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ABSTRACT

Proteins are essential biological macromolecules that execute life functions. Lo-
cal structural motifs, such as active sites, are the most critical components for
linking structure to function and are key to understanding protein evolution and
enabling protein engineering. Existing computational methods struggle to identify
and compare these local structures, which leaves a significant gap in understanding
protein structures and harnessing their functions. This study presents PLASMA,
a deep-learning-based framework for efficient and interpretable residue-level lo-
cal structural alignment. We reformulate the problem as a regularized optimal
transport task and leverage differentiable Sinkhorn iterations. For a pair of in-
put protein structures, PLASMA outputs a clear alignment matrix with an in-
terpretable overall similarity score. Through extensive quantitative evaluations
and three biological case studies, we demonstrate that PLASMA achieves ac-
curate, lightweight, and interpretable residue-level alignment. Additionally, we
introduce PLASMA-PF, a training-free variant that provides a practical alterna-
tive when training data are unavailable. Our method addresses a critical gap in
protein structure analysis tools and offers new opportunities for functional anno-
tation, evolutionary studies, and structure-based drug design. Reproducibility is
ensured via our official implementation at https://github.com/zZW471/
PLASMA-Protein-Local-Alignment.git.

1 INTRODUCTION

Proteins are essential macromolecules responsible for life functions, from catalysis and signal trans-
duction to structural support and transport. Local structural motifs (e.g., catalytic residues, binding
pockets, metal-binding sites) are critical for understanding mechanisms, designing therapeutics, and
guiding protein engineering (Mills et al.,|[2018). Structural conservation is three to ten times stronger
than sequence conservation across evolution, suggesting that local structural comparison can reveal
functional relationships invisible to sequence-based methods (Hvidsten et al., 2009).

Despite their importance, existing computational methods primarily emphasize global structure
comparison or sequence alignment. The inability to detect local structural motifs, i.e., , compact
three-dimensional residue arrangements that often concentrate around catalytic pockets or interac-
tion sites, prevents researchers from understanding protein evolution, predicting functions of un-
characterized proteins, and rationally designing proteins with desired properties. While large-scale
resources like AFDB (Jumper et al., [2021; |Varadi et al.| [2022) open a unique opportunity to un-
cover conserved motifs across the protein universe, active sites often comprise spatially proximate
residues that may be widely separated in sequence or embedded within different overall fold archi-
tectures (Liu et al., [2018). Addressing this gap is key to advancing our understanding of protein
function and evolution.

The development of robust local structure alignment methods specifically targeting local structural
motifs is not merely a technical challenge but a fundamental requirement for advancing multiple
areas of biological research and application. Existing methods for protein substructure alignment
can be broadly divided into three categories. The first relies on template-based searches, where
predefined motifs are used to identify similar substructures (Bittrich et al.,|2020; Kim et al.| 2025).
These approaches are effective for detecting well-characterized patterns but cannot uncover novel
similarities, making them unsuitable for pairing novel structural motifs. The second category
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Figure 1: PLASMA Overview. PLASMA converts residue-level protein embeddings into substruc-
ture alignments using optimal transport. A Transport Planner learns cost matrices with Sinkhorn
iterations, and a Plan Assessor produces similarity scores. The framework provides alignment ma-
trices and quantitative scores without requiring model-specific designs.

estimates substructure similarity based on the global similarity of entire protein structures. Several
studies leverage structural superposition (Zhang, |2005) or structural tokenization (Holm| [2020) to
produce residue-level matches with sequence alignment, but they are computationally demanding
and difficult to scale to large datasets. More recent embedding-based methods (Hamamsy et al.,
2024) are enabled by advances in protein representation learning, which make alignment faster and
competitive for whole-protein comparison. However, they compress residue-level information into
coarse embeddings, which causes problems in producing interpretable local alignments. The
third category directly addresses substructure alignment by constructing pairwise similarity matrices
and using dynamic programming to find matching regions. This approach captures local similarities
more accurately than global methods and produces scores that reflect substructure correspondence
(Kaminski et al.| 2023 [Liu et al.,2024; |[Pantolini et al., 2024). However, the results can be influenced
by overall structural patterns, and alignment matrices have limited interpretability since they are
optimized for algorithmic performance rather than clarity. Additionally, these methods are typically
untrainable and cannot adapt to specific alignment tasks or incorporate domain knowledge, limiting
their ability to improve through experience or be customized for particular biological contexts.

The challenges above point to the need for a novel protein substructure alignment method that com-
bines accuracy, efficiency, and clarity. To this end, we explore optimal transport (OT), a mathe-
matical framework proven effective in alignment problems (Mena et al., |2018)). In particular, the
differentiable Sinkhorn algorithm (Sinkhorn & Knoppl|{1967;|Cuturi, [2013) has shown strong ability
to uncover meaningful correspondences in 3D shape analysis (Eisenberger et al., [2020) and sub-
graph matching (Ramachandran et al., 2024). Notably, these OT-based alignment methods assume
strict one-to-one correspondences between all residues or that one set of residues is fully contained
within the other. These constraints do not hold for protein substructure alignment, as functionally
similar regions may only partially overlap and vary in length across proteins.

To address the aforementioned limitations, we reframe protein substructure alignment as an OT
problem and introduce PLASMA (Pluggable Local Alignment via Sinkhorn MAtrix). As illustrated
in Figure|l} PLASMA operates on residue-level embeddings from a pre-trained protein representa-
tion model and identifies the residue-level alignment between protein pairs. The Transport Planner
computes the pairwise matching using a learnable cost matrix and differentiable Sinkhorn iterations
(Section [3), and the Plan Assessor then summarizes the resulting alignment matrix into a single
similarity score reflecting the overall similarity of the matched substructures (Sectiond). PLASMA
functions as a lightweight, plug-and-play module for protein representation models. It is capable of
efficiently aligning partial and variable-length matches between local structural regions.
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Our work addresses these limitations through three contributions. First, we introduce a formulation
of residue-level local structural alignment based on regularized optimal transport with a learnable
geometric cost, which provides a principled and flexible way to define correspondence and enables
efficient, fully parallel implementation. Second, this formulation enables clear and interpretable
residue—residue correspondences and naturally supports partial, variable-length, and non-sequential
motif alignments, resolving the difficulty of obtaining reliable local alignments. Third, PLASMA
produces a normalized and interpretable similarity score through its OT-based objective, overcom-
ing the limitations of existing approaches whose alignment matrices or similarity measures lack
a consistent probabilistic meaning. Our experiments show strong generalization to low-homology
structures, and the case studies demonstrate the biological interpretability and practical utility of the
resulting alignments.

2 PROTEIN SUBSTRUCTURE ALIGNMENT VIA OPTIMAL TRANSPORT

Problem Formulation Consider a query protein P, = {r41,. .., 4~} of N residues and a candi-
date protein P, = {rc1,..., ¢} of M residues. Suppose the two proteins contain local structural
motifs Fo = {fg1,.--» fgn} € Pgand Fe = {fe1,..., fem} € Pe, where n < N and m < M.
The objective of protein substructure alignment is: (1) to identify the corresponding fragments F,
and F, within P, and P, and (2) to score their level of similarity.

The task is challenging for several reasons: the overall structures of P, and P. may differ substan-
tially, the fragments F, and F, may vary in sequence length or composition, and alignments require
remaining meaningful in a biological context. In particular, biologically relevant alignments should
capture functional similarities, such as common enzymatic activities or conserved structural roles.

Optimal Transport Reformulation To address the protein substructure alignment problem, we
reformulate it as an entropy-regularized OT problem between the residues of two proteins P, and
‘P.. Each protein is represented as a set of residue embeddings that capture local biochemical and
structural context. The OT solver then computes a soft alignment matrix € RV*M by assigning
weights between residues so as to minimize the overall transport cost C. This formulation bypasses
explicit fragment enumeration, naturally accommodates partial and variable-length matches, and
produces interpretable alignment matrices that highlight the underlying substructures (Appendix [A).

Overview of PLASMA We implement entropy-regularized OT and propose PLASMA, a module
that transforms H,, € RNV*d and H. € RM*d_ residue-level d-dimensional hidden representations
of P, and P, (e.g., from pre-trained protein language models), into a soft alignment matrix {2 €
RN*M and a similarity score x € [0, 1]. In our experiments, we instantiate H, and H_. with seven
diverse protein representation backbones (Section [f), and observe consistent alignment behavior
across them, indicating that PLASMA is not tied to a particular choice of encoder. Formally,

(€, k) = PLASMA(H,, H,). (1)

PLASMA consists of two complementary components (visualized in Figure [I] with details intro-
duced in the next two sections). The first component, the Transport Planner, produces €2 to highlight
local correspondences between P, and P.. The second component, the Plan Assessor, summarizes
this alignment matrix into a similarity score x € [0, 1], providing a quantitative measure of align-
ment quality. The framework achieves a computational complexity of O(N?) (Appendix .

3 TRANSPORT PLANNER

The Transport Planner module handles the core OT computation. It defines cost functions between
residue pairs and solves the regularized OT problem to produce an 2 that captures residue-level
matching between query and candidate proteins (Py, P.).

Cost Matrix We formulate a learnable cost matrix with a siamese network architecture to capture
complex residue-level similarities. This approach enables PLASMA to learn task-specific represen-
tations that optimize alignment quality through end-to-end training. The cost from rg; to 7. ; is
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denoted by C;; in the learnable cost matrix, defined as

Ciy = || [0 (LN(y)) = 0 (LN ()], | @

Here hy; and h. ; denote the hidden representations of residues rq; and r. ;, respectively. The
operator [-] applies a hinge non-linearity, shown to outperform dot-product similarity in subgraph
matching tasks (Raj et al., [2025). The layer normalization LN(-) facilitates robust optimization
dynamics with numerical stability and scale-invariant representations. The siamese network ¢y (-)
processes query and candidate residues using a twin architecture with shared parameters 6.

Learnable and Parameter-Free Implementations The siamese network architecture can be cho-
sen flexibly, ranging from Transformer-based (Hamamsy et al.| |2024) models to graph neural net-
works (Jamasb et al.,2024), depending on the inductive bias of the input data and the computational
budget. Here we also provide a simple implementation using fully connected layers:

p¢(h) = ReLU(h - W) - Wy, 3)

where W, € Rxd" and W, € R? %4 are learnable transformation matrices with d’ hidden di-
mension. For simplicity, we omit the subscript of H as the siamese network applies the same set
of parameters to both the query and candidate proteins. This lightweight design serves as an ef-
fective default while allowing more sophisticated architectures to be substituted without modifying
the overall PLASMA architecture. In addition, for scenarios with a lack of labeled data, we in-
troduce a parameter-free variant, PLASMA-PF, which bypasses the siamese network and operates
directly on residue embeddings. The cost used in the OT objective follows (2)) with no architectural
components removed other than the encoder. PLASMA-PF preserves the fundamental alignment
functionality and offers a fast baseline for substructure similarity evaluation. Notably, the learnable
version remains preferable for improved stability and extrapolation (See Section and Figure [).

Sinkhorn Alignment Matrix Based on the cost matrix C defined in (2), we formulate the cor-
responding OT problem (Appendix [A) and solve it using the Sinkhorn algorithm (Cuturi, [2013).
The algorithm approximates the OT plan by iteratively scaling the matrix to satisfy the marginal
constraints with row and column normalizations, ensuring that the total alignment weights of each
residue are properly distributed across residues of the other protein:

® ®

VA QL
QU = T where 20 = — 9 )
1] M t)? 1) N t
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The iteration is initialized as Q(©) = exp(—C /T), where T is a temperature parameter controlling the

alignment sharpness (Appendix . The optimal Q* = Q(T) after T iterations serves as the Sinkhorn
alignment matrix. For simplicity, we denote it as {2 in the subsequent discussions.

The original Sinkhorn algorithm converges to a fully doubly stochastic matrix, forcing each query
residue to distribute across all candidate residues (and vice versa). This strict matching is often bio-
logically meaningless, as most residues lack relevant counterparts. PLASMA achieves implicit par-
tial alignments via two mechanisms. First, early termination preserves sparsity by limiting Sinkhorn
iterations, letting poorly matching residues retain low weights. Second, the temperature parameter
T controls alignment mass, with lower values producing sparser, focused alignments. Together,
these mechanisms emphasize biologically relevant correspondences while avoiding forced matches,
without hard constraints on the transport budget (Caffarelli & McCann, [2010; [Figalli, 2010). Rep-
resentative alignment matrices demonstrating these patterns are shown in Appendix

4 PLAN ASSESSOR

The Plan Assessor receives the alignment matrix €2 from the Transport Planner and transforms it into
an interpretable single similarity score x € [0, 1] that quantifies the existence and degree of similarity
of the aligned substructures. This is computed by first calculating a substructure similarity score for
the aligned regions, then adjusting it with a confidence weight to correct potential bias.
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Substructure Similarity We calculate the alignment score on matched substructure. With a
threshold p, a residue pair r; € Py and r. ; € P, is treated as matched if 2;; > p. The matched
residues then form two sets, Ry = {rq.; | V5,8; > p} and R, = {rc; | Vi,€%; > p}. A matched
substructure is a subset of these residues. The representation of the matched substructure can be ap-
proximated by summing the embeddings of residues from R, and R.. Therefore, the substructure
similarity score s € [—1,1] is defined as the cosine similarity between the summed representations:

 2ier, hai Xjer, heg
12 5w, Paill - 1122 eR, hejl

This substructure similarity score is effective when a sufficient number of residues are matched
between the two proteins. However, it becomes less reliable when only a few residues are aligned
or when the matched residues are dispersed along the sequence rather than forming a continuous
region. In such cases, the score reduces to a residue-level similarity measure, which may appear
deceptively high even though the aligned residues do not cluster into a structurally interpretable
substructure. We thus introduce a confidence weight to adjust the initial similarity score.

S

(&)

Alignment Score with Confidence Weight Correction The confidence weight a € [0,1] is de-
rived from (2 using a 2D convolution with an identity kernel K = I, € R¥** of size k:

k—1k—1 k—1
Q5 = g § QiJru,jJrv : Kuu - E Qi+u,j+u' (6)
u=0v=0 u=0

This convolution operation highlights continuous diagonal segments in €2 and emphasizes core re-
gions where consecutive residues in the query align with consecutive residues in the candidate.
A max-pooling layer then produces a scalar confidence weight o = max; ; a;;, summarizing the
strongest local alignment signal used to weight the similarity score and obtain the final alignment
score k = « - sy € [0,1]. Here s is the non-negative substructure similarity score. This for-
mulation provides an intuitive and interpretable measure: £ = 0 indicates no residue matches and
k = 1 represents perfect substructure alignment. We follow the convention of established align-
ment methods (e.g., TM-align (Zhang| [2005)) and exclude negative similarity values, since matched
substructures with opposite orientations in the representation space lack meaningful biological in-
terpretation. Visual examples of alignment matrices with different similarity scores are provided in
Appendix [I}

5 MODEL OPTIMIZATION

PLASMA is trained with two complementary objectives: predicting the presence of aligned sub-
structures via the alignment score « and recovering precise residue-level matches via the alignment
matrix (2. Training data consists of protein pairs (P, P.), where a subset of pairs contains matched
substructures with shared functions. For each input protein pair, two mask vectors M, € {0,1}V
and M. € {0,1}M are respectively defined to indicate the position of target substructures JF, and
F., where 1 marks the residues that belong to the substructure of interest.

Alignment Score Optimization The alignment score ~ serves as the model’s prediction on
whether the input protein pair contains aligned substructures. We define the ground truth y = 1
if the pair contains matched substructures and y = 0 otherwise. The prediction is optimized by
Lpcr = —ylog(o(k)) — (1 —y)log(1 — o(k)), where o(-) is the sigmoid function.

Alignment Matrix Optimization Unlike the alignment score, optimizing the alignment matrix is
challenging because unlabeled residues may correspond to valid but unannotated matches. Treating
these residues as negative examples would impose inappropriate penalties on the model. To address
this, we propose the Label Match Loss (LML) to focus exclusively on the labeled substructures.
Specifically, when || M_|1 > 0 and [[M,]||; > 0, the LML for protein pairs is defined as

Loy = [[Me = Q" Mgl 1/ I M|, 0

where [-] 4 retains only non-negative elements, and ||-||; denotes the £; norm. This loss evaluates how
well the constructed alignment matrix 2 aligns the labeled substructures (F,, F.) in (Py, P.). For
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each residue r; € P, (27 M,); gives the alignment weight with respect to labeled residues in P,.
The non-negative contributions by [M. — QT M| are normalized by || M_||1 across all labeled
residues. When no labeled substructures exist, L1y, = 0, which allows the model to focus on
known substructures without penalizing unlabeled but potentially valid matches. This loss provides
an optional bias toward annotated local structural motifs when such labels exist. These regions are
typically small and structurally meaningful (e.g., catalytic or binding motifs), and emphasizing them
helps the model avoid being dominated by background alignments.

The final £L = Lpcg + Lo jointly detects substructure existence by  and localizes known
substructures by {2, while staying robust to missing or incomplete labels in the training data.

6 EMPIRICAL ANALYSIS

We conduct extensive quantitative and qualitative evaluations to comprehensively assess the valid-
ity and advancement of PLASMA in local structural motif alignment tasks. All experiments are
programmed with PyTorch v2.5.1 and run on NIVIDIA RTX 4090 32 GB GPU.

6.1 EXPERIMENTAL SETUP

Prediction Tasks and Benchmark Datasets Our experiments are based on a residue-level func-
tional alignment benchmark, VenusX 2025a). We consider three common classes of
functional substructures: activation sites, binding sites, and motifs. Across all test sets, the sequence
identity between training and test proteins is kept below 50%. For quantitative evaluation, we design
two levels of difficulty: (i) interpolation (test_inter), where the test set contains proteins from
InterPro families already present in training; and (ii) extrapolation (test_extra), where the test
set only includes novel substructures from unseen families. Further details are in Appendix [C.1I.

Baseline Methods We compare PLASMA with popular baselines in protein structure alignment,
including structure-based methods (FOLDSEEK (Van Kempen et al., 2024), TM-ALIGN (Zhang|
2005), and TM-VEC (Hamamsy et al.}[2024)) and embedding-based methods (EBA (Pantolini et al.
2024) and COSINESIM, a cosine similarity over protein embeddings). For all embedding-based
methods, we implement seven popular pre-trained models to extract residue-level sequence and
structure representations, including PROTTS (Elnaggar et al.| 2021), PROSTT5 (Heinzinger et al.|
[2024), ANKH (Elnaggar et al| 2023), ESM2 (Lin et al., 2023), PROTBERT (Brandes et al., 2022),
TM-VEC (Hamamsy et al., 2024), and PROTSSN (Tan et al.,[2025b). All baselines use the authors’
official code and checkpoints (see Appendices|D for details).

Evaluation Metrics To assess the ability to detect the existence of local structural motifs, we use
standard binary classification metrics, including ROC-AUC, PR-AUC, and F1-Max. Additionally, to
evaluate alignment quality, we introduce the Label Match Score (LMS) by (7) with LMS = 1—LML
to measure correspondence between predicted alignments and annotated functional regions.

6.2 QUANTITATIVE PERFORMANCE EVALUATION

Table [T reports performance on test_extra, which contains functional substructures from pro-
tein families not seen during training. This setting evaluates the generalizability of the alignment
framework, which is essential in practice because new functional substructures are continuously
discovered. Full results on seven backbone models are provided in Appendix [F| and all hyperpa-
rameter and dataset details are summarized in Appendix [C.2. Corresponding interpolation results
on test_inter are reported in Appendix|[E.

Across all three substructure detection tasks and all evaluation metrics, PLASMA achieves consis-
tent top performance, highlighting its robustness in capturing fundamental local structural similar-
ities for novel substructures beyond the training distribution. PLASMA-PF also performs strongly
and remains competitive without task-specific training. However, unlike in the interpolation setting,
PLASMA-PF does not surpass the learnable PLASMA variant on test_extra; this emphasizes
the value of supervised examples in improving alignment accuracy for entirely new functional sub-
structures. In contrast, baseline methods show large performance variation across backbone models.
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Table 1: Model performance on test_extra (mean =+ std over three independent seeds). Colors
indicate relative performance versus TM-ALIGN.

Motif Binding Site Active Site
ANKH ESM2 PROTSSN ANKH ESM2 PROTSSN ANKH ESM2 PROTSSN

PLASMA 981008 971013 96:016 99:+o008 981013 981014 98:ro012 98io010 9T+
PLASMA-PF = .98+ 009 -93+004  -90+.005 99+ 006 924052 .96+ 012 97015 964006 97+ 008

Metrics Methods

Q
E EBA 901033 921021 321043 991007 97021 30xoe0  97ro13  9Tro12 431066
&) Backbone 851019  T4ross  T9+o018 981010  T21o060  -T0to70 961012 791068 -T61.033
Q
~ Foldseek -89+ 033 904 013 874,022
TM-Align 814014 914 040 -93+.009
PLASMA  98:011 97:014 961017 98:011 971019 97ro19 97ro1a 981011 971012
PLASMA-PF = 984010 95+005 921007  -98xo012 901079  95+026  97xo015 961006  -97+.009
B EBA Olioss  93:o019 | 38ro1a  98io12 961035 | 281063 97012 97ro12 431032
Z Backbone 86+.023  TTros1 821027 961023 67193 651118 961016  Bdroso  -80xo3s
&~ Foldseek 844 031 76 065 81t 026
TM-Align -86+.020 -89+ 064 944 012
PLASMA 971009 951018 921022 961022 95+.030 93+026 981013 9Tro11  97iom
PLASMA-PF = .96+ 013 901006  -841.00s 964027 851082 901031  97ro1s  94to016 954012
% EBA 86+.035  -87+024 | 004000  97+021 931010 = .00£000  97xo013  97+00s 004000
= Backbone 94008 T0+.014 34013 9liozs 621087 .60+ 107 924020  THi.044 Tt 018
= Foldseek 914 o6 974 014 964 015
TM-Align 64015 .87+ 063 -90+.014
‘g PLASMA 51045 | 691019 521046  82:062  -TTri105 651088 901034 871038  .67io044

- PLASMA-PF = .78, 055 481074 231021  -B510s8 491.0s2  -36x.055 944020 681067 431032

Best Baseline (TM-Align) Worst

EBA performs reasonably well with sequence-based ANKH and ESM2 yet drops substantially with
structure-based PROTSSN, especially under the extrapolation split. FOLDSEEK and TM-ALIGN
remain consistently below PLASMA across nearly all conditions, reflecting the limited usefulness
of global structural similarity for residue-level motif detection.

Beyond accuracy, PLASMA demonstrates exceptional computational efficiency. As shown in
Figure 2] PLASMA achieves the best performance while requiring minimal time per protein
pair—approximately 10ms for PLASMA and 7ms for PLASMA-PF. This represents a roughly 50
times speedup over global structure alignment methods like TM-Align and Foldseek, which require
costly structural superposition, and about 3 times faster than EBA due to PLASMA’s fully dif-
ferentiable OT formulation that is efficiently accelerated on GPUs, compared to EBA’s inherently
sequential dynamic programming approach.

6.3 QUALITY OF PREDICTED ALIGNMENTS

Beyond quantitative metrics, we assess PLASMA’s robustness in identifying biologically meaning-
ful substructures by examining both alignment scores and alignment matrices.

PLASMA effectively distinguishes proteins with shared local functional substructures even when
overall structural similarity is low. Figure [3] provides evidence from two perspectives, with all
embedding-based methods obtaining protein representations from ANKH. Figure[BJA compares sim-
ilarity score distributions for protein pairs from test_inter, where PLASMA and PLASMA-PF
clearly separate positive and negative pairs. This advantage comes from the OT framework, which
emphasizes local correspondences independent of overall similarity. In contrast, EBA and COSI-
NESIM show substantial overlap between positive and negative distributions. EBA in particular
lacks an upper bound on its scores, making them difficult to interpret and subject to calibration
problems (i.e., scores cannot be directly used as probabilities and lead to unstable thresholds). Fig-
ure 3B further groups test-set alignment scores by TM-score to assess performance under different
levels of global similarity for protein pairs. Although all methods degrade as TM-score decreases,
PLASMA and PLASMA-PF consistently maintain high ROC-AUC values above 0.9, whereas base-
line EBA, COSINESIM, Foldseek, and TM-align deteriorate sharply on low-similarity samples when
TM-score is sufficiently small (e.g., < 0.5).
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Figure 2: Performance versus computational efficiency comparison. ROC-AUC scores plotted
against inference time (milliseconds) for motif and binding/active site detection using PROSTTS
embeddings. Points represent averages across three splits with standard error bars on both axes.
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Figure 3: Alignment quality analysis across different approaches. A. Distribution of alignment
scores for positive and negative protein pairs. B. ROC-AUC score trend at different global structural
similarity levels.
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Figure 4: Label Match Score comparison between PLASMA and PLASMA-PF across different
substructure types, demonstrating the improved alignment quality achieved through training.

While both PLASMA variants demonstrate strong performance in score-based discrimination, their
alignment quality differs. This is evident in Figure ff] which compares their performance using
the LMS score to evaluate correspondence between predicted alignments and annotated regions.
PLASMA consistently outperforms PLASMA-PF across motifs, binding sites, and active sites,
demonstrating that learning improves the prediction of local structural motifs. By contrast, while
EBA also produces alignment matrices, it cannot be meaningfully assessed with LMS: its uncon-
strained formulation yields a maximal LMS of 1.0 regardless of true alignment accuracy.

6.4 REPRESENTATIVE ALIGNMENT EXAMPLES

The next experiment evaluates PLASMA’s utility in real biological applications using three repre-
sentative case studies independent of the training set. We examine three protein pairs of different
substructure sizes, including simple local motifs, complex cofactor-binding domains, and extended
multi-element substructures. In each case, we provide UniProt identifiers, functional descriptions,
alignment results, and visualizations from PLASMA and EBA, and corresponding analyses. Ap-
pendix [N provides additional visualizations that further illustrate the generality of these conclu-
sions. Collectively, these cases highlight PLASMA'’s ability to detect biologically meaningful local
similarities across proteins with diverse sequences, structures, and functions.
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Figure 5: Representative alignment examples across three protein pairs. A, P40343 vs Q8KOLO.
B, P64215 vs COH419. C, Q69ZS8 vs Q86W92. Left: 3D structures with highlighted aligned
regions. Center and right: alignment matrices from PLASMA and EBA with zoomed insets. A
higher resolution version of this figure can be found at App. E

Conserved Small Helical Motifs Across Functionally Diverse Protein Structures The first
case matches local structures between P40343 (Vps27, a yeast ESCRT-0 complex component) and
Q8KOLO (ASB2, a mouse E3 ubiquitin ligase substrate-recognition component). The two proteins
share no apparent sequence homology (21.0% identity) and participate in distinct cellular processes
(endosomal sorting versus proteasomal degradation), yet both use analogous helical arrangements
for protein-protein interactions: Vps27’s GAT domain forms coiled-coils for ESCRT-I recruitment
(Curtiss et al., 2007), whereas ASB2 employs ankyrin repeat helices for substrate recognition in
the E3 ligase complex. PLASMA assigns high-confidence scores to residues mediating these inter-
actions (Figure [5]A). The 3D structure visualization also confirms the alignment of the conserved
Leu-X-X-Leu-Leu motif for both proteins (Ren et al.,2008)), with an aligned RMSD of 0.18 A. This
finding suggests potential convergent evolution of helical protein-binding interfaces across distinct
cellular machineries. By contrast, EBA identifies multiple helices, but most correspond to nonfunc-
tional scaffold regions rather than the relevant interaction motifs.

Structurally and Functionally Relevant motifs of Different Sizes and Metabolic Contexts The
second case examines P64215 (GcvH, glycine cleavage system H protein from Mycobacterium tu-
berculosis) and COH419 (YngHB, biotin/lipoyl attachment protein from Bacillus subtilis) (Cui et al.|
2006). These proteins have different overall sequences (25.2% sequence identity) and metabolic
functions: GevH shuttles methylamine groups in glycine catabolism, while YngHB accommodates
both biotin and lipoic acid in a single-domain architecture. Despite these differences, both bind
similar cofactors and exhibit conserved [-sheet arrangements necessary for post-translational mod-
ification. As shown in Figure [5B, PLASMA successfully aligns the four-stranded /3-barrel archi-
tectures, highlighting the critical lysine-containing S-turns with an overall alignment score of 0.69
and RMSD of 0.83, whereas the baseline EBA misaligns nonfunctional regions. The alignment of
complex conserved structural motifs across protein families demonstrates the potential of PLASMA
in revealing modular evolution and conserved cofactor-binding architectures.
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Extended Multi-Element Substructures in Cell Adhesion Regulators The third case investi-
gates Q69ZS8 (Kazrin, a scaffold protein in Mus musculus) and Q86W92 (Liprin-51/PPFIBP1, a
human focal adhesion regulator). Despite their different cellular localizations and interaction part-
ners, they regulate distinct but mechanistically related aspects of cell-cell adhesion: Kazrin organizes
desmosomal components in keratinocytes, and Liprin-31 modulates focal adhesion disassembly and
cell migration. Yet both proteins rely on extended a-helical regions for protein-protein interactions
(Groot et al.| 2004). As in Figure , PLASMA successfully aligns complex multi-coil substruc-
tures spanning multiple helical segments interspersed with flexible linkers, with an overall align-
ment score of 0.98 and RMSD 0.82 A. The alignment highlights conserved leucine-rich motifs and
hinge regions that stabilize oligomerization interfaces, revealing analogous scaffolding strategies.
In contrast, EBA identifies plausible structures but often misaligns helices or matches nonfunctional
scaffold regions, failing to capture more than just biologically meaningful substructures.

7 RELATED WORKS

Protein Global Structure Alignment Global structure alignment methods evaluate overall pro-
tein similarity. Classic approaches like TM-Align (Zhang, 2005) are foundational, while modern
methods increase efficiency by abstracting structures into 1D sequences (Foldseek (Van Kempen
et al.,[2024)), representing them as fixed vectors for rapid search (TM-Vec (Hamamsy et al., 2024)),
or using advanced spatial indexing (GTalign (Margelevicius, [2024)). The field has also expanded
to align multiple structures (mTM-align (Dong et al.| 2018)), multi-chain complexes (MM-align
(Mukherjee & Zhang, |2009)), and diverse macromolecules universally (US-align (Zhang et al.|
2022))). However, their global nature limits the detection of conserved motifs in dissimilar proteins.

Substructure and Sequence-based Alignment To find local similarities, substructure-based
methods use graph-based residue embeddings (Tan et al., 2024), focus on active-site environments
(Castillo & Ollila} [2025)), or apply linear-assignment formulations (Zhang et al.| [2025). More com-
monly, PLM embeddings are leveraged for residue-level representation. PLM-based alignment ap-
proaches like PLM-BLAST (Kaminski et al., 2023) and PLMSearch (Liu et al., [2024)) use raw em-
bedding similarity, but their scores often lack clear biological interpretability. More sophisticated
models have since emerged, such as DEDAL (Llinares-Lopez et al.,2023), which learns to align se-
quences, and PEbA (lovino & Ye, |2024), which integrates embeddings into dynamic programming
for improved remote homolog alignment. Despite these advances, a persistent challenge is score
interpretability, as methods like EBA (Pantolini et al.|[2024) produce unbounded outputs, unlike the
normalized scores of TM-Align.

8 CONCLUSION AND DISCUSSION

This work presents PLASMA, a local structural motif alignment framework leveraging regularized
optimal transport to detect biologically meaningful local similarities across proteins with diverse
sequences, structures, and functions. PLASMA consistently outperforms baseline methods in ac-
curacy, efficiency, and interpretability, capturing subtle structural correspondences often invisible to
global alignments. Its trainable variant benefits from supervision to improve alignment precision,
while the training-free variant achieves robust performance without task-specific labels.

Beyond quantitative performance, PLASMA provides clear, residue-level alignment matrices that
support mechanistic insights into protein function, evolutionary relationships, and structure-guided
protein engineering. Its ability to handle varying substructure sizes and complexities (e.g., from
short helices to extended multi-element domains) demonstrates versatility and practical relevance.
Overall, PLASMA establishes a new standard for accurate, efficient, interpretable, and practically
applicable protein local structural motif alignment.

Reproducibility Statement To promote reproducibility, we release all source code and trained
models under an open-source license, with anonymized hosting to comply with the double-blind
review policy. The anonymized repository is available at https://anonymous.4open.
science/r/plasma-5A5B/, Details of data sources are provided in Appendix |C.1. Task defi-
nitions, evaluation protocols, and hyperparameter settings are described in Sections and Appen-
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dices|C.2. Implementation details and instructions for reproducing experiments are included in the
project repository to facilitate independent verification.

Ethics Statement  All experiments are conducted on publicly available protein sequence and struc-
ture databases. We follow established ethical guidelines in data usage and acknowledge that histori-
cal biases present in these resources may be reflected in our results, which is independent to model
development.

The Use of Large Language Models (LLM) In the preparation of this manuscript, GPT-5 and
GPT-40 were utilized as writing assistants. Its use was strictly limited to improving grammar, clarity,
and overall readability. All scientific ideas, experimental results, and conclusions were conceived
and formulated exclusively by the authors. All text polished or modified by the LLM was sub-
sequently reviewed and edited by the authors to ensure that the original scientific meaning was
accurately preserved.
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