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ABSTRACT

Transformer-based models have achieved remarkable success, but their core com-
ponents, Transformer layers, are largely heuristics-driven and engineered from the
bottom up, calling for a prototypical model with high interpretability and practi-
cal competence. To this end, we conceptualize a principled, top-down approach
grounded in energy-based interpretation. Specifically, we formalize token dynam-
ics as a joint maximum likelihood estimation on the hypersphere, featuring two
properties: semantic alignment in the high-dimensional space and distributional
uniformity in the low-dimensional space. By quantifying them with extended
Hopfield energy functions, we instantiate this idea as a constrained energy mini-
mization problem, which enables designs of symmetric attention and feedforward
modules with RMS normalization. We further present Hyper-Spherical Energy
Transformer (HYPER-SET), a recurrent-depth alternative to vanilla Transformers
naturally emerging from iterative energy optimization on the hypersphere. With
shared parameters across layers, HYPER-SET can scale to arbitrary depth with
fewer parameters. Theoretically grounded and compact, it achieves competitive
or superior performance across diverse tasks, including Sudoku solving, image
classification, and masked image modeling. We also design novel variations un-
der the proposed general principle, such as linear attention and gated feedforward
layer, and showcase its scalability with depth-wise LoRA. Our results highlight
HYPER-SET as a step toward interpretable and principled Transformer design.

1 INTRODUCTION

Transformer-based models (Vaswani et al., 2017) have become foundational across diverse domains,
including computer vision (Dosovitskiy et al., 2021; Bao et al., 2022; He et al., 2022; Peebles & Xie,
2023), natural language (Devlin et al., 2019; Lan et al., 2020; Brown et al., 2020), robotics (Brohan
et al., 2022; Chen et al., 2021), and scientific discovery (Jumper et al., 2021; Kamienny et al., 2022).
In recent years, there has been evidence that scaling up model size, dataset size, or computational
budget during pre-training can yield unprecedented performance gains (Kaplan et al., 2020), driving
the proliferation of Transformer-based foundation models (OpenAI et al., 2024; Dubey et al., 2024;
Anil et al., 2023; Oquab et al., 2024).

Despite these achievements, the architecture of Transformers—especially the configurations and
role of individual layers—remains largely heuristic. For instance, empirical studies have observed
high redundancy in the deeper layers (Gromov et al., 2024; Men et al., 2024), uniformity of repre-
sentations in the middle layers (Sun et al., 2024), and robustness to permuting certain intermediate
layers (Lad et al., 2024) in LLMs. These findings suggest convergent functionality that one layer
represents, yet our understanding of its role in processing information and representation learning
remains limited. While interpretability efforts to unveil the function underlying the network layers
exist, especially Transformer blocks-ranging from mechanistic interpretability (Elhage et al., 2021;
Nanda et al., 2023; Wang et al., 2023; Huben et al., 2024) to causal mediation analysis (Vig et al.,
2020; Meng et al., 2022) and visualization (Bricken et al., 2023; Olsson et al., 2022)-most focus on
post hoc interpretation and phenomenological approaches. This motivates a pivotal question:

Can we find or design a function prior that induces a model that is interpretable by construction?

1
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One approach to achieving intrinsic interpretability is to embed an explicit optimization process
into neural networks, known as model-based deep learning (Shlezinger et al., 2023). Prior works
have designed networks that solve domain-specific problems such as constraint satisfaction (Wang
et al., 2019), optimal control (Amos & Kolter, 2017; Amos et al., 2018), or physical simulation
(Greydanus et al., 2019; Karniadakis et al., 2021). However, these models often rely on fixed task
priors and lack generality.

Another more general avenue is energy-based learning (EBL) (Dawid & LeCun, 2024), which
frames prediction as minimizing a scalar energy function Eθ(x, y) over outputs y conditioned on
inputs x. Within this framework, Energy Transformer (Hoover et al., 2024) interprets Transformer
layers as iterative optimization over the canonical continuous Hopfield energy (Ramsauer et al.,
2021; Krotov & Hopfield, 2021) yet focuses on mechanistic analogies to associative memory with-
out grounding its formulation in specific representational challenges. In contrast, our goal is to
find a design principle from top down that can not only reinterpret existing components but is also
generalizable to novel architecture design constructively.

In this work, we therefore take a fundamentally different approach by introducing a principle
grounded in maximum likelihood estimation (MLE) for tokens on the hypersphere. Under mild
assumptions, we interpret it under two complementary objectives for representation dynamics: se-
mantic alignment (mode seeking) in high-dimensional space and distributional uniformity (mass
covering) in a low-dimensional subspace. To translate these objectives into optimizable quantities
over tokens, we define two complementary Hopfield-style energy functions that quantify these ob-
jectives and can be minimized through iterative optimization. This leads to the Hyper-Spherical
Energy Transformer (HYPER-SET)—a recurrent-depth model in which core components such as
symmetric attention, feedforward layers, RMSNorm, and skip connection emerge naturally from
the optimization dynamics. With only one set of shared parameters across iterations, HYPER-SET
is compact, interpretable by design, and empirically competitive across diverse tasks, including rea-
soning, classification, and masked image modeling. Beyond a single instantiation, this principle
can induce novel architectural designs by generalizing the energy functions, enabling variants such
as linear attention and gated feedforward layer. To enhance scalability, we introduce depth-wise
low-rank adaptation (LoRA), allowing flexible iteration-specific modulation with minimal parame-
ter overhead. Our key contributions are summarized as follows:

1. Theoretical Formulation: We conceptualize a general principle for information processing in
layer dynamics based on maximum likelihood estimation on the hypersphere with two properties:
uniformity and alignment, quantified via complementary Hopfield-style energy functions.

2. Energy-Driven Architecture: We derive a compact Transformer-based model through pure
energy minimization, where core components—including symmetric attention, feedforward,
RMSNorm (Zhang & Sennrich, 2019), and skip connection—emerge naturally.

3. Competitive Performance: We show competitive performance to vanilla Transformer across
reasoning, classification, and masked modeling while demonstrating generality to design novel
components (e.g., linear attention, gated feedforward) and scalability with flexible computation.

2 RELATED WORK

2.1 ENERGY-BASED LEARNING

Energy-based learning (EBL) (LeCun et al., 2006; Dawid & LeCun, 2024) provides a unifying
framework for modeling prediction as minimizing an energy function. Early forms include Hopfield
networks (Hopfield, 1982) and Boltzmann machines (Ackley et al., 1985). Modern developments in
EBL span both generative modeling—via energy functions (Du & Mordatch, 2019) or their gradients
(as in score-based models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019))—and representation
learning. Another line of work views network layers as the result of iterative energy minimiza-
tion. Some approaches define energy implicitly through neural networks (Bai et al., 2019; Du et al.,
2022; 2024), while recent work Energy Transformer (Hoover et al., 2024) draws analogies between
attention layers and explicit energy descent but mainly focuses on reinterpretation rather than prin-
cipled derivation. Our work differs in that we design the Transformer block by quantifying a general
principle that can induce variants through alternative energy.
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Figure 1: Evolution of tokens in the forward pass. Top: Tokens projected onto subspaces are pro-
gressively separated on the low-dimensional hypersphere. Bottom: Tokens gradually align with an-
chor vectors in the high-dimensional hypersphere. Visualization is carried out in three-dimensional
space for illustrative purposes.

Other works also explore energy formulations on the hypersphere (Liu et al., 2018; Loshchilov
et al., 2024), but mostly in the weight space. By contrast, we define our energies directly on the rep-
resentation space. Additionally, recent theoretical studies on memory capacity in modern Hopfield
networks (Hu et al., 2024a; Wu et al., 2024a; Hu et al., 2024b) emphasize spreading patterns on the
sphere but focus primarily on memory retrieval and cross-attention.

2.2 MODEL DESIGN FROM FIRST PRINCIPLES

While neural network architectures are often shaped by engineering practices, recent work has ex-
plored designing or interpreting them through principled lenses like signal processing, information
theory, and neurobiology. For example, deep unrolling of the sparse coding algorithms has led to
the development of fully connected networks (Gregor & LeCun, 2010), convolution networks (Pa-
pyan et al., 2017; 2018), and even graph neural networks through iterative algorithms (Yang et al.,
2021). Similarly, the sparse rate reduction principle has been used to derive the Transformer archi-
tecture (Yu et al., 2023). Other approaches draw inspiration from approximation theory (Liu et al.,
2024) and brain computation (Kozachkov et al., 2023), further bridging the gap between theoretical
insights and practical network design.

2.3 DEPTH RECURRENCE IN TRANSFORMERS

Recurrence has been scientifically considered as a core computational mechanism in the biological
visual system enabling flexible computational depth, integration of priors, and efficient allocation of
compute under resource constraints (van Bergen & Kriegeskorte, 2020). Depth-wise recurrence in
Transformer architectures, under the name of universal (Devlin et al., 2019), recursive/recurrent (Bae
et al., 2025; Geiping et al., 2025) or looped Transformers (Giannou et al., 2023), where cross-layer
weights are shared, has emerged as a critical avenue for reducing parameters and enabling iterative
reasoning. Its repeated reuse of the same layer has been demonstrated capable of emulating iterative
algorithms Schwarzschild et al. (2021); Saunshi et al. (2025). Crucially, it has been demonstrated
with particular strength mostly on systematic generalization (Csordás et al., 2021) and structured
reasoning tasks (Schwarzschild et al., 2021; Bansal et al., 2022), while its applications on general-
domain tasks that need hierarchical processing (e.g, image perception) are under-explored.

3 CONCEPTUALIZATION AND INSTANTIATION

To answer the introductory question, we conjecture that effective representations should exhibit two
complementary properties: semantic alignment in a high-dimensional space and distributional
uniformity in a low-dimensional subspace. This dual perspective reflects the balance of mode seek-
ing and mass covering—terms we use to characterize the interplay between information preservation
and entropy collapse prevention in representation learning. Figure 1 shows an illustrative example.
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Figure 2: Overview of hyperspherical energy Transformer layer. It recovers sequential stacking of
symmetric self-attention, feedforward, skip connection, and RMSNorm from sheer minimization of
extended Hopfield energy. Adaptive step sizes are learned given the current t and initial input X0.

We formalize this conceptualization under maximum likelihood estimation. Specifically, we instan-
tiate the forward dynamics as an optimization over a token-level vector x balancing two terms:

min
x

H∑
h=1

DKL(p(z)∥pϕ(zh|x))︸ ︷︷ ︸
uniformity

− log pθ(x)︸ ︷︷ ︸
alignment

, (1)

where zh represents low-dimensional projections of the high-dimensional representation x.

The first term encourages the projections zh to approximate a prior uniform distribution p(z) on a
hypersphere, thus maximizing entropy and mitigating representational collapse. The second term
promotes alignment between x and mean directions, which can be modeled using von Mises–Fisher
distributions. A detailed justification and interpretation of this objective is provided in Appendix A.

This objective resonates with but differs from the contrastive learning objective that unifies align-
ment and uniformity in a shared latent space (Wang & Isola, 2020). Our work instead takes on an
energy view to quantify these two key ingredients into optimizable functions of x that can induce
Transformer architectures.

4 HYPERSPHERICAL ENERGY TRANSFORMER FROM ITERATIVE ENERGY
MINIMIZATION

In this section, we translate the proposed instantiation into two modified Hopfield energy functions
defined on hyperspheres (see Appendix B for preliminaries and definition of Hopfield energy EMCH
in Eq. 16). Through iterative energy minimization, the architectural components of Transformer
layers naturally arise under this framework. The overview is presented in Figure 2.

4.1 HYPERSPHERICAL ENERGY

Let X = [x1, . . . ,xN ] denote a set of N contextual token vectors, each xi ∈ Rd. These tokens
are projected into H distinct subspaces via basis matrices W = [W1, . . . ,WH ] ∈ Rd×Hp, where
each Wh ∈ Rd×p spans a p-dimensional subspace. Additionally, we define a second set of bases
D = [d1, . . . ,dM ] ∈ Rd×M to encode semantic directions in the original space. Unless otherwise
specified, we assume these basis vectors are incoherent and span the full space, i.e., Hp =M = d.

4.1.1 OVERCOMING TOKEN SYNCHRONIZATION VIA REPULSIVE DYNAMICS

Motivated by a recent argument that the contextual tokens lie on a low-dimensional manifold of their
high-dimensional ambient space (Yu et al., 2023), we study the projection of tokens with bases W ;
for a subspace spanned by Wh, the latent representation of a token xi can be written as

zhi = W T
h xi. (2)

Canonical Hopfield energy EMCH tends to align vectors with stored patterns. This interaction of-
ten occurs between dynamic tokens and static patterns. However, in Transformers’ self-attention,

4
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this interplay happens among all dynamic tokens simultaneously. Enforcing strict alignment among
them risks collapsing representations into degenerate clusters, reducing expressiveness. This phe-
nomenon has been observed empirically as oversmoothing (Chen et al., 2022; Wu et al., 2024b) or
rank collapse (Dong et al., 2021), and theoretically characterized in (Geshkovski et al., 2023). It also
relates to the synchronization effect in coupled systems (Acebrón et al., 2005; Miyato et al., 2024).

Therefore, to overcome this issue, we extend the Hopfield energy EMCH to model the repulsive
force among tokens and quantify their distributional uniformity in each subspace, which serves as a
surrogate of the uniformity measure in Eq. 1. For subspace h, this energy is given by

EhATTN = β−1
N∑
i=1

log(

N∑
j=1

exp
(
β(zhi )

T (zhj )
)
, (3)

where β is usually the inverse of temperature. Here we use the subscript ATTN as this energy will
be shown to be related to the design of the attention layer, resembling that in (Yu et al., 2023).
Aggregating over all subspaces, the total energy that models interacting tokens would be

EATTN =

H∑
h=1

EhATTN, subject to ∥W T
h xi∥2 =

√
p. (4)

The constraint ensures that the dynamics take place on a low-dimensional hypersphere of radius√
p. Minimizing EATTN thus encourages token spread evenly on multiple hyperspheres, mitigating

collapse and promoting distributional uniformity. 1

4.1.2 SEMANTIC ALIGNMENT VIA ATTRACTION TO HIGH-DIMENSIONAL BASES

While the subspace projections separate to occupy more volume thus regularizing distribution, we
seek to enrich the high-dimensional representations per se. From an information-theoretic perspec-
tive (Tishby et al., 2000; Tishby & Zaslavsky, 2015), effective representations require compress-
ing uninformative redundancy while preserving salient information. Hence, in the original high-
dimensional space, we encourage token alignment with a set of directions that contain knowledge
from data to reduce entropy for minimal coding bits.

Motivated by empirical findings that feedforward layers in Transformers store much of their knowl-
edge (Geva et al., 2021; Dar et al., 2023), we interpret the basis vectors D as the semantic directions.
One surrogate function to implement this attractive energy for alignment in Eq. 1 is defined as

EFF = −1

2

N∑
i=1

M∑
m=1

(
ReLU

(
dTmxi

))2
, subject to ∥DTxi∥2 =

√
M. (5)

Here we use the subscript FF as this energy relates to the design of the feedforward layer. This
energy favors alignment between tokens and those basis directions forming acute angles (as filtered
by ReLU), while maintaining the hyperspherical constraint in the original space. Geometrically,
each token is drawn toward a union of attractive half-spaces defined by D. This could imply that
each token may bind patterns combinatorially beyond the number of basis vectors defined by D.

4.1.3 DUAL ENERGY ON THE HYPERSPHERE

By combining these two hyperspherical energy functions, we introduce a unified objective function
that characterizes the functionality the Transformer layer represents:

min
x1,...,xN∈X

E(X;W ,D) = EATTN + EFF (6)

subject to ∥W T
h xi∥2 =

√
p, ∥DTxi∥2 =

√
M, i = 1, . . . , N.

Iteratively minimizing this energy under spherical constraints induces the core architecture of Trans-
former layers: self-attention module arises from repulsive energy over subspaces and feedforward
module arises from attractive energy in the ambient space. To solve optimization Eq. 6, we adopt an
alternating minimization method by splitting it into sub-problems, following (Yu et al., 2023).

1Its asymptotic convergence to uniformity on the sphere has been proven in (Liu et al., 2018).
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4.2 SYMMETRIC STRUCTURE INDUCED FROM ENERGY MINIMIZATION

4.2.1 ATTENTION MODULE FROM UNIFORM ENERGY

To show how we have an attention module derived from minimizing hyperspherical energy EATTN
in Eq. 4, we first establish the differential equation that models the evolution of tokens’ interactions:

Ẋ = −∇XEATTN

= −
H∑
h=1

WhW
T
h X

(
softmax︸ ︷︷ ︸
column-wise

(
β(W T

h X)T (W T
h X)

)
+ softmax︸ ︷︷ ︸

row-wise

(
β(W T

h X)T (W T
h X)

))
(7)

where β = 1/
√
p as in vanilla Transformers. Derivations could be found in Appendix C.1.

The constraint on the low-dimensional hypersphere of radius
√
p corresponds to RMSNorm(·),

which bears resemblance to Query-Key Normalization (Henry et al., 2020), but here the normaliza-
tion is applied after projection by the same query-key-value matrix. The projections in subspace h
onto the hypersphere thus read as

Zh
RMS = RMSNorm(Zh) = RMSNorm(W T

h X). (8)

By discretizing the differential equation Eq. 7 with step size αt and maintaining the constraint Eq. 8,
we obtain an self-attention module; let [QK]RMS,t = β(Zh

RMS,t)
T (Zh

RMS,t), then the update will be:

Xt+1 = Xt − αt

H∑
h=1

(
WhZ

h
RMS,t softmax︸ ︷︷ ︸

column-wise

([QK]RMS,t) +WhZ
h
RMS,t softmax︸ ︷︷ ︸

row-wise

([QK]RMS,t)

)
.

(9)

This update yields a doubly symmetric multi-head attention operator, where both the query-key
dot product and attention weights are symmetric under row and column operations. This structure
connects with formulations of Wasserstein gradient flows using doubly stochastic attention (Sander
et al., 2022), grounding our energy-based interpretation.

4.2.2 FEEDFORWARD MODULE FROM ALIGNMENT ENERGY

For the sub-problem of minimizing the alignment energyEFF in Eq. 5, we have a similar construction
of the corresponding differential equation, with details deferred to Appendix C.2:

Ẋ = −∇XEFF = DReLU
(
DTX

)
. (10)

By further imposing the high-dimensional hyperspherical constraint via RMSNorm with discretiza-
tion step size γt, we can recover the feedforward layer that exhibits symmetry in the weight space:

Xt+1 = Xt + γtDReLU
(
RMSNorm

(
DTXt

))
. (11)

4.3 LEARNING ADAPTIVE STEP SIZE

To make the step sizes more flexible, we choose to learn their embedding with a neural network
conditioned on the current iteration t and the initial token x(0) (usually the output of the tokenizer):

αt = αη(t,x(0)), γt = γψ(t,x(0)). (12)

For each iteration, step size embeddings in Eq. 12 are applied channel-wise to each token, similar
to techniques in (Touvron et al., 2021; Peebles & Xie, 2023) and detailed in Appendix D.1. We
also adopt the zero-initialization of network parameters η and ψ from (Bachlechner et al., 2021) to
facilitate convergence when using larger iterations.

In summary, by combining all the components and techniques, we present the Hyper-Spherical En-
ergy Transformer with only one layer of learnable parameters. This one-layer model is amenable to
rigorous analysis and, as demonstrated later, has competitive performance with vanilla Transformer.

6
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Figure 3: Left: Training dynamics of different approaches. Ours has a superior training curve and
converges faster, while Energy Transformer and CRATE both fail to make accurate predictions.
Right: Test-time extrapolation w.r.t. forward iterations. Our model achieves better performance
over five runs with fewer parameters, even when the iterations are beyond the training regime.

5 EXPERIMENT

In this section, we evaluate HYPER-SET against vanilla Transformer and other baselines on discrim-
inative and generative tasks. For fairness, we remove biases and dropout, use the Pre-Norm style
with RMSNorm, and set the MLP ratio to 4 in Transformer. We use one-layer trainable parameters
but vary the forward iterations for all models, including Transformers, unless otherwise specified. 2

5.1 SOLVING SUDOKU

Setups We use the challenging dataset from (Palm et al., 2018), featuring boards with only 17 to
34 known digits. We build on the code 3 from (Yang et al., 2023) and follow the setting of training
on 9k samples and evaluating on 1k. See Appendix D.2 for details.

Extrapolation to Out-of-Distribution Iterations Under identical experimental conditions, our
model exhibits faster and superior training dynamics over Transformer, while Energy Transformer
(Hoover et al., 2024) and white-box Transformer CRATE (Yu et al., 2023) both fail on this task,
as shown in Figure 3a. It also outperforms Transformer for in-distribution evaluation (54.70% vs.
49.30%), i.e., using the same forward iterations for training and inference.

Recent efforts also explore test-time compute scaling to enhance reasoning (Schwarzschild et al.,
2021; Bansal et al., 2022; Du et al., 2022; Banino et al., 2021), aiming to extrapolate the algorithms.
Building on this idea, we increase test-time iterations up to 2× of training ones. As shown in
Figure 3b, our model scales more effectively than Transformer, with larger accuracy gains. We
attribute this extrapolation to learned adaptive step sizes that preserve energy minimization. In
practice, we also find that trainable positional encoding is vital for the extrapolation.

Sudoku could be challenging for some architectures to achieve non-zero results, as the 9×9 grid re-
quires the exact digits to meet the constraints, which may be hard to learn without proper inductive
bias. Even some foundation models have zero accuracy (Wang et al., 2025). A reasonable explana-
tion for HYPER-SET’s success, where CRATE and Energy Transformer fail, is that we have better
modeling and more realistic assumptions about the design objective, which is based on as fundamen-
tal as maximum likelihood, making the architecture better aligned with the optimization procedure.
This allows HYPER-SET to enjoy both the principled design and the expressivity of Transformer.

5.2 IMAGE CLASSIFICATION

Setups & Results We also compare HYPER-SET on CIFAR-10/100, ImageNet-100, 4, and the
full ImageNet-1K against ViTs, CRATE (Yu et al., 2023) its variant CRATE-T that aims for more

2For instance, 12 iterations mean applying the layer repeatedly 12 times.
3https://github.com/azreasoners/recurrent transformer
4We use a subset of ImageNet-1K from https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
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Figure 4: Top-1 accuracy (Left) and model parameters (Right) on CIFAR-100 with different layer-
iteration trade-offs. Our model (Base) consistently surpasses Transformer, even its upper bound
performance, with parameter efficiency. Error bars represent standard deviation over five runs.

faithful implementations (Hu et al., 2024c), and Energy Transformer (Hoover et al., 2024). Detailed
setups are in Appendix D.3.
Table 1: Top-1 accuracy for image classification with single-layer recurrent-depth models. Parame-
ters are measured on ImageNet-1K. All models are trained from scratch on listed datasets.

Models Width d # Params Dataset

CIFAR-10 CIFAR-100 IN-100 IN-1K

Transformer 384 2.38 M 89.90 61.89 69.44 66.94
CRATE-T (Hu et al., 2024c) 896 3.04 M 87.54 60.23 68.16 57.89
CRATE (Yu et al., 2023) 768 3.00 M 84.81 58.22 68.52 57.00
Energy Transformer (Hoover et al., 2024) 512 2.39 M 76.39 50.60 36.68 34.24

Ours 512 2.39 M 90.11 63.41 70.16 62.76
Ours 640 3.40 M 89.96 64.60 69.31 66.21

Table 1 shows that, under properly parameter-aligned settings, our model surpasses others on
CIFAR-10/100 and ImageNet-100 but lags behind Transformer on large-scale ImageNet-1K. No-
tably, our architecture achieves a higher width-parameter ratio compared to Transformer, meaning
more parameter-efficient under the same width. 5 When scaling up the width d, our model can nar-
row the performance gap to Transformer. This implies that our principled model suits better under a
resource-constrained setting as its inherent structural biases could limit its scaling on large datasets.

Layer-Iteration Trade-off So far, the classification is conducted using a one-layer model. A
natural question is how well the model performs when stacking multiple layers with different pa-
rameters. To see this, we first train a Transformer with 12 layers—equivalent in effective depth to
one layer with 12 iterations—as an upper bound. We then vary the number of distinct layers and their
iterations while keeping total depth constant, effectively introducing flexibility to the basis vectors.

In Figure 4, our scaled-up smallmodel has parameter efficiency across varied layer-iteration ratios,
with this strength intensifying as more independent layers are trained. However, its architectural ef-
ficiency limits scalability beyond two layers. Scaling to the Base configurations enables our model
to consistently outperform Transformer, exceeding the upper bound while retaining less parameters.

Non-Recurrent Scenarios To demonstrate the practicality in the non-recurrent settings, which
are more common in large-scale applications, we further provide comparisons in a 12-layer non-
recurrent setting in Table 2, where we report results on CIFAR-10/100 with fine-tuning or training
from scratch and on large-scale ImageNet-1K. The ImageNet-1K pretraining setup follows Table 1,
with fine-tuning batch size 256, epochs 50, learning rate 1e-4, and weight decay 1e-5. Our model
performs comparably as standard Transformers while being more parameter-efficient, and this pa-
rameter reduction constantly grows when stacking more distinct layers, as shown in Figure 4, thanks
to our parsimonious design. This suggests that HYPER-SET potentially preserves the benefit of
scaling in Transformers when extended practically, while being more useful in resource-constrained
settings where model size matters, further underscoring its promise in practical scenarios.

5We compare the parameter efficiency and computational cost in Appendix D.6.
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Table 2: Top-1 accuracy for image classification with 12-layer non-recurrent-depth models. Param-
eters are measured on ImageNet-1K. ∗ means first pretraining on ImageNet-1K and then fine-tuning
on CIFAR-10/100.

Models Width d # Params Dataset

CIFAR-10 CIFAR-100 CIFAR-10∗ CIFAR-100∗ IN-1K

Transformer 384 21.86 M 87.44 62.84 96.95 83.10 67.90
CRATE (Yu et al., 2023) 512 10.28 M 88.76 63.94 94.18 77.39 60.69

Ours 512 8.17 M 88.82 64.98 95.76 80.89 66.26
Ours 768 17.56 M 88.53 64.16 96.47 82.60 67.20
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Figure 5: The attention and feedforward energy decrease on Sudoku (Top) and CIFAR-10 (Down)
even without sign constraints on step sizes. This suggests the layer aligns well with the optimization
objective. Normalization is first applied to meet constraints in Eq. 6 before computing the energy.
In the right figure, the decrease in the overall energy corresponds to the increase in performance.

5.3 MASKED IMAGE MODELING

Setups & Results Masked image modeling has recently regained its traction for autoregressive
generation (Li et al., 2023; 2024), framed as recovering images from 100% masking. Due to its high
computational demand, we attempt to demonstrate the power of our one-layer model specifically
for image reconstruction on ImageNet-100. We build on prior work (Chang et al., 2022) and use
the open-source repository. 6 Concrete settings are in Appendix D.4, with additional results and
visualization in Appendix E.

Table 3 unveils that, under the same number of iterations, our model significantly reduces parameters
but lags behind Transformer on all metrics. If we further increase its iterations and the width of
feedforward module M to 8d, it can fill in the performance gap but at the cost of more computation.
Table 3: Comparisons of masked image modeling performance on ImageNet-100 (5k). Our model
lags behind Transformer when given the same iterations, but matches its performance if scaling up
the width of the feedforward module (larger M ). Our model is also more parameter-efficient.

Models Layer / Iteration / FF Ratio M PSNR (↑) SSIM (↑) Multi-Scale SSIM (↑) LPIPS (↓) FID (↓)

Transformer 1 / 12 / 4d (8.85 M) 15.953 0.417 0.599 0.327 43.428
Ours 1 / 12 / d (3.94 M) 15.713 0.411 0.576 0.358 59.841
Ours 1 / 24 / 8d (8.07 M) 15.955 0.417 0.596 0.332 45.174

5.4 ENERGY EVOLUTION, EFFECTIVE RANK AND AVERAGE ANGLE

Figure 5 shows energy trajectories of the attention (EATTN) and feedforward module (EFF). Even
without a positive threshold for step sizes αt and γt, the energy on Sudoku still decreases within
training iterations and extrapolates smoothly beyond them, indicating strong generalization of
learned step sizes. On CIFAR-10, our designed energy exhibits a monotonic decline as well.

6https://github.com/valeoai/Maskgit-pytorch
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Figure 6: The effective rank and average angle of tokens projected to one subspace gradually in-
crease, suggesting a larger volume spanned by these tokens. Results are from Sudoku test dataset
(Palm et al., 2018) (Left) and CIFAR-10 validation set (Right).

To verify our subspace uniformity objective, we track two metrics—effective rank and average an-
gle—defined in Appendix D.5. As shown in Figure 6, the subspace effective rank steadily increases
while the full rank remains unchanged. Meanwhile, average angles between tokens approach or-
thogonality, aligning with our goal to prevent entropy collapse. Full results and comparisons with
parameter-sharing Transformer are in Appendix F.
Table 4: Alternative designs on key com-
ponents measured by top-1 accuracy for
CIFAR-10 and CIFAR-100.

Components Alternative Designs Dataset

CIFAR-10 CIFAR-100

EATTN

Bi-Softmax Attention (Ours) 90.11 63.41
Sigmoid Attention 85.93 59.72
Linear Attention 84.88 56.97

EFF

ReLU FF (Ours) 90.11 63.41
Softmax FF 88.20 62.44
Gated FF 84.99 59.29

Step Size
Learning Step Size (Ours) 90.11 63.41
αt = γt = 0.5 25.81 57.92
αt = γt = 0.1 81.45 58.29

Table 5: ImageNet-100 accuracy of HYPER-SET
under different matrix rank within LoRA. Depth-
wise LoRA introduces flexibility in the computation
at each iteration.

Rank # Params Accuracy (%)

Ours 1.93 M 70.16
+ depth-wise LoRA (r=4) 2.03 M 70.36
+ depth-wise LoRA (r=8) 2.13 M 70.40
+ depth-wise LoRA (r=16) 2.33 M 70.56
+ depth-wise LoRA (r=32) 2.72 M 72.20

5.5 ALTERNATIVE DESIGNS AND SCALABILITY

A key strength of our formulation Eq. 1 lies in its generality—it supports a broad spectrum of model
variants through alternative energy functions. For example, replacing the attention energy with a
kernel-based function yields novel attention mechanisms, including linear attention. Similarly, gat-
ing in feedforward layers naturally arises by generalizing the feedforward energy. Table 4 shows the
performance of these variants and results with different fixed step sizes, with details in Appendix G.1

To improve scalability with compact parameterizations, we introduce a lightweight extension in-
spired by (Bae et al., 2025), where learnable low-rank adapters are added at each forward iteration
to modulate shared weights. This depth-wise adaptation, shown in Table 5, enhances performance
without significantly increasing parameter count. Setups and additional scaling results on image and
text modalities are included in Appendix G.2.

6 CONCLUSION

We present HYPER-SET, a Transformer architecture designed via iterative optimization of hyper-
spherical energy functions, bridging energy-based learning and practical model design. By formu-
lating dual energy on the hypersphere under a general principle derived from maximum likelihood,
HYPER-SET pursues distributional uniformity in the low-dimensional subspaces while promoting
directional alignment with bases in the original high-dimensional space, constructing core Trans-
former components with intrinsic interpretability. Empirically, HYPER-SET matches or surpasses
vanilla Transformers across diverse tasks with fewer parameters. Beyond a single architecture, our
framework enables flexible design choices and scalable variants. This work contributes towards prin-
cipled, more describable, and economical Transformer designs that are both theoretically motivated
and practically effective. We discuss limitations and future directions in Appendix H.
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A THEORETICAL JUSTIFICATION OF MOTIVATION

We provide here a theoretical foundation for the objective in Eq. 1, showing how it arises naturally
from a maximum likelihood estimation (MLE) framework under mild assumptions.

Let x ∈ Rd be a random vector (considered as a token in the context of Transformer) in a high-
dimensional representation space with a probability distribution p(x). Let {zh}Hh=1 be a set of
random vectors in low-dimensional latent spaces Rp (p < d) with distinct support, following a prior
joint probability distribution p(z1, . . . ,zH). We formulate information processing in the forward
pass of neural networks as maximum likelihood estimation:

max
x

E(z1,...,zH)∼p(z1,...,zH)

[
log p(x,z1, . . . ,zH ; θ, ϕ)

]
, (13)

where θ and ϕ are parameters of the high- and low-dimensional encodings, respectively.

To make this optimization more tractable, we make the following basic and practical assumptions:
Assumption 1. The random vectors z1, . . . ,zH are independent and follow the identical distribu-
tion p(z) in distinct latent spaces, i.e., p(z1, . . . ,zH) = ΠHh=1p(z

h) and p(z1) = · · · = p(zH) =
p(z).

Assumption 2. The prior distribution p(z) is a uniform distribution with support on a hypersphere
Sp−1.

Assumption 3. The random vectors (z1, . . . ,zH) ∼ pϕ(z
1, . . . ,zH |x) from the posterior distri-

bution are conditionally independent, i.e., pϕ(z1, . . . ,zH |x) = ΠHh=1pϕ(z
h|x).

Assumption 2 of hyperspherical uniform distribution can be perceived to function as regulariza-
tion on the latent representations to preserve maximum entropy and avoid representational collapse,
which has been adopted to enhance auto-encoding (Xu & Durrett, 2018; Davidson et al., 2018).
Under the above basic and practical assumptions, the MLE objective can be reformulated as:

max
x

E(z1,...,zH)∼p(z1,...,zH)

[
log p(x,z1, . . . ,zH ; θ, ϕ)

]
= E(z1,...,zH)∼p(z)

[
log pϕ(z

1, . . . ,zH |x)
]
+ E(z1,...,zH)∼p(z) [log pθ(x)]

=

H∑
h=1

Ezh∼p(z)
[
log pϕ(z

h|x)
]
+ log pθ(x)

=

H∑
h=1

Ezh∼p(z)

[
log

pϕ(z
h|x)

p(zh)

]
+

H∑
h=1

Ezh∼p(z)
[
log p(zh)

]
+ log pθ(x)

=

H∑
h=1

Ezh∼p(z)

[
log

pϕ(z
h|x)

p(z)

]
+

H∑
h=1

Ez∼p(z) [log p(z)] + log pθ(x)

= −
H∑
h=1

DKL(p(z)∥pϕ(zh|x))−H ×H(p(z)) + log pθ(x), (14)

where DKL(·∥·) denotes Kullback-Leibler (KL) divergence and H(·) means differential entropy. As
the second term on entropy in Eq. 14 does not depend on variable x, this objective ultimately reduces
to Eq. 1 which we restate here for completeness:

min
x

H∑
h=1

DKL(p(z)∥pϕ(zh|x))︸ ︷︷ ︸
uniformity

− log(pθ(x))︸ ︷︷ ︸
alignment

.

The first term encourages the posterior pϕ(zh|x) defined on the vector zh ∈ Rp in latent space,
which can be implemented by a transformation parameterized by ϕ, to approximate a uniform dis-
tribution on a hypersphere. To see why the second term implies alignment, suppose the distribution
pθ(x) is parameterized as a mixture ofM von Mises–Fisher (vMF) distributions 7 with equal mixing

7https://en.wikipedia.org/wiki/Von Mises–Fisher distribution
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coefficients:

− log(pθ(x)) = − log

(
1

M

M∑
m=1

f(x;µm, κm)

)
= − log

(
1

M

M∑
m=1

Cd(κm) exp(κmµTmx)

)
,

(15)
where µm ∈ Sd−1 denotes mean direction on (d − 1)-dimensional unit sphere and κm ≥ 0 is the
concentration parameter while Cd(κm) is the normalization constant; therefore, finding the vector x
that minimizes this negative log-probability Eq. 15 equals finding maximal inner product µTmx, thus
aiming for directional alignment. In practice, the mean direction µm is learned by backpropagation
and consequently contains certain statistical properties from the data.

In summary, the objective Eq. 1 suggests that for a representation vector x ∈ Rd, the forward
dynamics can be characterized by two complementary properties:

• Mode Seeking: Achieving semantic alignment with directional vectors encapsulating specific
information derived from data in the high-dimensional space.

• Mass Covering: Maximally preserving the entropy embedded via regularizing distributional uni-
formity in the low-dimensional space.

These principles underpin our design of token dynamics, and we propose to use energy functions to
quantify these two properties as instantiations that can induce various Transformer-based models.

B PRELIMINARIES

B.1 HOPFIELD NETWORKS

Given a network with N neurons x = [x1, . . . , xN ] that take binary values, the temporal evolution
dynamics of these neurons are determined by a scalar-value energy function:

E = −1

2

∑
i,j

ωijxixj = −1

2
xTWx, xi, xj ∈ {+1,−1}

where ωij represents the strength of connectivity between node xi and xj , and the connectivity is
assumed to be symmetric, i.e., ωij = ωji. We can further rewrite W =

∑P
i=1 ξiξ

T
i as a set of

patterns to be stored. The update rule of each node to retrieve the most relevant pattern follows the
Hebbian learning rule used in neuroscience:

xt+1 = sign(Wxt) = sign

(
P∑
i=1

ξiξ
T
i xt

)
.

This update rule tends to minimize the energy function with retrieved patterns as its attractor. It is
an embodiment of the idea of “Neurons that fire together wire together.”: If two neurons connect
(ωij > 0), then they should have the same state (+1 for active and −1 for dead). The number of
patterns the network can store and retrieve is O(N).

B.2 MODERN CONTINUOUS HOPFIELD NETWORKS

To overcome the limitation of linear storage capacity, modern Hopfield networks, also known as
Dense Associative Memory (Krotov & Hopfield, 2016), introduce nonlinearity in the energy and the
update of neurons’ states and make them suitable for continuous variables:

E = −1

2

P∑
i=1

f
(
ξTi x

)
, xt+1 = tanh

(
P∑
i=1

ξif
′ (ξTi xt)

)
,

where tanh(·) is to ensure the neurons’ states are constrained to the interval [−1, 1] so that the energy
is bounded from below. Depending on the form of f , the network could have power or exponential
storage capacity. If we set f(x) = x2, this reduces to the traditional networks with linear capacity.
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If we further make modifications to the non-linearity in the energy function with logsumexp(·),
which is inspired by contrastive normalization, we can define the Modern Continuous Hopfield
(MCH) energy function with a quadratic regularization term on x:

EMCH = − log

(
P∑
i=1

exp
(
ξTi x

))
+

1

2
xTx. (16)

By leveraging the concave-convex procedure (Yuille & Rangarajan, 2003), the update could be writ-
ten as

xt+1 = Ξsoftmax(ΞTxt),

where Ξ = [ξ1, . . . , ξP ] ∈ RN×P . This formulation has proven to converge to stationary points of
the energy functionEMCH, and is linked to the key-value memory similar to the attention mechanism
(Ramsauer et al., 2021). Notice that this update rule is essentially the cross-attention given a query
vector x and can only describe the independent evolution of that vector. It fails to faithfully cover
the parallel interactions between contextual tokens in the self-attention adopted in the GPT or BERT
style Transformers.

The construction of the modern continuous Hopfield energy and update rule can also be carried out
from a biologically plausible view by extending the network with hidden neurons and establishing a
group of coupled differential equations. We refer the readers to (Krotov & Hopfield, 2021; Krotov,
2023) for more details.

C DERIVATION

C.1 DERIVATION OF THE GRADIENT OF EATTN

ẋk = −∇xk
EATTN

= −
H∑
h=1

(∑N
j=1 WhW

T
h xj exp

(
β(W T

h xk)
T (W T

h xj)
)∑N

j=1 exp
(
β(W T

h xk)T (W T
h xj)

) +

N∑
i=1

WhW
T
h xi exp

(
β(W T

h xi)
T (W T

h xk)
)∑N

j=1 exp
(
β(W T

h xi)T (W T
h xj)

) )

= −
H∑
h=1

WhW
T
h [x1, . . . ,xN ]

 exp
(
β(W T

h xk)
T (W T

h x1)
)

...
exp

(
β(W T

h xk)
T (W T

h xN )
)
 / N∑

j=1

exp
(
β(W T

h xk)
T (W T

h xj)
)
+

N∑
i=1

WhW
T
h xi


exp

(
β(W T

h x1)
T (W T

h xi)
)
/
∑N
j=1 exp

(
β(W T

h xi)
T (W T

h xj)
)

...
exp

(
β(W T

h xN )T (W T
h xi)

)
/
∑N
j=1 exp

(
β(W T

h xi)
T (W T

h xj)
)

k


= −

H∑
h=1

(
WhW

T
h X softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h xk)

)
+

N∑
i=1

WhW
T
h xi softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h xi)

)
k

)

= −
H∑
h=1

(
WhW

T
h X softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h xk)

)
+WhW

T
h X softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h X)

)
[k,:]

)

= −
H∑
h=1

(
WhW

T
h X softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h xk)

)
+WhW

T
h X softmax︸ ︷︷ ︸

row

(
β(W T

h X)T (W T
h X)

)
[:,k]

)

= −
H∑
h=1

(
WhW

T
h X softmax︸ ︷︷ ︸

column

(
β(W T

h X)T (W T
h xk)

)
+WhW

T
h X softmax︸ ︷︷ ︸

row

(
β(W T

h X)T (W T
h X)

)
[:,k]

)
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Ẋ = [ẋ1, . . . , ẋN ]

= −∇XEATTN

= −
(
(WW TX softmax︸ ︷︷ ︸

column-wise

(
β(W TX)T (W TX)

)
+WW TX softmax︸ ︷︷ ︸

row-wise

(
β(W TX)T (W TX)

))

C.2 DERIVATION OF THE GRADIENT OF EFF

ẋk = −∇xk
EFF

=

M∑
m=1

ReLU(dTmxk) · I(dTmxk > 0) · dm

=

M∑
m=1

ReLU(dTmxk)dm

= [d1, . . . ,dM ]

ReLU(dT1 xk)
...

ReLU(dTMxk)


= DReLU(DTxk)

Ẋ = [ẋ1, . . . , ẋN ] = −∇XEFF = DReLU(DTX)

D DETAILED EXPERIMENTAL SETUPS AND MODEL CONFIGURATIONS

D.1 NETWORK TO LEARN ADAPTIVE STEP SIZES

We propose to learn adaptive step sizes αt,γt ∈ Rd given the current iteration t ∈ [1, L], where L
is the iteration number of the layer with unique parameters, and the initial token x(0) ∈ Rd, using
the network shown in Figure 7 and configurations in Table 6.

𝑡 𝜶𝒕 = [𝛼𝑡,1, … , 𝛼𝑡,𝑑] 

𝜸𝒕 = [𝛾𝑡,1, … , 𝛾𝑡,𝑑]

⨁

Time Embedding

𝒙(0) 

L
in

ea
r

G
E

L
U

L
in

ea
r

L
in

ea
r

G
E

L
U

Figure 7: Illustration of time embedding conditioned on the input to learn adaptive step size.

Table 6: Model configurations of network to learn adaptive step sizes.

Layer Configurations

Time embedding 512
Linear 512 ×d
GELU –
Linear d× d
GELU –
Linear d× 2d
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D.2 SOLVING SUDOKU

Solving a Sudoku puzzle requires filling a 9× 9 board, with some digits (1-9) known and unknown
entries marked as 0. The unknown entries must be filled with digits perfectly such that the board
satisfies a certain rule, which can be seen as a logical reasoning task (Wang et al., 2019). We tackle
this puzzle by predicting the digits to fill in, conditioned on the given digits. It can be viewed
as a simplified masked modeling on synthetic data. Cross-entropy loss is computed exclusively
on unknown entries. We train all models with 200 epochs, 16 batch size, AdamW (Loshchilov &
Hutter, 2019) with 0.1 weight decay, and learning rate from 1e-4 with cosine decay. The hidden
dimension is set to 768.

Tables 7 and 8 show the training recipe and model configurations for solving Sudoku. We train the
model with 24 iterations and can evaluate beyond these iterations.

Table 7: Training recipe for solving Sudoku.

Configurations Value

Epochs 200
Batch size 16
# GPU 1 Nvidia 3090
# Training samples 9k
# Evaluating samples 1k
Optimizer AdamW
β1,β2 0.9, 0.95
Weight decay 0.1
Learning rate (lr) 1e-4
Lr decay Cosine
Gradient clipping 1.0

Table 8: Model configurations for solving Su-
doku.

Configurations Value

Vocabulary size 10
Layer 1
Iterations L 24
Hidden dimension d 768
Feedforward ratio M 4d
Number of heads H 12
Positional encoding Learnable
Time embedding condition X0

Time embedding frequency 512

Number of parameters 5.20 M

D.3 IMAGE CLASSIFICATION

Tables 9 and 10 present the training recipe and model configurations for image classification on
CIFAR-10/100, while Tables 11 and 12 show those on ImageNet-100/1K. All models are trained
with a learnable class token [CLS]. In practice, we use absolute sinusoidal positional encoding and
adopt conditioning on Xt for performance reasons. Table 13 lists the configurations of different
sizes, and it applies to other tasks as well.
Table 9: Training recipe for image classification
on CIFAR-10/100.

Configurations Value

Epochs 200
Batch size 128
# GPU 1 Nvidia 3090
# Training samples 50k
# Evaluating samples 10k
Optimizer Adam
β1,β2 0.9, 0.999
Weight decay 5e-5
Max learning rate (lr) 1e-3
Min learning rate (lr) 1e-5
Lr decay Cosine
Warmup epochs 5
Input size 32

Table 10: Model configurations (Small Scaled-
up) for image classification on CIFAR-10/100.

Configurations Value

Patch size 8
Layer 1
Iterations L 12
Hidden dimension d 512
Feedforward ratio M d
Number of heads H 8
Positional encoding Sinusoidal
Time embedding condition Xt

Time embedding frequency 512
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Table 11: Training recipe for image classification
on ImageNet-100/1K.

Configurations Value

Epochs 200
Batch size 256
# GPU 1 Nvidia A100
# Training samples 126,689/1,281,167
# Evaluating samples 5,000/50,000
Optimizer Adam
β1,β2 0.9, 0.999
Weight decay 5e-5
Max learning rate (lr) 1e-3
Min learning rate (lr) 1e-5
Lr decay Cosine
Warmup epochs 5
Input size 224

Table 12: Model configurations (Small Scaled-
up) for image classification on ImageNet-
100/1K.

Configurations Value

Patch size 16
Layer 1
Iterations L 12
Hidden dimension d 512
Feedforward ratio M d
Number of heads H 8
Positional encoding Sinusoidal
Time embedding condition Xt

Time embedding frequency 512

Table 13: Model configurations of different sizes

Configurations Small Small Scale-up Base

Hidden dimension d 384 512 768
Number of heads H 6 8 12

D.4 MASKED IMAGE MODELING

We follow (Chang et al., 2022) using VQ-VAE to tokenize the images to 16×16 latent code with the
codebook size of 1024 after resizing the input to 256× 256. The masking ratio is randomly chosen
between [0, 0.4], and the masked region is replaced by a learnable token. Training loss is computed
only for the masked tokens. We also follow the iterative decoding process in (Chang et al., 2022)
with temperature = 1 and decoding step T = 24. We also remove the MLP following the time
embedding and set the embedding frequency equal to the hidden dimension to save parameters, and
we find out that this implementation works better. Tables 14 and 15 show the detailed training recipe
and configurations.

We evaluate the quality of the reconstructed images of masking out 40% of the images with Base
configurations. We report Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) (Wang et al., 2004), Multi-Scale SSIM (Wang et al., 2003), Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018) and Fréchet Inception Distance (FID) (Heusel et al., 2017)
on the validation set (5k).
Table 14: Training recipe for masked image
modeling.

Configurations Value

Epochs 300
Batch size 256 (64 ×4)
# GPU 4 Nvidia 80 GB A100
# Training samples 126,689
# Evaluating samples 5,000
Optimizer AdamW
β1, β2 0.9, 0.95
Weight decay 0.1
Learning rate (lr) 1e-4
Lr decay None
Gradient clipping 3.0
Input size 256

Table 15: Model configurations for masked im-
age modeling.

Configurations Value

Vocabulary size 1025
Layer 1
Iterations 12
Hidden dimension d 768
Feedforward ratio M d
Number of heads H 12
Positional encoding Sinusoidal
Time embedding condition X0

Time embedding frequency 768

Number of parameters 3.94 M
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D.5 DEFINITION OF EFFECTIVE RANK AND AVERAGE ANGLE

We provide the formal definition of effective rank Eq. 17 and average angle Eq. 18 below. The
effective rank is a continuous proxy of the full rank and, similar to the average angle, reflects the
extent to which a set of vectors distributes uniformly.

Definition 1 (Effective Rank). For a matrix X ∈ Rd×N , let Σ = [σ1, . . . , σr] be its singular values
where r is its full rank and denote pi = σi/

∑r
j=1 σj the discrete probability. The effective rank

(Roy & Vetterli, 2007; Guo et al., 2023) is defined as the exponential of the entropy

exp(−
r∑
i=1

pi log pi). (17)

Definition 2 (Average Angle). Given a set of vectors X = [x1, . . . ,xN ] ∈ Rd×N , the average
angle of these vectors is

arccos
2

N(N − 1)

N∑
i=1

N∑
j=i+1

xTi xj
∥xi∥2∥xj∥2

. (18)

D.6 COMPARISONS OF PARAMETER EFFICIENCY AND COMPUTATIONAL COST

To show the differences in parameters and computational cost incurred only by distinct architectures,
we provide comparisons under the same width d = 384. Empirically, we compare FLOPs and
runtime in one forward pass using calflops, measured on a single NVIDIA A100 GPU, of our
model and other baselines with a 3× 224× 224 random input.

Table 16: Comparisons of parameters and computational cost of different architectures.

Models # Params Memory GFLOPs Runtime (ms)

Transformer 2.38 M 528 MB 12.27 4.99±0.14

CRATE-T (Hu et al., 2024c) 0.91 M 528 MB 5.90 4.61±0.17

CRATE (Yu et al., 2023) 1.06 M 528 MB 5.90 4.86±0.19

Energy Transformer (Hoover et al., 2024) 1.50 M 670 MB 6.19 21.95±0.35

Ours 1.55 M 528 MB 6.81 8.03±0.21

Table 16 reports the results with mean and standard deviations averaged over 1,000 runs for robust
measurements. Our model has fewer FLOPs as it has inherent structures like weight sharing due to
mathematical design.

We further reveal via ablation shown in Table 17 that our bottleneck in runtime is largely because:

• we use an additional network to learn step sizes instead of keeping them fixed (∼ 2.33 ms),

• the current default implementation of torch.nn.RMSNorm(), which we use to meet the hy-
perspherical constraints, is slower than torch.nn.LayerNorm() (∼0.72 ms).

Currently, we trade some efficiency to allow for strong performance while keeping the principled de-
sign as transparent as possible with the additional modulation network for learned step sizes, which
is adopted only for performance reasons rather than being a theoretically necessary component in
our framework. In fact, our ablations that remove this extra network and fix the step sizes give sim-
ilar runtime (5.70ms in Table 17), but the performance decreases greatly (81.45 on CIFAR-10 and
58.29 on CIFAR-100 in Table 4). So, we believe there is still room for improvement in optimizing
the step sizes schedule and further enhancing this minimalist implementation in future work.

E ADDITIONAL RESULTS OF MASKED IMAGE MODELING

Table 18 summarizes the results of masked image modeling with different masking ratios. When
scaled to larger iterations and a wider feedforward module, our model achieves comparable results
to Transformer but still slightly lags behind. This suggests the scalability of our model to large
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Table 17: Bottleneck in runtime.

Models # Params GFLOPs Runtime (ms)

Ours 1.55 M 6.81 8.03±0.21

Ours (Pre-Norm) 1.55 M 6.81 8.05±0.22

Ours (LayerNorm) 1.55 M 6.84 7.31±0.26

Ours (fixed step sizes) 0.91 M 4.98 5.70±0.15

Ours (Pre-Norm & LayerNorm) 1.55 M 6.82 7.21±0.28

Ours (fixed step sizes & Pre-Norm) 0.91 M 4.98 5.53±0.25

Ours (fixed step sizes & LayerNorm) 0.91 M 5.01 4.86±0.21

Ours (fixed step sizes & Pre-Norm & LayerNorm) 0.91 M 5.00 4.74±0.18

Table 18: Comparisons of masked image modeling performance of varied masking ratios.

Masking Ratios Models Layer / Iteration / FF Ratio M (# Params) PSNR (↑) SSIM (↑) Multi-Scale SSIM (↑) LPIPS (↓) FID (↓)

10%
Transformer L1 / Iter 12 / 4d (8.85 M) 17.693 0.466 0.709 0.236 22.428
Ours L1 / Iter 12 / d (3.94 M) 17.553 0.462 0.701 0.243 24.665
Ours L1 / Iter 24 / 8d (8.07 M) 17.673 0.465 0.708 0.236 22.517

20%
Transformer L1 / Iter 12 / 4d (8.85 M) 17.185 0.451 0.678 0.261 27.320
Ours L1 / Iter 12 / d (3.94 M) 16.988 0.444 0.662 0.275 33.637
Ours L1 / Iter 24 / 8d (8.07 M) 17.170 0.450 0.676 0.262 28.120

30%
Transformer L1 / Iter 12 / 4d (8.85 M) 16.616 0.435 0.642 0.291 35.095
Ours L1 / Iter 12 / d (3.94 M) 16.365 0.427 0.621 0.314 45.642
Ours L1 / Iter 24 / 8d (8.07 M) 16.590 0.434 0.638 0.294 35.128

configurations may be a bottleneck for its development and deployment. More visual comparisons
are provided in Figure 8.

Original

Masked

Transformer 
(L1/Iter12)

8.85 M

Ours 
(L1/Iter24)

8.07 M

Original

Masked

Transformer 
(L1/Iter12)

8.85 M

Ours 
(L1/Iter24)

8.07 M

Original

Masked

Transformer 
(L1/Iter12)

8.85 M

Ours 
(L1/Iter24)

8.07 M

Figure 8: Visual comparisons of masked image modeling on ImageNet 256×256. Our model, when
increased to Transformer scale with additional compute, can achieve similar reconstruction quality
when masking ratio = 40%.
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F RANK AND AVERAGE ANGLE OF EACH HEAD

F.1 SUDOKU DATASET

Figures 9 and 10 capture the evolution of the effective rank and average angle of all heads. Most of
them follow the separation dynamics on the hypersphere where tokens tend to be near-orthogonal,
corroborating our design goal of attention energy.
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Figure 9: The effective rank of tokens projected to each subspace. Results are from the test set of
Sudoku dataset (Palm et al., 2018).
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Figure 10: The average angle of tokens projected to each subspace. Results are from the test set of
Sudoku dataset (Palm et al., 2018).

F.2 CIFAR-10 DATASET

The full results on CIFAR-10 also possess similar trends to those on the Sudoku dataset, as shown
in Figures 11 and 12.
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Figure 11: The effective rank of tokens projected to each subspace. Results are from CIFAR-10
validation set.
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Figure 12: The average angle of tokens projected to each subspace. Results are from CIFAR-10
validation set.

F.3 COMPARISONS WITH TRANSFORMER WITH SHARED QUERY, KEY, AND VALUE MATRIX

A notable connection between HYPER-SET and vanilla Transformer lies in the shared query (Q),
key (K), and value (V) projection matrix, which has been studied recently (Kowsher et al., 2025). To
verify whether HYPER-SET captures essential Transformer behaviors, we adapt vanilla Transformer
to have shared QKV projections and measure its effective rank and average angle among projected
tokens. Furthermore, we also include comparisons with HYPER-SET that adopts fixed step sizes set
as 0.1 to evaluate the necessity of learned ones.

As shown in Figures 13 and 14, both HYPER-SET and its fixed-step variant exhibit increasing
token separation across subspaces, confirming the emergence of distributional uniformity and the
benefit of learned step sizes. This dynamics is also mirrored in shared QKV Transformer, which
cross-validates our insights on distributional uniformity in subspaces, suggesting the promise of
this parameter-sharing design. In contrast, modifying the shared Transformer to reverse the update
direction of attention—similar to the design in Eq. 9—leads to a decline in both rank and angle,
highlighting a breakdown in uniformity. This contrast emphasizes that HYPER-SET is not a heuris-
tic tweak of vanilla Transformer but a principled architecture.
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Figure 13: Comparisons of the effective rank at each subspace with fixed step sizes, Transformer
with shared query/key/value matrix, and reverting the update sign before its attention. Results are
from CIFAR-10 validation set.
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Figure 14: Comparisons of the average angle at each subspace with fixed step sizes, Transformer
with shared query/key/value matrix, and reverting the update sign before its attention. Results are
from CIFAR-10 validation set.

G ADDITIONAL RESULTS ON ALTERNATIVE DESIGNS AND SCALABILITY

G.1 ALTERNATIVE DESIGNS ON ENERGY FUNCTIONS

Our proposed energy functions EATTN and EFF provide an avenue to quantify the objective on uni-
formity and alignment in an amenable way for optimization. To manifest the significance of our
conceptualization in designing a variety of Transformer-based models, we extend the energy func-
tions to more general forms and provide alternative instantiations of them that can induce novel

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

structures. Specifically, we generalize the energy functions in Eq. 3 and Eq. 5 to the following
forms:

EATTN =

H∑
h=1

EhATTN =

H∑
h=1

N∑
i=1

f

 N∑
j=1

K(W T
h xi,W

T
h xj)

 , (19)

EFF = −
N∑
i=1

g

(
M∑
m=1

h(dTmxi)

)
. (20)

where K : Rp × Rp → R is a kernel function and f, g, h : R → R are non-decreasing scalar
functions. For clarity, we omit the hyperspherical constraint but its correspondence to RMSNorm
still holds.

By choosing different variations on these functions, we arrive at alternative energy functions and
their consequent attention and feedforward operators, of which we summarize the specifications in
the following tables. Remarkably, in Table 19, we can derive an attention with linear complexity
O(N) by specifying the kernel function with the inner product of an element-wise transformation
Φ : R → R, bridging our energy view with recent advances in linear attention design. In practice, we
choose it as the sigmoid function σ(x) = 1/(1 + exp(−x)), but other designs can also be possible.
In Table 20, if we specify the outer function g in the feedforward energy as a quadratic function,
there is a novel summation and a Hadamard product operation emerging with the transformation Φ,
similar to the gating mechanism. We also specify Φ with the sigmoid function.

In summary, these design choices demonstrate that HYPER-SET is more than just a single model,
but a blueprint for constructing principled Transformer variants. Each component—self-attention,
feedforward, and normalization—can be systematically interpreted and designed within our energy
minimization framework, providing a pathway for principled, modular innovation in sequence model
architectures.

Table 19: Alternative designs on attention energy EATTN and the induced operators.

Operator f(x) K(x,y) EATTN −∇XEATTN

Bi-Softmax (Ours) β−1 log(x) exp(βxTy) Eq. 3 Eq. 7

Sigmoid-Softmax β−1

2 x σ(βxTy) 1
2

H∑
h=1

N∑
i=1

N∑
j=1

σ
(
β(W T

h xi)
TW T

h xj
)
β−1

H∑
h=1

WhW
T
h Xσ(1− σ)

(
β(W T

h X)TW T
h X

)
Linear Attention β−1

2 x 1
2

(
βΦ(x)TΦ(y)

)2 1
4

H∑
h=1

N∑
i=1

N∑
j=1

(
βΦ(W T

h xi)
TΦ(W T

h xj)
)2
β−1

H∑
h=1

WhΦ
′(W T

h X)⊙
(
βΦ(W T

h X)Φ(W T
h X)TΦ(W T

h X)
)

Table 20: Alternative designs on feedforward energy EFF and the induced operators.

Operator g(x) h(x) EFF −∇XEFF

ReLU FF (Ours) x 1
2 ReLU

2(x) Eq. 5 Eq. 10

Softmax FF log(x) exp(x) −
N∑
i=1

log

(
M∑
m=1

exp(dTmxi)

)
D softmax︸ ︷︷ ︸

column-wise

(DTX)

Gated FF 1
2x

2 Φ(x) − 1
2

N∑
i=1

(
M∑
m=1

Φ
(
dTmxi

))2

DΦ(DTX)︸ ︷︷ ︸
column sum

⊙ Φ′(DTX)

G.2 PRELIMINARY RESULTS ON SCALABILITY

Setups for depth-wise flexible computation To equip our model with flexible computation while
maintaining its core recurrence-based parameter sharing, we add an independent low-rank adap-
tation (Hu et al., 2022) matrix W = AB to every iteration of the Transformer layer sharing
the same base parameters. Inspired by but unlike depth-wise adaptation of pre-trained models in
(Bae et al., 2025), we train the base parameters and the adaptation matrix together. Both matrix
A ∈ Rd×r, B ∈ Rr×d with rank r are initialized with Gaussain of 0.02 standard deviation. The
scaling factor before the adaptation matrix is set as 4.

Scaling results on images To further demonstrate the capability of our model when scaling up
its size, we perform a preliminary evaluation on image classification. Following the experimental
setups in the main paper to configure the models with one layer and repeat with 12 iterations, we
scale up the width of Transformer to 1152 and ours to 1536, resulting in similar parameter size.
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Table 21: Top-1 accuracy for image classification when scaling up the model size. Our model
surpasses other baselines while being parameter-efficient compared to vanilla Transformer.

Dataset Models Width d # Params Accuracy (%)

CIFAR-10

Transformer 1152 16.0 M 89.42
CRATE (Yu et al., 2023) 1152 4.1 M 88.77
Energy Transformer (Hoover et al., 2024) 1152 8.0 M 76.21
Ours 1536 14.3 M 90.62

CIFAR-100

Transformer 1152 16.1 M 62.83
CRATE (Yu et al., 2023) 1152 4.2 M 63.39
Energy Transformer (Hoover et al., 2024) 1152 8.1 M 55.47
Ours 1536 14.4 M 66.30

The result is presented in Table 21. These explorations showcase the potential of HYPER-SET in
improving model capacity without significantly increasing the total parameter count.

Scaling results on texts We also provide the results for text classifications to show the potential
of HYPER-SET. We use bert-base-uncased from Hugging Face as the tokenizer with a max-
imum sequence length of 128. The number of recurrence is set to 6 (L1R6) and width is set to 384.
The training recipe is the same as the image classification in Table 9 except we train for 10 epochs.
The results on yelp review full dataset, a 5-way classification task, are shown in Table 22.

Table 22: Top-1 accuracy for text classification on yelp review full dataset.

Models Width d # Params Accuracy (%)

Transformer 384 13.49 M 60.09
CRATE-T (Hu et al., 2024c) 384 12.02 M 59.43
CRATE (Yu et al., 2023) 384 12.17 M 59.18
Energy Transformer (Hoover et al., 2024) 384 12.61 M 54.93
Ours 384 12.66 M 60.75

H DISCUSSION AND LIMITATIONS

H.1 CONNECTIONS AND DIFFERENCES WITH ENERGY TRANSFORMER

Both our HYPER-SET and ET (Hoover et al., 2024) are grounded in the idea of interpreting Trans-
former components as gradient flows that minimize an energy function. However, the two ap-
proaches diverge significantly in motivations, theoretical formulation, and architectural design.

• Motivation
– HYPER-SET: centers on a dual objective of semantic alignment (mode seeking) and uniformity

(mass covering) under hyperspherical constraints grounded in maximal likelihood estimation.
The proposed Hopfield-style energy aims to quantify it into an optimizable objective and serves
as a specific instantiation of this more general principle, which fundamentally differs from ET.

– ET: maintains the mechanistic interpretation of associative memory and does not directly con-
nect the energy formulation to any particular representational challenge. Moreover, ET adopts
Hopfield energy more as a starting point than as a motivation-driven design.

• Methodology
– HYPER-SET: provides a more rigorous formulation of energy minimization. Our energy func-

tions are defined directly on tokens Eq. 6 under a hyperspherical constraint. This formula-
tion enables us to derive RMSNorm as a natural outcome of energy minimization in low-
dimensional subspaces Eq. 8.

– ET: defines energy over pre-normalized tokens (see Eq.(1)(6) in (Hoover et al., 2024)) rather
than tokens per se, bypassing the constrained optimization step. As a result, the role of normal-
ization in ET is more heuristic than principled, following standard pre-norm practices rather
than emerging from the underlying energy.
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• Implementations
– HYPER-SET: a) applies alternating minimization that results in attention and feedforward

modules sequentially, reflecting the original Transformer structure; b) adopts adaptive, learn-
able step sizes conditioned on the input and iteration index Eq. 12, allowing the model to mod-
ulate its energy descent dynamically.

– ET: a) performs energy updates via auto-differentiation that results in a parallelized fashion;
b) uses fixed step sizes.

• Emperical Verification
– HYPER-SET: a) confirms that the designed energy decreases in the forward pass in Figures 5

and 6; b) supports generalizations beyond softmax attention (e.g., different energy functions
leading to alternative attention schemes), as illustrated in Tables 19 and 20.

– ET: a) does not offer such explicit verification, leaving it unclear whether its dynamics faith-
fully track the energy descent objectives; b) Additionally, HYPER-SET achieves competitive
performance with vanilla Transformers on tasks such as image classification and inference (e.g.,
Sudoku), whereas ET does not demonstrate comparable results in these domains.

H.2 PRACTICAL IMPLICATIONS AND BROADER IMPACT

• Why Study This Model: This work proposes a principled approach to Transformer design by
modeling representation learning as an energy minimization on the hyperspace. Unlike prior ef-
forts such as Energy Transformer (Hoover et al., 2024) and CRATE (Yu et al., 2023), which
either diverge from their theoretical formulations or lack generality to derive new architectures,
our model directly formulates energy functions on tokens with improved rigorousness, while sup-
porting a spectrum of alternative designs.

• Why CRATE Is a Fair Baseline: CRATE (Yu et al., 2023) also pursues transparency and princi-
pled design, which shares a similar spirit with our goal, making it an appropriate baseline. While
engineering-heavy ViTs may excel in benchmarks, they often involve significant redundancy. We
aim to advance more compact, describable, and empirically competitive model design for next-
generation architectures.

• Interpretability: We view the forward pass of HYPER-SET as a dynamical system. It features
greater interpretability than vanilla Transformer in the sense that this dynamics is more read-
ily describable and characterized by a meaningful quantity-the energy function-and grounded in
well-established principles as maximum likelihood estimation. Beyond being merely conceptual,
this dynamics is quantitatively verifiable, providing an interpretable and testable framework for
understanding representation evolution.

• A General Principle Beyond Canonical Hopfield Energy: The Hopfield energy we em-
ploy in the main paper serves as one instantiation under the proposed general principle. Our
formulation allows for broader energy-based designs—such as kernel-based alternatives to
logsumexp—enabling principled generalizations beyond standard attention mechanisms.

H.3 LIMITATIONS

While HYPER-SET offers a principled and empirically competitive formulation for Transformer
design, it also comes with several limitations that highlight directions for future work:

• First, the choice of subspace in our conceptualization is less explored. The choice of uniform prior
on the hypersphere in assumption 2 could be too strong in practice. Overly enforcing uniformity
may be restrictive in some tasks. Moreover, the number of subspaces H and its dimension p are
chosen heuristically. Their relationship, if any, with the real data distribution remains unclear.

• Second, the modulation network to learn step sizes introduces complexity. Although we use a
modulation network to learn step sizes adaptively, tuning the configurations of this network still
requires considerable effort. In addition, it introduces more computational complexity despite that
the overall architecture is more parameter-efficient.

• Third, our experiments on scalability are still preliminary. We confirm competitive and supe-
rior performance on less than 20 million parameters and prove depth-wise LoRA scaling effec-
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tiveness. However, extensions to truly large-scale settings—e.g., billion-level—have yet to be
demonstrated.

H.4 FUTURE DIRECTIONS

We provide several promising future directions:

1. Autoregressive Modeling: HYPER-SET currently lacks a causal structure, limiting its use in
autoregressive sequence modeling. Adapting to GPT-style models with causal masking is an
important future step.

2. Flow Matching and ODE Connections: The iterative updates in HYPER-SET resemble neural
ODEs, suggesting potential connections to flow matching techniques that may unify Transformer-
based models with generative modeling.

3. Scalability and Adaptive Computation: Our initial results with depth-wise LoRA are promis-
ing but preliminary. Future work could explore dynamic iteration depth, inspired by latent space
reasoning (Geiping et al., 2025), sparsity (Tan et al., 2023), and mixture-of-experts (Csordás
et al., 2024).
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