
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Navigating the Deployment Dilemma and Innovation Paradox:
Open-Source v.s. Closed-source Models

Anonymous Author(s)
∗

Abstract
Recent advances in Artificial Intelligence (AI) have introduced a

new paradigm in Machine Learning (ML) model development: pre-

training of foundation model and domain adaptation. Two groups

lead in developing foundation model: closed-source developers and

open-source community. As open-source community becomes in-

creasingly engaged, the performance open-source models are catch-

ing up with closed-source models. However, this leaves domain

deployers into a dilemma: use closed-source models via API access

or host open-source models on proprietary hardware. Using closed-

source models incurs recurring costs, while hosting open-source

models incurs substantial hardware investments and potentially lag-

ging advancements. This paper presents a game-theoretical model

to examine the economic incentives behind the deployment choice

and the impact of open-source engagement strategy on technology

innovation. We find that the deployer consistently opts for closed-

source APIs when the open-source community engages in the mar-

ket reactively by maintaining a fixed performance ratio relative to

closed-source advancements. However, open-source models can be

favored when a proactive open-source community produces high-

performance models independently. Also, we identify conditions

under which engagement and competitiveness of the open-source

community can foster or inhibit technological progress. These in-

sights offer valuable implications for market regulation and the

future of AI model innovation.

CCS Concepts
• Computing methodologies;

Keywords
Deployment dilemma; open-source; closed-source; foundationmodel

ACM Reference Format:
Anonymous Author(s). 2018. Navigating the Deployment Dilemma and

Innovation Paradox: Open-Source v.s. Closed-source Models . In Proceedings
of Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 Introduction
The capability of general AI, especially Large Language Models

(LLMs) has seen a remarkable surge due to scaling of training data,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

compute, and model parameters [23, 40]. Most recently, the para-

digm of pre-training and domain adaptation has become increas-

ingly important in LLM development [25? ?]. As the landscape of
foundational models is characterized by two prominent alternatives:

open-source and closed-source. The domain expert would always

make decision about which technology to adopt. Thus, a develop-

ment of end technology always follow the process of pre-training,

deployment, and adaptation.

The foundational model market is increasingly competitive pri-

marily due to the emergence of open-source models. Take LLMs as

an example. Stanford has reported that of the 149 foundation mod-

els released in 2023, 98 were open-source models such as LLaMA

[39] and 23 were closed-source with a public API to access such as

GPT-4[30, 31]. Importantly, there has been a significant increase in

the proportion of models released with open access [30]. Clearly,

the engagement of open-source community form up a competitive

landscape for the foundational model development[1, 9].

The relationship between a competitive market and innovation

is complex, with competition capable of both stifling and fostering

innovation [15, 38]. Notably, competition between open-source and

closed-source models presents unique dynamics distinct from typi-

cal firm-to-firm competition. Unlike traditional corporate players,

open-source communities often operate with diverse motivations

beyond profit, such as community-driven improvement, accessi-

bility, and transparency [4, 18, 29, 35]. This makes the impact of

open-source versus closed-source competition on technological

innovation particularly intricate. Understanding how these com-

peting models influence the trajectory of technological progress

is essential, as it can reveal insights into the forces that drive or

inhibit advancements within foundation models, with implications

for future policy and innovation strategy.

Besides, due to the engagement of open-source community, de-

ployers would face a deployment dilemma, navigating complex

economic trade-offs in choosing which technology to adopt. In one

aspect, self-hosting open-source technology comes with the high

cost associated with the requisite hardware resource such as GPUs

while using third-party API leads to recurring cost [13]. In addition,

the performance of the foundation technology directly impacts that

of the end technology, which, in turn, affects the revenue gener-

ated in the end market [25]. Thus, the choice between self-hosting

open-source technology or utilizing third-party APIs involves a

complex trade-off from an economic perspective. Understanding

this process is necessary to study the economic and technological

consequences of the open-source technology.

In this paper, we present a comprehensive game-theoretic model

to explore the interactions among closed-source developers, open-

source communities, and deployers and how these interactions af-

fect the competitive and innovative outcomes of foundation model

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

development. We analyze three distinct scenarios: a baseline sce-

nario without open-source engagement, a scenario with proac-
tive open-source engagement where the community indepen-

dently innovates and decides the model performance, and a scenario

with reactive open-source engagement in which the open-source
community aligns its performance to maintain relative parity with

closed-source advancements.

Our analysis shows that deployment choice always falls into one

of three primary outcomes: API-dominant, where open-source
engagement has no impact on the market status or decisions of

closed-source developers compared to scenarios without an open-

source alternative; API-strategic, where open-source engagement

prompts strategic behaviors from closed-source developers, yet

deployers are still incentivized to adopt closed-source technology;

and self-hosting, where open-source technology fully supersedes

the closed-source option. It turns out that the outcomes are highly

dependent on the open-source engagement strategy. Our findings

indicate that open-source engagement can significantly alter the in-

novation landscape for foundation models. In particular, we identify

conditions where open-source competition paradoxically hampers

innovation by discouraging closed-source developers from pushing

foundational advancements, as well as cases where it promotes a

“race-to-the-top,” encouraging closed-source developers to innovate

aggressively.

The main contributions of this paper are threefold. First, we pro-

vide a theoretical framework based onmulti-stage game and sub-
game perfect equilibrium to analyze the deployment dilemma

facing model deployers and define three types of deployment out-

comes. Second, we investigate two distinct open-source engage-

ment strategies - proactive or reactive - and characterize the con-

ditions under which the engagement would encourage or inhibit

innovation in foundational technologies. Finally, we discuss broader

implications for policymakers, offering insights into how the reg-

ulation of open-source and closed-source model competition can

support sustainable AI innovation.

2 Related Work
There exists extensive research on technology innovation and com-

petition. Our work specifically examines the dynamics of competi-

tion and innovation between open-source and closed-source models

within the paradigm of pre-training and fine-tuning. Taking an eco-

nomic perspective, we are the first to explore how open-source

technology drives competition and impacts the trajectory of tech-

nological innovation.

Open-Source Community. Open-source community has led to

great technological advances and unprecedented global collabora-

tion by providing open-source software (OSS), to which everyone

can have free access [5, 12]. In the last decade, open-source com-

munity has been a driven force of the development of artificial

intelligence. For example, 98 of the 149 foundation LLMs released

in 2023 were open-source models such as LLaMA [30, 39]. Moreover,

recent researches have shown that open-source LLMs is quickly

catching up closed-source commercial LLMs and the performance

gap can be supplemented or even closed with appropriate adapta-

tion techniques, such as adapting [1, 9]. Importantly, the incentives

of open-source have been discussed and proven to be far more

beyond profit[4, 18, 29, 35]. Despite the significant role of OSS,

there remains a scarcity of research that quantitatively assesses its

value [19]. Our work also contributes to the literature by providing

insights how open-source community’s engagement in the market

and its innovation strategies influence the market dynamics and

technology outcomes.

TechnologyDeployment. For domain-specific deployers, it has

been tricky to make a decision between self-hosting open-source

technology or closed-source technology. Adopting API may lead to

concerns such as data ownership, privacy and stability [9, 10]. How-

ever, self-hosting can be extremely expensive due to high hardware

requirements. For example, "regular 16-bit adapting of a LLaMA

65B parameter model requires more than 780 GB of GPU memory"

[13]. Moreover, the model performance has crucial influence on

the adoption decision. For example, open-source options can incur

extra adaptation costs as their foundational capability lags behind,

while cloud APIs also limit the developer’s ability to adapt the mod-

els with custom data [21]. Considering the complexity of adoption

decision, our paper is the first to model the deployment dilemma

from an economic perspective.

Economic Models of Technology Innovation. Many works

addressed the technological innovation, production, and coopera-

tion between firms. Empirical studies have proven that the relation-

ship between competition can either have a negative or positive

relationship with innovation, depending on multiple factors such

as market structure and innovation strategis[15, 38]. However, the

incentives of innovation are restricted to profit difference a firm

can earn with more innovation compared to with less innovation,

which is not applicable for open-source community. Bhaskaran and

Krishnan [3] provide a model of joint work and decision making

between collaborating firms for new product development. How-

ever, it focuses on cooperation rather than competition between

firms, and the innovation process does not follow the pre-training

and adaptation paradigm.

Machine Learning and Game Theory. Our paper generally
contributes to the work that uses game theory to analyze the eco-

nomics of technology, especiallyMLmodels [24, 28, 32]. Specifically,

our work contributes to the study of technology competition and

innovation with open-source engagement. Kleinberg et al. [25] pro-

pose a model of fine-tuning of general-purpose technology. How-

ever, it focuses on joint development and bargaining of two firms

and ignores the open-source engagement and competition.

3 Model
To capture the interactions between players, particularly the role

of the open-source community’s engagement and strategies, we

propose three game-theoretic models: a baseline model and two

variations. The baseline model includes only a closed-source foun-

dation model developer, a domain-specific deployer, and end users.

In each variation model, an open-source community is introduced,

each employing distinct strategies in technology innovation. Both

the closed-source developer and the open-source community focus

on advancing general-purpose technology, while the deployer must

select one technology for deployment.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.1 Model Setting
In this section we introduce the agents and the assumptions associ-

ated with each of them in the model.

Closed-source Technology Developer. The developer F devel-
ops a closed-source foundation model to performance level 𝛼0 ∈ R+

0

and prices the API as 𝛾𝑐 (𝛾 > 1) by deciding a multiplier 𝛾 , where

𝑐 ∈ R+
is the unit cost of operation.

Open-Source Community. The open-source community 𝑂

provide a technology at level 𝛼 ∈ R+
0
for free adoption. As the

incentives surrounding open-source technology can be complex,

we define its engagement strategy as reactive or proactive strat-
egy. Specifically, reactive engagement means 𝑂 always follows the

closed-source technology and maintains the relative performance

of open-source technology to closed-source technology, according

to a parameter𝑚, thus 𝛼 =𝑚𝛼0. In contrasts, proactive engagement

means 𝑂 always decides the performance level of open-source

model 𝛼 independent of 𝛼0.

Domain-specificDeployer. The deployer S first decideswhether
to host the open-source technology or use the API, captured by a

variable 𝐼 : when 𝐼 = 1, the deployer chooses the closed-source API;

when 𝐼 = 0, the deployer opts for the open-source option. Then,

it adapts the technology to level 𝛼1 ∈ R+
0
where 𝛼1 ≥ 𝛼0 and set

the unit price of the technology as 𝑝 ∈ R+
0
. Notably, S would have

to operate on its own hardware infrastructure if host open-source

technology and buy the API in demand if use the closed-source

technology.

End Users. The end users U reacts to the technology with de-

mand 𝐷 . Drawn from literature investigating customer consump-

tion behavior, the market demand is determined by the technol-

ogy’s price 𝑝 and technology’s performance 𝛼1 at the same time

[17, 36, 41]. We assume there is a function 𝐷 : R+
0
×R+

0
→ R+

such

that 𝐷 (𝑝, 𝛼1) is the demand in the end market with technology at

level 𝛼1 and unit price 𝑝 . 𝐷 (𝑝, 𝛼1) is monotonically increasing with

𝛼1 and monotonically decreasing with 𝑝 . We assume the demand

function is publicly known.

Revenue. Revenue is calculated as demand multiplied by unit

price [34]. The developer F gains a revenue 𝑅𝐹 = 𝛾𝑐𝐷 (𝑝, 𝛼1) by
providing inference API to S. The deployer S gains a revenue 𝑅𝑆 =

𝑝𝐷 (𝑝, 𝛼1) from the end market.

Cost. Both 𝐹 and 𝑆 have two parts of cost: technology production
(development or adaptation) cost and operation cost. 𝐹 has a devel-

opment cost 𝐶𝐹 (𝛼0) : R+
0
→ R+

0
to produce a general technology

at level 𝛼0 and an operation cost of 𝑐 per unit. 𝑆 faces a adapting

cost𝐶
api
𝑆

(𝛼1;𝛼0) : R+ → R+
to adapt the closed-source technology

from level 𝛼0 to 𝛼1 or a cost function 𝐶
self
𝑆

(𝛼1;𝛼) : R+
0
→ R+

0
to

adapt the open-source technology from level 𝛼 to 𝛼1. Besides, 𝑆

faces an operation cost of 𝑐 per unit if self-hosts open-source tech-

nology or 𝛾𝑐 per unit if uses API. We assume these cost functions

are publicly known.

Utility. The utility of developer F, denoted as𝑈𝐹 , and of deployer
S, denoted as𝑈𝑆 , are calculated by (𝑅𝑖 −𝐶𝑖), where 𝑖 = 𝑆, 𝐹).

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶𝐹 (𝛼0) (1)

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐)𝐷 (𝑝, 𝛼1) −𝐶api
𝑆

(𝛼1;𝛼0) (2)

𝑈
self
𝑆

= (𝑝 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶self
𝑆

(𝛼1;𝛼) (3)

𝑈
self
𝐹

= 0 (4)

We introduce the following notations for utility:𝑈
api
𝑆
,𝑈

self
𝑆
,𝑈

api
𝐹

,

𝑈
self
𝐹

to represent the utilities of the deployer 𝑆 , the developer 𝐹

under both the API and self-hosting scenarios.

Technology Innovation Outcome (Society Level). At the
societal level, the technology innovation outcome is defined as

𝛼𝑠𝑜𝑐
0

= 𝐼𝛼0 + (1 − 𝐼)𝛼 (5)

𝛼𝑠𝑜𝑐
1

= 𝛼1 . (6)

3.2 Game Process
The game process varies according to the open-source community’s

engagement and strategic choices, resulting in three distinct models:

the baseline model without open-source community involvement,

and two variations where the community adopts proactive or reac-

tive strategies. These models are summarized below and illustrated

in Figure 1.

Baseline Game - No Open-Source Engagement. Here, the
open-source community 𝑂 chooses not to engage in the market.

Thus, developer 𝐹 first brings the foundation technology to per-

formance level 𝛼0 and sets the unit price for API usage as 𝛾𝑐 by

deciding the multiplier 𝛾 . Then, 𝑆 adapts the technology to level 𝛼1
and sets the end-user price 𝑝 . The end users consume the technology

with demand 𝐷 (𝑝, 𝛼1). Revenue is generated for both 𝐹 (through

API usage fees) and 𝑆 (through end-user sales), highlighting the

dynamics of a market without competition.

Game 1 - Proactive Open-Source Engagement. Here, the
open-source community𝑂 adopts a proactive engagement strategy.

First, 𝑂 independently develops its technology to reach a perfor-

mance level 𝛼 . Second, the closed-source developer 𝐹 establishes its

own foundation technology at level 𝛼0 and sets the API unit price

as 𝛾𝑐 by choosing the multiplier 𝛾 . The deployer 𝑆 then chooses

between self-hosting the open-source technology or accessing the

closed-source technology via API. After deployment, 𝑆 adapts the

selected technology to a domain-specific level 𝛼1 and sets the end-

user price 𝑝 , resulting in demand 𝐷 (𝑝, 𝛼1) from end users. The

consumption of end technology generates revenue for the deployer,

and for the developer as well, but only if the deployer opts for the

closed-source technology.

Game 2 - Reactive Open-Source Engagement. Here, the open-
source community 𝑂 follows a reactive engagement strategy. It

initially announces this approach by specifying a performance ratio

𝑚 to indicate how closely it will track the closed-source technology

developed by 𝐹 . Once 𝐹 has finalized its technology at level 𝛼0 and

sets the API price as 𝛾𝑐 , 𝑂 develops its technology to level 𝑚𝛼0.

The subsequent deployment, adaptation, and consumption steps

are identical to those in Game 1.

3.3 Solution of the Model
In this section, we provide the general equilibrium of each model de-

rived through backward induction, following the sequential decision-

making of the deployer 𝑆 and the developer 𝐹 . The solution involves

two key steps.

Step 1: Assuming a fixed 𝛼0 and 𝛾 (or also 𝛼), 𝑆 maximizes its

utility by choosing the optimal domain technology performance

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source

community 𝑂: 𝛼

Reactive Open-source

Open-source community

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0, 𝛾

Developer 𝐹: 𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(a) Baseline Game - No Open-source Engagement

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source

community 𝑂: 𝛼

Reactive Open-source

Open-source community

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0, 𝛾

Developer 𝐹: 𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(b) Game 1 - With Reactive Open-source Engagement

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source

community 𝑂: 𝛼

Reactive Open-source

Open-source community

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0, 𝛾

Developer 𝐹: 𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹: 𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(c) Game 2 - With Proactive Open-source Engagement

Figure 1: An illustration of the processes for the three games. Game 1 and Game 2 differ from the baseline model in the
foundation technology development stage, as they involve open-source community. In Step 2 of the baseline game, 𝐼 = 1 always
holds, whereas in Game 1 and Game 2, 𝐼 can be either 0 or 1, reflecting the deployer’s deployment decision. The distinction
between Game 1 and Game 2 arises from the strategy adopted by the open-source community.

level 𝛼1 and price 𝑝 . Formally, 𝑆 solves the following optimization

problem:

𝐼∗, 𝛼∗
1
, 𝑝∗ = arg max

𝐼 ,𝛼1,𝑝
𝐼𝑈

api
𝑆

+ (1 − 𝐼)𝑈 self
𝑆

. (7)

The deployer 𝑆 will choose to self-host the technology if its utility

from self-hosting, denoted as𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗), is greater than its utility

from using the API service, denoted as𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗).

Step 2 - Baseline Game: Anticipating 𝑆’s response to its de-

cisions regarding the foundational performance level 𝛼0 and the

inference price parameter 𝛾 , 𝐹 sets 𝛼0 and 𝛾 to maximize its own

utility. This leads to the following optimization problem for 𝐹 :

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (8)

Step 2 - Game 1 and Game 2: Similar to the step 2 in the

baseline game, 𝐹 would optimize its utitlity by deciding:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (9)

Since the developer 𝐹 receives revenue only if 𝑆 decides to use the

API, Step 2 is only meaningful when I = 1, which means

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≥ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (10)

Also, 𝐹 would participate in the development only when it expect

to gain a positive utility, as𝑈
api
𝐹

(𝛼∗
0
, 𝛾∗, 𝛼∗

1
, 𝑝∗) ≥ 0. Else, 𝐹 would

anticipate no opportunity to gain a profit and exit the market.

The solution depends on market conditions and the engagement

strategy of 𝑂 . Thus, we offer a set of relevant definitions to help

characterize the different possible regimes of solutions according

to the developer’s strategic behavior and deployer’s deployment

decisions.

Definition 3.1 (API-DOMINANT SOLUTION). TheAPI-dominant
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =

argmax𝛼0,𝛾 𝑈
api
𝐹

, naturally satisfies𝑈
self
𝑆

≥ 𝑈 api
𝑆

and𝑈
api
𝐹

≥ 0 . In

this situation, 𝑆 chooses API choice as it naturally dominates the

self-hosting choice.

Definition 3.2 (API-STRATEGIC SOLUTION). The API-strategic
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =

argmax𝛼0,𝛾 𝑈𝐹,api under the constraint 𝑈
self
𝑆

≥ 𝑈 api
𝑆

naturally sat-

isfies 𝑈
api
𝐹

≥ 0, while only 𝛼∗
0
, 𝛾∗ = argmax𝛼0,𝛾 𝑈𝐹,api leads to

𝑈
self
𝑆

< 𝑈
api
𝑆

. In this situation, 𝐹 strategically incentivizes 𝑆 to

choose the API by ensuring that 𝑆 achieves greater profit through

the API option compared to the self-hosting alternative.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Definition 3.3 (SELF-HOSTING SOLUTION). The self-hosting
solution is the solution when no combination of 𝛼∗

0
, 𝛾∗ exists that

simultaneously satisfies: 𝑈
self
𝑆

≥ 𝑈
api
𝑆

and 𝑈
api
𝐹

≥ 0 . In this situ-

ation, 𝑆 opts to self-host the open-source technology rather than

utilize the API provided by 𝐹 .

Notice that any solution will fall into one of three categories: an

API-dominant solution, an API-strategic solution, or a self-hosting

solution. These regimes are shaped by the market conditions and

the engagement strategy of 𝑂 . Analyzing the general form is chal-

lenging due to multiple sequential decision steps, each requiring

the consideration of multiple factors. At each stage, either the devel-

oper or deployer must determine optimal values for variables such

as performance levels, pricing, and deployment choices, which in-

teract in complex ways across stages. This interdependence makes

deriving a general solution intricate, necessitating specifications to

gain clearer insights. Accordingly, in the next section, we present

formal theorems under specified demand and cost functions.

4 Analysis of Separable Multiplicative Demand
and Quadratic Cost

In order to produce closed-form solutions and understand how the

agents in the model interact with each other, we take the form

of separable multiplicative demand and quadratic cost, which are

commonly used in business research.

The demand function is expressed in the separable multiplicative

form: 𝐷 (𝑝, 𝛼1) = 𝑑1 (𝑝) ∗ 𝑑2 (𝛼1), where 𝑑1 (𝑝) measures the effect

of price and 𝑑2 (𝛼1) represents the effect of quality [2, 11]. For the

price-dependent part, linear model has been extensively used in

economics and business literature, including theoretical models

[6, 14, 33, 34, 37] and empirical estimations [7, 20]. For the quality

effect, we take the form as 𝑑2 (𝛼1) = 𝛼1 [27]. Thus, we get
𝐷 (𝑝, 𝛼1) = (𝑎 − 𝑏𝑝)𝛼1 (11)

, where 𝑎 > 0 and 𝑏 > 0 are constant parameters representing the

market size and price sensitivity respectively. The demand would

decrease with price and increase with product quality. Also, there

would be no sales for zero quality (performance level).

The quadratic form for modeling cost is widely adopted in eco-

nomics and management science literature [3, 8, 16, 22, 26, 41].

Following Kleinberg et al. [25], we assume that the cost increases

quadratically with advancements in technology:

𝜙 (𝛼0) = 𝐾𝐹𝛼20 (12)

𝜙 (𝛼1;𝛼0) = 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (13)

𝜙 (𝛼1;𝛼) = 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (14)

Here, 𝐾𝐹 , 𝐾
self
𝑆

, and 𝐾
api
𝑆

are positive constants, reflecting that

marginal costs should increase with technology advancement [25].

As 𝐾𝐹 and 𝐾
self
𝑆

include both non-hardware and hardware costs

while 𝐾𝑆,𝑎𝑝𝑖 includes only non-hardware costs. The cost factors are

decomposed as:

𝐾𝐹 = 𝐾𝑃𝑅𝐸 + 𝐾𝐺 (15)

𝐾
api
𝑆

= 𝐾𝐹𝑇 (16)

𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 (17)

• 𝐾𝑃𝑅𝐸 represents the non-hardware cost component in the

pre-training cost 𝐾𝐹
• 𝐾𝐹𝑇 represents the non-hardware cost component in the

adapting cost 𝐾
self
𝑆

and 𝐾
api
𝑆

• 𝐾𝐺 represents the hardware cost component in𝐾𝐹 and𝐾
self
𝑆

Thus, the utilities of developer 𝐹 , deployer 𝑆 , and end user𝑈 are

as

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (18)

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20 (19)

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (20)

𝑈
self
𝐹

= 0 (21)

4.1 Equilibrium without 𝑂
Theorem 4.1 (API-Dominant Strategy). Without 𝑂 , the equi-

librium always falls into the API-dominant solution, yielding the
following strategies:

𝛾∗ =
5𝜃 + 3 − 2𝛽 (3 + 𝜃) −

√
𝛿

8(1 − 𝛽) , (22)

𝛼∗
0
=

𝑏

4𝐾𝐹

(
𝑐𝛾∗ − 𝑐

) (𝑎
𝑏
− 𝑐𝛾∗

)
, (23)

𝑝∗ =
𝑎

𝑏
+ 𝑐𝛾∗, (24)

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
, (25)

where:

𝛿 = (5𝜃 + 3 − 2𝛽 (3 + 𝜃))2 − 16(1 − 𝛽) (𝜃2 + 3𝜃 − 2𝛽 (1 + 𝜃)),

𝜃 =
𝑎

𝑏𝑐
, 𝛽 =

𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

A proof of the above result is provided in Appendix A.1. No-

tice that the deployer 𝑆’s decision on domain-specific technology

performance 𝛼∗
1
equals 𝛼∗

0
plus

𝑏 (𝑎𝑏 −𝑐𝛾∗)2
8𝐾𝐹𝑇

, which is independent

of developer 𝐹 ’s decision on foundation technology performance

𝛼∗
0
. This finding is consistent with the finding from a previous re-

search by Kleinberg et al. [25]. Moreover, both the developer 𝐹 ’s

decision on foundation technology performance 𝛼∗
0
and deployer

𝑆’s decision on domain-specific technology performance 𝛼∗
1
are

independent of the open-source technology performance, which is

reasonable as the open-source technology is naturally dominated

by the closed-source technology and cannot influence the market.

The results are shown in Appendix Figure B.1.

4.2 Subgame Perfect Equilibrium with a
Reactive 𝑂 under a Fixed𝑚

When the open-source community adopts a reactive strategy, the

subgame perfect equilibrium under a given𝑚 may lead to different

solutions based on various market factors, captured by cost pa-

rameters {𝐾G, 𝐾FT, 𝐾PRE, 𝑐} and market consumption parameters

{𝑎, 𝑏}. Among all these factors, we focus on 𝐾G, which indicates

the hardware cost. First, we specify the forms of solutions. Then,

we show how 𝐾G and𝑚 characterize the equilibrium solution with

a focus on technology outcome.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Theorem 4.2. With a reactive 𝑂 , the API-dominant solution re-
sults in strategies that are identical in form to those presented in
Theorem 4.1.

This conclusion is straightforward, as under an API-dominant

solution, the engagement of the open-source community does not

affect the dynamics of the original game, leaving the strategic out-

come unchanged.

Theorem 4.3 (API-Strategic Solution with reactive O).

With reactive𝑂 , the API-strategic solution yields strategies as follows:

𝐼∗ = 1,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗),

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,

and 𝛼∗
0
and 𝛾∗ is the solution of:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗)−4(𝐾PRE+𝐾G)𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗)+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗)2 (3+𝜃−4𝛾∗)

=
−𝑏𝑐2 ((𝜃−𝛾∗)2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗)3+(𝜃−𝛾)𝛼∗

0

,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.3 is provided in Appendix A.3. Note that

the existence of a feasible solution in Theorem 4.3 is guaranteed by

Theorem ??, while its uniqueness is ensured by the maximization

of𝑈𝐹 .

Theorem 4.4 (Guaranteed API outcome). With reactive𝑂 , the
equilibrium always falls into either a API-dominant or a API-strategic
solution, meaning there always exists a combination {𝛼∗

0
, 𝛾∗, 𝛼∗

1
, 𝑝∗}

that satisfies𝑈 self
𝑆

≥ 𝑈 api
𝑆

and𝑈𝐹 ≥ 0 simultaneously.

A proof of Theorem 4.4 is provided in Appendix A.5. Notably,

when 𝑂 adopts a reactive strategy, 𝐹 can influence technology

innovation in a way that strategically deters𝑂 and encourages 𝑆 to

adopt the closed-source technology. Counterintuitively, even when

𝑚 is high—indicating that the open-source technology significantly

outperforms the closed-source technology—the deployer 𝑆 is still

incentivized to utilize the closed-source technology via API.

Next, we illustrate the impact of reactive open-source engage-

ment on technology outcomes using numerical results. We set

parameters of (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1) and let 𝑚

range from 0.1 to 1.4.

As shown in Figure 2a, foundation technology innovation is gen-

erally hindered when𝑚 is high. This is because, at higher𝑚 values,

the closed-source developer may choose to strategically reduce

technology performance to deter open-source alternatives. When

𝑚 decreases to a low level, the closed-source developer can gain

higher technology advantage by enhancing performance, which

is an economical strategy to attract deployers toward the closed-

source API.

Interestingly, we observe in Figure 2b that end technology expe-

riences higher levels of innovation. This outcome arises because the

closed-source developer not only adjusts technology performance

but also lowers the API price, allowing the deployer to achieve

0 1 2 3 4 5 6

KG

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Te
ch

no
lo

gy
 L

ev
el

Foundation Technology Innovation (Society Level)
m = 0.10
m = 0.30
m = 0.50
m = 0.70
m = 0.90
m = 1.00
m = 1.20
m = 1.40
No Open-source

(a) Foundation Technology

0 1 2 3 4 5 6

KG

0

2

4

6

8

Te
ch

no
lo

gy
 L

ev
el

End Technology Innovation (Society Level)
m = 0.10
m = 0.30
m = 0.50
m = 0.70
m = 0.90
m = 1.00
m = 1.20
m = 1.40
No Open-source

(b) End Technology

Figure 2: Technology Outcomes Comparison - No Open-
source vs. Reactive Open-source Engagement (𝑎 = 8, 𝑏 = 1, 𝑐 =

0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

higher unit profit from end technology. This incentivizes the de-

ployer to further adapt the technology to an enhanced level, thus

driving end technology innovation.

4.3 Subgame Perfect Equilibrium with a
Proactive 𝑂 under a Fixed 𝛼

Similar to the previous section, we first specify the forms of each so-

lution under a fixed 𝛼 and then analyze how 𝐾G and 𝛼 characterize

the equilibrium solution.

Theorem 4.5. With a proactive 𝑂 , the API-dominant solution
results in strategies that are identical in form to those presented in
Theorem 4.1.

Theorem 4.6 (API-Strategic Solution with proactive O).

With proactive 𝑂 , the API-strategic solution yields strategies as fol-
lows:

𝐼∗ = 1,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗),

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

and 𝛼∗
0
and 𝛾∗ is the solution of:

16

(
(𝜃 − 𝛾∗)2𝛼∗

0
− (𝜃 − 1)2𝛼

)
=

(
(𝜃−1)4

(𝐾FT+𝐾G) −
(𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2,

𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗)−4(𝐾PRE+𝐾G)𝛼∗
0

𝛼∗
0
(𝜃+1−2𝛾∗)+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗)2 (3+𝜃−4𝛾∗)

=
−4𝑏𝑐2 (𝜃−𝛾∗)

8𝛼∗
0
+ 𝑏𝑐2
𝐾FT

(𝜃−𝛾∗)2
,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.6 is provided in Appendix A.4. Note that

the solution from Theorem 4.6 must always satisfy 𝛼∗
0
≥ 0, 𝛾∗ ≥ 1,

and 𝑈𝐹 (𝑝∗, 𝛼∗1 , 𝛼
∗
0
, 𝛾∗) ≥ 0. If these conditions are not met, the

equilibrium defaults to the self-hosting solution described below.

Theorem 4.7 (self-hosting Solution with proactive O).

With a proactive𝑂 , a self-hosting solution yields the following strate-
gies:

𝛾∗ = 1,

𝛼∗
0
= 0,

𝐼∗ = 0,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐),

𝛼∗
1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺)
,

A proof of Theorem 4.7 is provided in Appendix A.2. Notice that

the developer 𝐹 ’s decision on the foundation technology perfor-

mance 𝛼∗
0
always results in zero, indicating that the developer exits

the game. Consequently, the deployer 𝑆 adopts a self-hosting ap-

proach. Interestingly, under a self-hosting solution, the unit price of

the end technology, 𝑝 , remains constant. This is due to the marginal

cost of operations being fixed at 𝑐 and the end users’ price sensi-

tivity remaining stable at 𝑏. Additionally, as the hardware cost 𝐾G
decreases, 𝑆 is incentivized to enhance the technology to a higher

performance level, leading to an increase in 𝛼1 as the incremental

advancement (𝛼1 − 𝛼) grows. Furthermore, the utilities of both the

deployer,𝑈𝑆 , and the end users,𝑈𝑈 , increase.

Theorem 4.8 (Existence of Self-Hosting Outcome). With a
proactive 𝑂 , given cost parameters {𝐾FT, 𝐾PRE, 𝑐} and market condi-
tion parameters {𝑎, 𝑏}, there exists a threshold 𝛼𝐻 ∈ R+ such that
∀𝐾G, the game results in a self-hosting solution if 𝛼 ∈ (𝛼𝐻 , +∞).

A proof of Theorem 4.8 is provided in Appendix A.6. The insight

is that when 𝑂 adopts a proactive strategy and develops the open-

source technology to a sufficiently high performance level, the

developer 𝐹 may initially be able to incentivize the deployer by

either enhancing the closed-source technology or lowering the

API price. During this process, profit gradually transfers from the

developer to the deployer. However, as the performance of the open-

source technology continues to increase, a point is reached where

the developer can no longer offer enough incentives to attract the

deployer while still ensuring its own profitability. Consequently, if

the open-source technology achieves a high enough performance

level, the closed-source developer foresees an unprofitable market

and opts not to enter, ultimately resulting in a self-hosting outcome.

Besides, we examine the impact of proactive open-source en-

gagement on technology outcomes using numerical results. We set

0 1 2 3 4 5 6

KG

0

1

2

3

4

5

6

Te
ch

no
lo

gy
 L

ev
el

Foundation Technology Innovation (Society Level)
= 0.50
= 1.00
= 1.50
= 2.00
= 2.50
= 3.00
= 3.50
= 4.00

No Open-source

(a) Foundation Technology

0 1 2 3 4 5 6

KG

0

2

4

6

8

10

12

Te
ch

no
lo

gy
 L

ev
el

End Technology Innovation (Society Level)
= 0.50
= 1.00
= 1.50
= 2.00
= 2.50
= 3.00
= 3.50
= 4.00

No Open-source

(b) End Technology

Figure 3: Comparison of Technology Outcomes - No Open-
source vs. Proactive Open-source Engagement (𝑎 = 8, 𝑏 = 1,
𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

parameters as follows: 𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1, and

let 𝛼 range from 0.5 to 4.

As shown in Figure 3, proactive open-source engagement leads

to an increase in both foundation and end technology performance

levels. The intuition is that when the open-source community in-

dependently sets the open-source technology level, rather than

adjusting to closed-source performance, the closed-source devel-

oper cannot deter open-source technology by strategically reducing

performance. Instead, the developer enhances the closed-source

technology and lowers the API price to attract deployers to use the

closed-source API, ultimately benefiting end technology innovation

as well.

However, two horizontal lines appear in Figure 3a at 𝛼 = 3.5 and

𝛼 = 4, respectively. This indicates that, at these levels, open-source

technology becomes advanced enough to drive the closed-source

developer out of the market.

5 Impact of Open-source Engagement on
Foundation Technology Innovation

In the above section, we show the impact of open-source engage-

ment with numerical results under specified demand and cost func-

tions. In this section, we examines more general situation. First, we

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

define the class of utility functions to which our conclusions apply.

Then, we formally state the conditions under which open-source

engagement may either encourage or hinder foundation technology

innovation.

5.1 Concave and Unimodal Utility
First, we introduce two assumptions on the utility functions.

Definition 5.1 (Strictly Unimodal Function). A function 𝑓 : R ×
R → R is called strictly unimodal over 𝑥 and 𝑦 if there exists a

value𝑚 ∈ 𝐷 ⊂ R such that 𝑓 is strictly increasing for 𝑥 ≤ 𝑚 and

strictly decreasing for 𝑥 ≥ 𝑚, and there exists a value 𝑛 ∈ 𝐷 ⊂ R
such that 𝑓 is strictly increasing for 𝑦 ≤ 𝑛 and strictly decreasing

for 𝑦 ≥ 𝑛.
Assumption 1: The developer’s utility𝑈𝐹 (𝛼∗1 , 𝑝

∗) is strictly
concave in 𝛼0 and 𝛾 ; that is,

𝜕2𝑈𝐹
𝜕𝛼2

0

< 0 and
𝜕2𝑈𝐹
𝜕𝛾2

< 0.

Assumption 2: The developer’s utility𝑈𝐹 (𝛼∗1 , 𝑝
∗) is strictly

unimodal in 𝛼0 and 𝛾 . This implies there exists a maximum utility

at some values of 𝛼0 and 𝛾 over their respective ranges.

Note: that the analysis in Section 4 satisfies these assumptions,

ensuring that our conclusions hold within that framework.

5.2 Foundation Technology Innovation
Here, we formally state the theorems identifying the conditions

under which open-source community engagement enhances or

hinders foundation technology innovation.

Theorem 5.2. Assume the developer’s strategy under no open-
source engagement be characterized by 𝛼∗

0
and 𝛾∗, resulting in utility

𝑈
api
𝑆

(𝛼∗
0
, 𝛾∗). After the engagement of a reactive open-source commu-

nity, suppose the developer’s strategy shifts to 𝛼 ′∗
0
and 𝛾 ′∗, yielding

utility𝑈 self
𝑆

(𝛼 ′∗
0
, 𝛾 ′∗).

The developer’s equilibrium technology level decreases, 𝛼 ′∗
0

< 𝛼∗
0
,

if the following conditions hold:

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0.

Conversely, the developer’s equilibrium technology level increases,
𝛼 ′∗
0

> 𝛼∗
0
, if:

𝜕𝑈
api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
and

𝜕2𝑈𝐹

𝜕𝛾 𝜕𝛼0
< 0.

Theorem 5.3. Assume the developer’s strategy under no open-
source engagement be characterized by 𝛼∗

0
and 𝛾∗, resulting in utility

𝑈
self
𝑆

(𝛼∗
0
, 𝛾∗). After proactive engagement by the open-source commu-

nity, suppose the developer’s strategy shifts to 𝛼 ′∗
0

and 𝛾 ′∗.
Then 𝛼 ′∗

0
> 𝛼∗

0
if the following condition holds:

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0.

The proofs for Theorem 5.2 and Theorem 5.3 are provided in

Appendix A.7 and Appendix A.8 respectively. Note that these con-

ditions are sufficient but not necessary for the outcomes stated.

These theorems highlight the difference and similarity of reac-

tive and proactive open-source engagement influencing foundation

technology innovation:

• ReactiveOpen-source Engagement:When the deployer’s

utility gain from using the API is less sensitive to 𝛼0 than

the self-hosting utility, the developer finds it challenging

to achieve an advantage over open-source competition by

enhancing technology performance. In such cases, the de-

veloper may strategically reduce the open-source competi-

tiveness by lowering the technology performance, which

in turn decreases the developer’s utility. Due to the posi-

tive interaction between 𝛼0 and 𝛾 in closed-source models,

lowering 𝛾 can help mitigate the rate of utility decline re-

sulting from reduced technology performance. Additionally,

a lower API price incentivizes deployers by reducing the

cost associated with the API choice. Conversely, if the de-

veloper observes that the deployer’s utility from the API

is highly sensitive to 𝛼0 compared to self-hosting utility,

a ’race-to-the-top’ scenario arises where the developer is

motivated to innovate more aggressively. In this case, while

technology performance increases, the developer’s utility

may still decline. With a negative interaction between 𝛼0
and 𝛾 , lowering 𝛾 helps counteract the rate of utility loss

from potential over-innovation. A reduced API price further

encourages deployers to adopt the API option.

• Proactive Open-source Engagement: In scenarios of

proactive open-source engagement, the developer is con-

sistently motivated to enhance technology performance

to maintain an advantage over open-source alternatives,

resulting in a continuous ’race-to-the-top.’ Here, as tech-

nology performance improves, the developer’s utility may

experience diminishing returns. Given the negative interac-

tion between 𝛼0 and 𝛾 , lowering 𝛾 can help reduce the rate

of utility decline associated with high levels of technology

performance. Furthermore, a lower API price incentivizes

deployers to continue using the API, aligning both parties’

incentives towards higher technology standards.

6 Conclusion
This paper proposes a theoretical model that analyzes the interac-

tions among closed-source developers, open-source communities,

and deployers in the context of AI deployment. By examining three

scenarios—no engagement, proactive open-source engagement, and

reactive engagement—the model highlights how different open-

source strategies can significantly shape deployment outcomes

and drive innovation trajectories. These findings are particularly

valuable for all stakeholders in the AI market, especially for the

open-source community and regulatory bodies, as they provide in-

sights into how various engagement strategies can either promote

or inhibit technological progress.

Future research could build on this model by investigating addi-

tional factors such as the diverse motivations within open-source

communities, the competitive dynamics in end markets, and the

unique requirements across different deployer domains. We be-

lieve that societal outcomes are essential in shaping the technology

market, and formalizing these considerations through theoretical

models can provide a more comprehensive view of the AI ecosystem

and help guide balanced and sustainable innovation strategies.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Samy Ateia and Udo Kruschwitz. 2024. Can Open-Source LLMs Compete with

Commercial Models? Exploring the Few-Shot Performance of Current GPT

Models in Biomedical Tasks. arXiv preprint (July 2024). https://arxiv.org/abs/

2407.13511

[2] Barry L Bayus. 1995. Optimal dynamic policies for product and process innova-

tion. Journal of Operations Management 12, 3-4 (1995), 173–185.
[3] Sreekumar R Bhaskaran and Vish Krishnan. 2009. Effort, revenue, and cost

sharing mechanisms for collaborative new product development. Management
Science 55, 7 (2009), 1152–1169.

[4] Andrea Bonaccorsi and Cristina Rossi. 2003. Why open source software can

succeed. Research policy 32, 7 (2003), 1243–1258.

[5] Andrea Bonaccorsi and Cristina Rossi. 2003. Why Open Source software can

succeed. Research Policy 32, 7 (2003), 1243–1258. https://doi.org/10.1016/S0048-

7333(03)00051-9

[6] Jeremy I Bulow, John D Geanakoplos, and Paul D Klemperer. 1985. Multimarket

oligopoly: Strategic substitutes and complements. Journal of Political economy
93, 3 (1985), 488–511.

[7] Oscar R Burt and Durward Brewer. 1971. Estimation of net social benefits from

outdoor recreation. Econometrica: Journal of the Econometric Society (1971),

813–827.

[8] Gary H Chao, Seyed MR Iravani, and R Canan Savaskan. 2009. Quality improve-

ment incentives and product recall cost sharing contracts. Management science
55, 7 (2009), 1122–1138.

[9] Hailin Chen, Fangkai Jiao, Xingxuan Li, Chengwei Qin, and et al. 2024. ChatGPT’s

One-year Anniversary: Are Open-Source Large Language Models Catching up?

arXiv preprint (2024). https://arxiv.org/abs/2311.16989

[10] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. How is ChatGPT’s behavior

changing over time? arXiv preprint (2023). https://arxiv.org/abs/2307.09009

[11] Régis Chenavaz. 2012. Dynamic pricing, product and process innovation. Euro-
pean Journal of Operational Research 222, 3 (2012), 553–557.

[12] Bretthauer David. 2001. Open Source Software: A History. Published Work (2001).
https://digitalcommons.lib.uconn.edu/libr_pubs/7

[13] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.

QLoRA: Efficient Finetuning of Quantized LLMs. arXiv preprint (2023). https:

//arxiv.org/abs/2305.14314

[14] Gadi Fibich, Arieh Gavious, and Oded Lowengart. 2003. Explicit solutions of opti-

mization models and differential games with nonsmooth (asymmetric) reference-

price effects. Operations Research 51, 5 (2003), 721–734.

[15] Richard Gilbert. 2006. Looking for Mr. Schumpeter: Where are we in the

competition–innovation debate? (2006).

[16] Sudheer Gupta. 2008. Research note—Channel structure with knowledge

spillovers. Marketing Science 27, 2 (2008), 247–261.
[17] Haresh Gurnani and Murat Erkoc. 2008. Supply contracts in manufacturer-

retailer interactions with manufacturer-quality and retailer effort-induced de-

mand. Naval Research Logistics (NRL) 55, 3 (2008), 200–217.
[18] Il-Horn Hann, Jeff Roberts, Sandra Slaughter, and Roy Fielding. 2002. Economic

incentives for participating in open source software projects. ICIS 2002 Proceed-
ings (2002), 33.

[19] Manuel Hoffmann, Frank Nagle, and Yanuo. Zhou. 2024. The Value of Open

Source Software. Harvard Business School Strategy Unit Working Paper, Article
24-038 (2024). https://ssrn.com/abstract=46931483

[20] Richard A Ippolito and Robert T Masson. 1978. The social cost of government

regulation of milk. The Journal of Law and Economics 21, 1 (1978), 33–65.
[21] Chandra Irugalbandara, Ashish Mahendra, Roland Daynauth, Tharuka Kasthuri

Arachchige, Jayanaka Dantanarayana, Krisztian Flautner, Lingjia Tang, Yiping

Kang, and Jason Mars. 2024. Scaling Down to Scale Up: A Cost-Benefit Analysis

of Replacing OpenAI’s LLM with Open Source SLMs in Production. In 2024
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 280–291. https://doi.org/10.1109/ISPASS61541.2024.00034

[22] Yannan Jin, Qiying Hu, Sang Won Kim, and Sean X Zhou. 2019. Supplier devel-

opment and integration in competitive supply chains. Production and Operations
management 28, 5 (2019), 1256–1271.

[23] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,

and et al. 2020. Scaling Laws for Neural Language Models. arXiv preprint (Jan.
2020). https://arxiv.org/abs/2001.08361

[24] Jon Kleinberg and Manish Raghavan. 2020. How do classifiers induce agents

to invest effort strategically? ACM Transactions on Economics and Computation
(TEAC) 8, 4 (2020), 1–23.

[25] Benjamin Laufer, Jon Kleinberg, and Hoda Heidari. 2024. Fine-Tuning Games:

Bargaining and Adaptation for General-Purpose Models. ACM 11 (May 2024),

66–76. https://doi.org/10.1145/3589334.3645366

[26] Cuihong Li. 2013. Sourcing for supplier effort and competition: Design of the

supply base and pricingmechanism. Management Science 59, 6 (2013), 1389–1406.
[27] Guowei Liu, Jianxiong Zhang, and Wansheng Tang. 2015. Joint dynamic pric-

ing and investment strategy for perishable foods with price-quality dependent

demand. Annals of Operations Research 226 (2015), 397–416.

[28] Lydia T Liu, Nikhil Garg, and Christian Borgs. 2022. Strategic ranking. In

International Conference on Artificial Intelligence and Statistics. PMLR, 2489–2518.

[29] Marcus Maher. 1999. Open source software: The success of an alternative intel-

lectual property incentive paradigm. Fordham Intell. Prop. Media & Ent. LJ 10
(1999), 619.

[30] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel,

Erik Brynjolfsson, , and et al. 2024. The AI Index 2024 Annual Report. Retrieved

October 14, 2024 from https://aiindex.stanford.edu/wp-content/uploads/2024/

05/HAI_AI-Index-Report-2024.pdf AI Index Steering Committee, Institute for

Human-Centered AI, Stanford University, Stanford, CA.

[31] OpenAI, Josh Achiam, Sandhini Agarwal Steven Adler, Lama Ahmad, and et al.

2024. GPT-4 Technical Report. arXiv preprint (2024). https://arxiv.org/abs/2303.

08774

[32] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. 2020.

Performative prediction. In International Conference on Machine Learning. PMLR,

7599–7609.

[33] Nicholas C Petruzzi and Maqbool Dada. 1999. Pricing and the newsvendor

problem: A review with extensions. Operations research 47, 2 (1999), 183–194.

[34] Robert S Pindyck et al. 2018. Microeconomics.
[35] Cristina Rossi and Andrea Bonaccorsi. 2005. Intrinsic vs. extrinsic incentives

in profit–oriented firms supplying Open Source products and services. First
Monday (2005).

[36] Mehdi Seifbarghy, Khashayar Nouhi, and Amin Mahmoudi. 2015. Contract

design in a supply chain considering price and quality dependent demand with

customer segmentation. International Journal of Production Economics 167 (2015),
108–118.

[37] Nirvikar Singh and Xavier Vives. 1984. Price and quantity competition in a

differentiated duopoly. The Rand journal of economics (1984), 546–554.
[38] Jianmin Tang. 2006. Competition and innovation behaviour. Research policy 35,

1 (2006), 68–82.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, and et al. 2023.

LLaMA: Open and Efficient Foundation Language Models. arXiv preprint (2023).
https://arxiv.org/abs/2302.13971

[40] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, and et al. 2022. Emergent Abilities of Large Lan-

guage Models. arXiv preprint (Jan. 2022). https://arxiv.org/abs/2206.07682

[41] Jianhong Yu and Shihua Ma. 2013. Impact of decision sequence of pricing and

quality investment in decentralized assembly system. Journal of Manufacturing
Systems 32, 4 (2013), 664–679.

9

https://arxiv.org/abs/2407.13511
https://arxiv.org/abs/2407.13511
https://doi.org/10.1016/S0048-7333(03)00051-9
https://doi.org/10.1016/S0048-7333(03)00051-9
https://arxiv.org/abs/2311.16989
https://arxiv.org/abs/2307.09009
https://digitalcommons.lib.uconn.edu/libr_pubs/7
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://ssrn.com/abstract=46931483
https://doi.org/10.1109/ISPASS61541.2024.00034
https://arxiv.org/abs/2001.08361
https://doi.org/10.1145/3589334.3645366
https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2206.07682

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Proofs
A.1 Proof of Theorem 4.1
As 𝐼 = 1, the utility functions of are:

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2,

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20
where:

𝐾
api
𝑆

= 𝐾𝐹𝑇 , 𝐾
api
𝐹

= 𝐾𝑃𝑅𝐸 + 𝐾𝐺 .
Step 1: Utility Maximization of 𝑆 for a Fixed 𝛼0 and 𝛾

𝜕𝑈
api
𝑆

𝜕𝑝
= (𝑎 + 𝑏𝑐𝛾 − 2𝑏𝑝)𝛼1 = 0

⇒ 𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

.

𝜕𝑈
api
𝑆

𝜕𝛼1
= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

api
𝑆

(𝛼1 − 𝛼0) = 0.

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

, we get:

𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

The optimal choices for 𝑆 are therefore:

𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

, 𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

Step 2: Utility Maximization of 𝐹 Based on 𝑆 ’s Response

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

and 𝛼∗
1
= 𝛼0 +

𝑏 (𝑎𝑏 −𝑐𝛾)2
8𝐾𝐹𝑇

, we have:

𝑈
api
𝐹

=
1

2

𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)
(
𝛼0 +

𝑏𝑐2 (𝜃 − 𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 ,

𝑈
api
𝑆

=
1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4,

, where 𝜃 = 𝑎
𝑏𝑐

𝜕𝑈
api
𝐹

𝜕𝛼0
=

1

2

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0 = 0

⇒ 𝛼∗
0
=

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾)
4𝐾𝐹

.

0 =
𝜕𝑈

api
𝐹

𝜕𝛾
=

1

2

𝑏𝑐2
(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT
(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)

)
,

⇒ 0 = 𝑒𝑞𝑎 · 𝛾2 + 𝑒𝑞𝑏 · 𝛾 + 𝑒𝑞𝑐 ,
where:

𝑒𝑞𝑎 = 4(1 − 𝛽),
𝑒𝑞𝑏 = 2𝛽 (3 + 𝜃) − 3 − 5𝜃,

𝑒𝑞𝑐 = 𝜃
2 + 3𝜃 − 2𝛽 (1 + 𝜃),

𝛽 =
𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

The discriminant 𝛿 is given by:

𝛿 = 𝑒𝑞2
𝑏
− 4 · 𝑒𝑞𝑎 · 𝑒𝑞𝑐 .

Solving for the optimal 𝛾 using the quadratic formula, we find:

𝛾∗ =
−𝑒𝑞𝑏 −

√
𝛿

2 · 𝑒𝑞𝑎
=

5𝜃 + 3 − 2𝛽 (3 + 𝜃) −
√
𝛿

8(1 − 𝛽) .

A.2 Proof of Theorem 4.7
When 𝐼 = 0 and with a proactive open-source community, the

utility functions for the deployer 𝑆 and the developer 𝐹 are given

by:

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2,

𝑈
self
𝐹

= 0,

where 𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 .
Step 1: Solving for Optimal 𝑝∗ and 𝛼∗

1
for 𝑆

𝜕𝑈
self
𝑆

𝜕𝑝
= (𝑎 − 2𝑏𝑝 + 𝑏𝑐)𝛼1 = 0,

⇒ 𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐

)
.

𝜕𝑈
self
𝑆

𝜕𝛼1
= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

self
𝑆

(𝛼1 − 𝛼) = 0.

Substituting 𝑝∗ = 1

2

(
𝑎
𝑏
+ 𝑐

)
,

𝛼∗
1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺)
.

Thus, the optimal utility for 𝑆 in a self-hosting setup with proactive

𝑂 is:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺)
(𝜃 − 1)4

, where 𝜃 = 𝑎
𝑏𝑐
.

Step 2: Confirming Developer’s Choice (Setting 𝐼 = 0)
Since 𝑈

self
𝐹

= 0 when 𝑆 chooses self-hosting, the developer 𝐹

gains no utility. This setup implies that the optimal strategy for the

developer is to exit the market, yielding:

𝛾∗ = 1, 𝛼∗
0
= 0, 𝐼∗ = 0.

A.3 Proof of Theorem 4.3
From A.2, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺)
(𝜃 − 1)4 .

In this API case, 𝛼 =𝑚𝛼0, thus:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝑚𝛼0 +
𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺)
(𝜃 − 1)4 .

From Section A.1, we have:

𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4

The goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (26)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Define the Lagrangian with multiplier 𝜆:

L = 𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) + 𝜆

(
𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) −𝑈 self

𝑆
(𝛼∗

1
, 𝑝∗)

)
.


𝜕L
𝜕𝛼0

= 0,

𝜕L
𝜕𝛾 = 0,

𝜕L
𝜕𝜆

= 0

Thus, 

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆(𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆(𝜕𝑈
api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾) = 0,

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

Thus,
𝜕𝑈

api
𝐹

𝜕𝛼0
(𝜕𝑈

api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾) = 𝜕𝑈
api
𝐹

𝜕𝛾 (𝜕𝑈
api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
),

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

The partial derivatives of𝑈
api
𝑆

and𝑈
self
𝑆

are as follows:

𝜕𝑈
api
𝑆

𝜕𝛼0
= 1

4
𝑏𝑐2 (𝜃 − 𝛾)2,

𝜕𝑈
api
𝑆

𝜕𝛾 = − 𝑏2𝑐4

16𝐾FT

(𝜃 − 𝛾)3 − 1

2
𝑏𝑐2 (𝜃 − 𝛾)𝛼0,

𝜕𝑈
self
𝑆

𝜕𝛼0
= 1

4
𝑚𝑏𝑐2 (𝜃 − 1)2,

𝜕𝑈
self
𝑆

𝜕𝛾 = 0,

𝜕𝑈
api
𝐹

𝜕𝛼0
= 1

2
(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 1

2
𝑏𝑐2

(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT

(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)
)

The optimal values 𝛼∗
0
and 𝛾∗ satisfy:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗)−4(𝐾PRE+𝐾G)𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗)+ 𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗)2 (3+𝜃−4𝛾∗)
=

−𝑏𝑐2 ((𝜃−𝛾∗)2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗)3+(𝜃−𝛾)𝛼∗
0

,

where 𝜃 = 𝑎
𝑏𝑐
.

A.4 Proof of Theorem 4.6
From A.2, with proactive open-source community, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺)
(𝜃 − 1)4 .

Same as A.3, the goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) .

Similar as A.3, we can solve the problem with KKT. The only

difference is that

𝜕𝑈
self
𝑆

𝜕𝛼0
= 0

A.5 Proof of Theorem 4.4
To prove Theorem 4.4, we need to find 𝛼∗

0
, 𝛾∗ satisfying:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗),

𝑈
api
𝐹

≥ 0,

From A.1 and A.3, we know it is equivalent to find 𝛼∗
0
, 𝛾∗ satisfy-

ing:
(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

Also, reasonable solution should satisfy 𝛼∗
0
> 0 and 1 < 𝛾∗ < 𝜃 .

𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with𝑈 api
𝐹

(𝛼0 =
0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

Define 𝛼1
0
= 𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾).

A.5.1 Case 1:𝑚 ≥ 1.

(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 < 0.

Thus, we must have:

(𝜃 − 1)4
𝐾FT + 𝐾G

<
(𝜃 − 𝛾∗)4
𝐾FT

⇒ (𝜃 − 𝛾)4 >

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1) .

We can always find 𝛾∗ to satisfy this condition.

Also,

𝛼0 <

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2

16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2
= 𝛼cut

0
.

Thus, an example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= min{𝛼1

0
, 𝛼cut

0
}.

A.5.2 Case 2: 0 < 𝑚 < 1. .
If 0 ≤ 𝑚2 <

𝐾FT

𝐾FT+𝐾G

< 1 (when hardware cost is relatively low),

let

𝛾∗ ∈
(
1, 𝜃 −

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1)
)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

< 0.

An example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= 𝛼1

0
.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

If
𝐾FT

𝐾FT+𝐾G

≤ 𝑚2 < 1 (when hardware cost is relatively high), let

𝛾∗ ∈
(
1, 𝜃 −𝑚1/2 · (𝜃 − 1))

)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

< 0.

An example solution:{
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +𝑚1/2 · (𝜃 − 1)

)
,

𝛼∗
0
= 𝛼1

0
.

A.6 Proof of Theorem 4.8
Contrary A.5, we need to illustrate: when 𝛼 is high, there is no

solution of 𝛼∗
0
, 𝛾∗ satisfying:

16(𝜃 − 𝛾∗)2𝛼∗
0
− 16(𝜃 − 1)2𝛼 >

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2,

𝑈
api
𝐹

= 1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

It is equivalent to:


16(𝜃 − 𝛾∗)2𝛼∗

0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Denote𝑅 =

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗)4
𝐾FT

)
𝑏𝑐2+16(𝜃−1)2𝛼, 𝐿 = 16(𝜃−𝛾∗)2

Thus,


𝐿𝛼∗

0
> 𝑅,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Lets 𝛼 >
(𝜃−1)4
𝐾FT

𝑏𝑐2, thus,
𝛼∗
0
> 𝑅
𝐿
> 0.,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

As 𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with

𝑈
api
𝐹

(𝛼0 = 0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

We only need to substitute 𝛼∗
0

= 𝑅
𝐿
in 𝑈

api
𝐹

(𝛼0∗) and show

𝑈
api
𝐹

(𝛼0) < 0 when 𝛼 is high.

𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
= −𝐾𝐹

(
𝑅

𝐿

)
2

+𝑏𝑐
2

2

(𝛾−1) (𝜃−1)𝑅
𝐿
+ 𝑏2𝑐4

16𝐾FT
(𝜃−𝛾)3 (𝛾−1)

= (−𝐾𝐹𝑅2 +
𝑏𝑐2

2

(𝛾 − 1) (𝜃 − 1)𝑅𝐿 + 𝑏2𝑐4

16𝐾FT
(𝜃 − 𝛾)3 (𝛾 − 1)𝐿2)/𝐿2 .

as



𝑅 ≥ 𝑅min = 𝑅(𝛾∗ = 1) =
(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−1)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝑅 ≤ 𝑅 − 𝑏𝑐2 (𝜃−1)4
𝐾FT+𝐾G

= − (𝜃−𝛾∗)4
𝐾FT

𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝐿 ≤ 𝐿max = 𝐿(𝛾∗ = 1) = 16(𝜃 − 1)2,

𝜃 − 𝛾 ≤ 𝜃 − 1.

Thus,

𝐿2𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
≤ −𝐾𝐹

((
(𝜃 − 1)4
𝐾FT + 𝐾G

− (𝜃 − 𝛾∗)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)2
+𝑏𝑐

2

2

(𝛾 − 1) (𝜃 − 1)
(
− (𝜃 − 𝛾∗)4

𝐾FT
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)
16(𝜃 − 1)2

+ 𝑏2𝑐4

16𝐾FT
(𝜃 − 1)3 (𝛾 − 1)162 (𝜃 − 1)4 .

Obviously, 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
is a quadratic function of 𝛼 , opening

downward. Thus, when 𝛼 is high enough to let 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
<

0, we cannot find a solution of 𝛼∗
0
, 𝛾∗ to make𝑈

api
𝐹

> 0, which the

equilibrium falls into self-hosting. The cut-off 𝛼𝐻 can be the right

root of 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
= 0

A.7 Proof of Theorem 5.2
From A.2, we know 𝛼 ′∗

0
and 𝛾 ′∗ is the solution of

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆(𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆 𝜕𝑈
api
𝑆

𝜕𝛾 = 0,

𝑈
self
𝑆

= 𝑈
api
𝑆

However, 𝛼∗
0
and 𝛾∗ is the solution of:

𝜕𝑈
api
𝐹

𝜕𝛼0
= 0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 0,

Also, we know that𝑈
self
𝑆

(𝛼∗
0
, 𝛾∗) > 𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗). Else it falls into

a API-dominant solution.

Part One: if

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0. (27)

We know 
𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) > 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1)𝛼 ′∗
0

> 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Navigating the Deployment Dilemma and Innovation Paradox: Open-Source v.s. Closed-source Models
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

(2) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) <

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) < 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

Thus, 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

Part Two: if

𝜕𝑈
api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0. (28)

We know


𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) < 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

(2) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) >

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) > 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3)𝛼 ′∗
0

< 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0

Thus, 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

A.8 Proof of Theorem 5.3
The proof is the same as the Part Two of A.7

B Figures
B.1 EquilibriumWithout Open-source

Engagement

0 1 2 3 4 5 6

KG

18

20

22

24

26

28

U
til

ity

Utilities - No Open-source Engagement
Utility of Developer UF
Utility of Deployer US

(a) Utility

0 1 2 3 4 5 6

KG

0

1

2

3

4

5

6

Te
ch

no
lo

gy
 L

ev
el

Technology - No Open-Source Engagement
Foundation Technology Level 0
End Technology Level 1
Incremental Level 1

(b) Technology

Figure 4: Equilibrium Outcomes without Open-source En-
gagement (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

C Notations

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 1: Notations

Symbols Meanings

𝐹 closed-source foundation technology developer

𝑆 Domain-specific deployer

𝑂 Open-source community

𝑈 End user

𝑎 Total potential demand in the market

𝑏 Price sensitivity of end user

𝛾 Price multiplier of API

𝛼0 Closed-source foundation technology performance

𝛼𝑠𝑜𝑐
0

Foundation technology performance at social level

𝛼 Open-source foundational technology performance

𝛼1 End technology performance

𝛼𝑠𝑜𝑐
1

End technology performance at social level

𝑚 Relative performance of open-source to closed-source foundational technology

𝑐 Unit operation cost of the technology

𝐾𝐹 Cost factor for developing foundational technology

𝐾
api
𝑆

Cost factor for adapting technology in API scenario

𝐾
self
𝑆

Cost factor for adapting technology in self-hosting scenario

𝐾GPU Hardware cost parameter

𝐾𝑃𝑅𝐸 Non-hardware cost parameter for developing foundation technology

𝐾𝐹𝑇 Non-hardware cost factor for adapting technology

𝑝 Price of domain-specific technology

𝐷 Actual demand in the end market

𝑈𝑆 Utility of deployer 𝑆

𝑈𝐹 Utility of developer 𝐹

14

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Model Setting
	3.2 Game Process
	3.3 Solution of the Model

	4 Analysis of Separable Multiplicative Demand and Quadratic Cost
	4.1 Equilibrium without O
	4.2 Subgame Perfect Equilibrium with a Reactive O under a Fixed m
	4.3 Subgame Perfect Equilibrium with a Proactive O under a Fixed

	5 Impact of Open-source Engagement on Foundation Technology Innovation
	5.1 Concave and Unimodal Utility
	5.2 Foundation Technology Innovation

	6 Conclusion
	References
	A Proofs
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 4.7
	A.3 Proof of Theorem 4.3
	A.4 Proof of Theorem 4.6
	A.5 Proof of Theorem 4.4
	A.6 Proof of Theorem 4.8
	A.7 Proof of Theorem 5.2
	A.8 Proof of Theorem 5.3

	B Figures
	B.1 Equilibrium Without Open-source Engagement

	C Notations

