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Abstract

The role of observers in computational learning models is rarely discussed, but1

offers a unique perspective on the practice of analysis and holistic interpretation of2

data. In this paper, we present an observer-dependent perspective of data acquisition3

and preprocessing. Observers consist of observers which exhibit environmental4

relativism, biorealism, and collective behavior. Environmental realism is achieved5

by introducing a variety of viewpoints to a population of observers, while biorealism6

provides observers that have an innate component that resembles a genotype.7

Collectively, observers can enable emergent features in a given dataset, as well as8

contextual understanding. The individual and collective behavior of observers can9

serve as a preprocessing layer or pretrained model for a variety of machine and10

deep learning models. In considering the collective behavior of our computational11

observers, we make a number of predictions about their behavior that may facilitate12

specific applications.13

1 Introduction14

When data is sampled for analysis by computational and statistical models, the sampling strategy is15

usually passive. This hypothetical approach considers data points or environmental features in a serial16

and homogeneous manner. A serial sampling strategy refers to acquiring information from single17

points in time, whereas the homogeneous sampling strategy acquires information from an independent18

physical point-of-view. What is needed is an observer or an agent that exhibits self-awareness of19

its role in the actions in the system. Multi-agent algorithms are notable for what we might call an20

Active Sampling strategy: they sample the environment from many different perspectives and can21

produce a number of collective behaviors [1]. This example shows that Active Sampling combined22

with an explicit role for agents can improve situational context. While some agent-based models23

[2] explicitly define a role for the observer in computational models, consideration of how these24

agents might behave and what roles they might perform is needed. Perhaps more importantly, many25

models of machine learning treat the observer as an implicit component of the model. The fields of26

Explainable AI and Algorithmic Interpretability are an exception to this, and consider the user as a27

key aspect of algorithm design [3]. In some cases, models such as the explainable observer-classifier28

[4] are used, which formalizes a classification problem as the domain of two agents that communicate29

with each other.30

These sampled perspectives are analyzed and synthesized by the observer’s internal model, which31

consists of a network that contains a representation of the observer’s genotype-to-phenotype (G-to-P)32

mapping. This representation is similar to the Part-of-Speech (PoS) tagger enabled by Particle33

Swarm Optimization as described in [5]. This mapping defines the observer’s biological substrate or34
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relationship between innate components (genotype) and a conceptual map (phenotype). The innate35

(or genotypic) representation consists of a genotype that exhibits genetic diversity. This diversity36

allows for a stochastic sampling heterogeneity that enables bottom-up phenotypic diversity. The37

phenotype also relies on a top-down mechanism that helps to select upon the G-to-P mapping. In38

general, top-down phenotypic diversity is introduced through stimulus diversity. Stimulus diversity39

is achieved by introducing a stimulus (in this case, geometric objects under transformation) from40

various perspectives.41

Our effort extends this line of work in a number of innovative ways. We propose an architecture42

for computational agents (observers) situated in an environmental context consisting of various43

geometric perspectives. This allows for populations of observers to take multiple perspectives on44

a given dataset or scene. The proposed representation allows us to discuss two concepts related to45

data, observers, and their context: environmental relativism and biorealism. Using a G-to-P mapping46

provides a balance between individualistic behavior while also being able to specify a hard-coded set47

of behavioral traits.48

1.1 Environmental Relativism, Biorealism, and the Observer49

In this paper, we assume a set of heterogeneous observers will take different but ultimately comple-50

mentary perspectives on common stimuli that are transformed in various ways. Our observers utilize51

a subset of these perspectives which yields a network model of shared context. We can use various52

transformations of images or geometric shapes as perspective data in a manner similar to modern53

data augmentation schemes [6]. These stimuli can exist as affine transformational perspectives in a54

real-world context, or deformed transformational perspectives in a virtual world context. We describe55

one possible implementation of differential stimulus perspectives in the Appendix.56

In a more general setting, training observers on multiple perspectives has numerous advantages57

when understood as viewpoints. In a classic paper, Rouse [7] discusses the role of first- and third-58

person views in video gaming, particularly the importance of seeing objects and worlds from various59

perspectives. Incorporating different views of the same set of objects contributes to improved60

performance and social presence [8, 9]. Such perspectives require the rotation of angles, alignments,61

and paths of motion, and a diversity of these viewpoints have a significant impact on the cognitive62

states of the viewers [10]. This can also simulate cognitive processes such as motor learning [11].63

We predict that these findings on viewpoints will also hold true for computational observers. For64

example, Ye et.al [12] used relativistic perspectives to introduce agents to a diverse set of inputs in65

an open-ended manner, with which they were able to generalize a deep learning model for one-shot66

learning. Additionally, the degrees of freedom introduced by transformations of image perspective67

contributes to the need for greater social presence. This can be understood in terms of computational68

complexity [13] and has been further demonstrated through the world design of video games such as69

Pac-Man [14], Minesweeper [15], and classic Nintendo games [16].70

1.2 Predictions for a Observer Representation71

We predict that the perspective diversity inherent in a heterogeneous set of observers will result in a72

preference for some perspectives over others, which can evolve on the basis of a generative internal73

model. This is based on a population genetics-inspired hybrid connectionist//GA model first described74

in Alicea [17]. While conventional connectionist models focus on pattern recognition and associative75

learning, our hybrid connectionist model takes a different approach. Our approach is to incorporate a76

genetic representation to produce an internal model that represents a simple behavioral phenotype. In77

this way, we can produce stereotypical behaviors that incorporate environmental feedback. Yet, more78

importantly, we can also produce phenotypic diversity across observers, which potentially provides a79

nuanced perspective on the study of behavior.80

2 Methodological Approaches81

2.1 Observers in (and of) Complex Systems82

Understanding how the observer has been conceptualized in scientific inquiry is an important first83

step for appreciating observer-dependence. One set of examples of the observer comes from quantum84
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physics [18] and complex systems [19]. Another example comes from embodiment and enactivism85

[20]. Observers are also crucial in agent-based modeling [21], which is perhaps closest to the current86

work. In the realm of quantum physics [22], multiple observers of the same phenomenon are crucial87

in acquiring an objective measurement of decoherence (quantum state). The cybernetics perspective88

first advanced by Ashby [23] postulates that the observer interacts with a black box so that the89

observer can only access externally states emitted by a hidden internal process.90

In many cases, however, the autonomous behavior of the observer is indistinguishable from interac-91

tions between the observer and the observed object [19]. One way around this is through a strategy92

called the redundant spreading of information [24]. Suppose a population of observers observe93

independent features collected in distinct parts of the environment being surveyed. This allows us to94

obtain an objective estimate of the true state of this environment in a manner similar to the Quantum95

Darwinism approach [25], where the most commonly observed features across all observers are96

considered to have the highest fitness.97

2.2 G-to-P Mapping as a Route to Objectivity98

In this paper, we provide a rough sketch of the G-to-P approach. The input layer of the G-to-P99

representation is based on a set of functionally-explicit loci (genomic sites) modeled using boolean100

strings. This is analogous to a series of genes composed of DNA bases. The internal nodes are boolean101

switches that model the graded regulation of each loci. The output layer is based on a phenotype102

that encounters sensory information including visual, haptic, and thermal features. Environmental103

relativism allows us to think about data from intentionally different perspectives (circumstances afford104

differing viewpoints), while biorealism allows us to conceptualize the observer as an organism that105

has an innate component [26]. As our examples from quantum physics suggest, our aim is to bring106

us closer to objectivity through subjective evaluation. An observer can also compare information107

between its fellow observers, and in doing so can synthesize different sources of information embodied108

in environmental stimuli. In this sense, the collective behavior aspect serves as a pre-processing109

layer. More generally, these interactions between internal models are the source of a distributed,110

heterogeneous sampling strategy, which can be used as the input for a variety of machine and deep111

learning models.112

2.3 Hybrid Connectionist Approach to Biorealism113

We use a biologically plausible approach that approximates the relationship between genotype114

(G) and phenotype (P ). Rather than the brain, we take inspiration from population genetics to115

represent the contributions of information encoded in genes (g), the temporal expression of these116

genes (t), environmental influences (e), and stochastic contributions (s) to represent a behavioral117

phenotype. Stochastic contributions refer to biological noise that in nature can serve both adaptive118

and diversification functions [27]. We describe further details of a graph-based G-to-P model119

in the Appendix. Rather than using a black box nervous system which processes environmental120

information, we use a hybrid genetic representation that combines endogenous genetic contributions121

with environmental input and feedback to process information and produce a phenotype (see Appendix,122

Figure 1, Part A). Both the simple and complex epistatic models represent an internal model, which is123

unique to each observer in the population. This allows us to emphasize the uniqueness of individuals124

in a population. This is particularly true for the complex model, which can be enabled by even a125

small population of clones with the same initial genotype.126

2.4 Epistasis in G-to-P Representations127

To understand how the G-to-P mapping operates and transforms the innate components of a genetic128

representation to an observer capable of perceptual diversity, we use the concept of epistasis [28-30].129

Epistasis is enabled in our model by using a deep connectionist architecture (further explained in the130

Appendix). Each layer enables the recombination of information from our G-to-P representation to131

the behavioral phenotype. A simple epistatic model [17] consists of a set of genes, a series of hidden132

layers, and a phenotype. Nodes in the internal layers can represent a number of biological phenomena,133

such as stochastic noise sources and various regulatory mechanisms. We can also implement a134

complex epistatic model, which includes a more detailed internal model with a modular structure. In135

both cases, we leverage the depth of such networks to implement the complexity and richness of the136

behavioral repertoire.137
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Figure 1: A composite diagram of the G-to-P model and a biologically-inspired observer. A:
Statistical summary of the observer phenotype, B: stimulus transformation through affine perspective,
C: stimulus transformation through deformed perspective, D: cartoon example of a simple epistatic
model, E: cartoon example of a complex epistatic model.

2.5 Interactions Between Internal Models138

This internal model is an approximation of the multitude effects that arise from genetics, physiology,139

and environment. Across a population of observers, we can now examine the interactions between140

observers and among various stimuli. These interactions constitute the environment in which the141

internal models operate. This allows us to approximate a number of effects, including preference-142

based selection, which suppresses similar but less-preferred stimuli, perceptual biases such as an143

aversion to selected stimulus features, and non-realistic object physics, and the attraction-repulsion144

behavior of other observers. For example, the relative size of virtual objects to avatar body size can145

produce interpretive illusions in terms of spatial distances [31]. Computational observers may behave146

similarly, and so verification and communication with other observers might provide interpretive147

homogenization.148

While our internal model can potentially represent great population-level diversity, we also need149

a method to measure this diversity in a way that translates to the study of behavior. Measures of150

diversity include applications of mutual information, or a more contextual description based on the151

soft (fuzzy) classification to deal with vagueness and composition [32]. These measures of diversity152

provide a statistical summary of the phenotype (as in Appendix, Figure 1, Part A), and provide a153

population-level parameter with which to measure the behavior of our observer-dependent collective.154

Our last expectation is that the phenomenon of cumulative culture [33, 34] can also serve as a guide155

to explaining behaviors exhibited by our observers. In a typical collective behavior model, there is156

some form of communication between the observers as they align their behavior. While coordination157

(and in turn communication) is non-existent among our observers, cumulative behavior nevertheless158

provides a means for convergent behavior.159
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3 Discussion160

We have introduced an architecture for a population of observers, each of which consists of a161

computational observer represented as a G-to-P mapping. Each of these computational observers162

carries a genotype that can mutate and observe an environment (operationalized as a set of data points)163

from multiple perspectives. The individualized frames of reference our observers produce align with164

what is expected from a spatially embodied system [35]. These perspectives can be shared, and this165

comparison may lead to an objective representation of the data. As such, our architecture can be166

used as a pre-processing layer or pre-training model for highly-structured datasets. We can also use167

this approach to learn more about how artificial observers construct representations of the world. As168

observers of the world, our diverse population of observers can construct a collective self-regulating169

model of behavior [36] which is not possible with network architectures that do not consider the role170

of an observer. In conclusion, the balance of bio-inspiration and contextual integration presented here171

might serve to enable flexible and adaptive training that maximizes the degree of model robustness172

while also minimizing the need for model supervision. This may provide fruitful exploration towards173

generalizability in artificial agents, including expansion upon the train-test regime of learning though174

more life-like contextual embodiment.175

Appendix176

Implementation of Differential Stimulus Perspectives177

Affine perspectives (see Appendix, Figure 1, Part B) are those where the shape is shifted in a way178

that preserves the ratio between shape components. For example, for a series of points and lines,179

the resulting shape preserves the original relational information. By contrast, deformed perspectives180

(see Appendix, Figure 1, Part C) are a distortion of the original image where the ratio between shape181

components is modified. For a series of points and lines, this could be represented by using parametric182

curves rather than straight lines. Population of observers with different perceptual histories but same183

innate traits results in overlapping populations of perspectives.184

Description of Graph-based G-to-P Architecture185

The representation of each observer’s internal model is an alternative to modeling a mammalian186

brain. The G-to-P representation is an analogy of a biological learning machine, and is inspired187

by genetics, biological regulation, and the biological bases of behavior. In particular, we are188

inspired by a biologically-inspired approach to intelligence that approximates the innateness un-189

derlying animal behaviors. From a technical standpoint, the G-to-P mapping consists of a hybrid190

connectionist/biologically-inspired model. As such, the G-to-P representation is an inverse mapping191

of specific traits to a genomic and molecular basis. This allows us to encode innate traits that are192

heritable and can be evolved using a genetic algorithm or other model of selection. The genome193

(input layer) of the G-to-P representation is customizable to specific problems, and are determined in194

the individual by introducing mutations and recombination to generate alternate forms. This enables195

variable phenotypic response to a common stimulus.196

The basic genetic representation is a bipartite graph that estimates the genotype to phenotype197

relationship, or G → P. We call this the simple epistatic model (see Appendix, Figure 1, Part D). The198

interaction matrix WGP represents a non-reversible mapping. These elements can be weighted by199

parameters e and s to account for uniform influences of environment and stochastic effects. Both of200

these parameters are summary representations of feedback from the environment. When values for e201

and s approach 1.0, the G → P relation can partially recover the inverse mapping P → G (phenotype202

to genotype).203

The more complex representation involves the use of deep connectionist models (graphs with many204

layers). We refer to this as the complex epistatic model (see Appendix, Figure 1, Part E), and can205

be compared performance-wise to the simple model. As this model has many layers, recovering the206

inverse mapping (P → G) is impossible. However, the representation of parameters e and s are more207

detailed, and consist of a heterogeneous set of units (a distinct layer) in the model.208
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Notes on G-to-P Epistasis209

The modulatory effects of the environment on gene regulation can be modeled as a series of recurrent210

connections. For example, we might ask how visual and haptic features modulate the expression211

of genes and ultimately internal biological complexity. Note that this feedback is limited to the212

regulatory layers, as recurrent sensory information does not affect the actual structure of the genetic213

loci and their associated information. The hidden (regulatory) layers also allow for the tuning of the214

behavioral repertoire in the manner similar to a homeostat.215

We also use a fitness criterion to evaluate various components of our G-to-P model. In this specific216

instance of the G-to-P model, fitness is used at the population level to evaluate the contributions of all217

observers making a set of observations. All observers contribute to their own point-of-view, but not218

all observers contribute equally to the global state (final evaluation). Alternatively, fitness can also be219

applied to individual units in the internal model, which has the effect to select for various epistatic220

effects [16].221

Broader Impact222

The broader impact of this work largely involves the application of the model to real-world data sets.223

As a preprocessing layer or pretrained model, this representation serves to condition the data in a224

number of different ways. The ability to discover the potential for context and hidden structure in a225

given data set is a positive feature of this work, although a potential user might mistake this for an226

automated method for making interpretations about the data. Another caveat involves our conception227

of the work "objective", which is not meant to be a statement of non-bias, but rather in opposition to228

subjectivity.229
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