
SAINT: Improved Neural Networks for Tabular Data
via Row Attention and Contrastive Pre-Training

Gowthami Somepalli
University of Maryland, College Park

gowthami@umd.edu

Micah Goldblum
New York University
goldblum@nyu.edu

Avi Schwarzschild
University of Maryland, College Park

avi1@umd.edu

C. Bayan Bruss
Capital One

bayan.bruss@capitalone.com

Tom Goldstein
University of Maryland, College Park

tomg@umd.edu

Abstract

Tabular data underpins numerous high-impact applications of machine learning
from fraud detection to genomics and healthcare. Classical approaches to solving
tabular problems, such as gradient boosting and random forests, are widely used
by practitioners. However, recent deep learning methods have achieved a degree
of performance competitive with popular techniques. We devise a hybrid deep
learning approach to solving tabular data problems. Our method, SAINT, performs
attention over both rows and columns, and it includes an enhanced embedding
method. We also study a new contrastive self-supervised pre-training method
for use when labels are scarce. SAINT consistently improves performance over
previous deep learning methods, and it even performs competitively with gradient
boosting methods, including XGBoost, CatBoost, and LightGBM, on average
over 30 benchmark datasets in regression, binary classification, and multi-class
classification tasks.

1 Introduction

While machine learning for image and language processing has seen major advances over the last
decade, many critical industries, including financial services, health care, and logistics, rely heavily
on data in structured format. Tabular data is unique in several ways that have prevented it from
benefiting from the success of deep learning in vision and language. First, tabular data often contain
heterogeneous features that represent a mixture of continuous, categorical, and ordinal values, and
these values can be independent or correlated. Second, there is no inherent positional information in
tabular data, meaning that the order of columns is arbitrary. This differs from text, where tokens are
always discrete, and ordering impacts semantic meaning. It also differs from images, where pixels
are typically continuous, and nearby pixels are correlated. Tabular models must handle features from
multiple discrete and continuous distributions, and they must discover correlations without relying on
the positional information. Deep learning systems with specialized architectures that embrace these
differences have the potential to improve performance beyond what is achieved by classical methods,
like linear classifiers and random forests. Furthermore, without performant deep learning models for
tabular data, we lack the ability to exploit compositionality, end-to-end multi-task models, fusion
with multiple modalities (e.g. image and text), and representation learning.

Table Representation Learning Workshop at NeurIPS 2022.

We introduce SAINT, the Self-Attention and INtersample attention Transformer, a specialized
architecture for tabular data. SAINT leverages several mechanisms to overcome the difficulties of
training on tabular data. SAINT projects all features – categorical and continuous – independently
into a dense vector space. These projected values are passed as token embeddings into a transformer
encoder which uses attention in the following two ways. First, “self-attention” attends to individual
features within each data sample. Second, we propose a novel “intersample attention”, which
enhances the classification of a row (i.e., a data sample) by relating it to other rows in the table.
Intersample attention is akin to a nearest-neighbor classification, where the distance metric is learned
end-to-end rather than fixed. In addition to this hybrid attention mechanism, we also leverage
self-supervised contrastive pre-training to boost performance for semi-supervised problems.

We provide comparisons of SAINT to a wide variety of deep tabular architectures and commonly
used tree-based methods using a diverse battery of tabular datasets. We observe that SAINT, on
average, outperforms all other deep learning methods on supervised and semi-supervised tasks. More
importantly, SAINT often out-performs boosted trees (including XGBoost [Chen and Guestrin, 2016],
CatBoost [Dorogush et al., 2018], and LightGBM [Ke et al., 2017]), which have long been an industry
favorite for complex tabular datasets. Finally, we visualize the attention matrices produced by our
models to gain insights into how they behave.

2 Related Work

Classical Models. The most widely adopted approaches for supervised and semi-supervised learning
on tabular datasets eschew neural models due to their black-box nature and high compute requirements.
When one has reasonable expectations of linear relationships, many modeling approaches are available
[Wright, 1995, Weisberg, 2005, Starkweather and Moske, 2011, McCulloch and Neuhaus, 2005]. In
more complex settings, non-parametric tree-based models are used. Commonly used tools such as
XGBoost [Chen and Guestrin, 2016], CatBoost [Dorogush et al., 2018], and LightGBM [Ke et al.,
2017] provide several benefits such as interpretability, the ability to handle a variety of feature types
including null values, as well as performance in both high and low data regimes.

Deep Tabular Models. While classical methods are still the industry favorite, some recent work
brings deep learning to the tabular domain. For example, TabNet [Arik and Pfister, 2019] uses neural
networks to mimic decision trees by placing importance on only a few features at each layer. The
attention layers in TabNet do not use the regular dot-product self-attention common in transformer-
based models, but a sparse layer that allows only certain features to pass through. Yoon et al. [2020]
propose VIME, which employs MLPs in a technique for pre-training based on denoising. TABERT
[Yin et al., 2020], a more elaborate neural approach inspired by the large language transformer model
BERT [Devlin et al., 2018], is trained on semi-structured test data to perform language-specific tasks.
Several other studies utilize tabular data, but their problem settings are outside of our scope [Pathak
et al., 2016, Chen et al., 2019, Padhi et al., 2021, Shavitt and Segal, 2018, Katzir et al., 2020].

Transformer models for more general tabular data include TabTransformer [Huang et al., 2020],
which uses a transformer encoder to learn contextual embeddings only on categorical features. The
continuous features are concatenated to the embedded features and fed to an MLP. The main issue
with this model is that continuous data do not go through the self-attention block. That means any
information about correlations between categorical and continuous features is lost. In our model,
we address the issue by projecting continuous and categorical features to the higher dimensional
embedding space and passing them both through the transformer blocks. In addition, we propose a
new type of attention to explicitly allow data points to attend to each other to get better representations.

Axial Attention. Ho et al. [2019] propose row and column attention in the context of localized
attention in 2-dimensional inputs (like images) in the Axial Transformer. For a given pixel, the
attention is computed only on the pixels that are on the same row and column, rather than using
all pixels. The MSA Transformer [Rao et al., 2021] extends this work to protein sequences and
applies both column and row attention across similar rows (tied row attention). TABBIE [Iida et al.,
2021] is an adaptation that applies self-attention to rows and columns separately, then averages the
representations and passes them as input to the next layer. In all these works, different features from
the same data point communicate with each other and with the same feature from a whole batch of
data. Our approach, intersample attention, is hierarchical in nature; first, features of a data point
interact with each other, then data points interact with each other using entire rows/samples.

2

In a similar vein, Graph Attention Networks (GAT) [Veličković et al., 2017] compute attention
over neighbors on a graph, thereby learning which neighbor’s information is relevant to a node’s
prediction. One way to view our intersample attention is as a GAT on a complete graph where all
rows are connected to all other rows. Yang et al. [2016] explore hierarchical attention for document
classification where attention is computed between words in a given sentence and then between the
sentences, but they did not attempt to compute the attention between entire documents themselves.

Self-Supervised Learning. Self-supervision via a ‘pretext task’ on unlabeled data coupled with
finetuning on labeled data is widely used for improving language and computer vision models. Some
of the pretext tasks previously used include imputing masked values [Pathak et al., 2016, Arik and
Pfister, 2019, Huang et al., 2020], denoising [Vincent et al., 2008, Yoon et al., 2020], and replaced
token detection [Huang et al., 2020, Iida et al., 2021]. Inspired by the success of contrastive learning
for images [Chen et al., 2020, He et al., 2020, Grill et al., 2020], we propose a variant of contrastive
pre-training for tabular data. To the best of our knowledge, this is the first work to adopt contrastive
learning for tabular data. We couple it with denoising to pre-train on a plethora of datasets with varied
volumes of labeled data, and we show that our method outperforms boosting methods.

3 Self-Attention and Intersample Attention Transformer (SAINT)

(a)

Mixup in
latent space

InfoNCE
loss

CutMix in
real space

Contrastive

Stack of MLPs, one
for each feature
except for CLS

MSE/CE

Denoising
SELF SUPERVISED PRE-TRAINING

SUPERVISED / FINETUNING

(b)

Multi-Head
Self-Attention

Add & Norm

Multi-Head
Intersample
Attention

FeedForward

Add & Norm

Add & Norm

FeedForward

Add & Norm

Self-A
ttention

block
Intersam

ple
A

ttention block

Embedded inputs of a batch

Contextual representations of a batch Projection Head

Projection Head

Embedding
layer

SAINT

MLP on

..

C
ross-Entropy

(C
lassification)/

M
SE (R

egression)

Embedding
layer

SAINT

Figure 1: The SAINT architecture, including pre-training and training pipelines. (a) Inspired by Vaswani et al.
[2017], we use L layers with 2 attention blocks each, one self-attention block, and one of our novel intersample
attention blocks that computes attention across samples (see Section 3.2). (b) For pre-training, we minimize
contrastive and denoising losses between a given data point and its views generated by CutMix and mixup
(Section 4). During finetuning/regular training, data passes through an embedding layer and then the SAINT
model. We take the contextual embeddings from SAINT and pass only the embedding corresponding to the CLS
token through an MLP to obtain the final prediction.

In this section, we introduce our model, Self-Attention and INtersample attention Trans-
former (SAINT) and explain its components. Suppose D = {xi, yi}mi=1 is a tabular dataset with m
points, xi is an n-dimensional feature vector, and yi is a label or target. Similar to BERT [De-
vlin et al., 2018], we append a [CLS] token with a learned embedding to each sample. Let
xi = [[CLS], f{1}

i , f
{2}
i , .., f

{n}
i] be a single data-point with categorical or continuous features

f
{j}
i , and let E be the embedding layer that embeds each feature into Rd. Note that E may use differ-

ent embedding functions for different features. For a given xi ∈ R(n+1), we get E(xi) ∈ R(n+1)×d.

Encoding the Data. In language models, all tokens are embedded using the same procedure.
However, in the tabular domain, different features can come from distinct distributions, necessitating
a heterogeneous embedding approach. Note that tabular data can contain multiple categorical

3

CONCAT CONCAT CONCAT

LayerNorm + Residual

Figure 2: Intersample attention on a batch of 3 points. d is the size of value vectors vi. See Sec. 3.2 for details.

features which may use the same set of tokens. Unless it is known that common tokens possess
identical relationships within multiple columns, it is important to embed these columns independently.
Unlike the embedding of TabTransformer [Huang et al., 2020], which uses attention to embed only
categorical features, we propose also projecting continuous features into a d−dimensional space
before passing their embedding through the transformer encoder. To this end, we use a separate
single fully-connected layer with a ReLU nonlinearity for each continuous feature, thus projecting
the 1−dimensional input into d−dimensional space. With this simple trick alone, we significantly
improve the performance of the TabTransformer model as discussed in Section 5.1. An additional
discussion concerning positional encodings can be found in Appendix C.

3.1 Architecture

SAINT is inspired by the transformer encoder of Vaswani et al. [2017], designed for natural language,
where the model takes in a sequence of feature embeddings and outputs contextual representations of
the same dimension. A graphical overview of SAINT is presented in Figure 1(a).

SAINT is composed of a stack of L identical stages. Each stage consists of one self-attention
transformer block and one intersample attention transformer block. The self-attention transformer
block is identical to the encoder from Vaswani et al. [2017]. It has a multi-head self-attention
layer (MSA) (with h heads), followed by two fully-connected feed-forward (FF) layers with a GELU
non-linearity [Hendrycks and Gimpel, 2016]. Each layer has a skip connection [He et al., 2016] and
layer normalization (LN) [Ba et al., 2016]. The intersample attention transformer block is similar
to the self-attention transformer block, except the self-attention layer is replaced by an intersample
attention layer (MISA). The details of intersample attention layers are presented below.

The SAINT pipeline, with a single stage (L = 1) and a batch of b inputs, is described by the following
equations. We denote multi-head self-attention by MSA, multi-head intersample attention by MISA,
feed-forward layers by FF, and layer norm by LN:

z
(1)
i = LN(MSA(E(xi))) +E(xi) z

(2)
i = LN(FF1(z

(1)
i)) + z

(1)
i (1)

z
(3)
i = LN(MISA({z(2)i }bi=1)) + z

(2)
i ri = LN(FF2(z

(3)
i)) + z

(3)
i (2)

where ri is SAINT’s contextual representation output corresponding to data point xi. This contextual
embedding can be used in downstream tasks such as self-supervision or classification.

3.2 Intersample attention

We introduce intersample attention (a type of row attention) where attention is computed across
different data points (rows of a tabular matrix) in a given batch rather than just features of a single
data point. Specifically, we concatenate the embeddings of each feature for a single point, then
compute attention over samples (rather than features). This enables us to improve the representation

4

Algorithm 1 PyTorch-style pseudo-code for intersample attention. For simplicity, we describe just one head and
assume the value vector dimension is same as the input embedding dimension.

b: batch size , n: number of features , d: embedding dimension
W_q , W_k , W_v are weight matrices of dimension dxd
mm: matrix -matrix multiplication
def self_attention(x):

x is bxnxd
q, k, v = mm(W_q ,x), mm(W_k ,x), mm(W_v ,x) #q,k,v are bxnxd
attn = softmax(mm(q,np.transpose(k, (0, 2, 1)))/ sqrt(d)) # bxnxn
out = mm(attn , v) #out is bxnxd
return out

def intersample_attention(x):
x is bxnxd
b,n,d = x.shape # as mentioned above
x = reshape(x, (1,b,n*d)) # reshape x to 1xbx(n*d)
x = self_attention(x) # the output x is 1xbx(n*d)
out = reshape(x,(b,n,d)) # out is bxnxd
return out

of a point by inspecting others. When a feature is missing or noisy in one row, intersample attention
enables SAINT to borrow the corresponding features from other similar data samples in the batch.

An illustration of how intersample attention is performed in a single head is shown in Figure 2
and the pseudo-code is presented in Algorithm 1. Unlike the row attention used in Ho et al. [2019],
Child et al. [2019], Rao et al. [2021], Iida et al. [2021], intersample attention allows all features
from different samples to communicate with each other. In our experiments, we show that this
ability boosts performance appreciably. In the multi-head case, instead of projecting q, k, v to a given
dimension d, we project them to d/h where h is the number of heads. Then we concatenate all the
updated value vectors, vi, to get back a vector of length d.

4 Pre-training & Finetuning

Contrastive learning, in which models are pre-trained to be invariant to reordering, cropping, or other
label-preserving “views” of the data [Chen et al., 2020, He et al., 2020, Pathak et al., 2016, Grill et al.,
2020, Vincent et al., 2008], is a powerful tool in vision domains that has never (to our knowledge)
been applied to tabular data. We present a contrastive pipeline for tabular data, a visual description of
which is shown in Figure 1. Existing self-supervised objectives for tabular data include denoising
[Vincent et al., 2008], a variant of which is used by VIME [Yoon et al., 2020], masking, and replaced
token detection as used by TabTransformer [Huang et al., 2020]. We find that, while these methods
are effective, superior performance can be achieved by contrastive learning.

Generating augmentations. Contrastive methods in vision craft different “views” of images via
crops and flips. For tabular data, crafting such transformations is a non-trivial problem. VIME [Yoon
et al., 2020] uses mixup in the non-embedded space as data augmentation, but this is limited to
continuous data. We instead propose to use CutMix [Yun et al., 2019] to augment samples in input
space and mixup [Zhang et al., 2017] in embedding space. These augmentations yield a challenging
and effective self-supervision task. Assume that l of m data points are labeled. We denote the
embedding layer by E, the SAINT network by S, and 2 projection heads as g1(·) and g2(·). The
CutMix augmentation probability is denoted pcutmix and the mixup parameter is α. Given point xi,
the original embedding is pi = E(xi), while the augmented representation is generated as follows:

x′
i = xi ⊙m+ xa ⊙ (1−m) CutMix in raw data space (3)

p′
i = α ∗E(x′

i) + (1− α) ∗E(x′
b) mixup in embedding space (4)

where xa, xb are random samples from the current batch, x′
b is the CutMix version of xb, m is the

binary mask vector sampled from a Bernoulli distribution with probability pcutmix, and α is the mixup
parameter. We first obtain a CutMix version of every data point in a batch by randomly selecting a
partner to mix with. We then embed the samples and choose new partners before performing mixup.

SAINT and projection heads. Now that we have both the clean pi and mixed p′
i embeddings, we

pass them through SAINT, then through two projection heads, each consisting of an MLP with one

5

hidden layer and a ReLU. The use of a projection head before computing contrastive loss is common
in vision [Chen et al., 2020, He et al., 2020, Grill et al., 2020] and indeed also improves results on
tabular data. Ablation studies and further discussion are available in Appendix F.

Loss functions. We consider two losses for the pre-training phase. (i) The first is a contrastive loss
that pushes the latent representations of two views of the same data point (zi and z′i) close together
and encourages different points (zi and zj , i ̸= j) to lie far apart. For this, we borrow the InfoNCE
loss from metric-learning works [Sohn, 2016, Oord et al., 2018, Chen et al., 2020, Wu et al., 2018];
(ii) The second loss comes from a denoising task. For denoising, we try to predict the original data
sample from a noisy view. Formally, we are given r′i and we reconstruct the inputs as x′′

i to minimize
the difference between the original and the reconstruction.The combined pre-training loss is:

Lpre-training = −
m∑
i=1

log
exp(zi · z′i/τ)∑m

k=1 exp(zi · z′k/τ)︸ ︷︷ ︸
Contrastive Loss

+λpt

m∑
i=1

n∑
j=1

[Lj(MLPj(r
′
i),xi)]︸ ︷︷ ︸

Denoising Loss

(5)

where ri = S(pi), r
′
i = S(p′

i), zi = g1(ri), z
′
i = g2(r

′
i). Lj is cross-entropy loss or mean squared

error depending on the jth feature being categorical or continuous. Each MLPj is a single hidden
layer perceptron with a ReLU non-linearity. There are n in number, one for each input feature. λpt is
a hyper-parameter and τ is temperature parameter and both of these are tuned using validation data.

Finetuning. Once SAINT is pre-trained on all unlabeled data, we finetune the model on the target
prediction task using the l labeled samples. The pipeline of this step is shown in Figure 1(b). For
a given point xi, we learn the contextual embedding ri. For the final prediction step, we pass the
embedding corresponding only to the [CLS] token through a simple MLP with a single hidden layer
with ReLU activation to get the final output. We evaluate cross-entropy loss on the outputs for
classification tasks and mean squared error for regression tasks.

5 Experimental Evaluation

We now discuss SAINT variants and evaluate them in both supervised and semi-supervised scenarios
on 30 datasets. We also analyze each component of SAINT and perform ablation studies to understand
the importance of each component. Finally, we probe the behavior of attention maps in SAINT by
treating the MNIST dataset [LeCun et al., 1998] as tabular data and generating visualizations.

Table 1: Configurations of SAINT. The number of stages is
denoted by L, and the number of heads in each attention layer is
represented by h. The parameter count is averaged over all the
datasets with < 100 features and is measured for batch size of
256. Time is the cost of 100 epochs of training plus inference on
the best model, averaged over 30 datasets across all 3 tasks.

Model Attention L h Param ×1e6 Time (s)
SAINT-s Self 6 8 5.9 1336
SAINT-i InterSample 2 6 11.81 684
SAINT Both 2 4 12.23 731

Datasets. We evaluate SAINT on 30
benchmark datasets, with 10 for each
of binary classification, multiclass clas-
sification, and regression. We chose
datasets based on (i) usage in previous
tabular work [Arik and Pfister, 2019,
Huang et al., 2020] and (ii) availabil-
ity on the OpenML [Vanschoren et al.,
2013] platform where the datasets are
uniformly processed and accessible.1
The datasets are diverse, including from
452 up to 581,012 samples, with 2 to 100 class labels, and containing from 6 to 1,777 features – both
categorical and continuous features. Some datasets are missing data while others are complete, and
some are balanced, while others have highly skewed class distributions. dataset IDs and additional
details can be found in Appendix B. We pre-process each dataset by Z-normalizing all continuous
features and by label-encoding all categorical features before data is passed to the embedding layer.

Model variants. The SAINT architecture discussed in the previous section has one self-attention
transformer encoder block stacked with one intersample attention transformer encoder block in each
stage. We also consider variants with only one of these blocks. SAINT-s has only self-attention,
while SAINT-i has only intersample attention. See Table 1 for an architectural comparison.

Baselines. We compare our model to traditional methods like Random Forests [Breiman, 2001],
Extra Trees [Geurts et al., 2006], and k-NN [Altman, 1992] as well as against powerful boosting

1Datasets available via https://www.openml.org/d/<dataset_id> for each dataset_id.

6

https://www.openml.org/d/<dataset_id>

Table 2: Average rank and the standard error across all 3 tasks individually and together for SAINT and other
tabular methods. The average rank in individual task columns is computed over 10 datasets while the overall
rank column is computed over 30 datasets. The best performing model has the smallest rank (in bold).

Model \ Task Binary Multiclass Regression Overall

RandomForest 5.9± 0.75 5.5± 0.56 7.3± 1.22 6.2± 0.52
ExtraTrees 5.8± 0.95 7.2± 0.63 6.7± 1.11 6.6± 0.55
KNeighborsDist 11.5± 0.43 8.2± 0.98 10.3± 0.63 10.0± 0.46
KNeighborsUnif 12.2± 0.47 8.5± 1.23 11.4± 0.54 10.7± 0.53
LightGBM 4.3± 0.60 3.2± 0.65 4.8± 0.93 4.3± 0.45
XGBoost 3.1± 0.67 4.5± 0.65 5.4± 0.65 5.0± 0.42
CatBoost 2.9± 0.50 5.2± 0.73 3.9± 0.64 4.0± 0.39
Multi-layered Perceptron 8.1± 0.60 6.3± 1.00 9.7± 0.63 8.1± 0.50
TabNet 11.3± 0.84 10.3± 0.58 8.2± 1.29 9.9± 0.55
TabTransformer 8.6± 0.65 7.4± 1.02 7.8± 0.71 8.0± 0.44

SAINT-s 5.8± 0.76 5.2± 1.48 3.8± 1.11 4.8± 0.66
SAINT-i 5.1± 0.62 4.2± 0.66 4.0± 0.86 4.4± 0.42
SAINT 2.9± 0.63 2.5± 0.48 2.9± 0.50 2.7± 0.29

libraries XGBoost [Chen and Guestrin, 2016], LightGBM [Ke et al., 2017], and CatBoost [Dorogush
et al., 2018]. We also compare to neural networks, like 2-layer multi-layer perceptrons, TabNet [Arik
and Pfister, 2019], and TabTransformer [Huang et al., 2020]. For methods that use unsupervised
pre-training as preprocessing, we use Masked Language Modeling (MLM) [Devlin et al., 2018]
for TabNet and Replaced Token Detection (RTD) [Clark et al., 2020] for TabTransformer as in the
respective papers. We split the data into 65%, 15%, and 25% for training, validation, and testing,
respectively. Hyperparameter tuning is done on validation data and results are reported on test data.
Please refer to Appendix D for training details and hyperparameter search spaces for each method.

Metrics. We used different metrics for each of the three tasks we examine in this paper. For binary-
classification, we use area under ROC curve (AUROC), accuracy for multi-class classification, and
root-mean-squared error (RMSE) for regression.

Training. We train (including pre-training runs) using AdamW [Loshchilov and Hutter, 2017] with
β1 = 0.9, β2 = 0.999, decay = 0.01, and with a learning rate of 0.0001 with batches of size 256
(except for datasets with more than 100 features where we vary the batch size depending on the
number of features to fit the batch into a single GPU memory). We split the data into 65%, 15%, and
25% for training, validation, and testing, respectively. We use only validation split for selecting all
other hyper-parameters. The final configurations for each of the datasets is presented in Appendix
C. We use CutMix mask parameter pcutmix = 0.3 and mixup parameter α = 0.2 for all standard
pre-training experiments. We use pre-training loss hyper-parameters λpt = 10 and temperature
τ = 0.7 for all settings.

5.1 Results

Supervised setting. In Table 2, we report average ranks of each model on 10 datasets from each
binary classification, multi-class classification, and regression task. Note that ranks are computed
dataset-wise on a metric. Lower rank represents better performance. In binary and multi-class
classification, we measure AuROC and accuracy, and SAINT ranks 2.7 and 2.5 respectively (across
10 datasets for each setting) compared to CatBoost’s 2.9 and LightGBM’s 3.2 (the next best method).
For regression, we measure RMSE. SAINT ranks 2.9 across 10 datasets compared to the next best
method, CatBoost, which ranks 3.9. For complete results on all 30 datasets, see Appendix E.

Semi-supervised setting. We perform 2 sets of experiments with 50, and 200 labeled data points (the
rest are unlabeled). See Table 3 for average ranks across all 30 datasets and standard errors in both
settings. We also examine the case when all data is labeled, to see if pre-training still helps. In all 3
cases, the pre-trained SAINT model performs the best. Pre-training had the largest positive impact on
the SAINT-s variant with a rank improvement in all cases. Interestingly, we note that when all the
training data samples are labeled, pre-training does not contribute appreciably (except for SAINT-s
variant), hence the results with and without pre-training are fairly close.

Effect of embedding continuous features. To understand the effect of learning embeddings for
continuous data, we perform a simple experiment with TabTransformer. We modify TabTransformer
by embedding continuous features into d dimensions using a single-layer ReLU MLP, just as they

7

use on categorical features, and we pass the embedded features through the transformer block. We
keep the entire architecture and all training hyper-parameters the same for both TabTransformer and
its modified version. In binary classification, the average AUROC across 10 datasets increases from
0.82 to 0.85 (an increment of 3.65%), and in multiclass classification, the average accuracy across 10
datasets increases from 0.72 to 0.74 (an increment of 2.77%). In regression, the average RMSE over
10 datasets decreases from 5,071.30 to 4,998.2 (a decrement of 1.44%). This experiment shows that
embedding the continuous data is important and can boost performance significantly.

When to use intersample attention? In our experiments, we observe that SAINT-i outperforms
other variants whenever the number of features is large (> 500) as observed in the cases of MNIST
and Bioresponse. Another advantage of SAINT-i is that execution is fast compared to SAINT-s,
despite the fact that the number of parameters in SAINT-i is much higher than that of SAINT-s (see
Table 1). This can be attributed to quadratic complexity in terms of number of features to compute
attention in SAINT-s while in SAINT-i, this depends on the size of the batch which we can control.

Table 3: Average rank and standard error over 30 datasets under
semi-supervised scenarios. Columns vary by number of labeled
training samples. In last column we compare how models perform
with and without pretraining when all the samples are labeled.

Model \ # Labeled 50 200 All

RandomForest 9.9± 0.79 8.5± 0.67 8.1± 0.58
ExtraTrees 10.2± 0.75 8.0± 0.78 8.4± 0.63
KNeighborsDist 11.7± 0.67 13.2± 0.42 12.4± 0.58
KNeighborsUnif 12.3± 0.77 13.8± 0.48 13.1± 0.67
LightGBM 6.3± 0.58 7.1± 0.69 6.0± 0.54
XGBoost 7.5± 0.73 7.2± 0.62 6.7± 0.50
CatBoost 7.2± 0.61 6.0± 0.64 5.7± 0.46
MLP 10.9± 0.66 11.7± 0.57 11.1± 0.95
Tabnet + MLM 10.6± 0.75 10.4± 0.77 9.9± 0.61
TabTransf. + RTD 10.3± 0.82 8.6± 0.77 8.8± 0.83

SAINT-s 6.2± 0.66 5.6± 0.64 7.5± 0.95
SAINT-i 6.0± 0.67 6.2± 0.69 6.1± 0.43
SAINT 5.7± 0.72 5.1± 0.57 4.2± 0.36

SAINT-s + pre-training 5.4± 0.69 5.5± 0.75 6.6± 0.72
SAINT-i + pre-training 5.9± 0.70 5.6± 0.60 6.1± 0.87
SAINT + pre-training 4.3± 0.63 4.6± 0.63 4.3± 0.77

How robust is SAINT to data cor-
ruptions? We evaluate the robust-
ness of SAINT variants by corrupt-
ing the training data via noise and
missing values. To simulate noise,
we apply CutMix, replacing 10% to
90% of features with values of other
randomly selected samples. We ex-
amine the resulting trends in binary
classification and regression. In tri-
als with noise, the drop in mean AU-
ROC or mean scaled-RMSE is min-
imal until 70% of data is corrupted,
when the performance drops signifi-
cantly. SAINT and SAINT-i are com-
paratively more robust than SAINT-s.
This shows that using row attention
improves the model’s robustness to
noisy training data. However, we find
the opposite trend when many fea-
tures are missing in the training data. In this scenario, SAINT-s and SAINT are quite robust, and the
drop in AUROC is not drastic until 70% or more of the data is missing. We conclude that SAINT is
reliable for training on corrupted training data. Trend line plots for these scenarios are available in
Appendix F, Figure 4.

Effect of batch size on intersample attention performance. As we discuss in Section 3.2, in-
tersample attention is computed between batches of data points. We consider multiple multi-class
classification datasets and examine the impact of batch size by varying it from 8 to 1,024. In most
cases, we find that the variation in SAINT-i’s performance is small and is comparable to that of
SAINT-s, which has no intersample attention component and thus has no dependence on batch size.
We note that when the number of training samples is very small (i.e. less than 1,000), the variation in
performance increases, but we observe the same trend in SAINT-s as well. We present corresponding
plots in Appendix F, Figure 5. Further discussion and analysis is presented in Appendix F.

6 Conclusion

Even though tabular data is an extremely common data format used by institutions in various
domains, deep learning methods are still lagging behind tree-based boosting methods in production.
In this paper, we highlight the limitations of existing deep learning approaches, and the reasons
why they do not perform competitively on the tabular datasets. We further introduce three novel
improvements to counter these limitations - (1) intersample attention, (2) contrastive pre-training,
(3) and a strategy for embedding continuous columns in the tabular datasets. Our method, SAINT,
performs competitively across a large number of tabular datasets with diverse characteristics on
the tasks of binary classification, multi-class classification and regression. We quantitatively and
qualitatively analyse the importance of each of our improvements.

8

References
Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American

Statistician, 46(3):175–185, 1992.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. arXiv preprint
arXiv:1908.07442, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. Learning semantic annotations for
tabular data. arXiv preprint arXiv:1906.00781, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pages 1597–1607. PMLR,
2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text encoders
as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with categorical
features support. arXiv preprint arXiv:1810.11363, 2018.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505, 2020.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning, 63(1):3–42,
2006.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl
Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9729–9738, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimensional
transformers. arXiv preprint arXiv:1912.12180, 2019.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data modeling using
contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. Tabbie: Pretrained representations of tabular data.
arXiv preprint arXiv:2105.02584, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In International
Conference on Learning Representations, 2020.

9

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30:3146–3154, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Charles E McCulloch and John M Neuhaus. Generalized linear mixed models. Encyclopedia of biostatistics, 4,
2005.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross, Ravi Nair,
and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3565–3569. IEEE,
2021.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2536–2544, 2016.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F Canny, Pieter Abbeel, Tom Sercu, and Alexander
Rives. Msa transformer. bioRxiv, 2021.

Ira Shavitt and Eran Segal. Regularization learning networks: deep learning for tabular datasets. arXiv preprint
arXiv:1805.06440, 2018.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, pages 1857–1865, 2016.

Jon Starkweather and Amanda Kay Moske. Multinomial logistic regression, 2011.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198. URL http://doi.
acm.org/10.1145/2641190.2641198.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103, 2008.

Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

Raymond E Wright. Logistic regression. 1995.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3733–3742, 2018.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical attention
networks for document classification. In Proceedings of the 2016 conference of the North American chapter
of the association for computational linguistics: human language technologies, pages 1480–1489, 2016.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint understanding
of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020.

10

http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the success of self-and
semi-supervised learning to tabular domain. Advances in Neural Information Processing Systems, 33, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

11

Appendix for SAINT: Improved Neural Networks for Tabular
Data via Row Attention and Contrastive Pre-Training

A Additional illustrations

LayerNorm + Residual

Figure 3: An illustration of self-attention in a point xi. Inspired by Vaswani et al. [2017].

B Datasets

Data sources. As mentioned in main text, all 30 datasets are downloaded from OpenML [Vanschoren
et al., 2013] repository. We present the dataset IDs and some statistics of the datasets in Table 4. All
datasets can be downloaded via https://www.openml.org/d/<dataset_id>

Data preprocessing. In each dataset, the categorical features are label encoded, and continuous
features are z-normalized before passing them into the embedding layer. Each feature (or column)
has a different missing value token to account for missing data.

For MNIST, we unravel each image into a vector of 784 features and consider each image as a single
row. Since each feature is of same type in this dataset, we encode all the features into the same
embedding space. To distinguish the features, we also use positional encodings in the encoding layer.

C Complete training details

In each of our experiments, we use a single Nvidia GeForce RTX 2080Ti GPU. Individual training
runs take between 5 minutes and 6 hours. In total, the experiments in this paper account for around
30 GPU days (including semi-supervised experiments and ablation studies).

For most of the datasets, we use embedding size d = 32. For MNIST, we use d = 12, for datasets
with > 100 features we used d = 4. The variance in the embedding size is only due to the memory

12

https://www.openml.org/d/<dataset_id>

Table 4: We present statistics on 30 datasets we have used in this paper. The first column is the OpenML ID for
each of the datasets. For regression datasets, we denote the number of classes as N/A.

OpenML ID Name (as appears on OpenML) # classes # features # continuous features # categorical features Size Task

31 credit-g 2 21 7 14 1000 binary classif
44 spambase 2 58 57 1 4601 binary classif
1017 arrhythmia 2 280 206 74 452 binary classif
1111 KDDCup09_appetency 2 231 192 39 50000 binary classif
1487 ozone-level-8hr 2 73 72 1 2534 binary classif
1494 qsar-biodeg 2 42 41 1 1055 binary classif
1590 adult 2 15 6 9 48842 binary classif
4134 Bioresponse 2 1777 1776 1 3751 binary classif
42178 telco-customer-churn 2 20 3 0 7043 binary classif
42733 Click_prediction_small 2 12 5 7 39948 binary classif
188 eucalyptus 5 20 14 6 736 multiclass
1596 covertype 7 55 10 45 581012 multiclass
4541 Diabetes130US 3 50 13 37 101766 multiclass
40664 car-evaluation 4 22 0 22 1728 multiclass
40685 shuttle 7 10 9 1 58000 multiclass
40687 solar-flare 6 13 0 13 1066 multiclass
40975 car 4 7 0 7 1728 multiclass
41166 volkert 10 181 180 1 58310 multiclass
41169 helena 100 28 27 1 65196 multiclass
42734 okcupid-stem 3 20 2 18 50789 multiclass
422 topo_2_1 N/A 267 267 0 8885 regression
541 socmob N/A 6 2 4 1156 regression
42563 house_prices_nominal N/A 80 37 43 1460 regression
42571 Allstate_Claims_Severity N/A 131 15 116 50000 regression
42705 Yolanda N/A 101 101 0 50000 regression
42724 OnlineNewsPopularity N/A 60 60 0 39644 regression
42726 abalone N/A 9 8 1 4177 regression
42727 colleges N/A 45 33 12 7063 regression
42728 Airlines_DepDelay_10M N/A 10 7 3 50000 regression
42729 nyc-taxi-green-dec-2016 N/A 19 10 9 50000 regression

constraints of a single GPU. We used L = 6 layers in the SAINT-s variant and L = 1 for SAINT-i
and SAINT variants. We use dropout of 0.1 in all attention layers. In feed-forward layers, use dropout
of 0.1 in the SAINT-s variant, and we use 0.8 in SAINT-i and SAINT models. We use attention heads
h = 8 for SAINT-s model and h = 4 for SAINT-i and SAINT models. Inside the self-attention layer,
the q, k, and v vectors are of dimension 16, and in the intersample attention layer, they are of size 64.

Other minor details are shared in the code.

Feature Encoding. Transformers for vision and language typically employ same embedding
function for each feature, or a column since each word, or pixel, or a patch comes from a similar
distribution. This is not the case with all of the 30 datasets presented in this paper; each feature
may be of a different type and drawn from different distribution. Hence we use a unique embedding
function for each column.

Positional Encoding. In tabular datasets, different features, or columns do not have any order.
Different feature encodings used to embed different columns is sufficient to provide the model the
necessary information about the feature. Hence we skip the positional encodings in all the datasets
(except in the case of MNIST, where all columns share the embedding function, and we provide
positional encodings instead). Note that the attention operation itself is order invariant in both the
self-attention and intersample attention cases.

D Baselines

We use Auto-Gluon2 [Erickson et al., 2020] framework to run the train the traditional models as well
as to perform the hyperparameter sweep. For TabNet, we use the famous PyTorch implementation3,
and for TabTransformer since the official implementation is not available, we used the widely used
PyTorch re-implementation4. In the following paragraphs we will give details on hyperparameter
configurations for each baseline. All the baseline models use early stopping on the validation dataset’s
performance. All the deep learning methods take embedding for categorical data as input and we
tuned them with variable embedding sizes from [16, 32, 64].

2https://auto.gluon.ai/stable/index.html
3https://github.com/dreamquark-ai/tabnet
4https://github.com/lucidrains/tab-transformer-PyTorch

13

https://auto.gluon.ai/stable/index.html
https://github.com/dreamquark-ai/tabnet
https://github.com/lucidrains/tab-transformer-PyTorch

Random Forest & Extra trees Classifiers. We tuned on number of estimators (n_estimators)
from the list [100, 200], on criterion from [‘gini’,‘entropy’].

Random Forest & Extra trees Regressors. We tuned on number of estimators (n_estimators)
from the list [100, 200], on criterion from [‘squared_error’,‘absolute_error’].

KNeighbors models. We tuned the weights parameter from [‘uniform’,‘distance’], and p value
from [1,2]. For large datasets, k-NN model is computationally intractable and hence for datasets with
> 50000 datapoints, we randomly choose 50k points and train the model on the smaller dataset.

LightGBM. We tried with different values of min_data_in_leaf in [10, 20], num_leaves in
[30, 50] and learning_rate in the interval [0.01, 0.1]

XGBoost. We used the values of booster as ’gbtree’, n_estimators of 200 and tuned over L2
regularization lambda in [1, 10] and the learning_rate in the interval [0.01, 0.3].

CatBoost. We used the values of reg_lambda as 100 and early_stopping_rounds as 500 and
tuned the learning_rate in the interval [0.01, 0.1].

MLP. We used a 2 hidden-layered neural network of sizes [200, 100], with 1d BatchNorm optimized
on Adam [Kingma and Ba, 2014] with learning_rate set to 0.001.

TabNet. We have used the hyperparameters suggested by the PyTorch implementation of Tabnet.
We used Adam optimizer with learning_rate set to 0.02 and momentum set to 0.3. We used
learning rate scheduler with gamma as 0.95 and step-size as 20. The rest of the parameters we have
tuned based on the ranges provided in the original paper.

TabTransformer. We used AdamW optimizer with learning_rate set to 0.001. We also tried
different levels of feed-forward drop-outs from [0.1, 0.5, 0.8].

E Extended results

In the main part of the paper, we have presented the average ranks of the models across the benchmark
datasets. The supervised results are shared across the following three tables. In Table 5, we share the
AuROC scores of all the baselines and SAINT variants for the binary classification task. In Table 6,
we share accuracies for multiclass classification. In both these cases, higher the score, better the
model. While in case of regression, we share the RMSE scores in Table 7, smaller the value, better
the model.

In case of semi-supervised/ pre-training experiments, see the exhaustive results for the case of 50
labeled samples in Table 11, for 200 samples in Table 12, and all samples labeled in Table 13. Please
note that in these 3 tables, we have scores from different tasks together in the same table.

Table 5: AuROC scores for binary classification datasets. The rows are models while the columns are various
datasets, represented by their OpenML IDs. Higher the better.

Model \ OpenML ID 31 44 1017 1111 1487 1494 1590 4134 42178 42733 Average

RandomForest 0.778 0.986 0.798 0.774 0.910 0.928 0.908 0.868 0.840 0.670 0.846
ExtraTrees 0.764 0.986 0.811 0.748 0.921 0.935 0.903 0.856 0.831 0.659 0.841
KNeighborsDist 0.501 0.873 0.722 0.517 0.741 0.868 0.684 0.808 0.755 0.576 0.705
KNeighborsUnif 0.489 0.847 0.712 0.516 0.734 0.865 0.669 0.790 0.764 0.578 0.696
LightGBM 0.752 0.989 0.829 0.815 0.919 0.923 0.930 0.860 0.854 0.683 0.855
XGBoost 0.778 0.989 0.821 0.818 0.919 0.926 0.931 0.864 0.856 0.689 0.859
CatBoost 0.788 0.988 0.838 0.818 0.917 0.937 0.930 0.862 0.841 0.686 0.860
MLP 0.705 0.980 0.745 0.709 0.913 0.932 0.910 0.818 0.841 0.647 0.820
TabNet 0.7361 0.9788 0.422 0.718 0.625 0.677 0.917 0.701 0.830 0.603 0.694
TabTransformer 0.771 0.982 0.729 0.763 0.884 0.913 0.907 0.809 0.841 0.638 0.823
SAINT-s 0.774 0.982 0.781 0.804 0.906 0.933 0.922 0.819 0.858 0.656 0.843
SAINT-i 0.774 0.981 0.759 0.816 0.920 0.934 0.919 0.845 0.854 0.662 0.846
SAINT 0.790 0.991 0.843 0.808 0.919 0.937 0.921 0.853 0.857 0.676 0.859

14

Table 6: Accuracy scores for multiclass classification datasets. The rows are models while the columns are
various datasets, represented by their OpenML IDs. Higher the better.

Model \ OpenML ID 188 1596 4541 40664 40685 40687 40975 41166 41169 42734 Average

RandomForestEntr 0.653 0.953 0.607 0.951 0.999 0.697 0.967 0.671 0.358 0.743 0.760
ExtraTreesEntr 0.653 0.946 0.595 0.951 0.999 0.697 0.956 0.648 0.341 0.736 0.752
KNeighborsDist 0.442 0.965 0.491 0.925 0.997 0.720 0.893 0.620 0.205 0.685 0.694
KNeighborsUnif 0.422 0.963 0.489 0.910 0.997 0.739 0.887 0.605 0.189 0.693 0.689
LightGBM 0.667 0.969 0.611 0.984 0.999 0.716 0.981 0.721 0.356 0.754 0.776
XGBoost 0.612 0.928 0.611 0.984 0.999 0.730 0.984 0.707 0.356 0.752 0.766
CatBoost 0.667 0.871 0.604 0.986 0.999 0.730 0.962 0.692 0.376 0.747 0.763
MLP 0.388 0.915 0.597 0.992 0.997 0.682 0.984 0.707 0.378 0.733 0.737
TabNet 0.259 0.744 0.517 0.665 0.997 0.275 0.871 0.599 0.243 0.630 0.580
TabTransformer 0.660 0.715 0.601 0.947 0.999 0.697 0.965 0.531 0.352 0.744 0.721
SAINT-s 0.680 0.735 0.607 0.981 0.999 0.735 0.992 0.582 0.194 0.755 0.726
SAINT-i 0.646 0.937 0.598 0.995 0.999 0.735 0.981 0.713 0.380 0.747 0.773
SAINT 0.680 0.946 0.606 1.000 0.999 0.735 0.997 0.701 0.377 0.752 0.779

Table 7: RMSE values for regression datasets. The rows are models while the columns are various datasets,
represented by their OpenML IDs. Lower the better.

Model \ OpenML ID 422 541 42563 42571 42705 42724 42726 42727 42728 42729

RandomForestMSE 0.027 17.814 37085.577 1999.442 16.729 12375.312 2.476 0.149 13.700 1.767
ExtraTreesMSE 0.027 19.269 35049.267 1961.928 15.349 12505.090 2.522 0.147 13.578 1.849
KNeighborsDist 0.029 25.054 46331.144 2617.202 14.496 13046.090 2.501 0.167 13.692 2.100
KNeighborsUnif 0.029 24.698 47201.343 2629.277 18.397 12857.449 2.592 0.169 13.703 2.109
LightGBM 0.027 19.871 32870.697 1898.032 13.018 11639.594 2.451 0.144 13.468 1.958
XGBoost 0.028 13.791 36375.583 1903.027 12.311 11931.233 2.452 0.145 13.480 1.849
CatBoost 0.027 14.060 35187.381 1886.593 11.890 11614.567 2.405 0.142 13.441 1.883
NeuralNetFastAI 0.028 22.756 42751.432 1991.774 15.892 11618.684 2.500 0.162 13.781 3.351
TabNet 0.028 22.731 200802.769 1943.091 11.084 11613.275 2.175 0.183 16.665 2.310
TabTransformer 0.028 21.600 37057.686 1980.696 15.693 11618.356 2.494 0.162 12.982 3.259
SAINT-s 0.027 9.613 193430.703 1937.189 10.034 11580.835 2.145 0.158 12.603 1.833
SAINT-i 0.028 12.564 33992.508 1997.111 11.513 11612.084 2.104 0.153 12.534 1.867
SAINT 0.027 11.661 33112.387 1953.391 10.282 11577.678 2.113 0.145 12.578 1.882

Table 8: Scaled RMSE values for regression datasets. The rows are models while the columns are various
datasets, represented by their OpenML IDs. Generated by dividing smallest RSME value across all the models
for a given dataset. Lower the better.

Model \ OpenML ID 422 541 42563 42571 42705 42724 42726 42727 42728 42729 Average

RandomForestMSE 1.00 1.85 1.13 1.06 1.67 1.07 1.18 1.05 1.09 1.00 1.21
ExtraTreesMSE 1.00 2.00 1.07 1.04 1.53 1.08 1.20 1.04 1.08 1.05 1.21
KNeighborsDist 1.07 2.61 1.41 1.39 1.44 1.13 1.19 1.18 1.09 1.19 1.37
KNeighborsUnif 1.07 2.57 1.44 1.39 1.83 1.11 1.23 1.19 1.09 1.19 1.41
LightGBM 1.00 2.07 1.00 1.01 1.30 1.01 1.17 1.01 1.07 1.11 1.17
XGBoost 1.04 1.43 1.11 1.01 1.23 1.03 1.17 1.02 1.08 1.05 1.12
CatBoost 1.00 1.46 1.07 1.00 1.18 1.00 1.14 1.00 1.07 1.07 1.10
NeuralNetFastAI 1.04 2.37 1.30 1.06 1.58 1.00 1.19 1.14 1.10 1.90 1.37
TabNet 1.04 2.36 6.11 1.03 1.10 1.00 1.03 1.29 1.33 1.31 1.76
TabTransformer 1.04 2.25 1.13 1.05 1.56 1.00 1.19 1.14 1.04 1.84 1.32
SAINT-s 1.01 1.00 5.88 1.03 1.00 1.00 1.02 1.11 1.01 1.04 1.51
SAINT-i 1.02 1.31 1.03 1.06 1.15 1.00 1.00 1.08 1.00 1.06 1.07
SAINT 1.02 1.21 1.01 1.04 1.02 1.00 1.00 1.02 1.00 1.07 1.04

F Additional analyses

How robust is SAINT to data corruptions? (contd.) As discussed in the main body, we evaluate
the robustness of SAINT variants in cases of data corruption or missing data. We examine the cases of
Binary classification and Regression and plot the average scores across the 10 datasets correponding
to that task. We present the results in Figure 4.

Effect of batch size on intersample attention performance. (cont.) As discussed in the main
body, we examine the affect of batch size on different SAINT variants in Figure 5. We pick 4
multiclass classification datasets with varying numbers of features and samples. In all cases, we see
that the variance in Accuracy is minimal when varying the batch size from 8 to 1024. In all the plots,
we see log2 (batchsize) plotted on the X-axis with accuracy on Y-axis .

15

Figure 4: Robustness of SAINT’s variants to data corruptions

Figure 5: Trend lines of Accuracy with varying training batch size. Results shown for 4 datasets

F.1 Pre-training Ablations

In Table 9, we study various configurations of pre-training components. We perform 3 primary
studies: we vary (1) projection head, (2) pre-training loss, and (3) data augmentation method. Note,
the final result in all 3 studies refers to the same experiment (hence the row is repeated), which is the
final chosen configuration for our model.

Effect of projection heads. As described in Section 4, we use two different projection heads, g1(·)
and g2(·), to project the contextual representations to lower dimensions and then compute contrastive
losses. We study three different options for the heads: (1) distinct projection heads (2) heads with

16

Table 9: Ablation studies on the pre-training pipeline of SAINT. We break
down the effect of the projection head, pre-training loss, and augmentation
method. We report average AuROC over 10 datasets for the case where only
200 points in the dataset are labeled.

Study Variation SAINT-s SAINT-i SAINT

1
no proj. head 0.752 0.757 0.768

weight sharing head 0.780 0.784 0.790
w. diff proj. head 0.789 0.794 0.802

2

no pre-training 0.774 0.788 0.792
contrastive 0.776 0.785 0.793
denoising 0.770 0.773 0.786

cosine similarity 0.758 0.762 0.775
contra. + denois. 0.789 0.794 0.802

3
CutMix 0.762 0.768 0.778
mixup 0.766 0.775 0.779

CutMix + mixup 0.789 0.794 0.802

weight sharing, and (3) no projection heads at all. Table 9 shows that using distinct projection heads
performs best.

Varying pre-training loss. We train SAINT’s variants with different loss functions, as shown in
Study 2 of Table 9. We try denoising and contrastive losses, in addition to a cosine similarity loss on
positive pairs (inspired by Grill et al. [2020], Chen and He [2020]). The combination of contrastive
and denoising consistently yields the best results in all SAINT variants.

Varying the pre-training augmentations. We also try to understand how important it is to use
CutMix and mixup to generate augmented embeddings in the pre-training pipeline. We tinker with
various configurations in Study 3 of Table 9, and we observe that using these two augmentations in
unison results in the best performance across all SAINT variants.

G Additional interpretability plots

G.1 Interpreting attention

One advantage of transformers is that attention lends itself to interpretability tools as opposed to
MLPs, which are hard to interpret. In particular, when we use only one transformer stage, the attention
maps reveal which features and which data points are being used by the model to make decisions. We
use MNIST [LeCun et al., 1998] data to examine how self-attention and intersample attention behave
in our models. While MNIST is not a typical tabular dataset, it has the advantage that its features can
easily be visualized as an image.

Figure 6a depicts the attention on each of the pixels/features in a self-attention layer of SAINT.
Without any explicit supervision, the model learns to focus on the foreground pixels, and we clearly
see from the attention map which features are most important to the model. The self-attention plots
of SAINT-s are similar (Appendix G, Figure 8a).

Figures 6b and 6c depict a similar visualization on a batch of 20 points, two from each class in
MNIST. Figure 6b shows intersample attention in SAINT. This plot shows which samples attend
to which other samples in the batch. Surprisingly, very few points in a batch receive attention. We
hypothesize that the model focuses on a few points that are critical because they are particularly
difficult to classify without making direct comparisons to exemplars in the batch. In Figure 6c, we
show the intersample attention plot from a SAINT-i model. The same sparse attention behaviour
persists here too, but the points being attended to are different in this model. Interestingly, we find
this behavior to be significantly different on the Volkert data (Dataset ID: 41166, multiclass with 10
classes), where a wide range of data becomes the focus of attention depending on the input. The
intersample attention layer gets dense with the difficulty (to classify) of the datasets. See Appendix G
for additional MNIST and Volkert attention maps.

17

(a) Self-attn. in SAINT

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
Attended to

0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9

Po
in

ts
 in

 b
at

ch
 (L

ab
el

s)

(b) Intersample attn. in SAINT

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
Attended to

0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9

Po
in

ts
 in

 b
at

ch
 (L

ab
el

s)

(c) Intersample attn. in SAINT-i

Figure 6: Visual representations of various attention mechanisms.

15 10 5 0 5 10 15
TSNE1

10

5

0

5

10

TS
N

E2

labels
0
1
2
3
4
5
6
7
8
9

10 5 0 5 10
TSNE1

10

5

0

5

10

TS
N

E2

labels
0
1
2
3
4
5
6
7
8
9

Figure 7: t-SNE visualization of value vectors in intersample attention layers of SAINT (left) and SAINT-i (right).
We plot 3500 points in each plot, with classes uniformly represented. In the left plot, the most attended classes
are 1, 2, 3, and 8. But in the right plot, the most attended classes are 0, 2, 6, and 7.

Figure 7 shows the behavior of attention at the dataset (rather than batch) level. We visualize a t-SNE
[Van der Maaten and Hinton, 2008] embedding for value vectors generated in intersample attention
layers, and we highlight the points that are most attended to in each batch. In Figure 7 (left), the
value vectors and attention are computed on the output representations of a self-attention layer. In
contrast, value vectors and attention in Figure 7 (right) are computed on the embedding layer output,
since SAINT-i does not use self-attention. In these plots, the classes to which the model attends vary
dramatically. Thus, the exact classes to which an attention head attends change with the architecture,
but the trend of using a few classes as a ‘pivot’ seems prevalent in intersample attention heads.

Additionally, in Figure 8a, we show a self-attention plot for the SAINT-s variant (with L = 1) on
MNIST. The self-attention in one stage SAINT-s model behaves similar to a one stage SAINT model.
However, when there are more stages, the attention in the last stage is not quite as interpretible.

In Figure 8b, we show the intersample attention between a batch of points from different classes in
SAINT model on the Volkert dataset (OpenML dataset ID: 41166). Similarly in Figure 8c, we show
intersample attention in the SAINT-i variant on the same batch of points from the Volkert dataset. As
mentioned in the main body, the intersample behaviour is not quite as sparse as that of MNIST. We
hypothesize that the sparsity of the intersample attention layer depends on how separable the classes
in the dataset are. (Volkert is a harder dataset than MNIST).

In Figure 9, we show the t-SNE plots on value vectors for SAINT and SAINT-i variants on Volkert.
Unlike MNIST, all the classes are attended to equally.

18

(a) Self-attn. in 1 layered SAINT-
s on MNIST dataset

0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9
Attended to

0
0
1
1
2
2
3
4
4
5
5
6
6
7
7
8
8
9
9

Po
in

ts
 in

 b
at

ch
 (L

ab
el

s)
(b) Intersample attn. in SAINT in
Volkert dataset

0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9
Attended to

0
0
1
1
2
2
3
4
4
5
5
6
6
7
7
8
8
9
9

Po
in

ts
 in

 b
at

ch
 (L

ab
el

s)

(c) Intersample attn. in SAINT-i in
Volkert dataset

Figure 8: Visual representations of various attention mechanisms. (a) Self-attention in SAINT-s on MNIST (b,c)
Intersample attention in SAINT and SAINT-i on the Volkert dataset.

15 10 5 0 5 10 15
TSNE1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

TS
N

E2

labels
0
1
2
3
4
5
6
7
8
9

15 10 5 0 5 10 15
TSNE1

10

5

0

5

10

TS
N

E2

labels
0
1
2
3
4
5
6
7
8
9

Figure 9: A t-SNE visualization of value vectors in intersample attention layers of SAINT (left) and SAINT-
i (right) on the Volkert dataset. We plot 3000 points in each figure, with classes uniformly represented. Unlike
MNIST, all classes are uniformly attended to in this dataset.

Table 10: Runtime results for Binary classification. Time is the cost of 100 epochs plus inference on the chosen
model.

Model Time(s)

LightGBM 298
XGBoost 136
CatBoost 423
MLP 213
VIME 458
TabNet 514
TabTransformer 1100
SAINT-s 1144
SAINT-i 487
SAINT 523

19

Ta
bl

e
11

:S
em

i-
su

pe
rv

is
ed

le
ar

ni
ng

w
ith

50
la

be
le

d
sa

m
pl

es
ca

se
:A

ct
ua

ls
co

re
s

fo
re

ac
h

of
th

e
m

od
el

fo
ra

gi
ve

n
da

ta
se

t.
Fi

rs
t1

0
da

ta
se

ts
co

rr
es

po
nd

to
m

ul
tic

la
ss

cl
as

si
fic

at
io

n,
he

nc
e

th
e

sc
or

es
ar

e
ac

cu
ra

ci
es

,t
he

ne
xt

10
be

lo
ng

to
bi

na
ry

cl
as

si
fic

at
io

n,
so

th
e

sc
or

es
ar

e
A

uR
O

C
s,

an
d

th
e

la
st

10
co

lu
m

ns
ar

e
re

gr
es

si
on

ty
pe

,
he

nc
e

th
ey

ca
rr

y
R

M
SE

va
lu

es
.

Ta
sk

/5
0

M
ul

tic
la

ss
C

la
ss

ifi
ca

tio
n

B
in

ar
y

C
la

ss
ifi

ca
tio

n
R

eg
re

ss
io

n
M

od
el

/d
at

as
et

18
8

15
96

45
41

40
66

4
40

68
5

40
68

7
40

97
5

41
16

6
41

16
9

42
73

4
31

44
10

17
11

11
14

87
14

94
15

90
41

34
42

17
8

42
73

3
42

2
54

1
42

56
3

42
57

1
42

70
5

42
72

4
42

72
6

42
72

7
42

72
8

42
72

9
R

an
do

m
Fo

re
st

0.
45

0.
45

0.
48

0.
76

1.
00

0.
74

0.
79

0.
42

0.
08

0.
57

0.
78

0.
88

0.
60

0.
54

0.
53

0.
83

0.
76

0.
57

0.
81

0.
51

0.
04

24
.9

9
54

35
8.

57
31

26
.3

4
12

.7
2

11
80

6.
27

2.
88

0.
20

30
.2

5
2.

83
E

xt
ra

Tr
ee

s
0.

37
0.

41
0.

54
0.

69
0.

97
0.

40
0.

69
0.

42
0.

07
0.

71
0.

68
0.

87
0.

46
0.

46
0.

78
0.

84
0.

82
0.

63
0.

79
0.

44
0.

03
29

.6
5

50
78

9.
30

29
43

.0
5

10
.9

0
11

73
5.

62
2.

73
0.

19
29

.8
2

2.
69

K
N

ei
gh

bo
rs

D
is

t
0.

31
0.

22
0.

48
0.

68
0.

92
0.

57
0.

70
0.

37
0.

07
0.

60
0.

54
0.

70
0.

46
0.

56
0.

55
0.

81
0.

54
0.

61
0.

61
0.

52
0.

03
23

.9
5

64
04

9.
40

31
63

.3
4

11
.4

1
11

78
4.

33
3.

01
0.

19
30

.1
0

2.
80

K
N

ei
gh

bo
rs

U
ni

f
0.

31
0.

21
0.

48
0.

68
0.

87
0.

48
0.

68
0.

36
0.

07
0.

69
0.

54
0.

70
0.

46
0.

56
0.

54
0.

77
0.

52
0.

61
0.

61
0.

52
0.

03
23

.8
8

65
21

0.
60

31
36

.6
2

11
.4

1
11

77
5.

15
2.

94
0.

19
30

.0
7

2.
81

L
ig

ht
G

B
M

0.
40

0.
47

0.
49

0.
78

0.
98

0.
67

0.
78

0.
47

0.
08

0.
67

0.
78

0.
95

0.
69

0.
58

0.
77

0.
91

0.
82

0.
63

0.
81

0.
53

0.
03

24
.0

5
48

56
3.

42
26

04
.7

6
11

.1
5

11
67

0.
46

3.
40

0.
19

30
.0

0
2.

54
X

G
B

oo
st

0.
42

0.
45

0.
47

0.
79

0.
99

0.
73

0.
78

0.
47

0.
08

0.
66

0.
80

0.
94

0.
69

0.
57

0.
69

0.
90

0.
81

0.
61

0.
80

0.
51

0.
03

24
.4

4
49

67
5.

84
27

04
.1

3
11

.5
4

11
75

1.
20

3.
57

0.
18

30
.0

9
2.

58
C

at
B

oo
st

0.
41

0.
44

0.
46

0.
76

1.
00

0.
72

0.
76

0.
48

0.
08

0.
71

0.
78

0.
95

0.
74

0.
54

0.
64

0.
88

0.
79

0.
62

0.
79

0.
51

0.
03

24
.7

0
47

90
9.

49
26

28
.7

2
10

.8
6

11
73

5.
08

2.
59

0.
19

29
.8

1
2.

62
M

L
P

0.
34

0.
50

0.
35

0.
69

0.
95

0.
65

0.
69

0.
41

0.
07

0.
49

0.
73

0.
92

0.
76

0.
46

0.
74

0.
88

0.
73

0.
63

0.
75

0.
49

33
.1

8
29

.5
9

46
18

0.
42

25
04

.7
9

10
.9

0
37

03
08

30
.0

0
2.

60
0.

21
29

.8
4

2.
67

Ta
bn

et
+

M
L

M
0.

34
0.

51
0.

35
0.

70
0.

95
0.

65
0.

69
0.

41
0.

07
0.

49
0.

74
0.

92
0.

77
0.

47
0.

74
0.

88
0.

73
0.

63
0.

75
0.

49
35

.0
9

30
.6

4
42

84
7.

30
24

57
.1

2
10

.8
4

35
48

86
80

.0
0

2.
63

0.
22

30
.9

5
2.

82
Ta

bT
ra

ns
fo

rm
er

+
R

T
D

0.
38

0.
41

0.
54

0.
69

0.
98

0.
41

0.
69

0.
43

0.
07

0.
72

0.
78

0.
89

0.
60

0.
54

0.
53

0.
83

0.
76

0.
57

0.
82

0.
52

0.
03

26
.5

0
49

54
5.

39
47

94
.6

2
13

.5
0

13
18

0.
53

2.
70

0.
22

20
.2

2
3.

13
SA

IN
T-

s
0.

38
0.

62
0.

54
0.

78
0.

90
0.

70
0.

85
0.

41
0.

11
0.

71
0.

70
0.

95
0.

68
0.

52
0.

85
0.

91
0.

85
0.

65
0.

80
0.

55
0.

03
23

.5
1

41
75

3.
81

37
00

.1
8

11
.4

7
11

69
1.

84
2.

39
0.

19
16

.8
9

2.
70

SA
IN

T-
i

0.
48

0.
62

0.
54

0.
80

0.
97

0.
73

0.
77

0.
44

0.
08

0.
71

0.
66

0.
95

0.
74

0.
51

0.
82

0.
89

0.
82

0.
67

0.
80

0.
54

0.
11

25
.3

1
36

43
7.

50
25

43
.7

4
15

.8
3

11
71

0.
47

2.
35

0.
19

16
.8

9
2.

45
SA

IN
T

0.
39

0.
65

0.
52

0.
79

0.
92

0.
68

0.
78

0.
42

0.
08

0.
71

0.
74

0.
96

0.
69

0.
55

0.
85

0.
90

0.
85

0.
69

0.
77

0.
58

0.
05

22
.2

2
40

75
3.

81
24

00
.8

0
12

.5
8

11
68

1.
22

2.
28

0.
21

16
.9

5
2.

75
SA

IN
T-

s
+

pr
e-

tr
ai

ni
ng

0.
50

0.
56

0.
54

0.
78

0.
96

0.
73

0.
81

0.
39

0.
09

0.
71

0.
72

0.
95

0.
77

0.
55

0.
86

0.
90

0.
86

0.
65

0.
78

0.
54

0.
03

23
.6

8
41

76
3.

81
40

90
.3

8
11

.6
0

11
67

8.
75

2.
29

0.
20

16
.9

6
2.

62
SA

IN
T-

i+
pr

e-
tr

ai
ni

ng
0.

39
0.

63
0.

54
0.

78
0.

91
0.

67
0.

71
0.

43
0.

11
0.

71
0.

72
0.

96
0.

73
0.

55
0.

82
0.

86
0.

82
0.

67
0.

77
0.

61
0.

15
22

.9
9

37
90

6.
08

24
07

.7
3

11
.6

0
11

68
0.

45
2.

19
0.

21
16

.8
7

2.
70

SA
IN

T
+

pr
e-

tr
ai

ni
ng

0.
48

0.
64

0.
54

0.
79

0.
96

0.
63

0.
82

0.
46

0.
10

0.
71

0.
69

0.
96

0.
74

0.
50

0.
85

0.
91

0.
85

0.
69

0.
82

0.
57

0.
04

21
.5

8
39

24
4.

90
25

82
.7

4
12

.3
8

11
63

2.
98

2.
34

0.
18

16
.8

7
2.

58

Ta
bl

e
12

:S
em

i-s
up

er
vi

se
d

le
ar

ni
ng

w
ith

20
0

la
be

le
d

sa
m

pl
es

ca
se

:A
ct

ua
ls

co
re

s
fo

re
ac

h
of

th
e

m
od

el
fo

ra
gi

ve
n

da
ta

se
t.

Fi
rs

t1
0

da
ta

se
ts

co
rr

es
po

nd
to

m
ul

tic
la

ss
cl

as
si

fic
at

io
n,

he
nc

e
th

e
sc

or
es

ar
e

ac
cu

ra
ci

es
,t

he
ne

xt
10

be
lo

ng
to

bi
na

ry
cl

as
si

fic
at

io
n,

so
th

e
sc

or
es

ar
e

A
uR

O
C

s,
an

d
th

e
la

st
10

co
lu

m
ns

ar
e

re
gr

es
si

on
ty

pe
,

he
nc

e
th

ey
ca

rr
y

R
M

SE
va

lu
es

.
Ta

sk
/2

00
M

ul
tic

la
ss

C
la

ss
ifi

ca
tio

n
B

in
ar

y
C

la
ss

ifi
ca

tio
n

R
eg

re
ss

io
n

M
od

el
/d

at
as

et
18

8
15

96
45

41
40

66
4

40
68

5
40

68
7

40
97

5
41

16
6

41
16

9
42

73
4

31
44

10
17

11
11

14
87

14
94

15
90

41
34

42
17

8
42

73
3

42
2

54
1

42
56

3
42

57
1

42
70

5
42

72
4

42
72

6
42

72
7

42
72

8
42

72
9

R
an

do
m

Fo
re

st
0.

50
0.

58
0.

48
0.

88
1.

00
0.

70
0.

90
0.

48
0.

16
0.

68
0.

74
0.

96
0.

80
0.

60
0.

80
0.

73
0.

87
0.

75
0.

81
0.

56
0.

03
17

.1
2

36
36

7.
86

25
23

.5
3

12
.5

7
11

80
3.

10
2.

53
0.

19
29

.9
5

2.
47

E
xt

ra
Tr

ee
s

0.
52

0.
62

0.
54

0.
86

1.
00

0.
73

0.
85

0.
48

0.
14

0.
71

0.
74

0.
96

0.
79

0.
55

0.
85

0.
86

0.
87

0.
76

0.
83

0.
52

0.
03

24
.7

6
38

66
7.

70
23

82
.5

1
10

.4
3

11
66

1.
06

2.
76

0.
17

29
.6

6
2.

30
K

N
ei

gh
bo

rs
D

is
t

0.
31

0.
50

0.
47

0.
83

0.
97

0.
68

0.
77

0.
40

0.
14

0.
64

0.
54

0.
76

0.
70

0.
54

0.
64

0.
65

0.
55

0.
70

0.
69

0.
53

0.
03

24
.7

5
55

57
8.

23
30

31
.6

9
11

.8
5

12
10

2.
29

3.
20

0.
20

29
.9

5
2.

68
K

N
ei

gh
bo

rs
U

ni
f

0.
29

0.
50

0.
44

0.
82

0.
93

0.
65

0.
76

0.
39

0.
14

0.
66

0.
55

0.
76

0.
67

0.
54

0.
63

0.
64

0.
55

0.
69

0.
68

0.
53

0.
03

24
.4

3
56

55
2.

06
30

32
.3

0
11

.8
6

12
11

0.
19

3.
19

0.
20

29
.9

4
2.

69
L

ig
ht

G
B

M
0.

52
0.

57
0.

51
0.

86
1.

00
0.

67
0.

85
0.

51
0.

16
0.

71
0.

76
0.

97
0.

77
0.

57
0.

87
0.

87
0.

87
0.

77
0.

83
0.

55
0.

03
19

.4
6

36
20

6.
57

23
86

.7
7

10
.7

4
12

44
4.

40
3.

05
0.

17
29

.7
9

2.
29

X
G

B
oo

st
0.

56
0.

59
0.

50
0.

83
0.

99
0.

69
0.

83
0.

50
0.

16
0.

71
0.

75
0.

97
0.

81
0.

59
0.

87
0.

91
0.

87
0.

78
0.

81
0.

55
0.

03
20

.1
4

37
27

1.
72

23
32

.0
3

10
.6

1
11

80
3.

80
3.

16
0.

18
29

.6
9

2.
27

C
at

B
oo

st
0.

52
0.

61
0.

53
0.

86
1.

00
0.

70
0.

85
0.

52
0.

15
0.

71
0.

75
0.

97
0.

82
0.

58
0.

85
0.

77
0.

88
0.

80
0.

83
0.

54
0.

03
19

.2
0

34
45

9.
98

23
52

.1
0

10
.3

9
11

71
3.

59
2.

85
0.

18
29

.6
6

2.
38

M
L

P
0.

40
0.

53
0.

35
0.

89
0.

99
0.

66
0.

81
0.

49
0.

14
0.

66
0.

70
0.

94
0.

76
0.

48
0.

81
0.

90
0.

79
0.

75
0.

76
0.

54
0.

09
25

.1
4

40
23

4.
38

24
52

.2
5

10
.8

0
11

85
52

10
0.

00
2.

52
0.

18
29

.7
2

8.
71

Ta
bn

et
+

M
L

M
0.

40
0.

53
0.

35
0.

89
0.

99
0.

67
0.

82
0.

49
0.

14
0.

66
0.

71
0.

95
0.

76
0.

48
0.

82
0.

91
0.

80
0.

76
0.

77
0.

54
0.

10
23

.7
3

44
06

5.
53

26
13

.5
7

9.
85

11
90

84
90

0.
00

2.
37

0.
17

32
.4

9
8.

03
Ta

bT
ra

ns
fo

rm
er

+
R

T
D

0.
52

0.
62

0.
54

0.
86

1.
00

0.
73

0.
85

0.
48

0.
14

0.
72

0.
75

0.
97

0.
80

0.
61

0.
80

0.
73

0.
88

0.
76

0.
82

0.
56

0.
03

18
.2

2
45

05
1.

72
46

07
.7

7
12

.1
4

13
99

4.
30

2.
71

0.
20

19
.5

8
3.

02
SA

IN
T-

s
0.

53
0.

66
0.

55
0.

90
0.

99
0.

72
0.

89
0.

44
0.

18
0.

71
0.

76
0.

97
0.

79
0.

60
0.

88
0.

92
0.

88
0.

76
0.

81
0.

58
0.

03
15

.6
4

38
10

7.
56

40
99

.7
2

11
.0

0
11

67
5.

51
2.

31
0.

18
16

.9
0

2.
58

SA
IN

T-
i

0.
64

0.
67

0.
54

0.
90

0.
99

0.
72

0.
87

0.
49

0.
18

0.
71

0.
74

0.
95

0.
78

0.
61

0.
87

0.
91

0.
87

0.
79

0.
80

0.
56

0.
03

18
.2

5
35

33
2.

53
23

19
.9

4
13

.1
7

11
71

6.
38

2.
17

0.
18

16
.8

8
2.

51
SA

IN
T

0.
59

0.
66

0.
54

0.
86

0.
99

0.
72

0.
90

0.
49

0.
16

0.
71

0.
77

0.
97

0.
72

0.
60

0.
88

0.
91

0.
88

0.
80

0.
82

0.
58

0.
03

16
.6

8
35

70
5.

18
22

91
.8

9
11

.0
0

11
66

7.
23

2.
27

0.
18

16
.9

8
2.

69
SA

IN
T-

s
+

pr
e-

tr
ai

ni
ng

0.
65

0.
66

0.
56

0.
89

0.
99

0.
73

0.
91

0.
44

0.
16

0.
71

0.
76

0.
97

0.
69

0.
63

0.
88

0.
90

0.
88

0.
76

0.
82

0.
58

0.
03

13
.6

6
37

50
7.

56
38

31
.7

1
11

.7
6

11
67

5.
68

2.
21

0.
19

16
.9

2
2.

53
SA

IN
T-

i+
pr

e-
tr

ai
ni

ng
0.

64
0.

67
0.

55
0.

87
0.

99
0.

71
0.

85
0.

49
0.

16
0.

71
0.

75
0.

97
0.

75
0.

64
0.

88
0.

90
0.

88
0.

79
0.

81
0.

58
0.

08
18

.3
2

35
29

9.
48

22
59

.7
6

11
.7

6
11

67
2.

01
2.

20
0.

19
16

.9
2

2.
44

SA
IN

T
+

pr
e-

tr
ai

ni
ng

0.
50

0.
66

0.
55

0.
91

0.
99

0.
68

0.
89

0.
49

0.
17

0.
71

0.
74

0.
96

0.
77

0.
66

0.
89

0.
92

0.
89

0.
80

0.
82

0.
59

0.
03

20
.6

5
37

10
7.

56
22

64
.7

9
11

.6
7

11
66

7.
22

2.
26

0.
17

16
.8

3
2.

62

20

Ta
bl

e
13

:S
em

i-s
up

er
vi

se
d

le
ar

ni
ng

w
ith

A
L

L
sa

m
pl

es
la

be
le

d
ca

se
:A

ct
ua

ls
co

re
s

fo
re

ac
h

of
th

e
m

od
el

fo
ra

gi
ve

n
da

ta
se

t.
Fi

rs
t1

0
da

ta
se

ts
co

rr
es

po
nd

to
m

ul
tic

la
ss

cl
as

si
fic

at
io

n,
he

nc
e

th
e

sc
or

es
ar

e
ac

cu
ra

ci
es

,t
he

ne
xt

10
be

lo
ng

to
bi

na
ry

cl
as

si
fic

at
io

n,
so

th
e

sc
or

es
ar

e
A

uR
O

C
s,

an
d

th
e

la
st

10
co

lu
m

ns
ar

e
re

gr
es

si
on

ty
pe

,
he

nc
e

th
ey

ca
rr

y
R

M
SE

va
lu

es
.

Ta
sk

/A
ll

M
ul

tic
la

ss
C

la
ss

ifi
ca

tio
n

B
in

ar
y

C
la

ss
ifi

ca
tio

n
R

eg
re

ss
io

n
M

od
el

/d
at

as
et

18
8

15
96

45
41

40
66

4
40

68
5

40
68

7
40

97
5

41
16

6
41

16
9

42
73

4
31

44
10

17
11

11
14

87
14

94
15

90
41

34
42

17
8

42
73

3
42

2
54

1
42

56
3

42
57

1
42

70
5

42
72

4
42

72
6

42
72

7
42

72
8

42
72

9
R

an
do

m
Fo

re
st

0.
65

0.
95

0.
61

0.
95

1.
00

0.
70

0.
97

0.
67

0.
36

0.
74

0.
78

0.
99

0.
80

0.
77

0.
91

0.
93

0.
91

0.
87

0.
84

0.
67

0.
03

17
.8

1
37

08
5.

58
19

99
.4

4
16

.7
3

12
37

5.
31

2.
48

0.
15

13
.7

0
1.

77
E

xt
ra

Tr
ee

s
0.

65
0.

95
0.

60
0.

95
1.

00
0.

70
0.

96
0.

65
0.

34
0.

74
0.

76
0.

99
0.

81
0.

75
0.

92
0.

93
0.

90
0.

86
0.

83
0.

66
0.

03
19

.2
7

35
04

9.
27

19
61

.9
3

15
.3

5
12

50
5.

09
2.

52
0.

15
13

.5
8

1.
85

K
N

ei
gh

bo
rs

D
is

t
0.

44
0.

97
0.

49
0.

92
1.

00
0.

72
0.

89
0.

62
0.

20
0.

69
0.

50
0.

87
0.

72
0.

52
0.

74
0.

87
0.

68
0.

81
0.

76
0.

58
0.

03
25

.0
5

46
33

1.
14

26
17

.2
0

14
.5

0
13

04
6.

09
2.

50
0.

17
13

.6
9

2.
10

K
N

ei
gh

bo
rs

U
ni

f
0.

42
0.

96
0.

49
0.

91
1.

00
0.

74
0.

89
0.

61
0.

19
0.

69
0.

49
0.

85
0.

71
0.

52
0.

73
0.

86
0.

67
0.

79
0.

76
0.

58
0.

03
24

.7
0

47
20

1.
34

26
29

.2
8

18
.4

0
12

85
7.

45
2.

59
0.

17
13

.7
0

2.
11

L
ig

ht
G

B
M

0.
67

0.
97

0.
61

0.
98

1.
00

0.
72

0.
98

0.
72

0.
36

0.
75

0.
75

0.
99

0.
81

0.
80

0.
91

0.
92

0.
93

0.
86

0.
85

0.
68

0.
03

19
.8

7
32

87
0.

70
18

98
.0

3
13

.0
2

11
63

9.
59

2.
45

0.
14

13
.4

7
1.

96
X

G
B

oo
st

0.
61

0.
93

0.
61

0.
98

1.
00

0.
73

0.
98

0.
71

0.
36

0.
75

0.
76

0.
99

0.
78

0.
80

0.
90

0.
92

0.
93

0.
86

0.
85

0.
68

0.
03

13
.7

9
36

37
5.

58
19

03
.0

3
12

.3
1

11
93

1.
23

2.
45

0.
15

13
.4

8
1.

85
C

at
B

oo
st

0.
67

0.
87

0.
60

0.
99

1.
00

0.
73

0.
96

0.
69

0.
38

0.
75

0.
79

0.
99

0.
84

0.
82

0.
91

0.
93

0.
93

0.
86

0.
86

0.
69

0.
03

14
.0

6
35

18
7.

38
18

86
.5

9
11

.8
9

11
61

4.
57

2.
41

0.
14

13
.4

4
1.

88
M

L
P

0.
25

0.
76

0.
50

0.
57

0.
90

0.
28

0.
84

0.
51

0.
21

0.
64

0.
49

0.
98

0.
38

0.
64

0.
54

0.
63

0.
80

0.
74

0.
88

0.
49

0.
02

18
.9

9
16

95
27

.1
5

15
67

.1
6

11
.2

9
10

43
5.

57
1.

91
0.

16
15

.3
0

1.
88

Ta
bn

et
+

M
L

M
0.

39
0.

91
0.

60
0.

99
1.

00
0.

68
0.

98
0.

71
0.

38
0.

73
0.

70
0.

98
0.

74
0.

71
0.

91
0.

93
0.

91
0.

82
0.

84
0.

65
0.

03
22

.7
6

42
75

1.
43

19
91

.7
7

15
.8

9
11

61
8.

68
2.

50
0.

16
13

.7
8

3.
35

Ta
bT

ra
ns

fo
rm

er
+

R
T

D
0.

67
0.

71
0.

59
1.

00
1.

00
0.

73
0.

94
0.

57
0.

39
0.

75
0.

74
1.

00
0.

79
0.

77
0.

90
0.

93
0.

89
0.

86
0.

84
0.

66
0.

03
22

.3
1

40
44

0.
32

19
93

.5
7

14
.6

9
12

38
1.

85
2.

36
0.

16
11

.8
4

2.
94

SA
IN

T-
s

0.
62

0.
71

0.
65

0.
89

1.
00

0.
69

0.
97

0.
63

0.
19

0.
71

0.
75

1.
00

0.
75

0.
87

0.
95

0.
89

0.
91

0.
77

0.
82

0.
68

0.
03

9.
05

17
41

32
.3

3
19

74
.9

7
9.

58
11

79
5.

60
1.

95
0.

16
13

.3
8

1.
74

SA
IN

T-
i

0.
65

0.
94

0.
60

0.
99

1.
00

0.
73

0.
98

0.
71

0.
38

0.
75

0.
77

0.
98

0.
76

0.
82

0.
92

0.
93

0.
92

0.
84

0.
85

0.
66

0.
03

12
.5

6
33

99
2.

51
19

97
.1

1
11

.5
1

11
61

2.
08

2.
10

0.
15

12
.5

3
1.

87
SA

IN
T

0.
68

0.
95

0.
61

1.
00

1.
00

0.
74

1.
00

0.
70

0.
38

0.
75

0.
79

0.
99

0.
84

0.
81

0.
92

0.
94

0.
92

0.
85

0.
86

0.
68

0.
03

11
.6

6
33

11
2.

39
19

53
.3

9
10

.2
8

11
57

7.
68

2.
11

0.
15

12
.5

8
1.

88
SA

IN
T-

s
+

pr
e-

tr
ai

ni
ng

0.
68

0.
74

0.
61

0.
98

1.
00

0.
73

0.
99

0.
58

0.
19

0.
76

0.
77

0.
98

0.
78

0.
80

0.
91

0.
93

0.
92

0.
82

0.
86

0.
66

0.
03

9.
61

19
34

30
.7

0
19

37
.1

9
10

.0
3

11
58

0.
83

2.
14

0.
16

12
.6

0
1.

83
SA

IN
T-

i+
pr

e-
tr

ai
ni

ng
0.

59
0.

95
0.

64
1.

00
1.

00
0.

75
0.

89
0.

76
0.

37
0.

76
0.

84
0.

97
0.

81
0.

84
0.

90
0.

90
0.

99
0.

88
0.

84
0.

65
0.

03
11

.5
6

31
14

1.
51

20
77

.8
4

12
.1

1
12

23
1.

31
2.

10
0.

16
13

.5
1

1.
77

SA
IN

T
+

pr
e-

tr
ai

ni
ng

0.
62

1.
00

0.
57

1.
00

1.
00

0.
68

1.
00

0.
72

0.
41

0.
76

0.
79

1.
00

0.
91

0.
77

0.
95

1.
00

0.
99

0.
82

0.
89

0.
73

0.
03

12
.0

3
31

92
5.

26
20

72
.6

4
9.

42
11

55
4.

45
2.

09
0.

15
12

.6
1

1.
96

21

H Ethics and Reproducibility Statement

The tremendous success of deep learning in vision and language domains is yet to be realized
for tabular datasets. In our work, we discuss some of the potential limitations of existing deep
learning models and how we can mitigate them by deploying not just features but other data points
for the inference. We believe that our proposed architecture, along with the self-supervised and
data augmentation techniques, will greatly help with representation learning and machine learning
applications in tabular data domain.

With that in mind, like most deep learning models, SAINT in its current form is prone to capturing
and even amplifying the biases in the dataset on which it is trained on. Our data augmentation strategy
might help to mitigate this issue to some extent but by no means is it intended to resolve the data
imbalance. We caution the end users to carefully consider their use cases and use our method only
after appropriate validation and testing.

Tabular datasets often contain demographics or personally identifiable information (PII). Leaking of
information from training data with large deep learning models is a topic of great concern and has
been demonstrated to a certain extent in the language domain. However, we are not aware of such
works in the case of tabular data.

Reproducibility. We are fully committed to open sourcing our code for reproducibility, as well as for
the broader community to build upon it. Please find the code and instructions to use it attached in the
supplementary material.

22

	Introduction
	Related Work
	Self-Attention and Intersample Attention Transformer (SAINT)
	Architecture
	Intersample attention

	Pre-training & Finetuning
	Experimental Evaluation
	Results

	Conclusion
	Additional illustrations
	Datasets
	Complete training details
	Baselines
	Extended results
	Additional analyses
	Pre-training Ablations

	Additional interpretability plots
	Interpreting attention

	Ethics and Reproducibility Statement

