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Abstract

We introduce a self-supervised learning (SSL)
framework BEATS for general audio represen-
tation pre-training, where we optimize an acous-
tic tokenizer and an audio SSL model by iter-
ations. Unlike the previous audio SSL models
that employ reconstruction loss for pre-training,
our audio SSL model is trained with the discrete
label prediction task, where the labels are gener-
ated by a semantic-rich acoustic tokenizer. We
propose an iterative pipeline to jointly optimize
the tokenizer and the pre-trained model, aiming
to abstract high-level semantics and discard the
redundant details for audio. The experimental
results demonstrate our acoustic tokenizers can
generate discrete labels with rich audio semantics
and our audio SSL models achieve state-of-the-art
(SOTA) results across various audio classification
benchmarks, even outperforming previous models
that use more training data and model parameters
significantly. Specifically, we set a new SOTA
mAP 50.6% on AudioSet-2M without using any
external data, and 98.1% accuracy on ESC-50.
The code and pre-trained models are available at
https://aka.ms/beats.

1. Introduction
Recent years have witnessed great success in self-supervised
learning (SSL) for speech and audio processing. The speech
SSL models, such as Wav2vec 2.0 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021), BigSSL (Zhang et al., 2022),
WavLM (Chen et al., 2022b), and data2vec (Baevski et al.,
2022), show prominent performance across various speech
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processing tasks, especially in low-resource scenarios. Un-
like speech, audio typically contains wide variations of en-
vironmental events, including human voices, nature sounds,
musical beats, etc, which brings great challenges to general
audio modeling. Existing work (Gong et al., 2022a) finds
that applying the speech SSL model directly to the audio
domain does not lead to satisfactory performance. Thus, it
is non-trivial to study general audio SSL methods.

Until now, state-of-the-art (SOTA) audio SSL models (Xu
et al., 2022; Chong et al., 2022) employ an acoustic fea-
ture reconstruction loss as the pre-training objective instead
of the discrete label prediction pre-training task as in SSL
models of speech (Hsu et al., 2021; Chen et al., 2022b),
vision (Bao et al., 2021; Peng et al., 2022; Wang et al.,
2022b) and language (Devlin et al., 2019; Liu et al., 2019;
Lan et al., 2019). However, it was generally believed that
the reconstruction loss only accounts for the correctness of
low-level time-frequency features but neglects high-level
audio semantic abstraction (Ramesh et al., 2021; Bao et al.,
2021). The discrete label prediction would be a potentially
better audio pre-training objective than reconstruction for
the following reasons. Firstly, from the bionics aspect, hu-
mans understand audio by extracting and clustering the
high-level semantics instead of focusing on the low-level
time-frequency details (Patterson et al., 2007; Harb & Chen,
2007; Ma et al., 2018). By mimicking the semantics ex-
tracting and clustering through the discrete label prediction
pre-training objective, the audio SSL model is expected to
learn the same understanding and generalization skills as
humans. Secondly, the discrete label prediction objective
can improve the audio modeling efficiency by providing
semantic-rich tokens as the pre-training targets and encour-
aging the model to discard the redundant details, resulting
in a superior audio understanding capability with a lower
pre-training recourse cost (Bao et al., 2021; 2022; Peng
et al., 2022). Thirdly, the audio SSL pre-training with the
discrete label prediction objective advances the unification
of language, vision, speech, and audio pre-training, and en-
ables the possibility of building a foundation model across
modalities with a single pre-training task, i.e. discrete label
prediction (Wang et al., 2022b).

Despite these advantages and great successes in various
domains, the application of discrete label prediction in gen-
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Figure 1. Iterative audio pre-training of BEATS.

eral audio processing remains challenging for two reasons.
Firstly, as the audio signal is continuous and the same acous-
tic event might have various durations in different occasions,
it is not straightforward to directly split the audio into seman-
tically meaningful tokens as in language processing (Devlin
et al., 2019). On the other hand, different from speech, the
general audio signals contain excessively larger data vari-
ations, including various non-speech acoustic events and
environmental sounds, where the commonly used speech
tokenizer for phoneme information extraction (Hsu et al.,
2021) can not be directly applied.

To tackle these challenges, in this work we propose BEATS,
short for Bidirectional Encoder representation from Audio
Transformers, in which an acoustic tokenizer and an audio
SSL model are optimized through an iterative audio pre-
training framework. The training pipeline is illustrated in
Figure 1. In each iteration, we first use the acoustic tok-
enizer to generate the discrete labels of the unlabeled audio,
and use them to optimize the audio SSL model with a mask
and discrete label prediction loss. After convergence, the
audio SSL model acts as a teacher to guide the acoustic tok-
enizer to learn audio semantics with knowledge distillation
(Hinton et al., 2015). In this alternating update learning
process, the acoustic tokenizer and the audio SSL model
can benefit from each other. The procedure is repeated until
convergence. Specifically, in the first iteration, we use a
random-projection acoustic tokenizer to generate discrete
labels as a cold start. In addition, we could fine-tune the
audio SSL model with a little supervised data, and use the
fine-tuned model as the teacher for acoustic tokenizer train-
ing. A fine-tuned model learns semantic knowledge not
only from SSL but supervised learning, which can further
improve the tokenizer quality. We believe the proposed
pre-training framework encourages our audio SSL model
to learn relevant semantic information from iterations. Our
pre-training framework is also compatible with any masked
audio prediction model, regardless of what backbone net-
work is used.

We employ the vanilla ViT model (Dosovitskiy et al., 2021)
as the backbone of our audio SSL models without heavy

structure engineering, and apply the speed-up technique
proposed in He et al. (2022). Given the discrete labels
generated by the acoustic tokenizer, we mask 75% of the
input sequence and let the model predict the correspond-
ing discrete labels on mask regions. We follow Xu et al.
(2022) to fine-tune the audio SSL model across various
audio tasks. Experimental results show that our BEATS pre-
trained models have superior performance compared with
previous works across six audio and speech classification
tasks. We achieve the SOTA audio understanding perfor-
mance on AudioSet-2M, even outperforming the previous
SOTA results that are obtained with much more model pa-
rameters (90M v.s. 304M) and training data (e.g. ImageNet)
by a large margin (48.6% v.s. 47.4% for single model and
50.6% v.s. 49.6% for ensemble models). On ESC-50, our
BEATS also achieved 25% relative error rate reduction over
the previous SOTA performance. We further demonstrate
the effectiveness of our proposed acoustic tokenizers, where
the generated discrete labels are robust to random distur-
bances and well aligned with audio semantics.

Our contributions include the following: 1) We propose an it-
erative audio pre-training framework, which opens the door
to audio pre-training with a discrete label prediction loss
and shows better performance than with reconstruction loss.
It unifies the pre-training for speech and audio, which sheds
light on the foundation model building for both speech and
audio. 2) We provide effective acoustic tokenizers to quan-
tize continuous audio features into semantic-rich discrete
labels, facilitating future work of audio pre-training and
multi-modality pre-training. 3) We achieve SOTA results on
several audio and speech understanding benchmarks. The
models and codes are released to facilitate future research1.

2. Related Work
Recently, audio pre-training has achieved great success in
audio understanding tasks. The existing audio pre-training
methods include supervised pre-training and self-supervised
pre-training. Previous works (Gong et al., 2021a;b; Kou-
tini et al., 2021; Nagrani et al., 2021; Chen et al., 2022a)
find supervised pre-training with out-of-domain data (e.g.
ImageNet (Deng et al., 2009)) can obtain significant ac-
curacy improvement on audio understanding tasks. Some
methods (Kong et al., 2020; Gong et al., 2021a; Koutini
et al., 2021; Verbitskiy et al., 2022; Chen et al., 2022a; Xu
et al., 2022; Elizalde et al., 2022; Wu et al., 2022; Guzhov
et al., 2022) also leverage in-domain data (e.g. AudioSet
(Gemmeke et al., 2017)) for supervised audio pre-training.
Despite the promising classification results, these methods
strongly rely on a great amount of supervised data, which is
complex and expensive in practice. In comparison, the self-
supervised pre-training methods only require large-scale
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unlabeled data, which can be easily get from the Internet.
The self-supervised audio pre-training methods typically
learn the audio representations with the contrastive learn-
ing (Ravanelli & Bengio, 2018; Saeed et al., 2021; Fon-
seca et al., 2021; Al-Tahan & Mohsenzadeh, 2021; Wang &
Oord, 2021) or reconstruction objective (Tagliasacchi et al.,
2020; Niizumi et al., 2021; 2022; Gong et al., 2022a; Baade
et al., 2022; Chong et al., 2022; Xu et al., 2022). Until now,
the MAE-style reconstruction pre-training methods (Baade
et al., 2022; Niizumi et al., 2022; Chong et al., 2022; Xu
et al., 2022) show the best audio understanding performance
on various audio classification tasks. Unlike the previous
methods, we explore the self-supervised audio pre-training
method with the masked discrete label prediction objective
for the first time.

Various tokenizers have been proposed for learning discrete
representations on audio and speech tasks. Dieleman et al.
(2018) propose a hierarchical VQ-VAE based model to learn
audio discrete representations for music generation tasks.
HuBERT (Hsu et al., 2021) generates discrete labels with
the iterative hidden state clustering method for speech SSL
task, where the hidden state is extracted from the last round
speech SSL model. Chiu et al. (2022) claim a random-
projection tokenizer is adequate for a large speech SSL
model pre-training. Our work is the first to train an acoustic
tokenizer with the supervision of the last round SSL model,
which is different from the previous auto-encoding and ad-
hoc clustering methods.

3. BEATS

3.1. Iterative Audio Pre-training

Figure 1 shows the overall pipeline of our iterative audio
pre-training framework of BEATS, where an acoustic tok-
enizer (Section 3.2) and an audio SSL model (Section 3.3)
are optimized by iterations. In each iteration, given the un-
labeled audio, we use the acoustic tokenizer to generate the
discrete labels, and use them to train the audio SSL model
with a mask and discrete label prediction loss. After model
convergence, we use the audio SSL model as the teacher to
train a new acoustic tokenizer with knowledge distillation
for the next iteration of audio SSL model training.

Specifically, given an audio clip as the input, we first extract
the corresponding acoustic features, split them into regular
grid patches, and further flatten them to the patch sequence
X = {xt}Tt=1. For the audio SSL model training, we use
the acoustic tokenizer to quantize the patch sequence X to
the patch-level discrete labels Ẑ = {ẑt}Tt=1 as the masked
prediction targets. For the acoustic tokenizer training, we
leverage the audio SSL model to encode the patch sequence
X and extract the output sequence Ô = {ôt}Tt=1 as the
knowledge distillation targets.

Note that we could leverage either a pre-trained audio SSL
model or a fine-tuned audio SSL model as the teacher for
acoustic tokenizer training. A fine-tuned model learns
semantic knowledge not only from self-supervised pre-
training but supervised fine-tuning, making it a better
teacher for audio semantics distillation. With this alternating
update learning process, the acoustic tokenizer benefits from
the semantic-rich knowledge encoded by the audio SSL
model, while the audio SSL model benefits from semantic-
rich discrete labels generated by the acoustic tokenizer. The
procedure is repeated until convergence, and the theoretical
proof of convergence is provided in Appendix A.

3.2. Acoustic Tokenizers

The acoustic tokenizers are used to generate the discrete
labels for each iteration of BEATS pre-training. In the first
iteration, given the teacher model is unavailable, we employ
a Random-Projection Tokenizer (Section 3.2.1) to cluster
the continuous acoustic features into discrete labels as a
cold start. Starting from the second iteration, we train a Self-
Distilled Tokenizer (Section 3.2.2) to generate the refined
discrete labels with the semantic-aware knowledge distilled
from the pre-trained/fine-tuned audio SSL model obtained
in the last iteration.

3.2.1. COLD START: RANDOM-PROJECTION
TOKENIZER

For the first iteration of BEATS pre-training, we apply the
random-projection tokenizer (Chiu et al., 2022) to generate
the patch-level discrete labels for each input audio.

As shown in the left part of Figure 2, the random-projection
tokenizer includes a linear projection layer and a set of
codebook embeddings, which are kept frozen after random
initialization. Each patch of the input feature is first pro-
jected with the linear layer, then finds the nearest neighbor
vector among the codebook embeddings, where the index
of the nearest neighbor is defined as the discrete label.

Specifically, given the patch sequence extracted from the
input audio X = {xt}Tt=1, we first project xt to the vec-
tor Wxt with a randomly initialized projection layer W.
Then we look up the nearest neighbor vector of each pro-
jected vector Wxt from a set of random initialized vectors
V = {vi}Ki=1, where K is the codebook size, and define
the discrete label of t-th patch as the index of the nearest
neighbor vector: ẑt = argmini ||vi −Wxt||22.

3.2.2. ITERATION: SELF-DISTILLED TOKENIZER

From the second iteration of BEATS pre-training, we lever-
age the last iteration audio SSL model as the teacher, which
can be either a pre-trained model or a fine-tuned model, to
teach the current iteration tokenizer learning. We call it the
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Figure 2. Acoustic tokenizers for discrete label generation.

self-distilled tokenizer to generate the patch-level discrete
labels for each input audio.

As shown in the right part of Figure 2, the self-distilled
tokenizer first uses a Transformer-based tokenizer encoder
to convert the input patches to discrete labels with a set
of learnable codebook embeddings. Then, a Transformer-
based tokenizer estimator is trained to predict the output
of a teacher model with the discrete labels and codebook
embeddings as the input. With knowledge distillation as the
training target, the tokenized discrete labels are optimized
to contain more semantic-rich knowledge from the teacher
and less redundant information of the input audio.

Specifically, we first feed the input patches X = {xt}Tt=1

to a 12-layer Transformer encoder and obtain the encoded
vector sequence E = {et}Tt=1. Then, for each encoded
vector et, we conduct the quantization by finding the near-
est neighbor vector vẑt from the codebook embeddings
V = {vi}Ki=1: ẑt = argmini ||ℓ2(vi) − ℓ2(et)||22, where
ℓ2 normalization is used to improve the codebook utilization
(Yu et al., 2021; Peng et al., 2022). With the quantized vec-
tor sequence Eq = {vẑt}Tt=1 as the input, we use a 3-layer
Transformer estimator to predict the last layer output of the
teacher model {ôt}Tt=1. To deal with the non-differentiable
problem of the vector quantization, following Van Den Oord
et al. (2017), we apply the straight-through gradients mecha-
nism, where the gradients are directly copied from the quan-
tized vector sequence Eq to the encoded vector sequence E

during the backward process.

The overall training objective of the self-distilled tokenizer
is defined as the cosine similarity between the output se-
quence of the tokenizer estimator {ot}Tt=1 and the out-
put sequence of the teacher model {ôt}Tt=1, along with
the mean squared error between the encoded vector se-
quence E = {et}Tt=1 and the quantized vector sequence
Eq = {vẑt}Tt=1: L = max

∑
X∈D

∑T
t=1 cos(ot, ôt) −

||sg[ℓ2(et)]− ℓ2(vẑt)||22 − ||ℓ2(et)− sg[ℓ2(vẑt)]||22, where
D denotes the pre-training datasets, cos(·, ·) and sg[·] are
the cosine similarity and the stopgradient operator, respec-
tively. We employ the exponential moving average (Van
Den Oord et al., 2017) for codebook embedding optimiza-
tion for more stable tokenizer training (Peng et al., 2022).
During inference, we discard the tokenizer estimator, and
leverage the pre-trained tokenizer encoder and codebook
embeddings to convert each input audio X = {xt}Tt=1 to
patch-level discrete labels Ẑ = {ẑt}Tt=1.

3.3. Audio SSL Model

3.3.1. BACKBONE

Following the previous works (Gong et al., 2021a; 2022a;
Xu et al., 2022), we employ the ViT structure (Dosovitskiy
et al., 2021) as the backbone network, which consists of a
linear projection layer and a stack of Transformer encoder
layers. Given the input audio patches X = {xt}Tt=1, we
first convert them to the patch embeddings E = {et}Tt=1
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Figure 3. Overview of audio SSL model pre-training and fine-tuning.

with a linear projection network. Then, we feed the patch
embeddings to the Transformer encoder layers, and obtain
the encoded patch representations R = {rt}Tt=1. The Trans-
former is equipped with a convolution-based relative posi-
tion embedding layer at the bottom, and the gated relative
position bias (Chi et al., 2022) for better position informa-
tion encoding. We also employ the DeepNorm (Wang et al.,
2022a) for more stable pre-training.

3.3.2. PRE-TRAINING

We propose a Masked Audio Modeling (MAM) task for the
audio SSL model pre-training, as shown in the left part of
Figure 3. Different from the previous audio pre-training
methods, where the model is optimized to reconstruct the
input acoustic feature, our model is optimized to predict
the patch-level discrete labels generated by the acoustic
tokenizers (Section 3.2) with a label predictor.

Specifically, given the input patch sequence X = {xt}Tt=1

and the corresponding target discrete acoustic labels
Ẑ = {ẑt}Tt=1, we randomly mask 75% of the input
patches, where the masked positions are denoted as M =
{1, . . . , T}0.75T . Then, we feed the unmasked patch se-
quence XU = {xt : t ∈ M}Tt=1 to the ViT encoder, and
obtain the encoded representations RU = {rt : t ∈ M}Tt=1.
Finally, we feed the combination of the non-masked patch
representations and the masked patch features {rt : t ∈
M}Tt=1 ∪ {0 : t ̸∈ M}Tt=1 to the label predictor to pre-
dict the discrete acoustic labels Z = {zt}Tt=1. It should be
noted that only feeding the non-masked patches into the en-
coder could significantly speed up the training process while

providing slight improvement across downstream tasks (Xu
et al., 2022). The pre-training objective of MAM is the cross
entropy loss which maximizes the log-likelihood of the cor-
rect acoustic labels in the masked positions given the un-
masked patch sequences: LMAM = −

∑
t∈M log p(ẑt|XU ).

3.3.3. FINE-TUNING

During audio SSL model fine-tuning, we discard the label
predictor, and append a task-specific linear classifier upon
the ViT encoder to generate the labels for the downstream
classification tasks, as shown in the right part of Figure 3.

Specifically, we first random mask the input acoustic feature
in the time and frequency dimension as spec-augmentation
(Park et al., 2019), then split and flat it to the patch se-
quence X = {xt}Tt=1. Unlike pre-training, we feed the
whole patch sequence X to the ViT encoder, and obtain
the encoded representations R = {rt}Tt=1. Finally, we
use a linear classifier to calculate the category probabilities
as p(C) = Softmax(MeanPool(WcR)), where Softmax,
MeanPool and Wc denote the softmax operation, mean-
pooling layer and the linear projection, respectively. We
employ the cross entropy loss as the fine-tuning objective
for the single label classification tasks, and the binary cross
entropy loss for the multi-label classification tasks or the
mixup augmentation (Zhang et al., 2017) is employed.
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4. Experiment
4.1. Setup

Datasets We pre-train our BEATS tokenizers and audio
SSL models on the full training set of the AudioSet dataset
(Gemmeke et al., 2017), and evaluate our pre-trained audio
SSL models on six downstream tasks, including three au-
dio classification tasks (AS-2M, AS-20K (Gemmeke et al.,
2017) and ESC-50 (Piczak, 2015)) and three speech classifi-
cation tasks (KS1, KS2 (Warden, 2018) and ER (Busso et al.,
2008)). Please see Appendix B for the detailed introduction
of each downstream task.

Backbone The BEATS models have 12 Transformer en-
coder layers, 768-dimensional hidden states, and 8 attention
heads, resulting in 90M parameters. We keep the model size
similar to the previous SOTA audio pre-trained models (Xu
et al., 2022; Chong et al., 2022) for a fair comparison of the
pre-training methods.

Acoustic feature Following (Gong et al., 2021a; 2022a),
we convert the sample rate of each raw waveform to 16,000
Hz, and extract the 128-dimensional Mel-filter bank features
with a 25ms Povey window that shifts every 10 ms as the
acoustic feature. The acoustic feature is normalized to the
mean value of 0 and standard deviation of 0.5 following the
previous works. We split each acoustic feature into the 16
× 16 patches, and further flat them to the patch sequence as
the input of our BEATS tokenizers and models.

Model and tokenizer training We pre-train the BEATS
models on AS-2M dataset for three iterations and denote
them as BEATSiter1, BEATSiter2, BEATSiter3, BEATSiter3+.

The BEATSiter1 is pre-trained with the discrete labels gen-
erated by a random-projection tokenizer (Section 3.2.1).
Starting from the second iteration, we train a self-distilled
tokenizer (Section 3.2.2) to generate the discrete labels for
the pre-training of BEATSiter2 and BEATSiter3 with the pre-
trained BEATSiter1 and BEATSiter2 as the teacher, respec-
tively. Different from BEATSiter3, the self-distilled tok-
enizer for BEATSiter3+ pre-training takes the supervised
fine-tuned BEATSiter2 as the teacher model and learns to
estimate the classification logits of the input audios. Com-
pared with the other BEATS models, the BEATSiter3+ not
only make use of the downstream supervised data during
fine-tuning but also in pre-training.

We pre-train all the BEATS models for 400k steps with a
batch size of 5.6K seconds and a 5e-4 peak learning rate.
The codebook of all the tokenizers contains 1024 embed-
dings with 256 dimensions. The self-distilled tokenizer with
a self-supervised model as the teacher is trained for 400k
steps with a batch size of 1.4K seconds and a 5e-5 peak
learning rate. The self-distilled tokenizer with a supervised

model as the teacher is trained for 400k steps with a batch
size of 1.4K seconds and a 5e-4 peak learning rate. Each of
the BEATS models is trained with 16 Tesla V100-SXM2-
32GB GPUs for around 75 hours and the self-distilled to-
kenizer is trained with 8 Tesla V100-SXM2-32GB GPUs
for around 45 hours. Please see Appendix C for the detailed
hyperparameter settings.

4.2. Comparing with the SOTA Single Models

Table 1 shows the comparison of the single-model perfor-
mance of our BEATS pre-trained models and the previous
SOTA models. For a fair comparison with the previous self-
supervised pre-training methods, we report the BEATSiter3+
fine-tuning results on AS-2M and AS-20K with the mod-
els that are pre-trained with the same supervised dataset as
fine-tuning. On the other tasks, we report the BEATSiter3+
fine-tuning results with the model that is pre-trained with
the AS-2M supervised dataset, and compare them with the
previous supervised pre-training methods. Following (Xu
et al., 2022; Gong et al., 2021a), we report the BEATSiter3+
fine-tuning result on ESC-50 with additional supervised
training on AS-2M.

Overall, BEATS achieve the best performance across all six
audio and speech classification tasks. BEATSiter3+ set a new
SOTA single-model audio understanding performance on
AS-2M and AS-20K, and outperform the previous SOTA
results by a large margin (48.6 v.s. 47.4 on AS-2M, and
38.9 v.s. 37.6 on AS-20K) with much fewer model parame-
ters (90M v.s. 304M). Notably, BEATS also significantly
outperform all the previous models that use more out-of-
domain or in-domain data for supervised or self-supervised
pre-training. On ESC-50, BEATS successfully reduce the
SOTA classification error rate from 5.9% to 4.4% without
any external supervised data, and from 2.6% to 1.9% with
external AS-2M supervised data.

As shown in the table, our first iteration model BEATSiter1
which uses a random-projection tokenizer for label gen-
eration can already obtain better performance than previ-
ous works on five out of six tasks (AS-2M, ESC-50, KS1,
KS2, and ER), which demonstrates the superiority of the
discrete label prediction loss comparing to the reconstruc-
tion loss. Pre-trained with the refined labels generated by
a self-distilled tokenizer, BEATSiter2 can achieve further
performance improvements, especially on the audio classi-
fication tasks. With SSL on AS-2M, BEATSiter1 learns to
encode the high-level audio representations with semantic-
aware knowledge. Taking BEATSiter1 as the teacher model,
the self-distilled tokenizer is optimized to refine the labels
with more audio-related semantics, resulting in the more
powerful audio modeling ability of BEATSiter2.

As for the third iteration of BEATS pre-training, we can find
that BEATSiter3 obtains similar performance as BEATSiter2,
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Table 1. Comparing with the SOTA single models on audio and speech classification tasks. IN, AS, and LS denote the ImageNet, AudioSet,
and LibriSpeech (Panayotov et al., 2015) datasets, respectively. TA and TI denote the 128K text-audio pairs and 400M text-image
pairs for CLAP (Elizalde et al., 2022) and CLIP (Radford et al., 2021) pre-training, respectively. The evaluation metrics are mAP for
AS-2M/AS-20K and accuracy for ESC-50/KS1/KS2/ER. We compared the best single models from each previous work. We gray-out the
models and results with additional supervised training on the external datasets. ∗The results reported following the SUPERB policy (wen
Yang et al., 2021), where pre-trained models are kept frozen during fine-tuning.

Model # Param Data Audio Speech

AS-2M AS-20K ESC-50 KS1 KS2 ER
No Pre-Training
PANN (Kong et al., 2020) 81M - 43.1 27.8 83.3 - 61.8 -
ERANN (Verbitskiy et al., 2022) 55M - 45.0 - 89.2 - - -
Out-of-domain Supervised Pre-Training
PSLA (Gong et al., 2021b) 14M IN 44.4 31.9 - - 96.3 -
AST (Gong et al., 2021a) 86M IN 45.9 34.7 88.7 95.5 98.1 56.0
MBT (Nagrani et al., 2021) 86M IN-21K 44.3 31.3 - - - -
PaSST (Koutini et al., 2021) 86M IN 47.1 - - - - -
HTS-AT (Chen et al., 2022a) 31M IN 47.1 - - - 98.0 -
Wav2CLIP (Wu et al., 2022) 74M TI+AS - - 86.0 - - -
AudioCLIP (Guzhov et al., 2022) 93M TI+AS 25.9 - 96.7 - - -
In-domain Supervised Pre-Training
PANN (Kong et al., 2020) 81M AS - - 94.7 - - -
ERANN (Verbitskiy et al., 2022) 55M AS - - 96.1 - - -
AST (Gong et al., 2021a) 86M IN+AS 45.9 - 95.6 - 97.9 -
PaSST (Koutini et al., 2021) 86M IN+AS 47.1 - 96.8 - - -
HTS-AT (Chen et al., 2022a) 31M IN+AS 47.1 - 97.0 - - -
CLAP (Elizalde et al., 2022) 190.8M TA - - 96.7 - 96.8 -
Audio-MAE (Xu et al., 2022) 86M AS - - 97.4 - - -
Self-Supervised Pre-Training
Wav2vec (Schneider et al., 2019) 33M LS - - - 96.2 - 59.8
Wav2vec 2.0 (Baevski et al., 2020) 95M LS - - - 96.2∗ - 63.4∗

SS-AST (Gong et al., 2022a) 89M AS+LS - 31.0 88.8 96.0 98.0 59.6
MSM-MAE (Niizumi et al., 2022) 86M AS - - 85.6 - 87.3 -
MaskSpec (Chong et al., 2022) 86M AS 47.1 32.3 89.6 - 97.7 -
MAE-AST (Baade et al., 2022) 86M AS+LS - 30.6 90.0 95.8 97.9 59.8
Audio-MAE (Xu et al., 2022) 86M AS 47.3 37.1 94.1 96.9 98.3 -
data2vec (Baevski et al., 2022) 94M AS - 34.5 - - - -
Audio-MAE Large (Xu et al., 2022) 304M AS 47.4 37.6 - - - -
CAV-MAE (Gong et al., 2022b) 86M AS+IN 44.9 34.2 - - - -
Ours
BEATSiter1 90M AS 47.9 36.0 94.0 98.0 98.3 65.9
BEATSiter2 90M AS 48.1 38.3 95.1 97.7 98.3 66.1
BEATSiter3 90M AS 48.0 38.3 95.6 97.7 98.3 64.5
BEATSiter3+ 90M AS 48.6 38.9 98.1 98.1 98.1 65.0

indicating our self-distilled tokenizer is robust to different
SSL teacher models, and our BEATS iterative pre-training
procedure is capable of fast convergence in only a few it-
erations. Furthermore, if we use the fine-tuned BEATSiter2
models as the teacher model, the BEATSiter3+ can bring
significant performance gains on both AS-2M and AS-20K
tasks, and outperform all the previous SOTA models by
a large margin. By leveraging the supervised fine-tuning
data in our iterative training pipeline, both the acoustic to-
kenizer and the audio SSL model learn more task-specific
semantic knowledge from each other, which would effec-
tively promote BEATSiter3+ performance on the downstream
understanding tasks.

4.3. Comparing Different BEATS Tokenizers

Table 2 shows the detailed performance comparison of dif-
ferent BEATS tokenizers. We can find that the self-distilled
tokenizer shows remarkable superiority compared with the
random-projection tokenizer, especially in the task with
scarce data. It is because the random-projection tokenizer
with a simple feature clustering process is insufficient to
provide the labels with the high-level audio semantic ab-
straction, while the self-distilled tokenizer is able to distill
the semantic knowledge from a well pre-trained audio SSL
model to the generated discrete labels.

In addition, the results show that the performance of the self-
distilled tokenizer is insensitive to different self-supervised
teachers (e.g. BEATS models) but sensitive to different
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Table 2. Comparing different BEATS tokenizers on audio classification tasks. SSL Data and SL Data denote the training data used
for self-supervised learning and supervised learning, respectively. ∗We use AS-2M supervised data during pre-training and AS-20K
supervised data during fine-tuning. †Here, We report the ESC-50 results without additional supervised pre-training on AS-2M for a fair
comparison of different tokenizers.

Model Tokenizer Type Tokenizer Teacher SSL Data SL Data AS-2M AS-20K ESC-50
BEATSiter1 Random-Projection N/A AS - 47.9 36.0 94
BEATSiter2 Self-Distilled BEATSiter1 AS - 48.1 38.3 95.1
BEATSiter3 Self-Distilled BEATSiter2 AS - 48.0 38.3 95.6
BEATSiter3+ Self-Distilled BEATSiter2 fine-tuned on AS-20K AS AS-20K 48.0 38.9 96.2
BEATSiter3+ Self-Distilled BEATSiter2 fine-tuned on AS-2M AS AS 48.6 41.8∗ 97.1†

(a) Reconstruction (b) BEATSiter3 (c) BEATSiter3+

Figure 4. Comparing the pre-training targets of different SSL models with audio samples from ESC-50. We visualize the acoustic
features for reconstruction-based SSL models, the representations quantized by the tokenizer with a self-supervised pre-trained teacher for
BEATSiter3, and the representations quantized by the tokenizer with a supervised fine-tuned teacher for BEATSiter3+.

supervised teachers (e.g. the fine-tuned BEATS models).
The self-distilled tokenizer guided by BEATSiter1 obtains
similar performance as the tokenizer guided by BEATSiter2.
The self-distilled tokenizer guided by the AS-2M fine-tuned
BEATSiter2 model can achieve the best performance on all
three audio classification tasks.

4.4. Comparing Different Pre-Training Targets via
Visualization

Figure 4 shows the comparison of the pre-training targets of
different SSL models with audio samples from the ESC-50
dataset. Specifically, figure 4(a) demonstrates the acoustic
features which are the pre-training targets for reconstruction-
based SSL models. Figure 4(b) and 4(c) illustrate the pre-
training targets of BEATSiter3 and BEATSiter3+, which are
demonstrated with the quantized representations encoded
by the acoustic tokenizers with a self-supervised teacher
(i.e. BEATSiter2) and a supervised teacher (i.e. the fine-
tuned BEATSiter2), respectively. We reduced the feature
dimension to 2-D by T-SNE (Van der Maaten & Hinton,
2008) for better visualization.

As the standard evaluation setting, we divide the data into
a 1.6K training set and a 0.4K valid set. We use the train-
ing set for BEATSiter3+ pre-training, and the valid set for
visualization. We randomly select ten audio samples with

different classification labels from the valid set, then add
some random disturbance on the waveform with RIR 2 rever-
berations and DNS noises (Reddy et al., 2021). The points
with different colors denote the audios with different clas-
sification labels, and the points with the same color denote
different disturbances to the same audio.

As shown in the figures, the pre-training targets of
reconstruction-based SSL models are very sensitive to ran-
dom disturbances on the waveform. The acoustic feature of
the same audio with different disturbances can be far apart,
and the acoustic feature with different labels can be closely
spaced. It indicates the pre-training targets of reconstruction-
based SSL models mainly contain low-level time-frequency
features and lack high-level audio semantic abstractions. In
comparison, the pre-training targets of BEATS models are
much more robust to the random variations. With the self-
supervised pre-trained model as the teacher, the acoustic
tokenizer learns to cluster the audio samples with the same
semantic content and get rid of the background reverbera-
tions and noises. With the supervised fine-tuned model as
the teacher, the acoustic tokenizer can successfully capture
high-level semantics of audio regardless of the low-level
details of redundancy, and generate semantic-rich discrete
tokens for more effective BEATS model pre-training.

2https://www.openslr.org/28/
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Table 3. Comparing with the SOTA ensemble models on AS-2M.
Model SL Data AS-2M
PSLA (Gong et al., 2021b) IN+AS 47.4
AST (Gong et al., 2021a) IN+AS 48.5
HTS-AT (Chen et al., 2022a) IN+AS 48.7
PaSST (Koutini et al., 2021) IN+AS 49.6
BEATS (5 models) AS 50.4
BEATS (10 models) AS 50.6

4.5. Comparing with the SOTA Ensemble Models

Table 3 shows the comparison of the ensemble-model perfor-
mance of our BEATS pre-trained models and the previous
SOTA models on AS-2M. We first ensemble all the five
AS-2M fine-tuned BEATS models that are listed in Table 2,
and denote it as BEATS (5 models). As shown in the table,
without using any external supervised data (e.g. ImageNet),
our BEATS (5 models) significantly outperforms the previ-
ous best ensemble models by 0.8 mAP. Then, we rerun the
AS-2M fine-tuning of the five BEATS SSL models with a
learning rate of 5e-5 for 100k training steps, and ensemble
all the ten AS-2M fine-tuned models. The BEATS (10 mod-
els) can further improve the ensemble results and achieve
50.6 SOTA mAP performance.

5. Conclusion, Limitations, and Future Work
In this paper, we propose BEATS, an iterative audio pre-
training framework for audio representation learning. Dif-
ferent from the previous audio SSL methods that employ
reconstruction loss as the pre-training objective, we present
a self-distilled tokenizer to convert continuous audio sig-
nals into discrete labels, enabling the classic mask and dis-
crete label prediction pre-training. BEATS achieve supe-
rior performance across six audio and speech classifica-
tion tasks and set new SOTA results on AudioSet-2M and
ESC-50 benchmarks. Further visualization analysis illus-
trates the pre-training targets of BEATS models are more
robust to disturbances and aligned with the semantics than
reconstruction-based audio SSL models, which indicates
the effectiveness of the self-distilled tokenizer and accounts
for the superiority of our audio pre-training framework.

Despite these advancements, our BEATs models still have
several limitations.

Computation Overhead: The iterative pre-training pro-
cess employed by BEATs models results in a linear increase
in computational overhead with the number of iteration
steps. To mitigate this issue, we release all pre-trained to-
kenizers and SSL models, enabling future researchers to
generate semantically-rich labels for their audio samples,
fine-tune SSL models, and train new audio SSL models at a
significantly reduced cost.

Data Coverage: In line with previous audio pre-training
studies, our work relies solely on the AudioSet-2M dataset
for pre-training, which is limited in terms of audio and
speech coverage. As a future direction, we plan to broaden
the pre-training data to further enhance the capabilities and
effectiveness of BEATs in more general audio processing
tasks. Additionally, we are interested in exploring the multi-
modal domain by integrating audio with vision and lan-
guage.

Model Scalability: The models pre-trained in this work
are limited to 96M parameters, a considerably smaller
number compared to state-of-the-art pre-trained models in
speech processing. Given the significant progress that larger
models have achieved in natural language processing and
computer vision, we believe that scaling up our SSL model
offers a promising avenue for future research.
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A. Convergence Analysis
In this section, we investigate the convergence properties of our proposed iterative audio pre-training procedure. From the
probabilistic perspective, we can formulate the iterative pre-training of our tokenizer and SSL model with the expectation-
maximization (EM) algorithm, which is used to obtain maximum likelihood estimates of the parameters in models with latent
variables. By utilizing the EM algorithm, the likelihood function of the observable data is guaranteed to be non-decreasing in
each iteration, ensuring the convergence of our iterative pre-training procedure. In the following, we present a mathematical
analysis and formally prove the convergence of our approach.

A.1. Mathematical Formulation

Given the input audio samples X, the tokenizer parameters δ, and the SSL model parameters θ, our framework is optimized
to maximize the likelihood function p(X|θ, δ) with the discrete labels Z and SSL model representation R as the latent
variables. We denote δ(t) and θ(t) as the tokenizer and the SSL model parameters optimized in the t-th iteration, respectively.
In the (t+ 1)-th iteration, the tokenizer is trained to maximize the joint distribution p(X,R|θ(t), δ), where R is sampled
from the posterior distribution p(R|X,θ(t)) estimated by the SSL model from the previous iteration. Subsequently, the SSL
model is trained to maximize the joint distribution p(X,Z|θ, δ(t+1)), where Z is sampled from the posterior distribution
p(Z|X, δ(t+1)) estimated by the tokenizer from the current iteration.

A.2. Convergence Proof

Lemma A.1. Given the mathematical formulation in Section A.1, the likelihood is guaranteed to be non-decreasing during
each iteration of the tokenizer training. Formally, ∀t ∈ N, log p(X|θ(t), δ(t+1)) ≥ log p(X|θ(t), δ(t)).

Proof of Lemma A.1. We derive the log-likelihood function for each iteration of the tokenizer training as follows:

log p(X|θ, δ) = ER∼q(R) log p(X|θ, δ)
= ER∼q(R) (log p(X,R|θ, δ)− log p(R|X,θ, δ))

= ER∼q(R)

(
log

p(X,R|θ, δ)
q(R)

− log
p(R|X,θ, δ)

q(R)

)
= ER∼q(R) log

p(X,R|θ, δ)
q(R)

− ER∼q(R) log
p(R|X,θ, δ)

q(R)

= ER∼q(R) log
p(X,R|θ, δ)

q(R)︸ ︷︷ ︸
ELBO(q(R),θ,δ)

+KL(q(R)||p(R|X,θ, δ)),

(1)

where a distribution q(R) defined over the latent variables R is introduced, and the Kullback-Leibler (KL) Divergence
between the distributions q(R) and p(R|X,θ, δ)) is denoted as KL(q(R)||p(R|X,θ, δ)). Since the KL divergence satisfies
KL(q(R)||p(R|X,θ, δ)) ≥ 0, with equality if, and only if q(R) = p(R|X,θ, δ), ELBO(q(R),θ, δ) is the evidence lower
bound on the log-likelihood log p(X|θ, δ).

In the E step of (t + 1)-th iteration, we maximize ELBO(q(R),θ, δ) with respect to q(R) while keeping θ = θ(t) and
δ = δ(t) fixed. Since log p(X|θ(t), δ(t)) does not depend on q(R), maximizing ELBO(q(R),θ(t), δ(t)) is equivalent to
minimizing KL(q(R)||p(R|X,θ(t), δ(t))), resulting in q(R) = p(R|X,θ(t), δ(t)).

In the M step of (t + 1)-th iteration, we maximize ELBO(q(R),θ, δ) with respect to δ while keeping θ = θ(t) and
q(R) = p(R|X,θ(t), δ(t)) fixed, and obtain the optimized parameters δ(t+1) as follows.

δ(t+1) = argmax
δ

ELBO(p(R|X,θ(t), δ(t)),θ(t), δ)

= argmax
δ

ER∼p(R|X,θ(t),δ(t)) log
p(X,R|θ(t), δ)

p(R|X,θ(t), δ(t))

= argmax
δ

ER∼p(R|X,θ(t),δ(t)) log p(X,R|θ(t), δ)

(2)
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Hence, we obtain ∀t ∈ N that

log p(X|θ(t), δ(t+1)) = ER∼p(R|X,θ(t),δ(t)) log p(X|θ(t), δ(t+1))

= ER∼p(R|X,θ(t),δ(t))

(
log p(X,R|θ(t), δ(t+1))− log p(R|X,θ(t), δ(t+1))

)
= ER∼p(R|X,θ(t),δ(t)) log p(X,R|θ(t), δ(t+1))− ER∼p(R|X,θ(t),δ(t)) log p(R|X,θ(t), δ(t+1))

= ER∼p(R|X,θ(t),δ(t)) log p(X,R|θ(t), δ(t+1))− ER∼p(R|X,θ(t),δ(t)) log p(R|X,θ(t), δ(t))

≥ ER∼p(R|X,θ(t),δ(t)) log p(X,R|θ(t), δ(t))− ER∼p(R|X,θ(t),δ(t)) log p(R|X,θ(t), δ(t))

= ER∼p(R|X,θ(t),δ(t)) log p(X|θ(t), δ(t))

= log p(X|θ(t), δ(t))

(3)

The proof of Lemma A.1 is thus complete.

Lemma A.2. Given the mathematical formulation in Section A.1, the likelihood is guaranteed to be non-decreasing during
each iteration of the SSL model training. Formally, ∀t ∈ N, log p(X|θ(t+1), δ(t+1)) ≥ log p(X|θ(t), δ(t+1)).

Proof of Lemma A.2. We derive the log-likelihood function for each iteration of the SSL model training as follows:

log p(X|θ, δ) = EZ∼q(Z) log p(X|θ, δ)
= EZ∼q(Z) (log p(X,Z|θ, δ)− log p(Z|X,θ, δ))

= EZ∼q(Z)

(
log

p(X,Z|θ, δ)
q(Z)

− log
p(Z|X,θ, δ)

q(Z)

)
= EZ∼q(Z) log

p(X,Z|θ, δ)
q(Z)

− EZ∼q(Z) log
p(Z|X,θ, δ)

q(Z)

= EZ∼q(Z) log
p(X,Z|θ, δ)

q(Z)︸ ︷︷ ︸
ELBO(q(Z),θ,δ)

+KL(q(Z)||p(Z|X,θ, δ)),

(4)

where a distribution q(Z) defined over the latent variables Ris introduced. Since the KL divergence satisfies
KL(q(Z)||p(Z|X,θ, δ)) ≥ 0, with equality if, and only if q(Z) = p(Z|X,θ, δ), ELBO(q(Z),θ, δ) is the evidence
lower bound on the log-likelihood log p(X|θ, δ).

In the E step of (t + 1)-th iteration, we maximize ELBO(q(Z),θ, δ) with respect to q(Z) while keeping θ = θ(t) and
δ = δ(t+1) fixed. Since log p(X|θ(t), δ(t+1)) does not depend on q(Z), maximizing ELBO(q(Z),θ(t), δ(t+1)) is equivalent
to minimizing KL(q(Z)||p(Z|X,θ(t), δ(t+1))), resulting in q(Z) = p(Z|X,θ(t), δ(t+1)).

In the M step of (t + 1)-th iteration, we maximize ELBO(q(Z),θ, δ) with respect to θ while keeping δ = δ(t+1) and
q(Z) = p(Z|X,θ(t), δ(t+1)) fixed, and obtain the optimized parameters θ(t+1) as follows.

θ(t+1) = argmax
θ

ELBO(p(Z|X,θ(t), δ(t+1)),θ, δ(t+1))

= argmax
θ

EZ∼p(Z|X,θ(t),δ(t+1)) log
p(X,Z|θ, δ(t+1))

p(Z|X,θ(t), δ(t+1))

= argmax
θ

EZ∼p(Z|X,θ(t),δ(t+1)) log p(X,Z|θ, δ(t+1))

(5)

Hence, we obtain ∀t ∈ N that
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log p(X|θ(t+1), δ(t+1)) = EZ∼p(Z|X,θ(t),δ(t+1)) log p(X|θ(t+1), δ(t+1))

= EZ∼p(Z|X,θ(t),δ(t+1))

(
log p(X,Z|θ(t+1), δ(t+1))− log p(Z|X,θ(t+1), δ(t+1))

)
= EZ∼p(Z|X,θ(t),δ(t+1)) log p(X,Z|θ(t+1), δ(t+1))− EZ∼p(Z|X,θ(t),δ(t+1)) log p(Z|X,θ(t+1), δ(t+1))

= EZ∼p(Z|X,θ(t),δ(t+1)) log p(X,Z|θ(t+1), δ(t+1))− EZ∼p(Z|X,θ(t),δ(t+1)) log p(Z|X,θ(t), δ(t+1))

≥ EZ∼p(Z|X,θ(t),δ(t+1)) log p(X,Z|θ(t), δ(t+1))− EZ∼p(Z|X,θ(t),δ(t+1)) log p(R|X,θ(t), δ(t+1))

= EZ∼p(Z|X,θ(t),δ(t+1)) log p(X|θ(t), δ(t+1))

= log p(X|θ(t), δ(t+1))

(6)

The proof of Lemma A.1 is thus complete.

Theorem A.3. Given the mathematical formulation in Section A.1, the likelihood is guaranteed to be non-decreasing
with each iteration of the iterative audio pre-training procedure. Formally, ∀t ∈ N, log p(X|θ(t+1), δ(t+1)) ≥
log p(X|θ(t), δ(t)).

Proof of Theorem A.3. By applying Lemma A.1 and Lemma A.2, we obtain:

log p(X|θ(t+1), δ(t+1)) ≥ log p(X|θ(t), δ(t+1))

≥ log p(X|θ(t), δ(t))
(7)

The proof of Theorem A.3 is thus complete.

In summary, the convergence analysis demonstrates that our iterative pre-training of the tokenizer and SSL model ensures a
non-decreasing likelihood of the observable data in each iteration. Although convergence to the global maximum of the
likelihood is not guaranteed, the non-decreasing property ensures the convergence of our iterative pre-training procedure to
a local maximum or a saddle point. This provides a theoretical foundation for the effectiveness and stability of our proposed
method.

B. Datasets
We pre-train and evaluate our BEATS models with five datasets as follows. Specifically, we pre-train the acoustic tokenizers
and audio SSL models on the full training set of the AudioSet dataset, and evaluate our pre-trained audio SSL models on six
downstream tasks, including three audio classification tasks (AS-2M, AS-20K and ESC-50) and three speech classification
tasks (KS1, KS2 and ER).

AudioSet (AS-2M and AS-20K) (Gemmeke et al., 2017) is a large-scale audio classification dataset. It contains over 2
million 10-second YouTube clips annotated with 527 audio event classes, where each clip could be annotated with multiple
audio event classes. It is officially subdivided into three partitions, including a class-wise balanced set (22,176 clips), a
class-wise unbalanced set (2,042,985 clips), and an eval set (20,383 clips). Due to the constant change in YouTube video
availability (e.g., videos being removed or taken down), we downloaded and processed 20,666, 1,919,153, and 18,987 clips
for the balanced, unbalanced, and eval sets, respectively, which is consistent with the previous works (Baade et al., 2022).

Following the previous works, we use the combination of the 21K balanced and the 1.9M unbalanced training audios for
fine-tuning in the AS-2M task, and only the 21K balanced training audios for fine-tuning in the AS-20K task. We evaluate
our models on the 19K eval set with the mean average precision (mAP) evaluation metric.

Environmental Sound Classification (ESC-50) (Piczak, 2015) is an audio classification dataset that contains 2,000
5-second environmental sound recordings annotated with 50 classes. Each sound recording is only annotated with one class.
We follow the 5-fold cross-validation evaluation setting as the previous works and report the classification accuracy as the
evaluation metric.

Speech Commands V2 (KS2) (Warden, 2018) is a keyword spotting dataset that contains 105,829 1-second spoken word
clips annotated with 35 common word classes. It is officially subdivided into the training, validation, and testing set that
contains 84,843, 9,981, and 11,005 audio clips respectively. We report classification accuracy as the evaluation metric.
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Speech Commands V1 (KS1) (Warden, 2018) task uses the same dataset as KS2, but only contains 10 classes of keywords,
1 silence class, and 1 unknown class that includes all the other 20 common speech commands. We use the standard data and
split provided in SUPERB benchmark (wen Yang et al., 2021) to report classification accuracy for a fair comparison with
the previous works.

IEMOCAP (ER) (Busso et al., 2008) is an emotion recognition dataset that contains about 12 hours of emotional speech
clips annotated with four classes. we use the 5-fold cross-validation evaluation setting as SUPERB benchmark (wen Yang
et al., 2021) and report classification accuracy as the evaluation metric.

C. Hyperparamter Settings
Table 4 shows the detailed hyperparameters that are used for BEATS acoustic tokenizer training, audio SSL model pre-
training and fine-tuning, which are adapted from the previous works (Xu et al., 2022; Chen et al., 2022b; Peng et al.,
2022).

Hyperparameters Tokenizer Training Model Pre-Training Model Fine-Tuning
SSL Teacher SL Teacher AS-2M AS-2M AS-20K ESC KS1 KS2 ER

Optimizer AdamW (Loshchilov & Hutter, 2017)
Optimizer Momentum β1 = 0.9, β2 = 0.98
Weight decay 0.01
Learning Rate Schedule Linear Decay Cosine
Steps 400K 50K 80K
Warmup epochs 32K 5K 8K
GPU 8 16 16 4
Batch size (s) 1.4K 5.6K 6.4K 800 300 100 300
Layer-wise learning rate decay 1.0 1.0 0.6 0.3 0.2 0.3 1.0
Peak learning rate 5e-5 5e-4 5e-4 1e-4 3e-5 1e-4 3e-5

Weighted Sampling ✗ ✓ ✗ ✓ * ✗
Dropout (Srivastava et al., 2014) 0.1 0.0
Layer Dropout 0.0 0.1
Roll Augmentation ✗ ✓ ✗ ✓
SpecAug (Park et al., 2019) N/A 0.3 0.2 0.3 0.15
Mixup (Zhang et al., 2017) N/A 0.0 0.8 0.0 0.8 0.0
Multilabel N/A ✗ ✓ ✗ ✗ ✗
Loss Function CosineSimilarity CE BCE CE BCE CE

Dataset Mean for Normalization 15.41663 11.72215 11.43905 11.41045 12.0889
Dataset Std for Normalization 6.55582 10.60431 5.64913 5.67857 4.29147

Table 4. Hyperparameters of BEATS acoustic tokenizer training, audio SSL model pre-training and fine-tuning. CE and BCE denote the
cross entropy loss and binary cross entropy loss, respectively. *We balance each class to 50% of the size of the unknown class for each
training epoch.
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