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Navigating the Deployment Dilemma and Innovation Paradox:
Open-Source v.s. Closed-source Models

Anonymous Author(s)
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Abstract
Recent advances in Artificial Intelligence (AI) have introduced a

new paradigm in Machine Learning (ML) model development: pre-

training of foundation model and domain adaptation. Two groups

lead in developing foundation model: closed-source developers and

open-source community. As open-source community becomes in-

creasingly engaged, the performance open-source models are catch-

ing up with closed-source models. However, this leaves domain

deployers into a dilemma: use closed-source models via API access

or host open-source models on proprietary hardware. Using closed-

source models incurs recurring costs, while hosting open-source

models incurs substantial hardware investments and potentially lag-

ging advancements. This paper presents a game-theoretical model

to examine the economic incentives behind the deployment choice

and the impact of open-source engagement strategy on technology

innovation. We find that the deployer consistently opts for closed-

source APIs when the open-source community engages in the mar-

ket reactively by maintaining a fixed performance ratio relative to

closed-source advancements. However, open-source models can be

favored when a proactive open-source community produces high-

performance models independently. Also, we identify conditions

under which engagement and competitiveness of the open-source

community can foster or inhibit technological progress. These in-

sights offer valuable implications for market regulation and the

future of AI model innovation.
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Keywords
Deployment dilemma; open-source; closed-source; foundationmodel

ACM Reference Format:
Anonymous Author(s). 2018. Navigating the Deployment Dilemma and

Innovation Paradox: Open-Source v.s. Closed-source Models . In Proceedings
of Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 Introduction
The capability of general AI, especially Large Language Models

(LLMs) has seen a remarkable surge due to scaling of training data,
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compute, and model parameters [23, 40]. Most recently, the para-

digm of pre-training and domain adaptation has become increas-

ingly important in LLM development [25? ? ]. As the landscape of
foundational models is characterized by two prominent alternatives:

open-source and closed-source. The domain expert would always

make decision about which technology to adopt. Thus, a develop-

ment of end technology always follow the process of pre-training,

deployment, and adaptation.

The foundational model market is increasingly competitive pri-

marily due to the emergence of open-source models. Take LLMs as

an example. Stanford has reported that of the 149 foundation mod-

els released in 2023, 98 were open-source models such as LLaMA

[39] and 23 were closed-source with a public API to access such as

GPT-4[30, 31]. Importantly, there has been a significant increase in

the proportion of models released with open access [30]. Clearly,

the engagement of open-source community form up a competitive

landscape for the foundational model development[1, 9].

The relationship between a competitive market and innovation

is complex, with competition capable of both stifling and fostering

innovation [15, 38]. Notably, competition between open-source and

closed-source models presents unique dynamics distinct from typi-

cal firm-to-firm competition. Unlike traditional corporate players,

open-source communities often operate with diverse motivations

beyond profit, such as community-driven improvement, accessi-

bility, and transparency [4, 18, 29, 35]. This makes the impact of

open-source versus closed-source competition on technological

innovation particularly intricate. Understanding how these com-

peting models influence the trajectory of technological progress

is essential, as it can reveal insights into the forces that drive or

inhibit advancements within foundation models, with implications

for future policy and innovation strategy.

Besides, due to the engagement of open-source community, de-

ployers would face a deployment dilemma, navigating complex

economic trade-offs in choosing which technology to adopt. In one

aspect, self-hosting open-source technology comes with the high

cost associated with the requisite hardware resource such as GPUs

while using third-party API leads to recurring cost [13]. In addition,

the performance of the foundation technology directly impacts that

of the end technology, which, in turn, affects the revenue gener-

ated in the end market [25]. Thus, the choice between self-hosting

open-source technology or utilizing third-party APIs involves a

complex trade-off from an economic perspective. Understanding

this process is necessary to study the economic and technological

consequences of the open-source technology.

In this paper, we present a comprehensive game-theoretic model

to explore the interactions among closed-source developers, open-

source communities, and deployers and how these interactions af-

fect the competitive and innovative outcomes of foundation model
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development. We analyze three distinct scenarios: a baseline sce-

nario without open-source engagement, a scenario with proac-
tive open-source engagement where the community indepen-

dently innovates and decides the model performance, and a scenario

with reactive open-source engagement in which the open-source
community aligns its performance to maintain relative parity with

closed-source advancements.

Our analysis shows that deployment choice always falls into one

of three primary outcomes: API-dominant, where open-source
engagement has no impact on the market status or decisions of

closed-source developers compared to scenarios without an open-

source alternative; API-strategic, where open-source engagement

prompts strategic behaviors from closed-source developers, yet

deployers are still incentivized to adopt closed-source technology;

and self-hosting, where open-source technology fully supersedes

the closed-source option. It turns out that the outcomes are highly

dependent on the open-source engagement strategy. Our findings

indicate that open-source engagement can significantly alter the in-

novation landscape for foundation models. In particular, we identify

conditions where open-source competition paradoxically hampers

innovation by discouraging closed-source developers from pushing

foundational advancements, as well as cases where it promotes a

“race-to-the-top,” encouraging closed-source developers to innovate

aggressively.

The main contributions of this paper are threefold. First, we pro-

vide a theoretical framework based onmulti-stage game and sub-
game perfect equilibrium to analyze the deployment dilemma

facing model deployers and define three types of deployment out-

comes. Second, we investigate two distinct open-source engage-

ment strategies - proactive or reactive - and characterize the con-

ditions under which the engagement would encourage or inhibit

innovation in foundational technologies. Finally, we discuss broader

implications for policymakers, offering insights into how the reg-

ulation of open-source and closed-source model competition can

support sustainable AI innovation.

2 Related Work
There exists extensive research on technology innovation and com-

petition. Our work specifically examines the dynamics of competi-

tion and innovation between open-source and closed-source models

within the paradigm of pre-training and fine-tuning. Taking an eco-

nomic perspective, we are the first to explore how open-source

technology drives competition and impacts the trajectory of tech-

nological innovation.

Open-Source Community. Open-source community has led to

great technological advances and unprecedented global collabora-

tion by providing open-source software (OSS), to which everyone

can have free access [5, 12]. In the last decade, open-source com-

munity has been a driven force of the development of artificial

intelligence. For example, 98 of the 149 foundation LLMs released

in 2023 were open-source models such as LLaMA [30, 39]. Moreover,

recent researches have shown that open-source LLMs is quickly

catching up closed-source commercial LLMs and the performance

gap can be supplemented or even closed with appropriate adapta-

tion techniques, such as adapting [1, 9]. Importantly, the incentives

of open-source have been discussed and proven to be far more

beyond profit[4, 18, 29, 35]. Despite the significant role of OSS,

there remains a scarcity of research that quantitatively assesses its

value [19]. Our work also contributes to the literature by providing

insights how open-source community’s engagement in the market

and its innovation strategies influence the market dynamics and

technology outcomes.

TechnologyDeployment. For domain-specific deployers, it has

been tricky to make a decision between self-hosting open-source

technology or closed-source technology. Adopting API may lead to

concerns such as data ownership, privacy and stability [9, 10]. How-

ever, self-hosting can be extremely expensive due to high hardware

requirements. For example, "regular 16-bit adapting of a LLaMA

65B parameter model requires more than 780 GB of GPU memory"

[13]. Moreover, the model performance has crucial influence on

the adoption decision. For example, open-source options can incur

extra adaptation costs as their foundational capability lags behind,

while cloud APIs also limit the developer’s ability to adapt the mod-

els with custom data [21]. Considering the complexity of adoption

decision, our paper is the first to model the deployment dilemma

from an economic perspective.

Economic Models of Technology Innovation. Many works

addressed the technological innovation, production, and coopera-

tion between firms. Empirical studies have proven that the relation-

ship between competition can either have a negative or positive

relationship with innovation, depending on multiple factors such

as market structure and innovation strategis[15, 38]. However, the

incentives of innovation are restricted to profit difference a firm

can earn with more innovation compared to with less innovation,

which is not applicable for open-source community. Bhaskaran and

Krishnan [3] provide a model of joint work and decision making

between collaborating firms for new product development. How-

ever, it focuses on cooperation rather than competition between

firms, and the innovation process does not follow the pre-training

and adaptation paradigm.

Machine Learning and Game Theory. Our paper generally
contributes to the work that uses game theory to analyze the eco-

nomics of technology, especiallyMLmodels [24, 28, 32]. Specifically,

our work contributes to the study of technology competition and

innovation with open-source engagement. Kleinberg et al. [25] pro-

pose a model of fine-tuning of general-purpose technology. How-

ever, it focuses on joint development and bargaining of two firms

and ignores the open-source engagement and competition.

3 Model
To capture the interactions between players, particularly the role

of the open-source community’s engagement and strategies, we

propose three game-theoretic models: a baseline model and two

variations. The baseline model includes only a closed-source foun-

dation model developer, a domain-specific deployer, and end users.

In each variation model, an open-source community is introduced,

each employing distinct strategies in technology innovation. Both

the closed-source developer and the open-source community focus

on advancing general-purpose technology, while the deployer must

select one technology for deployment.

2
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3.1 Model Setting
In this section we introduce the agents and the assumptions associ-

ated with each of them in the model.

Closed-source Technology Developer. The developer F devel-
ops a closed-source foundation model to performance level 𝛼0 ∈ R+

0

and prices the API as 𝛾𝑐 (𝛾 > 1) by deciding a multiplier 𝛾 , where

𝑐 ∈ R+
is the unit cost of operation.

Open-Source Community. The open-source community 𝑂

provide a technology at level 𝛼 ∈ R+
0
for free adoption. As the

incentives surrounding open-source technology can be complex,

we define its engagement strategy as reactive or proactive strat-
egy. Specifically, reactive engagement means 𝑂 always follows the

closed-source technology and maintains the relative performance

of open-source technology to closed-source technology, according

to a parameter𝑚, thus 𝛼 =𝑚𝛼0. In contrasts, proactive engagement

means 𝑂 always decides the performance level of open-source

model 𝛼 independent of 𝛼0.

Domain-specificDeployer. The deployer S first decideswhether
to host the open-source technology or use the API, captured by a

variable 𝐼 : when 𝐼 = 1, the deployer chooses the closed-source API;

when 𝐼 = 0, the deployer opts for the open-source option. Then,

it adapts the technology to level 𝛼1 ∈ R+
0
where 𝛼1 ≥ 𝛼0 and set

the unit price of the technology as 𝑝 ∈ R+
0
. Notably, S would have

to operate on its own hardware infrastructure if host open-source

technology and buy the API in demand if use the closed-source

technology.

End Users. The end users U reacts to the technology with de-

mand 𝐷 . Drawn from literature investigating customer consump-

tion behavior, the market demand is determined by the technol-

ogy’s price 𝑝 and technology’s performance 𝛼1 at the same time

[17, 36, 41]. We assume there is a function 𝐷 : R+
0
×R+

0
→ R+

such

that 𝐷 (𝑝, 𝛼1) is the demand in the end market with technology at

level 𝛼1 and unit price 𝑝 . 𝐷 (𝑝, 𝛼1) is monotonically increasing with

𝛼1 and monotonically decreasing with 𝑝 . We assume the demand

function is publicly known.

Revenue. Revenue is calculated as demand multiplied by unit

price [34]. The developer F gains a revenue 𝑅𝐹 = 𝛾𝑐𝐷 (𝑝, 𝛼1) by
providing inference API to S. The deployer S gains a revenue 𝑅𝑆 =

𝑝𝐷 (𝑝, 𝛼1) from the end market.

Cost. Both 𝐹 and 𝑆 have two parts of cost: technology production
(development or adaptation) cost and operation cost. 𝐹 has a devel-

opment cost 𝐶𝐹 (𝛼0) : R+
0
→ R+

0
to produce a general technology

at level 𝛼0 and an operation cost of 𝑐 per unit. 𝑆 faces a adapting

cost𝐶
api
𝑆

(𝛼1;𝛼0) : R+ → R+
to adapt the closed-source technology

from level 𝛼0 to 𝛼1 or a cost function 𝐶
self
𝑆

(𝛼1;𝛼) : R+
0
→ R+

0
to

adapt the open-source technology from level 𝛼 to 𝛼1. Besides, 𝑆

faces an operation cost of 𝑐 per unit if self-hosts open-source tech-

nology or 𝛾𝑐 per unit if uses API. We assume these cost functions

are publicly known.

Utility. The utility of developer F, denoted as𝑈𝐹 , and of deployer
S, denoted as𝑈𝑆 , are calculated by (𝑅𝑖 −𝐶𝑖 ), where 𝑖 = 𝑆, 𝐹 ).

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶𝐹 (𝛼0) (1)

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐)𝐷 (𝑝, 𝛼1) −𝐶api
𝑆

(𝛼1;𝛼0) (2)

𝑈
self
𝑆

= (𝑝 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶self
𝑆

(𝛼1;𝛼) (3)

𝑈
self
𝐹

= 0 (4)

We introduce the following notations for utility:𝑈
api
𝑆
,𝑈

self
𝑆
,𝑈

api
𝐹

,

𝑈
self
𝐹

to represent the utilities of the deployer 𝑆 , the developer 𝐹

under both the API and self-hosting scenarios.

Technology Innovation Outcome (Society Level). At the
societal level, the technology innovation outcome is defined as

𝛼𝑠𝑜𝑐
0

= 𝐼𝛼0 + (1 − 𝐼 )𝛼 (5)

𝛼𝑠𝑜𝑐
1

= 𝛼1 . (6)

3.2 Game Process
The game process varies according to the open-source community’s

engagement and strategic choices, resulting in three distinct models:

the baseline model without open-source community involvement,

and two variations where the community adopts proactive or reac-

tive strategies. These models are summarized below and illustrated

in Figure 1.

Baseline Game - No Open-Source Engagement. Here, the
open-source community 𝑂 chooses not to engage in the market.

Thus, developer 𝐹 first brings the foundation technology to per-

formance level 𝛼0 and sets the unit price for API usage as 𝛾𝑐 by

deciding the multiplier 𝛾 . Then, 𝑆 adapts the technology to level 𝛼1
and sets the end-user price 𝑝 . The end users consume the technology

with demand 𝐷 (𝑝, 𝛼1). Revenue is generated for both 𝐹 (through

API usage fees) and 𝑆 (through end-user sales), highlighting the

dynamics of a market without competition.

Game 1 - Proactive Open-Source Engagement. Here, the
open-source community𝑂 adopts a proactive engagement strategy.

First, 𝑂 independently develops its technology to reach a perfor-

mance level 𝛼 . Second, the closed-source developer 𝐹 establishes its

own foundation technology at level 𝛼0 and sets the API unit price

as 𝛾𝑐 by choosing the multiplier 𝛾 . The deployer 𝑆 then chooses

between self-hosting the open-source technology or accessing the

closed-source technology via API. After deployment, 𝑆 adapts the

selected technology to a domain-specific level 𝛼1 and sets the end-

user price 𝑝 , resulting in demand 𝐷 (𝑝, 𝛼1) from end users. The

consumption of end technology generates revenue for the deployer,

and for the developer as well, but only if the deployer opts for the

closed-source technology.

Game 2 - Reactive Open-Source Engagement. Here, the open-
source community 𝑂 follows a reactive engagement strategy. It

initially announces this approach by specifying a performance ratio

𝑚 to indicate how closely it will track the closed-source technology

developed by 𝐹 . Once 𝐹 has finalized its technology at level 𝛼0 and

sets the API price as 𝛾𝑐 , 𝑂 develops its technology to level 𝑚𝛼0.

The subsequent deployment, adaptation, and consumption steps

are identical to those in Game 1.

3.3 Solution of the Model
In this section, we provide the general equilibrium of each model de-

rived through backward induction, following the sequential decision-

making of the deployer 𝑆 and the developer 𝐹 . The solution involves

two key steps.

Step 1: Assuming a fixed 𝛼0 and 𝛾 (or also 𝛼 ), 𝑆 maximizes its

utility by choosing the optimal domain technology performance

3
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Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷
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Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source 

community 𝑂:  𝛼

Reactive Open-source

Open-source community 

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0, 𝛾

Developer 𝐹:  𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(a) Baseline Game - No Open-source Engagement

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source 

community 𝑂:  𝛼

Reactive Open-source

Open-source community 

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0, 𝛾

Developer 𝐹:  𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(b) Game 1 - With Reactive Open-source Engagement

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source 

community 𝑂:  𝛼

Reactive Open-source

Open-source community 

𝑂: 𝛼 = 𝑚𝛼0
End users 𝑆: 𝐷

Foundation Technology Launch End Technology Launch

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0, 𝛾

Developer 𝐹:  𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(c) Game 2 - With Proactive Open-source Engagement

Figure 1: An illustration of the processes for the three games. Game 1 and Game 2 differ from the baseline model in the
foundation technology development stage, as they involve open-source community. In Step 2 of the baseline game, 𝐼 = 1 always
holds, whereas in Game 1 and Game 2, 𝐼 can be either 0 or 1, reflecting the deployer’s deployment decision. The distinction
between Game 1 and Game 2 arises from the strategy adopted by the open-source community.

level 𝛼1 and price 𝑝 . Formally, 𝑆 solves the following optimization

problem:

𝐼∗, 𝛼∗
1
, 𝑝∗ = arg max

𝐼 ,𝛼1,𝑝
𝐼𝑈

api
𝑆

+ (1 − 𝐼 )𝑈 self
𝑆

. (7)

The deployer 𝑆 will choose to self-host the technology if its utility

from self-hosting, denoted as𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗), is greater than its utility

from using the API service, denoted as𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗).

Step 2 - Baseline Game: Anticipating 𝑆’s response to its de-

cisions regarding the foundational performance level 𝛼0 and the

inference price parameter 𝛾 , 𝐹 sets 𝛼0 and 𝛾 to maximize its own

utility. This leads to the following optimization problem for 𝐹 :

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (8)

Step 2 - Game 1 and Game 2: Similar to the step 2 in the

baseline game, 𝐹 would optimize its utitlity by deciding:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (9)

Since the developer 𝐹 receives revenue only if 𝑆 decides to use the

API, Step 2 is only meaningful when I = 1, which means

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≥ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (10)

Also, 𝐹 would participate in the development only when it expect

to gain a positive utility, as𝑈
api
𝐹

(𝛼∗
0
, 𝛾∗, 𝛼∗

1
, 𝑝∗) ≥ 0. Else, 𝐹 would

anticipate no opportunity to gain a profit and exit the market.

The solution depends on market conditions and the engagement

strategy of 𝑂 . Thus, we offer a set of relevant definitions to help

characterize the different possible regimes of solutions according

to the developer’s strategic behavior and deployer’s deployment

decisions.

Definition 3.1 (API-DOMINANT SOLUTION). TheAPI-dominant
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =

argmax𝛼0,𝛾 𝑈
api
𝐹

, naturally satisfies𝑈
self
𝑆

≥ 𝑈 api
𝑆

and𝑈
api
𝐹

≥ 0 . In

this situation, 𝑆 chooses API choice as it naturally dominates the

self-hosting choice.

Definition 3.2 (API-STRATEGIC SOLUTION). The API-strategic
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =

argmax𝛼0,𝛾 𝑈𝐹,api under the constraint 𝑈
self
𝑆

≥ 𝑈 api
𝑆

naturally sat-

isfies 𝑈
api
𝐹

≥ 0, while only 𝛼∗
0
, 𝛾∗ = argmax𝛼0,𝛾 𝑈𝐹,api leads to

𝑈
self
𝑆

< 𝑈
api
𝑆

. In this situation, 𝐹 strategically incentivizes 𝑆 to

choose the API by ensuring that 𝑆 achieves greater profit through

the API option compared to the self-hosting alternative.
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Definition 3.3 (SELF-HOSTING SOLUTION). The self-hosting
solution is the solution when no combination of 𝛼∗

0
, 𝛾∗ exists that

simultaneously satisfies: 𝑈
self
𝑆

≥ 𝑈
api
𝑆

and 𝑈
api
𝐹

≥ 0 . In this situ-

ation, 𝑆 opts to self-host the open-source technology rather than

utilize the API provided by 𝐹 .

Notice that any solution will fall into one of three categories: an

API-dominant solution, an API-strategic solution, or a self-hosting

solution. These regimes are shaped by the market conditions and

the engagement strategy of 𝑂 . Analyzing the general form is chal-

lenging due to multiple sequential decision steps, each requiring

the consideration of multiple factors. At each stage, either the devel-

oper or deployer must determine optimal values for variables such

as performance levels, pricing, and deployment choices, which in-

teract in complex ways across stages. This interdependence makes

deriving a general solution intricate, necessitating specifications to

gain clearer insights. Accordingly, in the next section, we present

formal theorems under specified demand and cost functions.

4 Analysis of Separable Multiplicative Demand
and Quadratic Cost

In order to produce closed-form solutions and understand how the

agents in the model interact with each other, we take the form

of separable multiplicative demand and quadratic cost, which are

commonly used in business research.

The demand function is expressed in the separable multiplicative

form: 𝐷 (𝑝, 𝛼1) = 𝑑1 (𝑝) ∗ 𝑑2 (𝛼1), where 𝑑1 (𝑝) measures the effect

of price and 𝑑2 (𝛼1) represents the effect of quality [2, 11]. For the

price-dependent part, linear model has been extensively used in

economics and business literature, including theoretical models

[6, 14, 33, 34, 37] and empirical estimations [7, 20]. For the quality

effect, we take the form as 𝑑2 (𝛼1) = 𝛼1 [27]. Thus, we get
𝐷 (𝑝, 𝛼1) = (𝑎 − 𝑏𝑝)𝛼1 (11)

, where 𝑎 > 0 and 𝑏 > 0 are constant parameters representing the

market size and price sensitivity respectively. The demand would

decrease with price and increase with product quality. Also, there

would be no sales for zero quality (performance level).

The quadratic form for modeling cost is widely adopted in eco-

nomics and management science literature [3, 8, 16, 22, 26, 41].

Following Kleinberg et al. [25], we assume that the cost increases

quadratically with advancements in technology:

𝜙 (𝛼0) = 𝐾𝐹𝛼20 (12)

𝜙 (𝛼1;𝛼0) = 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (13)

𝜙 (𝛼1;𝛼) = 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (14)

Here, 𝐾𝐹 , 𝐾
self
𝑆

, and 𝐾
api
𝑆

are positive constants, reflecting that

marginal costs should increase with technology advancement [25].

As 𝐾𝐹 and 𝐾
self
𝑆

include both non-hardware and hardware costs

while 𝐾𝑆,𝑎𝑝𝑖 includes only non-hardware costs. The cost factors are

decomposed as:

𝐾𝐹 = 𝐾𝑃𝑅𝐸 + 𝐾𝐺 (15)

𝐾
api
𝑆

= 𝐾𝐹𝑇 (16)

𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 (17)

• 𝐾𝑃𝑅𝐸 represents the non-hardware cost component in the

pre-training cost 𝐾𝐹
• 𝐾𝐹𝑇 represents the non-hardware cost component in the

adapting cost 𝐾
self
𝑆

and 𝐾
api
𝑆

• 𝐾𝐺 represents the hardware cost component in𝐾𝐹 and𝐾
self
𝑆

Thus, the utilities of developer 𝐹 , deployer 𝑆 , and end user𝑈 are

as

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (18)

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20 (19)

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (20)

𝑈
self
𝐹

= 0 (21)

4.1 Equilibrium without 𝑂
Theorem 4.1 (API-Dominant Strategy). Without 𝑂 , the equi-

librium always falls into the API-dominant solution, yielding the
following strategies:

𝛾∗ =
5𝜃 + 3 − 2𝛽 (3 + 𝜃 ) −

√
𝛿

8(1 − 𝛽) , (22)

𝛼∗
0
=

𝑏

4𝐾𝐹

(
𝑐𝛾∗ − 𝑐

) (𝑎
𝑏
− 𝑐𝛾∗

)
, (23)

𝑝∗ =
𝑎

𝑏
+ 𝑐𝛾∗, (24)

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
, (25)

where:

𝛿 = (5𝜃 + 3 − 2𝛽 (3 + 𝜃 ))2 − 16(1 − 𝛽) (𝜃2 + 3𝜃 − 2𝛽 (1 + 𝜃 )),

𝜃 =
𝑎

𝑏𝑐
, 𝛽 =

𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

A proof of the above result is provided in Appendix A.1. No-

tice that the deployer 𝑆’s decision on domain-specific technology

performance 𝛼∗
1
equals 𝛼∗

0
plus

𝑏 ( 𝑎𝑏 −𝑐𝛾∗)2
8𝐾𝐹𝑇

, which is independent

of developer 𝐹 ’s decision on foundation technology performance

𝛼∗
0
. This finding is consistent with the finding from a previous re-

search by Kleinberg et al. [25]. Moreover, both the developer 𝐹 ’s

decision on foundation technology performance 𝛼∗
0
and deployer

𝑆’s decision on domain-specific technology performance 𝛼∗
1
are

independent of the open-source technology performance, which is

reasonable as the open-source technology is naturally dominated

by the closed-source technology and cannot influence the market.

The results are shown in Appendix Figure B.1.

4.2 Subgame Perfect Equilibrium with a
Reactive 𝑂 under a Fixed𝑚

When the open-source community adopts a reactive strategy, the

subgame perfect equilibrium under a given𝑚 may lead to different

solutions based on various market factors, captured by cost pa-

rameters {𝐾G, 𝐾FT, 𝐾PRE, 𝑐} and market consumption parameters

{𝑎, 𝑏}. Among all these factors, we focus on 𝐾G, which indicates

the hardware cost. First, we specify the forms of solutions. Then,

we show how 𝐾G and𝑚 characterize the equilibrium solution with

a focus on technology outcome.
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Theorem 4.2. With a reactive 𝑂 , the API-dominant solution re-
sults in strategies that are identical in form to those presented in
Theorem 4.1.

This conclusion is straightforward, as under an API-dominant

solution, the engagement of the open-source community does not

affect the dynamics of the original game, leaving the strategic out-

come unchanged.

Theorem 4.3 (API-Strategic Solution with reactive O).

With reactive𝑂 , the API-strategic solution yields strategies as follows:

𝐼∗ = 1,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗),

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,

and 𝛼∗
0
and 𝛾∗ is the solution of:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )

=
−𝑏𝑐2 ( (𝜃−𝛾∗ )2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )3+(𝜃−𝛾 )𝛼∗

0

,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.3 is provided in Appendix A.3. Note that

the existence of a feasible solution in Theorem 4.3 is guaranteed by

Theorem ??, while its uniqueness is ensured by the maximization

of𝑈𝐹 .

Theorem 4.4 (Guaranteed API outcome). With reactive𝑂 , the
equilibrium always falls into either a API-dominant or a API-strategic
solution, meaning there always exists a combination {𝛼∗

0
, 𝛾∗, 𝛼∗

1
, 𝑝∗}

that satisfies𝑈 self
𝑆

≥ 𝑈 api
𝑆

and𝑈𝐹 ≥ 0 simultaneously.

A proof of Theorem 4.4 is provided in Appendix A.5. Notably,

when 𝑂 adopts a reactive strategy, 𝐹 can influence technology

innovation in a way that strategically deters𝑂 and encourages 𝑆 to

adopt the closed-source technology. Counterintuitively, even when

𝑚 is high—indicating that the open-source technology significantly

outperforms the closed-source technology—the deployer 𝑆 is still

incentivized to utilize the closed-source technology via API.

Next, we illustrate the impact of reactive open-source engage-

ment on technology outcomes using numerical results. We set

parameters of (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1) and let 𝑚

range from 0.1 to 1.4.

As shown in Figure 2a, foundation technology innovation is gen-

erally hindered when𝑚 is high. This is because, at higher𝑚 values,

the closed-source developer may choose to strategically reduce

technology performance to deter open-source alternatives. When

𝑚 decreases to a low level, the closed-source developer can gain

higher technology advantage by enhancing performance, which

is an economical strategy to attract deployers toward the closed-

source API.

Interestingly, we observe in Figure 2b that end technology expe-

riences higher levels of innovation. This outcome arises because the

closed-source developer not only adjusts technology performance

but also lowers the API price, allowing the deployer to achieve
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Figure 2: Technology Outcomes Comparison - No Open-
source vs. Reactive Open-source Engagement (𝑎 = 8, 𝑏 = 1, 𝑐 =

0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

higher unit profit from end technology. This incentivizes the de-

ployer to further adapt the technology to an enhanced level, thus

driving end technology innovation.

4.3 Subgame Perfect Equilibrium with a
Proactive 𝑂 under a Fixed 𝛼

Similar to the previous section, we first specify the forms of each so-

lution under a fixed 𝛼 and then analyze how 𝐾G and 𝛼 characterize

the equilibrium solution.

Theorem 4.5. With a proactive 𝑂 , the API-dominant solution
results in strategies that are identical in form to those presented in
Theorem 4.1.

Theorem 4.6 (API-Strategic Solution with proactive O).

With proactive 𝑂 , the API-strategic solution yields strategies as fol-
lows:

𝐼∗ = 1,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗),

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,
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and 𝛼∗
0
and 𝛾∗ is the solution of:

16

(
(𝜃 − 𝛾∗)2𝛼∗

0
− (𝜃 − 1)2𝛼

)
=

(
(𝜃−1)4

(𝐾FT+𝐾G ) −
(𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )

=
−4𝑏𝑐2 (𝜃−𝛾∗ )

8𝛼∗
0
+ 𝑏𝑐2
𝐾FT

(𝜃−𝛾∗ )2
,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.6 is provided in Appendix A.4. Note that

the solution from Theorem 4.6 must always satisfy 𝛼∗
0
≥ 0, 𝛾∗ ≥ 1,

and 𝑈𝐹 (𝑝∗, 𝛼∗1 , 𝛼
∗
0
, 𝛾∗) ≥ 0. If these conditions are not met, the

equilibrium defaults to the self-hosting solution described below.

Theorem 4.7 (self-hosting Solution with proactive O).

With a proactive𝑂 , a self-hosting solution yields the following strate-
gies:

𝛾∗ = 1,

𝛼∗
0
= 0,

𝐼∗ = 0,

𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐),

𝛼∗
1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺 )
,

A proof of Theorem 4.7 is provided in Appendix A.2. Notice that

the developer 𝐹 ’s decision on the foundation technology perfor-

mance 𝛼∗
0
always results in zero, indicating that the developer exits

the game. Consequently, the deployer 𝑆 adopts a self-hosting ap-

proach. Interestingly, under a self-hosting solution, the unit price of

the end technology, 𝑝 , remains constant. This is due to the marginal

cost of operations being fixed at 𝑐 and the end users’ price sensi-

tivity remaining stable at 𝑏. Additionally, as the hardware cost 𝐾G
decreases, 𝑆 is incentivized to enhance the technology to a higher

performance level, leading to an increase in 𝛼1 as the incremental

advancement (𝛼1 − 𝛼) grows. Furthermore, the utilities of both the

deployer,𝑈𝑆 , and the end users,𝑈𝑈 , increase.

Theorem 4.8 (Existence of Self-Hosting Outcome). With a
proactive 𝑂 , given cost parameters {𝐾FT, 𝐾PRE, 𝑐} and market condi-
tion parameters {𝑎, 𝑏}, there exists a threshold 𝛼𝐻 ∈ R+ such that
∀𝐾G, the game results in a self-hosting solution if 𝛼 ∈ (𝛼𝐻 , +∞).

A proof of Theorem 4.8 is provided in Appendix A.6. The insight

is that when 𝑂 adopts a proactive strategy and develops the open-

source technology to a sufficiently high performance level, the

developer 𝐹 may initially be able to incentivize the deployer by

either enhancing the closed-source technology or lowering the

API price. During this process, profit gradually transfers from the

developer to the deployer. However, as the performance of the open-

source technology continues to increase, a point is reached where

the developer can no longer offer enough incentives to attract the

deployer while still ensuring its own profitability. Consequently, if

the open-source technology achieves a high enough performance

level, the closed-source developer foresees an unprofitable market

and opts not to enter, ultimately resulting in a self-hosting outcome.

Besides, we examine the impact of proactive open-source en-

gagement on technology outcomes using numerical results. We set
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Figure 3: Comparison of Technology Outcomes - No Open-
source vs. Proactive Open-source Engagement (𝑎 = 8, 𝑏 = 1,
𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

parameters as follows: 𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1, and

let 𝛼 range from 0.5 to 4.

As shown in Figure 3, proactive open-source engagement leads

to an increase in both foundation and end technology performance

levels. The intuition is that when the open-source community in-

dependently sets the open-source technology level, rather than

adjusting to closed-source performance, the closed-source devel-

oper cannot deter open-source technology by strategically reducing

performance. Instead, the developer enhances the closed-source

technology and lowers the API price to attract deployers to use the

closed-source API, ultimately benefiting end technology innovation

as well.

However, two horizontal lines appear in Figure 3a at 𝛼 = 3.5 and

𝛼 = 4, respectively. This indicates that, at these levels, open-source

technology becomes advanced enough to drive the closed-source

developer out of the market.

5 Impact of Open-source Engagement on
Foundation Technology Innovation

In the above section, we show the impact of open-source engage-

ment with numerical results under specified demand and cost func-

tions. In this section, we examines more general situation. First, we
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define the class of utility functions to which our conclusions apply.

Then, we formally state the conditions under which open-source

engagement may either encourage or hinder foundation technology

innovation.

5.1 Concave and Unimodal Utility
First, we introduce two assumptions on the utility functions.

Definition 5.1 (Strictly Unimodal Function). A function 𝑓 : R ×
R → R is called strictly unimodal over 𝑥 and 𝑦 if there exists a

value𝑚 ∈ 𝐷 ⊂ R such that 𝑓 is strictly increasing for 𝑥 ≤ 𝑚 and

strictly decreasing for 𝑥 ≥ 𝑚, and there exists a value 𝑛 ∈ 𝐷 ⊂ R
such that 𝑓 is strictly increasing for 𝑦 ≤ 𝑛 and strictly decreasing

for 𝑦 ≥ 𝑛.
**Assumption 1**: The developer’s utility𝑈𝐹 (𝛼∗1 , 𝑝

∗) is strictly
concave in 𝛼0 and 𝛾 ; that is,

𝜕2𝑈𝐹
𝜕𝛼2

0

< 0 and
𝜕2𝑈𝐹
𝜕𝛾2

< 0.

**Assumption 2**: The developer’s utility𝑈𝐹 (𝛼∗1 , 𝑝
∗) is strictly

unimodal in 𝛼0 and 𝛾 . This implies there exists a maximum utility

at some values of 𝛼0 and 𝛾 over their respective ranges.

Note: that the analysis in Section 4 satisfies these assumptions,

ensuring that our conclusions hold within that framework.

5.2 Foundation Technology Innovation
Here, we formally state the theorems identifying the conditions

under which open-source community engagement enhances or

hinders foundation technology innovation.

Theorem 5.2. Assume the developer’s strategy under no open-
source engagement be characterized by 𝛼∗

0
and 𝛾∗, resulting in utility

𝑈
api
𝑆

(𝛼∗
0
, 𝛾∗). After the engagement of a reactive open-source commu-

nity, suppose the developer’s strategy shifts to 𝛼 ′∗
0
and 𝛾 ′∗, yielding

utility𝑈 self
𝑆

(𝛼 ′∗
0
, 𝛾 ′∗).

The developer’s equilibrium technology level decreases, 𝛼 ′∗
0

< 𝛼∗
0
,

if the following conditions hold:

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0.

Conversely, the developer’s equilibrium technology level increases,
𝛼 ′∗
0

> 𝛼∗
0
, if:

𝜕𝑈
api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
and

𝜕2𝑈𝐹

𝜕𝛾 𝜕𝛼0
< 0.

Theorem 5.3. Assume the developer’s strategy under no open-
source engagement be characterized by 𝛼∗

0
and 𝛾∗, resulting in utility

𝑈
self
𝑆

(𝛼∗
0
, 𝛾∗). After proactive engagement by the open-source commu-

nity, suppose the developer’s strategy shifts to 𝛼 ′∗
0

and 𝛾 ′∗.
Then 𝛼 ′∗

0
> 𝛼∗

0
if the following condition holds:

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0.

The proofs for Theorem 5.2 and Theorem 5.3 are provided in

Appendix A.7 and Appendix A.8 respectively. Note that these con-

ditions are sufficient but not necessary for the outcomes stated.

These theorems highlight the difference and similarity of reac-

tive and proactive open-source engagement influencing foundation

technology innovation:

• ReactiveOpen-source Engagement:When the deployer’s

utility gain from using the API is less sensitive to 𝛼0 than

the self-hosting utility, the developer finds it challenging

to achieve an advantage over open-source competition by

enhancing technology performance. In such cases, the de-

veloper may strategically reduce the open-source competi-

tiveness by lowering the technology performance, which

in turn decreases the developer’s utility. Due to the posi-

tive interaction between 𝛼0 and 𝛾 in closed-source models,

lowering 𝛾 can help mitigate the rate of utility decline re-

sulting from reduced technology performance. Additionally,

a lower API price incentivizes deployers by reducing the

cost associated with the API choice. Conversely, if the de-

veloper observes that the deployer’s utility from the API

is highly sensitive to 𝛼0 compared to self-hosting utility,

a ’race-to-the-top’ scenario arises where the developer is

motivated to innovate more aggressively. In this case, while

technology performance increases, the developer’s utility

may still decline. With a negative interaction between 𝛼0
and 𝛾 , lowering 𝛾 helps counteract the rate of utility loss

from potential over-innovation. A reduced API price further

encourages deployers to adopt the API option.

• Proactive Open-source Engagement: In scenarios of

proactive open-source engagement, the developer is con-

sistently motivated to enhance technology performance

to maintain an advantage over open-source alternatives,

resulting in a continuous ’race-to-the-top.’ Here, as tech-

nology performance improves, the developer’s utility may

experience diminishing returns. Given the negative interac-

tion between 𝛼0 and 𝛾 , lowering 𝛾 can help reduce the rate

of utility decline associated with high levels of technology

performance. Furthermore, a lower API price incentivizes

deployers to continue using the API, aligning both parties’

incentives towards higher technology standards.

6 Conclusion
This paper proposes a theoretical model that analyzes the interac-

tions among closed-source developers, open-source communities,

and deployers in the context of AI deployment. By examining three

scenarios—no engagement, proactive open-source engagement, and

reactive engagement—the model highlights how different open-

source strategies can significantly shape deployment outcomes

and drive innovation trajectories. These findings are particularly

valuable for all stakeholders in the AI market, especially for the

open-source community and regulatory bodies, as they provide in-

sights into how various engagement strategies can either promote

or inhibit technological progress.

Future research could build on this model by investigating addi-

tional factors such as the diverse motivations within open-source

communities, the competitive dynamics in end markets, and the

unique requirements across different deployer domains. We be-

lieve that societal outcomes are essential in shaping the technology

market, and formalizing these considerations through theoretical

models can provide a more comprehensive view of the AI ecosystem

and help guide balanced and sustainable innovation strategies.
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A Proofs
A.1 Proof of Theorem 4.1
As 𝐼 = 1, the utility functions of are:

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2,

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20
where:

𝐾
api
𝑆

= 𝐾𝐹𝑇 , 𝐾
api
𝐹

= 𝐾𝑃𝑅𝐸 + 𝐾𝐺 .
Step 1: Utility Maximization of 𝑆 for a Fixed 𝛼0 and 𝛾

𝜕𝑈
api
𝑆

𝜕𝑝
= (𝑎 + 𝑏𝑐𝛾 − 2𝑏𝑝)𝛼1 = 0

⇒ 𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

.

𝜕𝑈
api
𝑆

𝜕𝛼1
= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

api
𝑆

(𝛼1 − 𝛼0) = 0.

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

, we get:

𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

The optimal choices for 𝑆 are therefore:

𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

, 𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

Step 2: Utility Maximization of 𝐹 Based on 𝑆 ’s Response

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

and 𝛼∗
1
= 𝛼0 +

𝑏 ( 𝑎𝑏 −𝑐𝛾)2
8𝐾𝐹𝑇

, we have:

𝑈
api
𝐹

=
1

2

𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)
(
𝛼0 +

𝑏𝑐2 (𝜃 − 𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 ,

𝑈
api
𝑆

=
1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4,

, where 𝜃 = 𝑎
𝑏𝑐

𝜕𝑈
api
𝐹

𝜕𝛼0
=

1

2

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0 = 0

⇒ 𝛼∗
0
=

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾)
4𝐾𝐹

.

0 =
𝜕𝑈

api
𝐹

𝜕𝛾
=

1

2

𝑏𝑐2
(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT
(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)

)
,

⇒ 0 = 𝑒𝑞𝑎 · 𝛾2 + 𝑒𝑞𝑏 · 𝛾 + 𝑒𝑞𝑐 ,
where:

𝑒𝑞𝑎 = 4(1 − 𝛽),
𝑒𝑞𝑏 = 2𝛽 (3 + 𝜃 ) − 3 − 5𝜃,

𝑒𝑞𝑐 = 𝜃
2 + 3𝜃 − 2𝛽 (1 + 𝜃 ),

𝛽 =
𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

The discriminant 𝛿 is given by:

𝛿 = 𝑒𝑞2
𝑏
− 4 · 𝑒𝑞𝑎 · 𝑒𝑞𝑐 .

Solving for the optimal 𝛾 using the quadratic formula, we find:

𝛾∗ =
−𝑒𝑞𝑏 −

√
𝛿

2 · 𝑒𝑞𝑎
=

5𝜃 + 3 − 2𝛽 (3 + 𝜃 ) −
√
𝛿

8(1 − 𝛽) .

A.2 Proof of Theorem 4.7
When 𝐼 = 0 and with a proactive open-source community, the

utility functions for the deployer 𝑆 and the developer 𝐹 are given

by:

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2,

𝑈
self
𝐹

= 0,

where 𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 .
Step 1: Solving for Optimal 𝑝∗ and 𝛼∗

1
for 𝑆

𝜕𝑈
self
𝑆

𝜕𝑝
= (𝑎 − 2𝑏𝑝 + 𝑏𝑐)𝛼1 = 0,

⇒ 𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐

)
.

𝜕𝑈
self
𝑆

𝜕𝛼1
= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

self
𝑆

(𝛼1 − 𝛼) = 0.

Substituting 𝑝∗ = 1

2

(
𝑎
𝑏
+ 𝑐

)
,

𝛼∗
1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺 )
.

Thus, the optimal utility for 𝑆 in a self-hosting setup with proactive

𝑂 is:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4

, where 𝜃 = 𝑎
𝑏𝑐
.

Step 2: Confirming Developer’s Choice (Setting 𝐼 = 0)
Since 𝑈

self
𝐹

= 0 when 𝑆 chooses self-hosting, the developer 𝐹

gains no utility. This setup implies that the optimal strategy for the

developer is to exit the market, yielding:

𝛾∗ = 1, 𝛼∗
0
= 0, 𝐼∗ = 0.

A.3 Proof of Theorem 4.3
From A.2, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

In this API case, 𝛼 =𝑚𝛼0, thus:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝑚𝛼0 +
𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

From Section A.1, we have:

𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4

The goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (26)
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Define the Lagrangian with multiplier 𝜆:

L = 𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) + 𝜆

(
𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) −𝑈 self

𝑆
(𝛼∗

1
, 𝑝∗)

)
.


𝜕L
𝜕𝛼0

= 0,

𝜕L
𝜕𝛾 = 0,

𝜕L
𝜕𝜆

= 0

Thus, 

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆( 𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆( 𝜕𝑈
api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾 ) = 0,

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

Thus,
𝜕𝑈

api
𝐹

𝜕𝛼0
( 𝜕𝑈

api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾 ) = 𝜕𝑈
api
𝐹

𝜕𝛾 ( 𝜕𝑈
api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
),

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

The partial derivatives of𝑈
api
𝑆

and𝑈
self
𝑆

are as follows:

𝜕𝑈
api
𝑆

𝜕𝛼0
= 1

4
𝑏𝑐2 (𝜃 − 𝛾)2,

𝜕𝑈
api
𝑆

𝜕𝛾 = − 𝑏2𝑐4

16𝐾FT

(𝜃 − 𝛾)3 − 1

2
𝑏𝑐2 (𝜃 − 𝛾)𝛼0,

𝜕𝑈
self
𝑆

𝜕𝛼0
= 1

4
𝑚𝑏𝑐2 (𝜃 − 1)2,

𝜕𝑈
self
𝑆

𝜕𝛾 = 0,

𝜕𝑈
api
𝐹

𝜕𝛼0
= 1

2
(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 1

2
𝑏𝑐2

(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT

(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)
)

The optimal values 𝛼∗
0
and 𝛾∗ satisfy:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )
=

−𝑏𝑐2 ( (𝜃−𝛾∗ )2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗ )3+(𝜃−𝛾 )𝛼∗
0

,

where 𝜃 = 𝑎
𝑏𝑐
.

A.4 Proof of Theorem 4.6
From A.2, with proactive open-source community, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

Same as A.3, the goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) .

Similar as A.3, we can solve the problem with KKT. The only

difference is that

𝜕𝑈
self
𝑆

𝜕𝛼0
= 0

A.5 Proof of Theorem 4.4
To prove Theorem 4.4, we need to find 𝛼∗

0
, 𝛾∗ satisfying:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗),

𝑈
api
𝐹

≥ 0,

From A.1 and A.3, we know it is equivalent to find 𝛼∗
0
, 𝛾∗ satisfy-

ing:
(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

Also, reasonable solution should satisfy 𝛼∗
0
> 0 and 1 < 𝛾∗ < 𝜃 .

𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with𝑈 api
𝐹

(𝛼0 =
0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

Define 𝛼1
0
= 𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾).

A.5.1 Case 1:𝑚 ≥ 1.

(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 < 0.

Thus, we must have:

(𝜃 − 1)4
𝐾FT + 𝐾G

<
(𝜃 − 𝛾∗)4
𝐾FT

⇒ (𝜃 − 𝛾)4 >

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1) .

We can always find 𝛾∗ to satisfy this condition.

Also,

𝛼0 <

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2

16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2
= 𝛼cut

0
.

Thus, an example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= min{𝛼1

0
, 𝛼cut

0
}.

A.5.2 Case 2: 0 < 𝑚 < 1. .
If 0 ≤ 𝑚2 <

𝐾FT

𝐾FT+𝐾G

< 1 (when hardware cost is relatively low),

let

𝛾∗ ∈
(
1, 𝜃 −

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1)
)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

< 0.

An example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= 𝛼1

0
.
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If
𝐾FT

𝐾FT+𝐾G

≤ 𝑚2 < 1 (when hardware cost is relatively high), let

𝛾∗ ∈
(
1, 𝜃 −𝑚1/2 · (𝜃 − 1))

)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

< 0.

An example solution:{
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +𝑚1/2 · (𝜃 − 1)

)
,

𝛼∗
0
= 𝛼1

0
.

A.6 Proof of Theorem 4.8
Contrary A.5, we need to illustrate: when 𝛼 is high, there is no

solution of 𝛼∗
0
, 𝛾∗ satisfying:

16(𝜃 − 𝛾∗)2𝛼∗
0
− 16(𝜃 − 1)2𝛼 >

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

𝑈
api
𝐹

= 1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

It is equivalent to:


16(𝜃 − 𝛾∗)2𝛼∗

0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Denote𝑅 =

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2+16(𝜃−1)2𝛼, 𝐿 = 16(𝜃−𝛾∗)2

Thus,


𝐿𝛼∗

0
> 𝑅,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Lets 𝛼 >
(𝜃−1)4
𝐾FT

𝑏𝑐2, thus,
𝛼∗
0
> 𝑅
𝐿
> 0.,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

As 𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with

𝑈
api
𝐹

(𝛼0 = 0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

We only need to substitute 𝛼∗
0

= 𝑅
𝐿
in 𝑈

api
𝐹

(𝛼0∗) and show

𝑈
api
𝐹

(𝛼0) < 0 when 𝛼 is high.

𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
= −𝐾𝐹

(
𝑅

𝐿

)
2

+𝑏𝑐
2

2

(𝛾−1) (𝜃−1)𝑅
𝐿
+ 𝑏2𝑐4

16𝐾FT
(𝜃−𝛾)3 (𝛾−1)

= (−𝐾𝐹𝑅2 +
𝑏𝑐2

2

(𝛾 − 1) (𝜃 − 1)𝑅𝐿 + 𝑏2𝑐4

16𝐾FT
(𝜃 − 𝛾)3 (𝛾 − 1)𝐿2)/𝐿2 .

as



𝑅 ≥ 𝑅min = 𝑅(𝛾∗ = 1) =
(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−1)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝑅 ≤ 𝑅 − 𝑏𝑐2 (𝜃−1)4
𝐾FT+𝐾G

= − (𝜃−𝛾∗ )4
𝐾FT

𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝐿 ≤ 𝐿max = 𝐿(𝛾∗ = 1) = 16(𝜃 − 1)2,

𝜃 − 𝛾 ≤ 𝜃 − 1.

Thus,

𝐿2𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
≤ −𝐾𝐹

((
(𝜃 − 1)4
𝐾FT + 𝐾G

− (𝜃 − 𝛾∗)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)2
+𝑏𝑐

2

2

(𝛾 − 1) (𝜃 − 1)
(
− (𝜃 − 𝛾∗)4

𝐾FT
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)
16(𝜃 − 1)2

+ 𝑏2𝑐4

16𝐾FT
(𝜃 − 1)3 (𝛾 − 1)162 (𝜃 − 1)4 .

Obviously, 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
is a quadratic function of 𝛼 , opening

downward. Thus, when 𝛼 is high enough to let 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
<

0, we cannot find a solution of 𝛼∗
0
, 𝛾∗ to make𝑈

api
𝐹

> 0, which the

equilibrium falls into self-hosting. The cut-off 𝛼𝐻 can be the right

root of 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
= 0

A.7 Proof of Theorem 5.2
From A.2, we know 𝛼 ′∗

0
and 𝛾 ′∗ is the solution of

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆( 𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆 𝜕𝑈
api
𝑆

𝜕𝛾 = 0,

𝑈
self
𝑆

= 𝑈
api
𝑆

However, 𝛼∗
0
and 𝛾∗ is the solution of:

𝜕𝑈
api
𝐹

𝜕𝛼0
= 0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 0,

Also, we know that𝑈
self
𝑆

(𝛼∗
0
, 𝛾∗) > 𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗). Else it falls into

a API-dominant solution.

Part One: if

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0. (27)

We know 
𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) > 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1)𝛼 ′∗
0

> 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0
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(2) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) <

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) < 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

Thus, 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

Part Two: if

𝜕𝑈
api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0. (28)

We know


𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) < 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

(2) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) >

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) > 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3)𝛼 ′∗
0

< 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0

Thus, 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

A.8 Proof of Theorem 5.3
The proof is the same as the Part Two of A.7
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Figure 4: Equilibrium Outcomes without Open-source En-
gagement (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)
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Table 1: Notations

Symbols Meanings

𝐹 closed-source foundation technology developer

𝑆 Domain-specific deployer

𝑂 Open-source community

𝑈 End user

𝑎 Total potential demand in the market

𝑏 Price sensitivity of end user

𝛾 Price multiplier of API

𝛼0 Closed-source foundation technology performance

𝛼𝑠𝑜𝑐
0

Foundation technology performance at social level

𝛼 Open-source foundational technology performance

𝛼1 End technology performance

𝛼𝑠𝑜𝑐
1

End technology performance at social level

𝑚 Relative performance of open-source to closed-source foundational technology

𝑐 Unit operation cost of the technology

𝐾𝐹 Cost factor for developing foundational technology

𝐾
api
𝑆

Cost factor for adapting technology in API scenario

𝐾
self
𝑆

Cost factor for adapting technology in self-hosting scenario

𝐾GPU Hardware cost parameter

𝐾𝑃𝑅𝐸 Non-hardware cost parameter for developing foundation technology

𝐾𝐹𝑇 Non-hardware cost factor for adapting technology

𝑝 Price of domain-specific technology

𝐷 Actual demand in the end market

𝑈𝑆 Utility of deployer 𝑆

𝑈𝐹 Utility of developer 𝐹
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