

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST AND INTERPRETABLE PROTEIN SUBSTRUCTURE ALIGNMENT VIA OPTIMAL TRANSPORT

Anonymous authors

Paper under double-blind review

ABSTRACT

Proteins are essential biological macromolecules that execute life functions. **Local structural motifs**, such as active sites, are the most critical components for linking structure to function and are key to understanding protein evolution and enabling protein engineering. Existing computational methods struggle to identify and compare these local structures, which leaves a significant gap in understanding protein structures and harnessing their functions. This study presents PLASMA, a **deep-learning-based framework for efficient and interpretable residue-level local structural alignment**. We reformulate the problem as a regularized optimal transport task and leverage differentiable Sinkhorn iterations. For a pair of input protein structures, PLASMA outputs a clear alignment matrix with an interpretable overall similarity score. Through extensive quantitative evaluations and three biological case studies, we demonstrate that PLASMA achieves accurate, lightweight, and interpretable residue-level alignment. Additionally, we introduce PLASMA-PF, a training-free variant that provides a practical alternative when training data are unavailable. Our method addresses a critical gap in protein structure analysis tools and offers new opportunities for functional annotation, evolutionary studies, and structure-based drug design. Reproducibility is ensured via our official implementation at <https://github.com/ZW471/PLASMA-Protein-Local-Alignment.git>.

1 INTRODUCTION

Proteins are essential macromolecules responsible for life functions, from catalysis and signal transduction to structural support and transport. **Local structural motifs** (*e.g.*, catalytic residues, binding pockets, metal-binding sites) are critical for understanding mechanisms, designing therapeutics, and guiding protein engineering (Mills et al., 2018). Structural conservation is three to ten times stronger than sequence conservation across evolution, suggesting that local structural comparison can reveal functional relationships invisible to sequence-based methods (Hvidsten et al., 2009).

Despite their importance, existing computational methods primarily emphasize global structure comparison or sequence alignment. The inability to detect **local structural motifs**, *i.e.*, **compact three-dimensional residue arrangements that often concentrate around catalytic pockets or interaction sites**, prevents researchers from understanding protein evolution, predicting functions of uncharacterized proteins, and rationally designing proteins with desired properties. While large-scale resources like AFDB (Jumper et al., 2021; Varadi et al., 2022) open a unique opportunity to uncover conserved motifs across the protein universe, active sites often comprise spatially proximate residues that may be widely separated in sequence or embedded within different overall fold architectures (Liu et al., 2018). Addressing this gap is key to advancing our understanding of protein function and evolution.

The development of robust local structure alignment methods specifically targeting **local structural motifs** is not merely a technical challenge but a fundamental requirement for advancing multiple areas of biological research and application. Existing methods for protein substructure alignment can be broadly divided into three categories. The first relies on template-based searches, where predefined motifs are used to identify similar substructures (Bittrich et al., 2020; Kim et al., 2025). These approaches are effective for detecting well-characterized patterns but cannot uncover novel similarities, making them **unsuitable for pairing novel structural motifs**. The second category

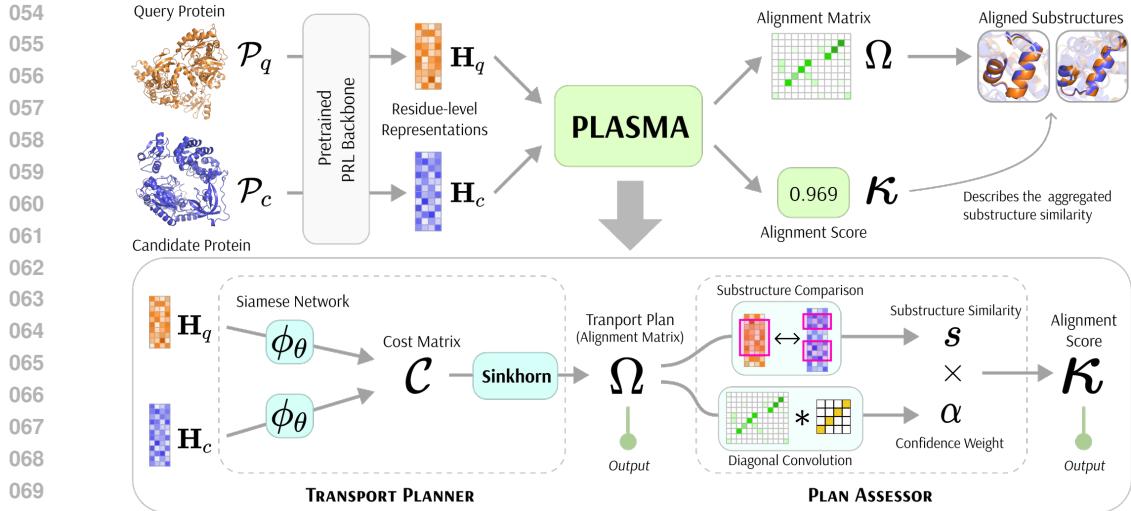


Figure 1: PLASMA Overview. PLASMA converts residue-level protein embeddings into substructure alignments using optimal transport. A *Transport Planner* learns cost matrices with Sinkhorn iterations, and a *Plan Assessor* produces similarity scores. The framework provides alignment matrices and quantitative scores without requiring model-specific designs.

estimates substructure similarity based on the global similarity of entire protein structures. Several studies leverage structural superposition (Zhang [2005]) or structural tokenization (Holm [2020]) to produce residue-level matches with sequence alignment, but they are **computationally demanding and difficult to scale to large datasets**. More recent embedding-based methods (Hamamsy et al., [2024]) are enabled by advances in protein representation learning, which make alignment faster and competitive for whole-protein comparison. However, they compress residue-level information into coarse embeddings, which causes **problems in producing interpretable local alignments**. The third category directly addresses substructure alignment by constructing pairwise similarity matrices and using dynamic programming to find matching regions. This approach captures local similarities more accurately than global methods and produces scores that reflect substructure correspondence (Kaminski et al., [2023]; Liu et al., [2024]; Pantolini et al., [2024]). However, the results can be influenced by overall structural patterns, and **alignment matrices have limited interpretability** since they are optimized for algorithmic performance rather than clarity. Additionally, these methods are typically untrainable and cannot adapt to specific alignment tasks or incorporate domain knowledge, limiting their ability to improve through experience or be customized for particular biological contexts.

The challenges above point to the need for a novel protein substructure alignment method that combines accuracy, efficiency, and clarity. To this end, we explore optimal transport (OT), a mathematical framework proven effective in alignment problems (Mena et al., [2018]). In particular, the differentiable Sinkhorn algorithm (Sinkhorn & Knopp, [1967]; Cuturi, [2013]) has shown strong ability to uncover meaningful correspondences in 3D shape analysis (Eisenberger et al., [2020]) and subgraph matching (Ramachandran et al., [2024]). Notably, these OT-based alignment methods assume strict one-to-one correspondences between all residues or that one set of residues is fully contained within the other. These constraints do not hold for protein substructure alignment, as functionally similar regions may only partially overlap and vary in length across proteins.

To address the aforementioned limitations, we reframe protein substructure alignment as an OT problem and introduce PLASMA (**P**luggable **L**ocal **A**lignment via **S**inkhorn **M**atrix). As illustrated in Figure 1, PLASMA operates on residue-level embeddings from a pre-trained protein representation model and identifies the residue-level alignment between protein pairs. The *Transport Planner* computes the pairwise matching using a learnable cost matrix and differentiable Sinkhorn iterations (Section 3), and the *Plan Assessor* then summarizes the resulting alignment matrix into a single similarity score reflecting the overall similarity of the matched substructures (Section 4). PLASMA functions as a lightweight, plug-and-play module for protein representation models. It is capable of efficiently aligning partial and variable-length matches between local structural regions.

Our work addresses these limitations through three contributions. First, we introduce a formulation of residue-level local structural alignment based on regularized optimal transport with a learnable geometric cost, which provides a principled and flexible way to define correspondence and enables efficient, fully parallel implementation. Second, this formulation enables clear and interpretable residue-residue correspondences and naturally supports partial, variable-length, and non-sequential motif alignments, resolving the difficulty of obtaining reliable local alignments. Third, PLASMA produces a normalized and interpretable similarity score through its OT-based objective, overcoming the limitations of existing approaches whose alignment matrices or similarity measures lack a consistent probabilistic meaning. Our experiments show strong generalization to low-homology structures, and the case studies demonstrate the biological interpretability and practical utility of the resulting alignments.

2 PROTEIN SUBSTRUCTURE ALIGNMENT VIA OPTIMAL TRANSPORT

Problem Formulation Consider a query protein $\mathcal{P}_q = \{r_{q,1}, \dots, r_{q,N}\}$ of N residues and a candidate protein $\mathcal{P}_c = \{r_{c,1}, \dots, r_{c,M}\}$ of M residues. Suppose the two proteins contain **local structural motifs** $\mathcal{F}_q = \{f_{q,1}, \dots, f_{q,n}\} \subseteq \mathcal{P}_q$ and $\mathcal{F}_c = \{f_{c,1}, \dots, f_{c,m}\} \subseteq \mathcal{P}_c$, where $n \leq N$ and $m \leq M$. The objective of protein substructure alignment is: (1) to identify the corresponding fragments \mathcal{F}_q and \mathcal{F}_c within \mathcal{P}_q and \mathcal{P}_c , and (2) to score their level of similarity.

The task is challenging for several reasons: the overall structures of \mathcal{P}_q and \mathcal{P}_c may differ substantially, the fragments \mathcal{F}_q and \mathcal{F}_c may vary in sequence length or composition, and alignments require remaining meaningful in a biological context. In particular, biologically relevant alignments should capture functional similarities, such as common enzymatic activities or conserved structural roles.

Optimal Transport Reformulation To address the protein substructure alignment problem, we reformulate it as an entropy-regularized OT problem between the residues of two proteins \mathcal{P}_q and \mathcal{P}_c . Each protein is represented as a set of residue embeddings that capture local biochemical and structural context. The OT solver then computes a soft alignment matrix $\Omega \in \mathbb{R}^{N \times M}$ by assigning weights between residues so as to minimize the overall transport cost \mathcal{C} . This formulation bypasses explicit fragment enumeration, naturally accommodates partial and variable-length matches, and produces interpretable alignment matrices that highlight the underlying substructures (Appendix A).

Overview of PLASMA We implement entropy-regularized OT and propose **PLASMA**, a module that transforms $\mathbf{H}_q \in \mathbb{R}^{N \times d}$ and $\mathbf{H}_c \in \mathbb{R}^{M \times d}$, residue-level d -dimensional hidden representations of \mathcal{P}_q and \mathcal{P}_c (e.g., from pre-trained protein language models), into a soft alignment matrix $\Omega \in \mathbb{R}^{N \times M}$ and a similarity score $\kappa \in [0, 1]$. In our experiments, we instantiate \mathbf{H}_q and \mathbf{H}_c with seven diverse protein representation backbones (Section 6), and observe consistent alignment behavior across them, indicating that PLASMA is not tied to a particular choice of encoder. Formally,

$$(\Omega, \kappa) = \text{PLASMA}(\mathbf{H}_q, \mathbf{H}_c). \quad (1)$$

PLASMA consists of two complementary components (visualized in Figure I, with details introduced in the next two sections). The first component, the *Transport Planner*, produces Ω to highlight local correspondences between \mathcal{P}_q and \mathcal{P}_c . The second component, the *Plan Assessor*, summarizes this alignment matrix into a similarity score $\kappa \in [0, 1]$, providing a quantitative measure of alignment quality. The framework achieves a computational complexity of $O(N^2)$ (Appendix B).

3 TRANSPORT PLANNER

The Transport Planner module handles the core OT computation. It defines cost functions between residue pairs and solves the regularized OT problem to produce an Ω that captures residue-level matching between query and candidate proteins ($\mathcal{P}_q, \mathcal{P}_c$).

Cost Matrix We formulate a learnable cost matrix with a siamese network architecture to capture complex residue-level similarities. This approach enables PLASMA to learn task-specific representations that optimize alignment quality through end-to-end training. The cost from $r_{q,i}$ to $r_{c,j}$ is

denoted by \mathcal{C}_{ij} in the learnable cost matrix, defined as

$$\mathcal{C}_{ij} = \left\| [\phi_\theta(\text{LN}(\mathbf{h}_{q,i})) - \phi_\theta(\text{LN}(\mathbf{h}_{c,j}))]_+ \right\|_1. \quad (2)$$

Here $\mathbf{h}_{q,i}$ and $\mathbf{h}_{c,j}$ denote the hidden representations of residues $r_{q,i}$ and $r_{c,j}$, respectively. The operator $[\cdot]_+$ applies a hinge non-linearity, shown to outperform dot-product similarity in subgraph matching tasks (Raj et al., 2025). The layer normalization $\text{LN}(\cdot)$ facilitates robust optimization dynamics with numerical stability and scale-invariant representations. The siamese network $\phi_\theta(\cdot)$ processes query and candidate residues using a twin architecture with shared parameters θ .

Learnable and Parameter-Free Implementations The siamese network architecture can be chosen flexibly, ranging from Transformer-based (Hamamsy et al., 2024) models to graph neural networks (Jamasb et al., 2024), depending on the inductive bias of the input data and the computational budget. Here we also provide a simple implementation using fully connected layers:

$$\phi_\theta(\mathbf{h}) = \text{ReLU}(\mathbf{h} \cdot \mathbf{W}_1) \cdot \mathbf{W}_2, \quad (3)$$

where $\mathbf{W}_1 \in \mathbb{R}^{d \times d'}$ and $\mathbf{W}_2 \in \mathbb{R}^{d' \times d'}$ are learnable transformation matrices with d' hidden dimension. For simplicity, we omit the subscript of \mathbf{H} as the siamese network applies the same set of parameters to both the query and candidate proteins. This lightweight design serves as an effective default while allowing more sophisticated architectures to be substituted without modifying the overall PLASMA architecture. In addition, for scenarios with a lack of labeled data, we introduce a parameter-free variant, **PLASMA-PF**, which bypasses the siamese network and **operates directly on residue embeddings**. The cost used in the OT objective follows (2) with no architectural components removed other than the encoder. PLASMA-PF preserves the fundamental alignment functionality and offers a fast baseline for substructure similarity evaluation. Notably, the learnable version remains preferable for improved stability and extrapolation (See Section 6.3 and Figure 4).

Sinkhorn Alignment Matrix Based on the cost matrix \mathcal{C} defined in (2), we formulate the corresponding OT problem (Appendix A) and solve it using the Sinkhorn algorithm (Cuturi, 2013). The algorithm approximates the OT plan by iteratively scaling the matrix to satisfy the marginal constraints with row and column normalizations, ensuring that the total alignment weights of each residue are properly distributed across residues of the other protein:

$$\Omega_{ij}^{(t+1)} = \frac{\mathbf{Z}_{ij}^{(t)}}{\sum_{v=1}^M \mathbf{Z}_{iv}^{(t)}}, \quad \text{where } \mathbf{Z}_{ij}^{(t)} = \frac{\Omega_{ij}^{(t)}}{\sum_{u=1}^N \Omega_{uj}^{(t)}}. \quad (4)$$

The iteration is initialized as $\Omega^{(0)} = \exp(-\mathcal{C}/\tau)$, where τ is a temperature parameter controlling the alignment sharpness (Appendix J). The optimal $\Omega^* = \Omega^{(T)}$ after T iterations serves as the Sinkhorn alignment matrix. For simplicity, we denote it as Ω in the subsequent discussions.

The original Sinkhorn algorithm converges to a fully doubly stochastic matrix, forcing each query residue to distribute across all candidate residues (and vice versa). This strict matching is often biologically meaningless, as most residues lack relevant counterparts. PLASMA achieves implicit partial alignments via two mechanisms. First, *early termination* preserves sparsity by limiting Sinkhorn iterations, letting poorly matching residues retain low weights. Second, the *temperature parameter* τ controls alignment mass, with lower values producing sparser, focused alignments. Together, these mechanisms emphasize biologically relevant correspondences while avoiding forced matches, without hard constraints on the transport budget (Caffarelli & McCann, 2010; Figalli, 2010). Representative alignment matrices demonstrating these patterns are shown in Appendix I.

4 PLAN ASSESSOR

The Plan Assessor receives the alignment matrix Ω from the Transport Planner and transforms it into an interpretable single similarity score $\kappa \in [0, 1]$ that quantifies the existence and degree of similarity of the aligned substructures. This is computed by first calculating a substructure similarity score for the aligned regions, then adjusting it with a confidence weight to correct potential bias.

216 **Substructure Similarity** We calculate the alignment score on *matched substructure*. With a
 217 threshold ρ , a residue pair $r_{q,i} \in \mathcal{P}_q$ and $r_{c,j} \in \mathcal{P}_c$ is treated as matched if $\Omega_{ij} > \rho$. The matched
 218 residues then form two sets, $\mathcal{R}_q = \{r_{q,i} \mid \forall j, \Omega_{ij} > \rho\}$ and $\mathcal{R}_c = \{r_{c,j} \mid \forall i, \Omega_{ij} > \rho\}$. A matched
 219 substructure is a subset of these residues. The representation of the matched substructure can be ap-
 220 proximated by summing the embeddings of residues from \mathcal{R}_q and \mathcal{R}_c . Therefore, the *substructure*
 221 *similarity score* $s \in [-1, 1]$ is defined as the cosine similarity between the summed representations:

$$s = \frac{\sum_{i \in \mathcal{R}_q} \mathbf{h}_{q,i} \cdot \sum_{j \in \mathcal{R}_c} \mathbf{h}_{c,j}}{\|\sum_{i \in \mathcal{R}_q} \mathbf{h}_{q,i}\| \cdot \|\sum_{j \in \mathcal{R}_c} \mathbf{h}_{c,j}\|}. \quad (5)$$

225 This substructure similarity score is effective when a sufficient number of residues are matched
 226 between the two proteins. However, it becomes less reliable when only a few residues are aligned
 227 or when the matched residues are dispersed along the sequence rather than forming a continuous
 228 region. In such cases, the score reduces to a residue-level similarity measure, which may appear
 229 deceptively high even though the aligned residues do not cluster into a structurally interpretable
 230 substructure. We thus introduce a *confidence weight* to adjust the initial similarity score.

231 **Alignment Score with Confidence Weight Correction** The *confidence weight* $\alpha \in [0, 1]$ is de-
 232 rived from Ω using a 2D convolution with an identity kernel $K = \mathbb{I}_k \in \mathbb{R}^{k \times k}$ of size k :

$$\alpha_{ij} = \sum_{u=0}^{k-1} \sum_{v=0}^{k-1} \Omega_{i+u, j+v} \cdot K_{uv} = \sum_{u=0}^{k-1} \Omega_{i+u, j+u}. \quad (6)$$

237 This convolution operation **highlights continuous diagonal segments** in Ω and emphasizes core re-
 238 gions where consecutive residues in the query align with consecutive residues in the candidate.
 239 A max-pooling layer then produces a scalar confidence weight $\alpha = \max_{i,j} \alpha_{ij}$, summarizing the
 240 strongest local alignment signal used to weight the similarity score and obtain the final *alignment*
 241 *score* $\kappa = \alpha \cdot s_+ \in [0, 1]$. Here s_+ is the non-negative substructure similarity score. This for-
 242 mulation provides an intuitive and interpretable measure: $\kappa = 0$ indicates no residue matches and
 243 $\kappa = 1$ represents perfect substructure alignment. We follow the convention of established align-
 244 ment methods (e.g., TM-align (Zhang 2005)) and exclude negative similarity values, since matched
 245 substructures with opposite orientations in the representation space lack meaningful biological in-
 246 terpretation. Visual examples of alignment matrices with different similarity scores are provided in
 247 Appendix I.

248 5 MODEL OPTIMIZATION

250 PLASMA is trained with two complementary objectives: predicting the presence of aligned sub-
 251 structures via the alignment score κ and recovering precise residue-level matches via the alignment
 252 matrix Ω . Training data consists of protein pairs $(\mathcal{P}_q, \mathcal{P}_c)$, where a subset of pairs contains matched
 253 substructures with shared functions. For each input protein pair, two mask vectors $\mathcal{M}_q \in \{0, 1\}^N$
 254 and $\mathcal{M}_c \in \{0, 1\}^M$ are respectively defined to indicate the position of target substructures \mathcal{F}_q and
 255 \mathcal{F}_c , where 1 marks the residues that belong to the substructure of interest.

257 **Alignment Score Optimization** The alignment score κ serves as the model’s prediction on
 258 whether the input protein pair contains aligned substructures. We define the ground truth $y = 1$
 259 if the pair contains matched substructures and $y = 0$ otherwise. The prediction is optimized by
 260 $\mathcal{L}_{BCE} = -y \log(\sigma(\kappa)) - (1 - y) \log(1 - \sigma(\kappa))$, where $\sigma(\cdot)$ is the sigmoid function.

262 **Alignment Matrix Optimization** Unlike the alignment score, optimizing the alignment matrix is
 263 challenging because unlabeled residues may correspond to valid but unannotated matches. Treating
 264 these residues as negative examples would impose inappropriate penalties on the model. To address
 265 this, we propose the *Label Match Loss* (LML) to focus exclusively on the labeled substructures.
 266 Specifically, when $\|\mathcal{M}_c\|_1 > 0$ and $\|\mathcal{M}_q\|_1 > 0$, the LML for protein pairs is defined as

$$\mathcal{L}_{LML} = \|[\mathcal{M}_c - \Omega^\top \mathcal{M}_q]_+\|_1 / \|\mathcal{M}_c\|_1, \quad (7)$$

268 where $[\cdot]_+$ retains only non-negative elements, and $\|\cdot\|_1$ denotes the ℓ_1 norm. This loss evaluates how
 269 well the constructed alignment matrix Ω aligns the labeled substructures $(\mathcal{F}_q, \mathcal{F}_c)$ in $(\mathcal{P}_q, \mathcal{P}_c)$. For

270 each residue $r_j \in \mathcal{P}_c$, $(\Omega^\top \mathcal{M}_q)_j$ gives the alignment weight with respect to labeled residues in \mathcal{P}_q .
 271 The non-negative contributions by $[\mathcal{M}_c - \Omega^\top \mathcal{M}_q]_+$ are normalized by $\|\mathcal{M}_c\|_1$ across all labeled
 272 residues. When no labeled substructures exist, $\mathcal{L}_{\text{LML}} = 0$, which allows the model to focus on
 273 known substructures without penalizing unlabeled but potentially valid matches. **This loss provides**
 274 **an optional bias toward annotated local structural motifs when such labels exist.** These regions are
 275 typically small and structurally meaningful (*e.g.*, catalytic or binding motifs), and emphasizing them
 276 helps the model avoid being dominated by background alignments.

277 The final $\mathcal{L} = \mathcal{L}_{\text{BCE}} + \mathcal{L}_{\text{LML}}$ jointly detects substructure existence by κ and localizes known
 278 substructures by Ω , while staying robust to missing or incomplete labels in the training data.
 279

280 6 EMPIRICAL ANALYSIS

283 We conduct extensive quantitative and qualitative evaluations to comprehensively assess the validity
 284 and advancement of PLASMA in **local structural motif** alignment tasks. All experiments are
 285 programmed with PyTorch v2.5.1 and run on NVIDIA RTX 4090 32 GB GPU.

286 6.1 EXPERIMENTAL SETUP

287 **Prediction Tasks and Benchmark Datasets** Our experiments are based on a residue-level functional
 288 alignment benchmark, **VenusX** (Tan et al., 2025a). We consider three common classes of
 289 functional substructures: activation sites, binding sites, and motifs. Across all test sets, the sequence
 290 identity between training and test proteins is kept below 50%. For quantitative evaluation, we design
 291 two levels of difficulty: (i) interpolation (`test_inter`), where the test set contains proteins from
 292 InterPro families already present in training; and (ii) extrapolation (`test_extra`), where the test
 293 set only includes novel substructures from unseen families. Further details are in Appendix C.1.
 294

295 **Baseline Methods** We compare PLASMA with popular baselines in protein structure alignment,
 296 including structure-based methods (FOLDSEEK (Van Kempen et al., 2024), TM-ALIGN (Zhang,
 297 2005), and TM-VEC (Hamamsy et al., 2024)) and embedding-based methods (EBA (Pantolini et al.,
 298 2024) and COSINESIM, a cosine similarity over protein embeddings). For all embedding-based
 299 methods, we implement seven popular pre-trained models to extract residue-level sequence and
 300 structure representations, including PROT5 (Elnaggar et al., 2021), PROST5 (Heinzinger et al.,
 301 2024), ANKH (Elnaggar et al., 2023), ESM2 (Lin et al., 2023), PROTBERT (Brandes et al., 2022),
 302 TM-VEC (Hamamsy et al., 2024), and PROTSSN (Tan et al., 2025b). All baselines use the authors'
 303 official code and checkpoints (see Appendices D for details).
 304

305 **Evaluation Metrics** To assess the ability to detect the existence of **local structural motifs**, we use
 306 standard binary classification metrics, including ROC-AUC, PR-AUC, and F1-Max. Additionally, to
 307 evaluate alignment quality, we introduce the Label Match Score (LMS) by (7) with $\text{LMS} = 1 - \text{LML}$
 308 to measure correspondence between predicted alignments and annotated functional regions.
 309

310 6.2 QUANTITATIVE PERFORMANCE EVALUATION

312 Table I reports performance on `test_extra`, which contains functional substructures from protein
 313 families not seen during training. This setting evaluates the generalizability of the alignment
 314 framework, which is essential in practice because new functional substructures are continuously
 315 discovered. Full results on seven backbone models are provided in Appendix F and all hyperpara-
 316 meter and dataset details are summarized in Appendix C.2. Corresponding interpolation results
 317 on `test_inter` are reported in Appendix E.

318 Across all three substructure detection tasks and all evaluation metrics, PLASMA achieves consis-
 319 tent top performance, highlighting its robustness in capturing fundamental local structural simi-
 320 larities for novel substructures beyond the training distribution. PLASMA-PF also performs strongly
 321 and remains competitive without task-specific training. However, unlike in the interpolation setting,
 322 PLASMA-PF does not surpass the learnable PLASMA variant on `test_extra`; this emphasizes
 323 the value of supervised examples in improving alignment accuracy for entirely new functional sub-
 324 structures. In contrast, baseline methods show large performance variation across backbone models.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: Model performance on `test_extra` (mean \pm std over three independent seeds). Colors indicate relative performance versus TM-ALIGN.

Metrics	Methods	Motif			Binding Site			Active Site		
		ANKH	ESM2	PROTSSN	ANKH	ESM2	PROTSSN	ANKH	ESM2	PROTSSN
ROC-AUC	PLASMA	.98\pm.008	.97\pm.013	.96\pm.016	.99\pm.008	.98\pm.013	.98\pm.014	.98\pm.012	.98\pm.010	.97\pm.011
	PLASMA-PF	.98\pm.009	.93\pm.004	.90\pm.005	.99\pm.006	.92\pm.052	.96\pm.012	.97\pm.015	.96\pm.006	.97\pm.008
	EBA	.90\pm.033	.92\pm.021	.32\pm.043	.99\pm.007	.97\pm.021	.30\pm.060	.97\pm.013	.97\pm.012	.43\pm.066
	Backbone	.85\pm.019	.74\pm.033	.79\pm.018	.98\pm.010	.72\pm.060	.70\pm.070	.96\pm.012	.79\pm.068	.76\pm.033
	Foldseek									
	TM-Align									
	PLASMA	.98\pm.011	.97\pm.014	.96\pm.017	.98\pm.011	.97\pm.019	.97\pm.019	.97\pm.014	.98\pm.011	.97\pm.012
PR-AUC	PLASMA-PF	.98\pm.010	.95\pm.005	.92\pm.007	.98\pm.012	.90\pm.079	.95\pm.026	.97\pm.015	.96\pm.006	.97\pm.009
	EBA	.91\pm.035	.93\pm.019	.38\pm.014	.98\pm.012	.96\pm.035	.28\pm.063	.97\pm.012	.97\pm.012	.43\pm.032
	Backbone	.86\pm.023	.77\pm.041	.82\pm.027	.96\pm.023	.67\pm.093	.65\pm.118	.96\pm.016	.84\pm.059	.80\pm.038
	Foldseek									
	TM-Align									
	PLASMA	.97\pm.009	.95\pm.018	.92\pm.022	.96\pm.022	.95\pm.030	.93\pm.026	.98\pm.013	.97\pm.011	.97\pm.011
	PLASMA-PF	.96\pm.013	.90\pm.006	.84\pm.008	.96\pm.027	.85\pm.082	.90\pm.031	.97\pm.018	.94\pm.016	.95\pm.012
	EBA	.86\pm.035	.87\pm.024	.00\pm.000	.97\pm.021	.93\pm.049	.00\pm.000	.97\pm.013	.97\pm.008	.00\pm.000
F1-MAX	Backbone	.79\pm.008	.70\pm.014	.73\pm.013	.91\pm.034	.62\pm.087	.60\pm.107	.92\pm.020	.75\pm.044	.71\pm.018
	Foldseek									
	TM-Align									
	PLASMA	.75\pm.045	.69\pm.019	.52\pm.046	.82\pm.062	.77\pm.105	.65\pm.088	.90\pm.034	.87\pm.038	.67\pm.044
	PLASMA-PF	.78\pm.055	.48\pm.074	.23\pm.021	.85\pm.058	.49\pm.082	.36\pm.055	.94\pm.029	.68\pm.067	.43\pm.032
	Best	Baseline (TM-Align)								Worst

EBA performs reasonably well with sequence-based ANKH and ESM2 yet drops substantially with structure-based PROTSSN, especially under the extrapolation split. FOLDSEEK and TM-ALIGN remain consistently below PLASMA across nearly all conditions, reflecting the limited usefulness of global structural similarity for residue-level motif detection.

Beyond accuracy, PLASMA demonstrates exceptional computational efficiency. As shown in Figure 2, PLASMA achieves the best performance while requiring minimal time per protein pair—approximately 10ms for PLASMA and 7ms for PLASMA-PF. This represents a roughly 50 times speedup over global structure alignment methods like TM-Align and Foldseek, which require costly structural superposition, and about 3 times faster than EBA due to PLASMA’s fully differentiable OT formulation that is efficiently accelerated on GPUs, compared to EBA’s inherently sequential dynamic programming approach.

6.3 QUALITY OF PREDICTED ALIGNMENTS

Beyond quantitative metrics, we assess PLASMA’s robustness in identifying biologically meaningful substructures by examining both alignment scores and alignment matrices.

PLASMA effectively distinguishes proteins with shared local functional substructures even when overall structural similarity is low. Figure 3 provides evidence from two perspectives, with all embedding-based methods obtaining protein representations from ANKH. Figure 3A compares similarity score distributions for protein pairs from `test_inter`, where PLASMA and PLASMA-PF clearly separate positive and negative pairs. This advantage comes from the OT framework, which emphasizes local correspondences independent of overall similarity. In contrast, EBA and COSINESIM show substantial overlap between positive and negative distributions. EBA in particular lacks an upper bound on its scores, making them difficult to interpret and subject to calibration problems (*i.e.*, scores cannot be directly used as probabilities and lead to unstable thresholds). Figure 3B further groups test-set alignment scores by TM-score to assess performance under different levels of global similarity for protein pairs. Although all methods degrade as TM-score decreases, PLASMA and PLASMA-PF consistently maintain high ROC-AUC values above 0.9, whereas baseline EBA, COSINESIM, Foldseek, and TM-align deteriorate sharply on low-similarity samples when TM-score is sufficiently small (*e.g.*, < 0.5).

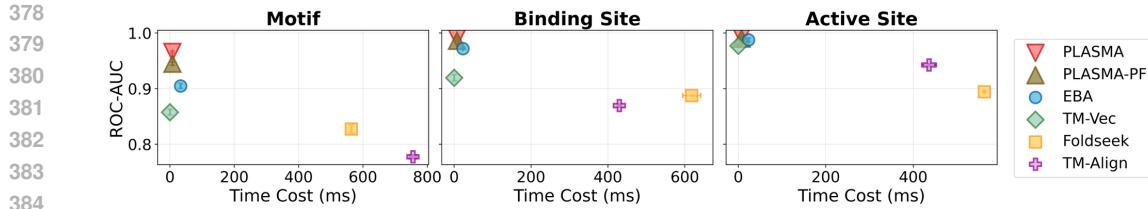


Figure 2: Performance versus computational efficiency comparison. ROC-AUC scores plotted against inference time (milliseconds) for motif and binding/active site detection using PROSTT5 embeddings. Points represent averages across three splits with standard error bars on both axes.

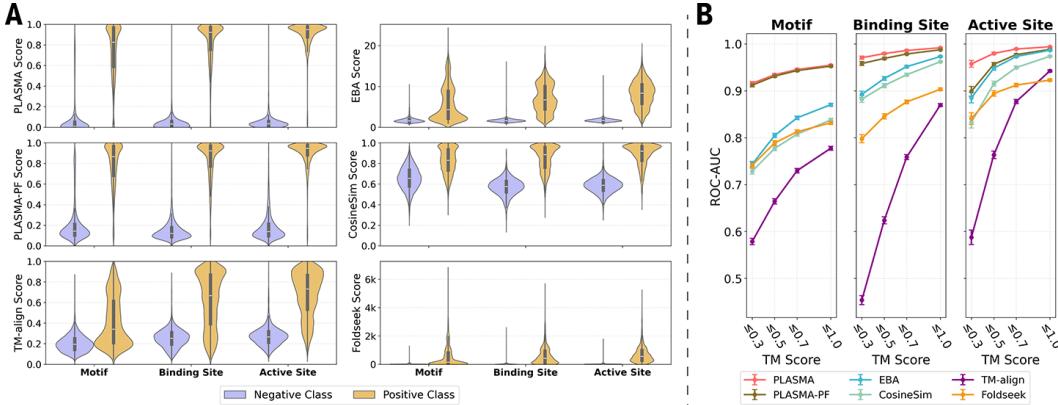


Figure 3: Alignment quality analysis across different approaches. A. Distribution of alignment scores for positive and negative protein pairs. B. ROC-AUC score trend at different global structural similarity levels.

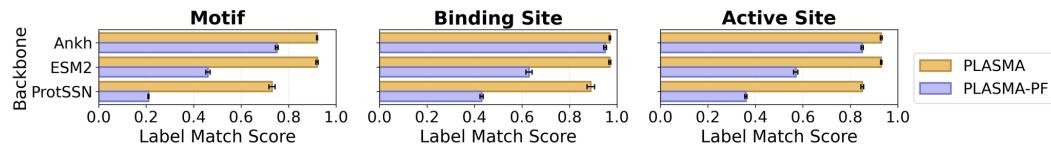


Figure 4: Label Match Score comparison between PLASMA and PLASMA-PF across different substructure types, demonstrating the improved alignment quality achieved through training.

While both PLASMA variants demonstrate strong performance in score-based discrimination, their alignment quality differs. This is evident in Figure 4, which compares their performance using the LMS score to evaluate correspondence between predicted alignments and annotated regions. PLASMA consistently outperforms PLASMA-PF across motifs, binding sites, and active sites, demonstrating that learning improves the prediction of **local structural motifs**. By contrast, while EBA also produces alignment matrices, it cannot be meaningfully assessed with LMS: its unconstrained formulation yields a maximal LMS of 1.0 regardless of true alignment accuracy.

6.4 REPRESENTATIVE ALIGNMENT EXAMPLES

The next experiment evaluates PLASMA’s utility in real biological applications using three representative case studies independent of the training set. We examine three protein pairs of different substructure sizes, including simple local motifs, complex cofactor-binding domains, and extended multi-element substructures. In each case, we provide UniProt identifiers, functional descriptions, alignment results, and visualizations from PLASMA and EBA, and corresponding analyses. Appendix N provides additional visualizations that further illustrate the generality of these conclusions. Collectively, these cases highlight PLASMA’s ability to detect biologically meaningful local similarities across proteins with diverse sequences, structures, and functions.

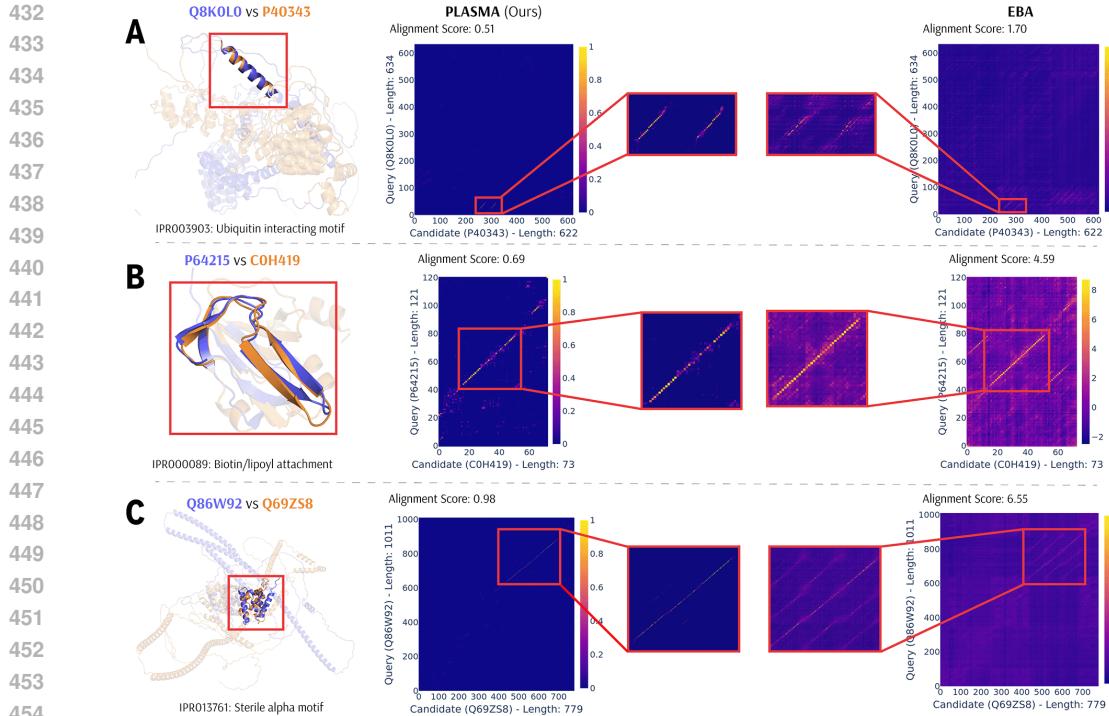


Figure 5: Representative alignment examples across three protein pairs. **A**, P40343 vs Q8K0L0. **B**, P64215 vs C0H419. **C**, Q69ZS8 vs Q86W92. Left: 3D structures with highlighted aligned regions. Center and right: alignment matrices from PLASMA and EBA with zoomed insets. A higher resolution version of this figure can be found at App. H.

Conserved Small Helical Motifs Across Functionally Diverse Protein Structures The first case matches local structures between P40343 (Vps27, a yeast ESCRT-0 complex component) and Q8K0L0 (ASB2, a mouse E3 ubiquitin ligase substrate-recognition component). The two proteins share no apparent sequence homology (21.0% identity) and participate in distinct cellular processes (endosomal sorting versus proteasomal degradation), yet both use analogous helical arrangements for protein-protein interactions: Vps27’s GAT domain forms coiled-coils for ESCRT-I recruitment (Curtiss et al., 2007), whereas ASB2 employs ankyrin repeat helices for substrate recognition in the E3 ligase complex. PLASMA assigns high-confidence scores to residues mediating these interactions (Figure 5A). The 3D structure visualization also confirms the alignment of the conserved Leu-X-X-Leu-Leu motif for both proteins (Ren et al., 2008), with an aligned RMSD of 0.18 Å. This finding suggests potential convergent evolution of helical protein-binding interfaces across distinct cellular machineries. By contrast, EBA identifies multiple helices, but most correspond to nonfunctional scaffold regions rather than the relevant interaction motifs.

Structurally and Functionally Relevant motifs of Different Sizes and Metabolic Contexts The second case examines P64215 (GcvH, glycine cleavage system H protein from *Mycobacterium tuberculosis*) and C0H419 (YngHB, biotin/lipoyl attachment protein from *Bacillus subtilis*) (Cui et al., 2006). These proteins have different overall sequences (25.2% sequence identity) and metabolic functions: GcvH shuttles methylamine groups in glycine catabolism, while YngHB accommodates both biotin and lipoic acid in a single-domain architecture. Despite these differences, both bind similar cofactors and exhibit conserved β -sheet arrangements necessary for post-translational modification. As shown in Figure 5B, PLASMA successfully aligns the four-stranded β -barrel architectures, highlighting the critical lysine-containing β -turns with an overall alignment score of 0.69 and RMSD of 0.83, whereas the baseline EBA misaligns nonfunctional regions. The alignment of complex conserved structural motifs across protein families demonstrates the potential of PLASMA in revealing modular evolution and conserved cofactor-binding architectures.

486 **Extended Multi-Element Substructures in Cell Adhesion Regulators** The third case investi-
 487 gates Q69ZS8 (Kazrin, a scaffold protein in *Mus musculus*) and Q86W92 (Liprin- β 1/PPFIBP1, a
 488 human focal adhesion regulator). Despite their different cellular localizations and interaction part-
 489 ners, they regulate distinct but mechanistically related aspects of cell-cell adhesion: Kazrin organizes
 490 desmosomal components in keratinocytes, and Liprin- β 1 modulates focal adhesion disassembly and
 491 cell migration. Yet both proteins rely on extended α -helical regions for protein-protein interactions
 492 (Groot et al., 2004). As in Figure 5C, PLASMA successfully aligns complex multi-coil substruc-
 493 tures spanning multiple helical segments interspersed with flexible linkers, with an overall align-
 494 ment score of 0.98 and RMSD 0.82 Å. The alignment highlights conserved leucine-rich motifs and
 495 hinge regions that stabilize oligomerization interfaces, revealing analogous scaffolding strategies.
 496 In contrast, EBA identifies plausible structures but often misaligns helices or matches nonfunctional
 497 scaffold regions, failing to capture more than just biologically meaningful substructures.
 498

499 7 RELATED WORKS

500 **Protein Global Structure Alignment** Global structure alignment methods evaluate overall pro-
 501 tein similarity. Classic approaches like TM-Align (Zhang, 2005) are foundational, while modern
 502 methods increase efficiency by abstracting structures into 1D sequences (Foldseek (Van Kempen
 503 et al., 2024)), representing them as fixed vectors for rapid search (TM-Vec (Hamamsy et al., 2024)),
 504 or using advanced spatial indexing (GTalign (Margelevičius, 2024)). The field has also expanded
 505 to align multiple structures (mTM-align (Dong et al., 2018)), multi-chain complexes (MM-align
 506 (Mukherjee & Zhang, 2009)), and diverse macromolecules universally (US-align (Zhang et al.,
 507 2022)). However, their global nature limits the detection of conserved motifs in dissimilar proteins.
 508

509 **Substructure and Sequence-based Alignment** To find local similarities, substructure-based
 510 methods use graph-based residue embeddings (Tan et al., 2024), focus on active-site environments
 511 (Castillo & Ollila, 2025), or apply linear-assignment formulations (Zhang et al., 2025). More com-
 512 monly, PLM embeddings are leveraged for residue-level representation. PLM-based alignment ap-
 513 proaches like PLM-BLAST (Kaminski et al., 2023) and PLMSearch (Liu et al., 2024) use raw em-
 514 bedding similarity, but their scores often lack clear biological interpretability. More sophisticated
 515 models have since emerged, such as DEDAL (Llinares-López et al., 2023), which learns to align se-
 516 quences, and PEbA (Iovino & Ye, 2024), which integrates embeddings into dynamic programming
 517 for improved remote homolog alignment. Despite these advances, a persistent challenge is score
 518 interpretability, as methods like EBA (Pantolini et al., 2024) produce unbounded outputs, unlike the
 519 normalized scores of TM-Align.
 520

521 8 CONCLUSION AND DISCUSSION

523 This work presents PLASMA, a local structural motif alignment framework leveraging regularized
 524 optimal transport to detect biologically meaningful local similarities across proteins with diverse
 525 sequences, structures, and functions. PLASMA consistently outperforms baseline methods in ac-
 526 curacy, efficiency, and interpretability, capturing subtle structural correspondences often invisible to
 527 global alignments. Its trainable variant benefits from supervision to improve alignment precision,
 528 while the training-free variant achieves robust performance without task-specific labels.
 529

530 Beyond quantitative performance, PLASMA provides clear, residue-level alignment matrices that
 531 support mechanistic insights into protein function, evolutionary relationships, and structure-guided
 532 protein engineering. Its ability to handle varying substructure sizes and complexities (e.g., from
 533 short helices to extended multi-element domains) demonstrates versatility and practical relevance.
 534 Overall, PLASMA establishes a new standard for accurate, efficient, interpretable, and practically
 535 applicable protein local structural motif alignment.

536 **Reproducibility Statement** To promote reproducibility, we release all source code and trained
 537 models under an open-source license, with anonymized hosting to comply with the double-blind
 538 review policy. The anonymized repository is available at <https://anonymous.4open.science/r/plasma-5A5B/>. Details of data sources are provided in Appendix C.1. Task defi-
 539 nitions, evaluation protocols, and hyperparameter settings are described in Sections 6.1 and Appen-

540 dices C.2. Implementation details and instructions for reproducing experiments are included in the
541 project repository to facilitate independent verification.
542

543 **Ethics Statement** All experiments are conducted on publicly available protein sequence and struc-
544 ture databases. We follow established ethical guidelines in data usage and acknowledge that histori-
545 cal biases present in these resources may be reflected in our results, which is independent to model
546 development.
547

548 **The Use of Large Language Models (LLM)** In the preparation of this manuscript, GPT-5 and
549 GPT-4o were utilized as writing assistants. Its use was strictly limited to improving grammar, clarity,
550 and overall readability. All scientific ideas, experimental results, and conclusions were conceived
551 and formulated exclusively by the authors. All text polished or modified by the LLM was sub-
552 sequently reviewed and edited by the authors to ensure that the original scientific meaning was
553 accurately preserved.
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Sebastian Bittrich, Stephen K. Burley, and Alexander S. Rose. Real-time structural motif searching
597 in proteins using an inverted index strategy. *PLOS Computational Biology*, 16(12):e1008502,
598 2020. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1008502.

599 Matthias Blum, Antonina Andreeva, Laise Cavalcanti Florentino, Sara Rocio Chuguransky, Tiago
600 Grego, Emma Hobbs, Beatriz Lazaro Pinto, Ailsa Orr, Typhaine Paysan-Lafosse, Irina Pona-
601 mareva, Gustavo A Salazar, Nicola Bordin, Peer Bork, Alan Bridge, Lucy Colwell, Julian Gough,
602 Daniel H Haft, Ivica Letunic, Felipe Llinares-López, Aron Marchler-Bauer, Laetitia Meng-
603 Papaxanthos, Huaiyu Mi, Darren A Natale, Christine A Orengo, Arun P Pandurangan, Damiano
604 Piovesan, Catherine Rivoire, Christian J A Sigrist, Narmada Thanki, Françoise Thibaud-Nissen,
605 Paul D Thomas, Silvio C E Tosatto, Cathy H Wu, and Alex Bateman. InterPro: The protein se-
606 quence classification resource in 2025. *Nucleic Acids Research*, 53(D1):D444–D456, 2025. ISSN
607 0305-1048, 1362-4962. doi: 10.1093/nar/gkae1082.

608 Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: A
609 universal deep-learning model of protein sequence and function. *Bioinformatics*, 38(8):2102–
610 2110, 2022. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/btac020.

611 Luis Caffarelli and Robert McCann. Free boundaries in optimal transport and monge-ampère
612 obstacle problems. *Annals of Mathematics*, 171(2):673–730, 2010. ISSN 0003-486X. doi:
613 10.4007/annals.2010.171.673.

614 Sandra Castillo and Osmo Henri Samuli Ollila. Actseek: fast and accurate search algorithm of active
615 sites in alphafold database. *Bioinformatics*, 41(8):btaf424, 2025.

616 Gaofeng Cui, Beiyang Nan, Jicheng Hu, Yiping Wang, Changwen Jin, and Bin Xia. Identification
617 and solution structures of a single domain biotin/lipoyl attachment protein from bacillus subtilis.
618 *Journal of Biological Chemistry*, 281(29):20598–20607, 2006.

619 Matt Curtiss, Charles Jones, and Markus Babst. Efficient cargo sorting by escrt-i and the subsequent
620 release of escrt-i from multivesicular bodies requires the subunit mvb12. *Molecular biology of
621 the cell*, 18(2):636–645, 2007.

622 Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In *NIPS’13*,
623 volume 2. Curran Associates Inc., 2013. doi: 10.5555/2999792.2999868.

624 Runze Dong, Zhenling Peng, Yang Zhang, and Jianyi Yang. mTM-align: an algorithm for fast and
625 accurate multiple protein structure alignment. *Bioinformatics*, 34(10):1719–1725, 2018.

626 Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, and Daniel Cremers. Deep shells: Unsuper-
627 vised shape correspondence with optimal transport. *Advances in Neural information processing
628 systems*, 33:10491–10502, 2020.

629 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
630 Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Protrans: towards crack-
631 ing the language of life’s code through self-supervised learning. *IEEE Transactions on Pattern
632 Analysis and Machine Intelligence*, 44:7112–7127, 2021.

633 Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy, Char-
634 lotte Rochereau, and Burkhard Rost. Ankh: Optimized protein language model unlocks general-
635 purpose modelling. *arXiv:2301.06568*, 2023.

636 Alessio Figalli. The optimal partial transport problem. *Archive for Rational Mechanics and Analysis*,
637 195(2):533–560, 2010. ISSN 0003-9527, 1432-0673. doi: 10.1007/s00205-008-0212-7.

638 Karen R Groot, Lisa M Sevilla, Kazunori Nishi, Teresa DiColandrea, and Fiona M Watt. Kazrin,
639 a novel periplakin-interacting protein associated with desmosomes and the keratinocyte plasma
640 membrane. *The Journal of cell biology*, 166(5):653–659, 2004.

648 Tymor Hamamsy, James T. Morton, Robert Blackwell, Daniel Berenberg, Nicholas Carriero,
 649 Vladimir Gligorijevic, Charlie E. M. Strauss, Julia Koehler Leman, Kyunghyun Cho, and
 650 Richard Bonneau. Protein remote homology detection and structural alignment using deep
 651 learning. *Nature Biotechnology*, 42(6):975–985, 2024. ISSN 1087-0156, 1546-1696. doi:
 652 10.1038/s41587-023-01917-2.

653 Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez Sanchez, Adrian Henkel, Milot
 654 Mirdita, Martin Steinegger, and Burkhard Rost. Bilingual language model for protein sequence
 655 and structure. *NAR Genomics and Bioinformatics*, 6(4):lqae150, 2024. ISSN 2631-9268. doi:
 656 10.1093/nargab/lqae150.

657 Liisa Holm. Using dali for protein structure comparison. In Zoltán Gáspári (ed.), *Structural Bioinformatics*, volume 2112, pp. 29–42. Springer US, 2020. ISBN 978-1-0716-0269-0 978-1-0716-
 659 0270-6. doi: 10.1007/978-1-0716-0270-6_3.

660 Torgeir R Hvidsten, Astrid Lægreid, Andriy Kryshtafovych, Gunnar Andersson, Krzysztof Fidelis,
 661 and Jan Komorowski. A comprehensive analysis of the structure-function relationship in proteins
 662 based on local structure similarity. *PloS one*, 4(7):e6266, 2009.

663 Benjamin Giovanni Iovino and Yuzhen Ye. Protein embedding based alignment. *BMC bioinformatics*, 25(1):85, 2024.

664 Arian R. Jamasb, Alex Morehead, Chaitanya K. Joshi, Zuobai Zhang, Kieran Didi, Simon V.
 665 Mathis, Charles Harris, Jian Tang, Jianlin Cheng, Pietro Lio, and Tom L. Blundell. Evaluating
 666 representation learning on the protein structure universe. In *ICLR 2024*, 2024. doi:
 667 10.48550/arXiv.2406.13864.

668 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 669 Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, Alex Bridgland,
 670 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 671 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 672 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
 673 bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 674 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
 675 *Nature*, 596:583–589, 2021. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-021-03819-2.

676 Kamil Kaminski, Jan Ludwiczak, Kamil Pawlicki, Vikram Alva, and Stanislaw Dunin-Horkawicz.
 677 pLM-BLAST: Distant homology detection based on direct comparison of sequence representa-
 678 tions from protein language models. *Bioinformatics*, 39(10):btad579, 2023. ISSN 1367-4803,
 679 1367-4811. doi: 10.1093/bioinformatics/btad579.

680 Hyunbin Kim, Rachel Seongeun Kim, Milot Mirdita, and Martin Steinegger. Structural motif search
 681 across the protein-universe with folddisco. *bioRxiv*, pp. 2025–07, 2025.

682 Michael Knudsen and Carsten Wiuf. The CATH database. *Human Genomics*, 4(3):207, 2010. ISSN
 683 1479-7364. doi: 10.1186/1479-7364-4-3-207.

684 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 685 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan Dos Santos Costa, Maryam Fazel-Zarandi,
 686 Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-
 687 level protein structure with a language model. *Science*, 379(6637):1123–1130, 2023. ISSN 0036-
 688 8075, 1095-9203. doi: 10.1126/science.ade2574.

689 Wei Liu, Ziye Wang, Ronghui You, Chenghan Xie, Hong Wei, Yi Xiong, Jianyi Yang, and Shan-
 690 feng Zhu. PLMSearch: Protein language model powers accurate and fast sequence search
 691 for remote homology. *Nature Communications*, 15(1):2775, 2024. ISSN 2041-1723. doi:
 692 10.1038/s41467-024-46808-5.

693 Yang Liu, Qing Ye, Liwei Wang, and Jian Peng. Learning structural motif representations for
 694 efficient protein structure search. *Bioinformatics*, 34(17):i773–i780, 2018.

695 Felipe Llinares-López, Quentin Berthet, Mathieu Blondel, Olivier Teboul, and Jean-Philippe Vert.
 696 Deep embedding and alignment of protein sequences. *Nature methods*, 20(1):104–111, 2023.

702 Mindaugas Margelevičius. GTalign: Spatial index-driven protein structure alignment, superposition,
 703 and search. *Nature Communications*, 15(1):7305, 2024.

704

705 Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
 706 with gumbel-sinkhorn networks. In *International Conference on Learning Representations*, 2018.

707

708 Caitlyn L Mills, Rohan Garg, Joslynn S Lee, Liang Tian, Alexandru Suciu, Gene D Cooperman,
 709 Penny J Beuning, and Mary Jo Ondrechen. Functional classification of protein structures by local
 710 structure matching in graph representation. *Protein Science*, 27(6):1125–1135, 2018.

711

712 Rayanta Mukherjee and Yang Zhang. MM-align: a quick algorithm for aligning multiple-chain
 713 protein complex structures using iterative dynamic programming. *Nucleic acids research*, 37(11):
 714 e83–e83, 2009.

715

716 Lorenzo Pantolini, Gabriel Studer, Joana Pereira, Janani Durairaj, Gerardo Tauriello, and Torsten
 717 Schwede. Embedding-based alignment: Combining protein language models with dynamic pro-
 718 gramming alignment to detect structural similarities in the twilight-zone. *Bioinformatics*, 40(1):
 719 btad786, 2024. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/btad786.

720

721 Vaibhav Raj, Indrayumna Roy, Ashwin Ramachandran, Soumen Chakrabarti, and Abir De. Chart-
 722 ing the design space of neural graph representations for subgraph matching. In *ICLR 2025*, 2025.

723

724 Ashwin Ramachandran, Vaibhav Raj, Indrayumna Roy, Soumen Chakrabarti, and Abir De. Itera-
 725 tively refined early interaction alignment for subgraph matching based graph retrieval. In *NeurIPS*
 726 2024, 2024.

727

728 Jihui Ren, Natasha Pashkova, Stanley Winistorfer, and Robert C Piper. Doa1/ufd3 plays a role
 729 in sorting ubiquitinated membrane proteins into multivesicular bodies. *Journal of Biological
 730 Chemistry*, 283(31):21599–21611, 2008.

731

732 Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matri-
 733 ces. *Pacific Journal of Mathematics*, 21(2):343–348, 1967. ISSN 0030-8730, 0030-8730. doi:
 734 10.2140/pjm.1967.21.343.

735

736 Baris E. Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H. Wu. UniRef:
 737 Comprehensive and non-redundant UniProt reference clusters. *Bioinformatics*, 23(10):1282–
 738 1288, 2007. ISSN 1367-4811, 1367-4803. doi: 10.1093/bioinformatics/btm098.

739

740 Yang Tan, Lirong Zheng, Bozitao Zhong, Liang Hong, and Bingxin Zhou. Protein representation
 741 learning with sequence information embedding: Does it always lead to a better performance? In
 742 *2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, pp. 233–239.
 743 IEEE, 2024.

744

745 Yang Tan, Wenrui Gou, Bozitao Zhong, Liang Hong, Huiqun Yu, and Bingxin Zhou. VenusX:
 746 Unlocking fine-grained functional understanding of proteins. *arXiv:2505.11812*, 2025a.

747

748 Yang Tan, Bingxin Zhou, Lirong Zheng, Guisheng Fan, and Liang Hong. Semantical and geo-
 749 metrical protein encoding toward enhanced bioactivity and thermostability. *eLife*, 13:RP98033,
 750 2025b.

751

752 Michel Van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
 753 Cameron L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
 754 structure search with foldseek. *Nature Biotechnology*, 42(2):243–246, 2024. ISSN 1087-0156,
 755 1546-1696. doi: 10.1038/s41587-023-01773-0.

756

757 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 758 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein
 759 structure database: massively expanding the structural coverage of protein-sequence space with
 760 high-accuracy models. *Nucleic acids research*, 50(D1):D439–D444, 2022.

761

762 Chengxin Zhang, Morgan Shine, Anna Marie Pyle, and Yang Zhang. US-align: universal structure
 763 alignments of proteins, nucleic acids, and macromolecular complexes. *Nature methods*, 19(9):
 764 1109–1115, 2022.

756 Xuechen Zhang, Zhuoyang Chen, Junyu Li, Qiong Luo, Longjun Wu, and Weichuan Yu. eplsap-
757 align: a non-sequential protein structural alignment solver with entropy-regularized partial linear
758 sum assignment problem formulation. *Bioinformatics*, 41(6):btaf309, 2025.
759
760 Y. Zhang. TM-align: A protein structure alignment algorithm based on the TM-score. *Nucleic Acids
761 Research*, 33(7):2302–2309, 2005. ISSN 1362-4962. doi: 10.1093/nar/gki524.
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809