such as VicREG does not work
well with SPSA as there is always a dominant objective which we optimize while do not the others.
So we optimized the Barlow Twins [37] with SPSA for those simulations. We achieved a relatively
higher test error in that case with a single layer MLP trained on MNIST. Nevertheless, the error is
lower than if we don’t train the layer which indicates that such local optimization can work.

Going forward: A possible way to improve the greedy layer-wise SSL training would be to train
interlocked blocks as done in [9, 35]. We can also implement Forward gradients-based optimization
as shown in [26] with contrastive SSL to improve on SPSA. Finally, deriving SSL objectives given
the actual physics of the PNNs to be trained, a la ”physics informed neural networks” [21], should
be proven to be more powerful and practical than general-purpose SSL objectives for training PNNs.
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5 Conclusion and looking forward
With this short paper we emphasized the multi-faceted assets that self-supervised learning has for
training PNNs with preliminary simulations. It turns out that using SSL leads to sparser networks
more robust to noise than networks trained with supervised learning although no sparsity objective
or noise-aware training techniques are explicitely employed. Furthermore, SSL allows networks to
be trained locally with layer-wise well-defined objectives and could allow for greedily trained deep
PNNs. The next step is to actually train PNNs with SSL by including more physics knowledge in
the training algorithm.
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Backpropagation-free training of deep physical neural networks. Science, 0(0):eadi8474, 2023.

[23] Arild Nø kland. Direct feedback alignment provides learning in deep neural networks. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[24] Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 4839–4850. PMLR, 09–15 Jun 2019.

[25] Malte J. Rasch, Charles Mackin, Manuel Le Gallo, An Chen, Andrea Fasoli, Frédéric Oder-
matt, Ning Li, S. R. Nandakumar, Pritish Narayanan, Hsinyu Tsai, Geoffrey W. Burr, Abu
Sebastian, and Vijay Narayanan. Hardware-aware training for large-scale and diverse deep
learning inference workloads using in-memory computing-based accelerators. Nature Com-
munications, 14(1), August 2023.

8



[26] Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient
with local losses. In The Eleventh International Conference on Learning Representations,
2023.

[27] Benjamin Scellier and Yoshua Bengio. Equilibrium Propagation: Bridging the Gap between
Energy-Based Models and Backpropagation. Frontiers in Computational Neuroscience, 11,
2017.

[28] Ravid Shwartz-Ziv and Yann LeCun. To compress or not to compress - self-supervised learning
and information theory: A review. CoRR, abs/2304.09355, 2023.

[29] Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-
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supervised learning via redundancy reduction. In International Conference on Machine Learn-
ing, pages 12310–12320. PMLR, 2021.

9



The appendices contain additional information regarding why SSL allows for more noise-robustness
and the simulation details. Additionally, we provide a link to a github repository6 that contains the
code to reproduce the different experiments.

A Mechanisms underlying SSL as an implicit noise-aware training method

In this section we attempt to provide an explanation for why SSL as a learning framework allows
for more noise robustness when noise is applied on the parameters (weights) of the model.
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Figure 3: More insights on noise-robustness: a. We plot the absolute variation in test error with
respect to the average absolute parameters variation for different corresponding noise levels. b.
Same as a. (and Fig. 1.b but we directly report the standard deviation of the noise. c. We plot the
histograms of the weights of the different layers of the different models trained: in the supervised
way, in the supervised way with data augmenetation and with self-supervised learning. We used the
same bining for all the histograms to better compare the different distributions.

6https://github.com/mcmahon-lab/The-Benefits-of-Self-Supervised-Learning-for-Training-Physical-
Neural-Networks
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In Fig. 1 (and Fig. 3.b) we plotted as the x-axis the varying standard deviation of the gaussian noise
we applied to the parameters but it is true that standard deviation alone is not sufficient to explain
why networks trained with SSL seem more robut to noise than network trained in the supervised
way. Here (Fig. 3.a) we have converted the noise levels to an averaged relative variation from
the original value of the parameters (in %), which gives more insights, especially if one knows the
original statistics of the parameters of the different models. In Fig. 3.c we report the statistics of the
weights for each model for each layer.

Interstingly, it appears that the network trained with SSL have weights that have a broader distribu-
tion which means that most of the parameters have a larger magnitude than the parameters of the
models trained in the supervised way. Furthermore, it seems that the width of the parameters distri-
butions grows when we add data augmentations to the training compared to the vanilla supervised
case without data augmentations.

It is then natural that the model trained with SSL can handle higher levels of noise because the
relative variation of the parameters resulting from a given noise level is lower than for the networks
trained in the supervised settings.

B Simulations details: end-to-end training

In this section we present the simulation details for the results presented in Section 3. All the
simulations focus on training a Multilayer Perceptron (MLP) which has 4 hidden layers on MNIST,
each layer has 1000 neurons and we use ReLU as the non-linear activation function.

B.1 Supervised learning of Multilayer perceptron on MNIST

For the supervised learning settings, we minimize the Cross-entropy loss computed on an additional
output layer between the output of the network and the target vector.

For the appropriate simulations, we use the following data augmentations - with the torchvision
nomenclature:

• RandomRotation(degrees = 5, fill=0)
• RandomCrop((28,28), padding = 2)
• torchvision.transforms.RandomAffine(degrees=(0, 0), translate=(0.0, 0.0), scale=(0.9,

1.1))

We use ADAM with a learning rate of 1e − 4 with the default β parameters. We use mini-batches
of size 256.

We train the network in the supervised settings for 50 epochs, which ensure a 0% train error and
∼ 1.8% test error. The network clearly overfit without data augmentation.

When we use data augmentations, we train the network for 100 epochs. This allow the network to
achieve ∼ 0.6% train error and ∼ 0.8% test error. 100 epochs is when the network starts to overfit
and the test loss/ error starts to increase again.

B.2 Self-supervised learning of Multilayer perceptron on MNIST

For the self-supervised learning settings, we optimize the VicREG objective [2] with standard hy-
perparameters (αsim = αstd = 25 and αcovar = 1). We use a 3 layers MLP as the non-linear
projector. Each layer has 256 neurons. All the layers, except the last one, use ReLU. We compute
the VicREG objective given the output layer of the projector. Once the network (the main MLP with
4 layers) is trained, we discard the projector and use the representation vector, which is the output
of the last hidden layer of the main network as the input for a downstream taks (classification in our
case).

We use the following data augmentations - with the torchvision nomenclature:

• RandomRotation(degrees = 15, fill=0)
• RandomCrop((28,28), padding = 2)
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• RandomAffine(degrees=(0, 0), translate=(0.0, 0.0), scale=(0.9, 1.1))

• ColorJitter(brightness=0, contrast = 0.5, saturation=0, hue = 0.5)

For the self-supervised learning step, we use ADAM with a learning rate of 1e− 4 with the default
β parameters. We use mini-batches of size 256.

For supervisely train a linear classifier on top, we use ADAM with a learning rate of 1e− 3 with the
default β parameters. We use mini-batches of size 64.

We train the network in the self-supervised settings for 1000 epochs, which ensure a 0% train error
and ∼ 0.6% test error.

When we use data augmentations, we train the network for 100 epochs. This allow the network to
achieve ∼ 0.6% train error and ∼ 0.8% test error. 100 epochs is when the network starts to overfit
and the test loss/ error starts to increase again.

C Simulations details: layer-wise training

In this section we present the simulation details for the results presented in Section 4.

C.1 Multilayer perceptron on MNIST

We first train a MLP which has 4 hidden layers on MNIST, each layer has 1000 neurons and we use
ReLU as the non-linear activation function.

Here, we optimize layer-wise VicREG objectives [2] with standard hyperparameters (αsim =
αstd = 25 and αcovar = 1). To that end, we use 4 3-layers MLPs as the non-linear projectors.
Each layer has 256 neurons. All the layers, except the last one, use ReLU. We compute the Vi-
cREG objectives given the layer layer of the projector. Once layer (the main MLP with 4 layers)
is trained, we discard its projectors. We use the representation vector of each layer, as the input
for downstream taks (classification in our case). By training linear classifiers on top of each layer,
we can know their individual performance. To avoid the gradient to flow from one layer to another
we detach the computational graph between each layer of the main network to train in a layer-wise
fashion.

We use the following data augmentations - with the torchvision nomenclature:

• RandomRotation(degrees = 15, fill=0)

• RandomCrop((28,28), padding = 2)

• RandomAffine(degrees=(0, 0), translate=(0.0, 0.0), scale=(0.9, 1.1))

• ColorJitter(brightness=0, contrast = 0.5, saturation=0, hue = 0.5)

For the self-supervised learning step, we use ADAM with a learning rate of 1e− 4 with the default
β parameters. We use mini-batches of size 256.

For traininng a linear classifier with supervised learning on top, we use ADAM with a learning rate
of 1e − 3 with the default β parameters. We use mini-batches of size 64. We train each layer for
1000 epochs.

C.2 Convolutional neural network on MNIST

We train a 2-layers convolutional neural network (CNN), again with layer-wise VicREG objectives
[2] with standard hyperparameters (αsim = αstd = 25 and αcovar = 1). In order to match the
depth-dependance of the different loss observed in networks trained with end-to-end SSL (as also
observed inn [29]), we tried to introduce a sigmoidal parametrization for the different VicREG
coefficient, but we haven’t find yet the ideal set of parameters.

To that end, we use 2 3-layers MLPs as the non-linear projectors. Each layer has 256 neurons. All
the layers, except the last one, use ReLU. We compute the VicREG objectives given the layer layer
of the projector.
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The network has 2 convolutional layers, with respectively 64 and 128 channels. Each layer has
a kernel of size 5, a padding of 2 and a stride of 1. For each layer, we apply the convolutional
operation first, then the non-linearity, then a batch-normalization and finally we apply a 2x2 max-
pooling operations.

The main difference here, is that we need to add an additional layer between the feature map resulting
from each convolutional layer and the input of the projectors because their size do not match directly.
Similarly to [29], we use a trainable 1x1 convolution with the number of output channels being the
size of the input of the projector. Once this 1x1 convolution is applied, we average each channel and
feed the resuling vector to the projector.

We use the following data augmentations - with the torchvision nomenclature:

• RandomRotation(degrees = 15, fill=0)
• RandomCrop((28,28), padding = 2)
• RandomAffine(degrees=(0, 0), translate=(0.0, 0.0), scale=(0.9, 1.1))
• ColorJitter(brightness=0, contrast = 0.5, saturation=0, hue = 0.5)

For the self-supervised learning step, we use ADAM with a learning rate of 1e− 4 with the default
β parameters. We use mini-batches of size 256.

For training a linear classifier with supervised learning on top of each activation vector (before the
1x1 convolution), we use ADAM with a learning rate of 1e − 3 with the default β parameters. We
use mini-batches of size 64. We train each layer for 1000 epochs.

C.3 Convolutional neural network on CIFAR-10

We train a 4-layers convolutional neural network (CNN), again with layer-wise VicREG objectives
[2] with standard hyperparameters (αsim = αstd = 25 and αcovar = 1). To that end, we use 2
3-layers MLPs as the non-linear projectors. Each layer has 2048 neurons. All the layers, except the
last one, use ReLU. We compute the VicREG objectives given the layer layer of the projector.

The network has 4 convolutional layers, with respectively 128, 256, 512 and 1024 channels. Each
layer has a kernel of size 5, a padding of 2 and a stride of 1. For each layer, we apply the convolu-
tional operation first, then the non-linearity, then a batch-normalization and finally we apply a 2x2
max-pooling operations.

We also used trainable 1x1 convolutions followed by a channel-wise average operation to project
each feature map to the input layer of the projectors.

We use the following data augmentations - with the torchvision nomenclature:

• RandomCrop(size=[32,32], padding = 2, padding mode=’edge’)
• RandomHorizontalFlip(p=0.5)
• RandomAffine(degrees=(0, 0), translate=(0.0, 0.0), scale=(1, 1.3))
• ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.5)
• RandomApply([transforms.Grayscale(num output channels=3)], p=0.2)
• RandomSolarize(0.0, p=0.1)
• Normalize((0.4914,0.4822,0.4465),(0.247,0.243,0.261))

We also tried asymmetric data augmentation, especially for the Grayscale and the Solarization, as
done in the Barlow Twins [37], VicREG [2] and Block-wise SSL [29] but without anny effect on
the accuracy. We did not use Gaussian blur, which seem to improve a lot the training because the
torchvision implementation is very slow and the trainings were very slow. In future work we will
implement this augmentation.

For the self-supervised learning step, we use ADAM with a learning rate of 1e− 4 with the default
β parameters. We use mini-batches of size 256.

For training a linear classifier with supervised learning on top of each activation vector (before the
1x1 convolution), we use ADAM with a learning rate of 1e − 3 with the default β parameters. We
use mini-batches of size 64. We train each layer for 1000 epochs.

13


	Introduction
	Related works
	Self-supervised learning for PNNs
	Toward local learning with Layer-wise SSL
	Conclusion and looking forward
	Aknowledgements
	Mechanisms underlying SSL as an implicit noise-aware training method
	Simulations details: end-to-end training
	Supervised learning of Multilayer perceptron on MNIST
	Self-supervised learning of Multilayer perceptron on MNIST

	Simulations details: layer-wise training
	Multilayer perceptron on MNIST
	Convolutional neural network on MNIST
	Convolutional neural network on CIFAR-10


