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Abstract

Dynamic functional brain networks (DFBNs) are powerful tools in neuroscience
research. Recent studies reveal that DFBNs contain heterogeneous neural nodes
with more extensive connections and more drastic temporal changes, which play
pivotal roles in coordinating the reorganization of the brain. Moreover, the spatio-
temporal patterns of these nodes are modulated by the brain’s historical states.
However, existing methods not only ignore the spatio-temporal heterogeneity of
neural nodes, but also fail to effectively encode the temporal propagation mecha-
nism of heterogeneous activities. These limitations hinder the deep exploration of
spatio-temporal relationships within DFBNs, preventing the capture of abnormal
neural heterogeneity caused by brain diseases. To address these challenges, this
paper proposes a Neuro-Heterogeneity guided Temporal Graph Learning strategy
(NeuroH-TGL). Specifically, we first develop a spatio-temporal pattern decoupling
module to disentangle DFBNs into topological consistency networks and temporal
trend networks that align with the brain’s operational mechanisms. Then, we intro-
duce a heterogeneity mining module to identify pivotal heterogeneity nodes that
drive brain reorganization from the two decoupled networks. Finally, we design
temporal propagation graph convolution to simulate the influence of the historical
states of heterogeneity nodes on the current topology, thereby flexibly extracting
heterogeneous spatio-temporal information from the brain. Experiments show that
our method surpasses several state-of-the-art methods, and can identify abnormal
heterogeneous nodes caused by brain diseases.

1 Introduction

Functional magnetic resonance imaging (fMRI) measures neural activity by detecting changes in
blood oxygen level-dependent signals, and is commonly employed to construct functional brain
networks [1, 2, 3]. In fact, the brain is constantly reorganizing even during the resting state [4, 5].
Obviously, compared with the static functional brain network, the dynamic functional brain network
(DFBN) can more comprehensively describe the topological evolution of the brain. Studies have
shown that brain diseases such as Alzheimer’s disease and Parkinson’s disease can change the spatio-
temporal properties of DFBNs [6, 7]. Therefore, effectively analyzing the spatio-temporal structure
of DFBNs is crucial for brain disease diagnosis and biomarker mining.

To capture the time-varying structure of DFBNs, they are usually modeled as a series of dynamic
brain graphs [8, 9, 10, 11]. In dynamic brain graphs, nodes represent brain regions and edges
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represent temporal connections between these regions. Existing dynamic brain graph analysis methods
usually use graph convolution network (GCN) [12] to extract the topological feature, and then use
temporal convolution to capture the temporal correlation between brain regions [10, 13, 14]. For
example, STAGIN [4] first uses GCN to extract structural information in DFBNs, and then introduces
transformer to capture the temporal dependence between brain graphs. Although significant progress
has been made in the analysis of dynamic brain graphs, most methods overlook the crucial fact that
the brain exhibits significant spatio-temporal heterogeneity: Certain neural nodes in DFBNs exhibit
extensive connectivity or more active temporal evolution due to their functional properties. For
instance, the posterior cingulate cortex forms stable and tight connections with the frontal and parietal
lobes, while the connection strength between the primary motor cortex and supplementary motor
area exhibits heightened temporal variability [15, 16]. These neural nodes with high spatio-temporal
variability can flexibly adjust the reconstruction pattern of functional network, which is a key factor
driving the reorganization of the brain. Therefore, identifying the spatio-temporal heterogeneity of
neural nodes is significant for elucidating the evolution mechanism of the brain.

However, accurately capturing the spatio-temporal heterogeneity of neural nodes faces dual challenges.
(1) Spatio-temporal coordination of DFBNs. While maintaining stable connections of pivotal nodes,
the brain network can dynamically adjust connections according to cognitive demands to achieve
efficient information integration. This spatial consistency and temporal trend together constitute the
neural basis supporting complex cognitive functions [17, 18, 19]. (2) Sequential dependence of
DFBNs. Due to the continuity of brain activity and the lag in information interaction [20, 21, 5],
current connectivity patterns are systematically influenced by prior network states. There is a rich
sequential dependence exhibited among neural nodes.

To address these challenges, we propose a Neuro-Heterogeneity guided Temporal Graph Learning
strategy (NeuroH-TGL) to comprehensively capture the intrinsic evolution mechanism of DFBNs.
Specifically, to simulate the spatio-temporal coordination of DFBNs, we design a spatio-temporal
pattern decoupling (STPD) module to disentangle the DFBNs into topological consistency networks
and temporal trend networks. Then, we calculate the cross-window similarity of topologic consistency
networks and temporal trend networks, and use them as the spatial and temporal heterogeneity weights,
respectively. Subsequently, we apply spatio-temporal heterogeneity weighting to DFBNs, thereby
highlighting the pivotal nodes driving network reorganization. Finally, we develop a temporal
propagation graph convolution network (TPGCN) to further capture the propagation mechanisms of
heterogeneous neural information, that is, to simulate the impact of historical states on the current
topology, thereby flexibly capturing the spatio-temporal features within heterogeneous DFBNs. In
summary, the main contributions of this paper are as follows:

• To accurately simulate the heterogeneous evolution mechanism of brain neural activities, we
propose a NeuroH-TGL to identify neural nodes with high spatio-temporal variability that
drive network reorganization, and construct brain networks that integrate heterogeneity.

• Since current functional network is persistently modulated by historical neural activity, we
devise a TPGCN to model the propagation of neural information in the temporal dimension,
thereby effectively extracting the spatio-temporal features from heterogeneous DFBNs.

• Experimental results show that the proposed method outperforms the current state-of-the-art
methods, and can provide effective biomarkers for brain disease diagnosis.

2 Related Work

Brain Network Analysis. Brain network analysis aims to understand the organizational structure
of the brain, thereby identifying its working mechanisms and abnormalities caused by neurological
disorders [22, 1]. Current methods can be categorized into two types: static brain network analysis and
dynamic brain network analysis. Static brain network analysis refers to extracting fixed connectivity
between brain regions over a period of time. For example, BrainNetCNN [23] proposes edge-to-edge,
edge-to-node, and node-to-graph convolutional filters to extract the local properties of structural
brain networks. BNTransformer [24] employs a graph transformer to learn pairwise connection
strengths between brain regions, and incorporates orthogonal clustering to identify discriminative
node embeddings. Unlike these methods, dynamic brain network analysis focuses on capturing
time-varying connectivity between brain regions. For instance, ACIFBN [25] leverages an attention
mechanism to learn spatio-temporal interactions among fMRI sub-sequences. OT-MCSTGCN [6]

2



STPD1

STPD2

STPDT

S

SH weight

TH weight

Temporal Trend

 Networks

...

R
O

Is
Win 1 Win t Win T

fMRI Signal

Overlapping Sliding Windows

DFBN 𝑨𝟏

DFBN 𝑨𝟐...

DFBN 𝑨𝑻

Topological Consistency

 Networks

...

Spatial Heterogeneity 

...

Temporal Heterogeneity 

Heterogeneous 

Temporal Tendency

...

Heterogeneous 

Topology Consistency

...

TPGCN

F
C

 L
a
y
e
rs

1

F
C

 L
a

y
e
rs

2

Predicition

Label

𝑳𝑪𝑬

Reconstruction Loss𝑳𝑹𝒆

𝑳𝑪𝑪 Consistency Constraint

Cross-Entropy Loss𝑳𝑪𝑬

Node Embedding

Feature StackS

Elementwise Multiplication

Elementwise Addition

𝑳𝑹𝒆

𝑨𝒕−𝟏

𝑨𝒕

Spatio-Temporal Pattern Decoupling

𝑳𝑹𝒆𝑳𝑪𝑪

𝑳𝑪𝑪

𝑳𝑪𝑪

Similarity 

Constraint

Similarity 

Constraint

Similarity 

Constraint

GCN

GCN

Spatio-Temporal 

Feature

…

1

2

3

𝑵
…

Temporal Propagation Graph Convolution Network 

GCN

CNN

GCN

...

GCN

CNN

GCN

GCN

CNN

GCN

Node Feature Node Feature Node Feature

Node Feature Node Feature Node Feature

DFBN 𝑨𝟏 DFBN 𝑨𝟐 DFBN 𝑨𝑻

...

...

GCN

GCN

Figure 1: The overall framework of the proposed NeuroH-TGL model for brain disease diagnosis.

employs optimal transport to simulate the hubness propagation between adjacent brain graphs, thereby
capturing high-order evolution in DFBNs. However, these methods overlook the inherent spatio-
temporal heterogeneity of brain networks, failing to effectively model realistic dynamic dependencies
in the brain. In this work, we introduce spatio-temporal decoupling and heterogeneity mining module
to capture the connectivity density and temporal variability of brain structures, thereby accurately
representing the heterogeneous brain activity.

Spatio-Temporal Graph Convolution for DFBNs. Spatio-temporal graph convolution typically
integrate GCN and temporal convolution within a unified architecture to extract time-varying struc-
tures from DFBNs. For instance, STAGIN [4] employs a GCN to extract structural features, followed
by attention mechanisms to model temporal dynamics. ST-fMRI [26] integrates GCN with four
parallel 1D convolutional filters to model long-range dynamic interactions between brain regions.
ST-GCN [8] combines GCN with temporal convolution to capture the non-stationary properties
of functional connectivity. OT-MCSTGCN [6] proposes a multi-channel spatio-temporal GCN to
efficiently aggregate topological evolution information in DFBNs. Notably, DFBNs exhibit significant
sequential dependence [25, 21]. Existing spatio-temporal models fail to incorporate historical brain
states’ influence on current brain graphs, resulting in suboptimal diagnostic performance. In this
paper, we design the TPGCN to model the temporal propagation mechanism of heterogeneous neural
activity, comprehensively capturing spatio-temporal information within heterogeneous DFBNs.

3 Proposed Method

As shown in Figure 1, we develop a neuro-heterogeneity guided temporal graph learning strategy.
This framework aims to identify neural nodes with high spatio-temporal heterogeneity that drive
network reorganization, thereby enhancing the diagnostic performance of brain diseases.

3.1 Spatio-Temporal Patterns Decoupling

In this paper, we assume the rs-fMRI signal for each subject is represented as X = (x1, x2, · · · , xV ) ∈
RV×L, where xi represents the time series signal of the ith brain region, V denotes the number of
neural nodes and L indicates the number of temporal signal points. To characterize the dynamic
evolution patterns of brain activity, we employ T overlapping sliding windows of length S to partition
the fMRI signal generating a series of sub-signals F = (F1, F2, · · · , FT ) ∈ RT×V×S . For the
sub-signals Ft under the tth window, we use the Pearson correlation coefficient [4] to construct the
brain network At:

At(ij) =
Cov(Ft(i), Ft(j))

σFt(i)
σFt(j)

(1)
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where i and j are indices of Ft, Cov indicates the cross covariance, and σFt(i)
is the standard

deviation of Ft(i). Therefore, DFBNs can be represented as A = (A1, A2, · · · , AT ) ∈ RT×V×V .
To simulate the sparsity of brain networks, we further set elements with connection strengths lower
than α to 0. Neuroscience research shows that the brain’s cognitive function is supported by its
intrinsic topological consistency and temporal trend [17, 18, 19]. Thus, decoupling spatio-temporal
organizational patterns within DFBNs can help reveal network dysregulation caused by brain diseases.
For each brain network At (t = 1, 2, · · · , T ), we first employ two independent GCN [12] to extract
topological consistency networks Htop

t and temporal trend networks Htem
t :

Htop
t = GCN(At, Ft) = Ât

(
ReLU

(
ÂtFtW

top(0)
t

))
W

top(1)
t (2)

Htem
t = GCN(At, Ft) = Ât

(
ReLU

(
ÂtFtW

tem(0)
t

))
W

tem(1)
t (3)

where Ât = D̃
− 1

2
t (At + I)D̃

− 1
2

t , I is the identity matrix, D̃t denotes the degree matrix after adding
self-loops, W top(0)

t , W top(1)
t , W tem(0)

t and W
tem(1)
t all represent the learnable parameters in the

graph convolutional layers, and ReLU [27] denotes the nonlinear activation function.

To enhance the discriminability between topological consistency networks and temporal trend net-
works, we encourage the similarity constraint LCCt1

between them to gradually decrease throughout
the training process:

LCCt1
=

1

V

V∑
i=1

Htop
t(i) ·H

tep
t(i)

∥ Htop
t(i) ∥2 · ∥ Htep

t(i) ∥2
(4)

where the · represents the dot product operation, and ∥∥2 denotes the L2 norm. Additionally, to ensure
the complementarity of topological consistency networks and temporal trend networks, we sum the
decoupled features to obtain a reconstructed representation. Then, we introduce mean squared error
(MSE) [28] as the reconstruction loss between the reconstructed representation and brain network At:

LRet =∥ Htop
t ⊕Htem

t −At ∥2 (5)

where ⊕ represents element-wise addition. Notably, the topological consistency refers to the high
stability of certain network structures across different windows. Therefore, we further impose a
similarity constraint on topological consistency networks across adjacent windows, and encourage
this similarity LCCt2

to increase as training progresses:

LCCt2
= 1− 1

V

V∑
i=1

Htop
t(i) ·H

top
t+1(i)

∥ Htop
t(i) ∥2 · ∥ Htop

t+1(i) ∥2
(6)

The above operations ensure that the topological consistency networks and temporal trend networks
within the same window are distinct and complementary, while also promoting the similarity of
consistency networks across different windows, thereby better aligning with the intrinsic spatio-
temporal coordination of the brain [17, 18, 19].

3.2 Spatio-Temporal Heterogeneity Mining

(a) Spatial Heterogeneity

SH Weight

Time
Win 1 Win 2 Win 3

Denser spatial 

connectivity

Capturing the cross-window topological 

similarity measures spatial heterogeneity

Topological Consistency Networks

(b) Temporal Heterogeneity

TH Weight

Time
Win 1 Win 2 Win 3

More unstable 

temporal 

evolution

Capturing cross-window temporal 

similarity measures temporal heterogeneity

Temporal Trend Networks

Figure 2: The schematic diagram of spatio-temporal heterogeneity mining. We calculate cross-
window topological similarity and temporal similarity respectively to measure spatial heterogeneity
and temporal heterogeneity.

There are some neural nodes with high spatio-temporal variability in DFBNs [6]. As shown in
Figure 2, the neural node marked by red has denser spatial connections than other nodes, while the
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node highlighted in orange shows more unstable temporal evolution. These nodes play an important
role in coordinating the evolution of the brain, which will form a complex spatio-temporal network
centered on these nodes. Moreover, the brain is a continuously evolving dynamic system with
extensive asynchronous interactions [21, 6]. Therefore, we calculate the cross-window similarity for
topological consistency networks and temporal trend networks separately to measure the connectivity
density and temporal variability of the brain, thereby exploring the spatio-temporal heterogeneity of
neural activity. The detailed process of mining spatio-temporal heterogeneity is shown in Figure 2.
For spatial heterogeneity (SH), we first calculate the average correlation of topological consistency
networks across all paired windows:

SH =
2

T (T − 1)

T−1∑
i=1

T∑
j=i+1

sim(Htop
i , Htop

j ) (7)

where sim() represents the cosine similarity [29]. Then, we apply spatial heterogeneity weighting
to topological consistency networks: Ztop

t = SH ⊗ Htop
t (t = 1, 2, · · · , T ), where ⊗ denotes the

element-wise multiplication. In contrast, for temporal heterogeneity (TH), lower cross-window
similarity in temporal trend networks indicates more pronounced dynamic evolution. Therefore, we
calculate TH using the following formula:

TH =
2

T (T − 1)

T−1∑
i=1

T∑
j=i+1

(1− sim(Htem
i , Htem

j )) (8)

Then, we apply temporal heterogeneity weighting to temporal trend networks: Ztem
t = TH ⊗

Htem
t (t = 1, 2, · · · , T ). Spatio-temporal heterogeneity weighting not only preserves the dynamic

topology of DFBNs, but also highlights important nodes and connections. Therefore, we can obtain
topological consistency networks and temporal trend networks that fuse spatio-temporal heterogeneity.

3.3 Temporal Propagation Graph Convolution Network

The heterogeneous information in the brain propagate continuously along the temporal dimension,
which means that each brain network gradually influences the state of the adjacent brain network
[6, 4]. To flexibly capture cross-temporal interactions in heterogeneous brain networks, we further
design a temporal propagation graph convolution network. This framework utilizes the heterogeneous
spatio-temporal features of the brain networks from the previous moment to guide the information
aggregation of the brain networks in the next moment. In this framework, each spatio-temporal
convolutional block consists of two GCNs [12] and one 2D convolutional network (CNN) [30], so
as to efficiently aggregate dynamic structure information. To reduce the number of parameters, we
use two parameter-sharing spatio-temporal convolutional blocks to extract features from topological
consistency networks and temporal trend networks, respectively. The topological consistency feature
Etop

t and temporal trend feature Etem
t can be learned as follows:

Ei
t = GCN(At, CNN(GCN(At, Z

i
t ⊕ Zi

t−1))) (9)
where i ∈ {top, tem}. Then, we add the two types of features to obtain the fused spatio-temporal
representation: Et = Etop

t ⊕ Etem
t . After performing the same operation on the two networks

for each window, we concatenate the features of all windows to obtain the global spatio-temporal
representation E:

E = Concatenate({Et|t ∈ {1, 2, · · · , T}}) (10)
Finally, we feed the features E into a multi-layer perceptron to predict the diagnostic results, and use
cross-entropy loss LCE to supervise the update of model parameters. The overall training objective
can be formulated as: L = LCE + λ1LCC + λ2LRe, where λ1 and λ2 are hyperparameters that
control the relative importance of different loss terms, LCC and LRe represent the similarity loss and
reconstruction loss for the decoupling of the STPD module across all windows, respectively.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on both the public ADNI dataset (https://adni.loni.usc.edu/)
and the Parkinson’s disease (PD) dataset collected by the Affiliated Hospital of Nanjing Medical
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University. The ADNI dataset comprises 140 normal controls (NC), 268 patients with mild cognitive
impairment (MCI), and 102 patients with Alzheimer’s disease (AD). The PD dataset includes 54
NC, 44 tremor dominant Parkinson’s disease (TDPD) patients, and 64 postural instability and gait
disorder Parkinson’s disease (PGPD) patients.

Preprocessing. All fMRI data are preprocessed using SPM8 implemented in the DPARSF toolbox
[31]. Specifically, we first correct and align the original images based on the EPI template. Then, we
utilize detrending techniques to alleviate the effects of head motion as well as the interference from
cerebrospinal fluid and white matter. Finally, we use the automated anatomical labeling atlas [32] to
divide the fMRI of ADNI dataset into 90 brain regions with 140 time points, and the fMRI of PD
dataset into 90 brain regions with 220 time points.

Metrics. For the ADNI dataset, we conduct the following classification tasks: NC vs. MCI vs.
AD, NC vs. MCI, NC vs. AD, and MCI vs. AD. For the PD dataset, we conduct the following
classification tasks: NC vs. TDPD vs. PGPD, NC vs. TDPD, NC vs. PGPD, and TDPD vs. PGPD.
We employ 10-fold cross-validation to evaluate the diagnostic performance of all methods on different
tasks. For the three-class task, we adopt macro-averaged metrics [33] to ensure equitable evaluation
across all categories. We report the mean values of 10 runs.

Implementation Details. All experiments are implemented in PyTorch and trained on an NVIDIA
GeForce RTX 3080 GPU with 12GB. We employ Adam optimizer [34] with a learning rate of 7e-4
to optimize the proposed method. The size of the convolution kernel is 3×3. Additionally, we adopt
an early stopping mechanism that 80 epochs patience in total 300 epochs. The batch size is set to 8.
The threshold α is set to 0.6. For the ADNI dataset, T = 6 and S = 90. For the PD dataset, T = 8
and S = 80. The hyperparameters λ1 and λ2 are varied within the range {1e-6, 1e-5, 1e-3, 1e-2,
1e-1, 1, 10}, with the optimal combination determined through grid search. The source code has been
uploaded to the supplementary material.

4.2 Performance Analysis

Comparison Methods. To validate the effectiveness of the proposed method, we compare it with 11
state-of-the-art brain network analysis approaches. These methods can be categorized into two types:
static brain network analysis and dynamic brain network analysis. Static brain network analysis
methods include BrainNetCNN [23], FBNetGen [35], BNTransformer [24], BrainGNN [36], LSGNN
[37], and ALTER [38]. Dynamic brain network analysis methods include ACIFBN [25], DRAT [39],
ST-GCN [8], ST-fMRI [26], STAGIN [4], OT-MCSTGCN [6], and MGNN [40].

Classification Result. Table 1 and Table 2 show the diagnostic results of different methods on the
ADNI and PD datasets, respectively. The standard deviations can be referred to in Appendix A.
Obviously, the proposed NeuroH-TGL significantly outperforms the comparison methods. Specifi-
cally, on the ADNI dataset, NeuroH-TGL achieves accuracy improvements of 4.69%, 1.04%, 0.15%,

Table 1: Classification results of different methods on the ADNI dataset (%).

Type Method
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

NC vs. MCI vs. AD NC vs. MCI NC vs. AD MCI vs. AD
BrainNetCNN 57.06 38.06 54.81 71.34 81.16 55.54 71.47 50.00 62.69 68.92 75.32 53.29

FBNetGen 57.50 56.97 67.75 61.25 66.46 58.47 63.33 58.50 57.53 65.83 73.71 64.07
BNTransformer 60.21 40.94 61.96 69.75 79.65 57.58 74.00 71.72 75.89 74.50 81.56 57.64

BrainGNN 58.82 45.33 61.66 74.25 83.20 62.88 74.05 62.90 68.66 79.19 87.36 64.12
LSGNN 58.75 36.96 58.20 60.27 68.62 54.04 70.42 53.07 66.26 64.05 73.72 56.11

Static

ALTER 63.73 51.68 68.98 76.42 82.20 71.11 75.23 59.18 74.25 82.43 88.45 73.50
ACIFBN 62.35 57.88 70.42 71.25 78.96 64.49 79.17 71.53 78.44 83.75 90.91 62.88

DRAT 60.83 51.09 70.11 71.50 79.78 57.93 72.92 55.79 68.62 80.31 88.02 70.01
ST-GCN 67.50 41.68 59.07 73.44 83.88 54.22 67.92 51.46 60.51 82.08 89.81 61.79
ST-fMRI 57.45 38.79 64.84 71.81 81.71 61.41 76.45 68.40 78.96 84.16 84.61 62.16
STAGIN 56.46 27.75 54.76 69.25 80.97 56.44 67.08 47.99 55.49 74.44 85.35 53.71

OT-MCSTGCN 59.02 41.31 58.52 76.08 80.14 60.89 73.75 57.61 66.41 76.26 85.40 68.15
MGNN 61.76 51.38 66.74 77.46 83.16 70.51 81.35 77.46 80.84 80.54 86.80 75.43

Dynamic

NeuroH-TGL 72.19 57.81 70.49 78.50 84.35 72.61 81.50 72.12 83.01 86.67 92.46 76.01
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Table 2: Classification results of different methods on the PD dataset (%).

Type Method
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

NC vs. TDPD vs. PGPD NC vs. TDPD NC vs. PGPD TDPD vs. PGPD

Static

BrainNetCNN 55.70 46.09 67.16 85.67 81.98 83.52 79.55 75.32 73.10 74.00 79.43 69.78
FBnetGen 62.50 57.65 69.23 74.56 52.80 65.65 74.55 78.39 51.82 72.00 73.05 66.14

BNTransformer 63.75 56.47 71.75 82.50 70.88 74.83 79.00 77.18 78.62 76.73 79.50 70.20
BrainGNN 63.49 57.58 72.51 83.67 78.47 84.85 83.93 75.70 73.67 75.00 74.37 63.06

LSGNN 56.88 46.44 64.46 73.75 74.84 77.08 74.17 76.93 68.47 72.00 76.61 58.62
ALTER 62.28 48.47 63.23 86.56 80.83 78.38 80.53 78.55 74.91 79.55 83.11 68.64

Dynamic

ACIFBN 61.25 48.72 66.33 82.89 77.91 79.80 76.97 73.90 68.59 74.18 73.36 63.79
DRAT 61.88 54.72 64.66 74.75 67.53 79.20 72.83 66.37 61.49 71.27 79.67 59.69

ST-GCN 58.13 54.93 65.56 82.67 81.21 80.18 79.70 72.80 77.15 74.45 72.67 67.44
ST-fMRI 58.75 52.10 66.10 75.33 74.04 73.64 78.33 81.79 74.27 71.67 72.96 44.33
STAGIN 55.63 43.52 63.71 81.89 74.20 76.55 82.20 80.89 79.30 78.00 63.00 59.85

OT-MCSTGCN 59.38 38.24 62.37 81.56 79.31 81.59 82.20 83.59 75.50 75.82 73.39 63.05
MGNN 59.89 51.56 64.25 85.78 83.17 81.10 78.79 80.14 73.22 78.73 74.98 69.43

NeuroH-TGL 66.25 61.71 73.85 91.25 91.00 94.21 87.17 89.38 88.42 83.75 86.80 82.91

and 2.51% over the suboptimal results across four classification tasks, respectively. On the PD
dataset, NeuroH-TGL achieves accuracy improvements of 2.50%, 4.69%, 3.24%, and 4.20% over
the suboptimal results across four classification tasks, respectively. The reason for the performance
improvement is that the proposed method exploits the spatio-temporal heterogeneous activity patterns
of the brain, thereby highlighting the pivotal neural nodes involved in the evolution of DFBN. On this
basis, we further design the TPGCN to model the sequential dependencies between heterogeneous
neural nodes, thereby collaboratively extracting the time-varying topological features within them.
Additionally, we conducte an analysis of computational efficiency. The proposed method requires
only 0.0924M parameters and 0.2479M FLOPs, which indicates that the method can achieve excellent
diagnostic performance with a minimal amount of computational resources.

T-SNE Visualization. To visually demonstrate the performance of different methods, we use t-SNE
[41] to visualize their learned features. In Figure 3(a), the original feature distribution is chaotic.
BrainNetCNN forms two clusters with confusion. The feature distributions learned by ACIFBN,
DART and OT-MCSTGCN are loose and fail to establish clear inter-class boundaries. In contrast, our
method effectively aggregates intra-class features while maintaining distinct inter-class separation.
This is because BrainNetCNN ignores the dynamic features of the brain. Although DART, ACIFBN
and OT-MCSTGCN capture spatio-temporal information to a certain extent, they all neglect the
heterogeneity of neural activity. Unlike them, the proposed NeuroH-TGL not only effectively captures

NeuroH-TGLOT-MCSTGCNDART

Origin BrainNetCNN ACIFBN

NC MCI

(a)

NC vs. AD

NC vs. MCI

(b)

𝜆1
𝜆2

𝜆2

𝜆1

S

T

NC vs. MCI

NC vs. TDPD

S

T

(c)

Figure 3: (a) T-SNE visualization for different methods on the NC vs. MCI task. (b) The impact of
λ1 and λ2 on different diagnostic tasks. (c) The impact of T and S on different diagnostic tasks.
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the pivotal heterogeneous nodes driving the network reorganization, but also comprehensively encodes
the temporal dependence between historical neural activity and the current brain topology.

Parameter Sensitivity Analysis. The hyperparameters λ1 and λ2 in the objective function are vary
within the range {1e-6, 1e-5, 1e-3, 1e-2, 1e-1, 1, 10}. In Figure 3(b), we systematically investigate
the impact of different parameter combinations on disease diagnosis. The experimental results
demonstrate that the accuracy remains stable across varying values of λ1 and λ2. Therefore, the
proposed method exhibits robustness and is not sensitive to hyperparameters. Additionally, we
also explore the impact of T and S on diagnostic performance, and the experimental results are
shown in Figure 3(c). Specifically, T changes within the set {5, 6, 7, 8, 9, 10}, and S varies within
the set {60, 70, 80, 90, 100}. We conduct a grid search on both S and T to ensure the optimal
parameter combination. For NC vs. MCI, the best performance is achieved when T=6 and S=90.
For NC vs. TDPD, the best performance is achieved when T=8 and S=80. Larger values of T and S
lead to longer overlapping sequences across windows, which might smooth out valuable dynamic
information in the brain. Conversely, smaller values of T and S result in shorter time sequences per
window, potentially making the statistical correlation between brain regions unreliable. Therefore, a
moderate window size can balance reliable statistical correlation with temporal evolution.

4.3 Ablation Study

To validate the effectiveness of each module, we conduct ablation experiments on ADNI and PD
datasets, with the results presented in Table 3. The standard deviations can be referred to in Appendix
B. The simplified models included: (1) w/o STPD: The STPD module is removed (i.e., λ1 = λ2=
0). (2) w/o STHW: Spatial and temporal heterogeneity weights (STHW) are replaced with all-ones
matrices. (3) w/o TPGCN: The TPGCN is substituted with GCN. The experimental results indicate
that removing any module will lead to a decrease in performance. For instance, in the NC vs. MCI
task, removing STPD, STHW, and TPGCN led to accuracy decreases of 3.75%, 3.25%, and 3.50%,
respectively. The reasons for this phenomenon include: The STPD module effectively decouples the
topological consistency features and temporal trend features aligned with brain dynamics from DFBN,
thus laying a foundation for spatio-temporal heterogeneity mining. The STHW module effectively
captures the heterogeneous activity patterns of each brain region, making it possible to identify
abnormal brain states associated with neurological disorders. Moreover, TPGCN outperforms GCN,
proving its effectiveness in simulating the temporal propagation mechanisms of heterogeneous neural
information, thereby comprehensively capturing the spatio-temporal dependencies in heterogeneous
DFBNs. Therefore, all the proposed modules are effective and promote each other.

Table 3: Ablation results of the proposed method on the ADNI and PD datasets (%).

Datasets Method
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

NC vs. MCI vs. AD NC vs. MCI NC vs. AD MCI vs. AD

ADNI

w/o STPD 66.88 35.00 57.22 73.75 83.20 62.16 76.67 71.42 76.87 81.67 88.77 72.95
w/o STHW 65.21 54.88 67.21 74.25 82.94 63.90 77.08 70.36 74.69 78.06 86.63 67.01
w/o TPGCN 65.80 60.13 70.98 74.00 82.58 64.76 77.91 72.77 77.35 82.08 89.00 68.66

NeuroH-TGL 72.19 57.81 70.49 78.50 84.35 72.61 81.50 72.12 83.01 86.67 92.46 76.01
NC vs. TDPD vs. PGPD NC vs. TDPD NC vs. PGPD TDPD vs. PGPD

PD

w/o STPD 65.00 55.15 64.57 86.25 87.06 83.54 83.75 85.76 86.12 81.25 86.21 70.50
w/o STHW 63.60 52.48 65.53 83.50 80.96 79.78 79.33 82.47 79.93 78.75 81.96 69.91
w/o STPGC 64.38 55.18 64.40 84.75 83.73 88.53 80.50 82.64 81.16 76.00 78.23 70.65

NeuroH-TGL 66.25 61.71 73.85 91.25 91.00 94.21 87.17 89.38 88.42 83.75 86.80 82.91

w/o means without.

5 Discussions

Heterogeneity Weights Visualization. To explore the impact of brain diseases on neural activity,
Figure 4 displays the spatial and temporal heterogeneity weights across all brain regions of different
groups. Based on the experimental results, we can draw the following conclusions. First, brain
diseases alter spatio-temporal properties of the brain. For instance, MCI and AD groups exhibit
lower spatial heterogeneity but higher temporal heterogeneity compared to the NC group. Second,
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Figure 4: Visualization of spatio-temporal heterogeneity weights across different groups. Each square
represents a brain region, and abbreviations are provided for each brain region. ’L’ indicates the left
brain region, and ’R’ indicates the right brain region.

the spatio-temporal heterogeneity of each brain region in the same group is different. The NC group
exhibits higher spatial heterogeneity but lower temporal heterogeneity of brain regions, while the MCI
and AD groups show the opposite pattern. This may be because neurodegenerative changes reduce the
complexity of the brain, thus decreasing the spatial heterogeneity [25, 42]. Moreover, brain diseases
can trigger compensatory mechanisms that increase variability in temporal activities, enhancing
the temporal heterogeneity [6, 43]. Notably, we also find that the spatio-temporal heterogeneity of
supplementary motor area, hippocampus and amygdala in the patient group is significantly different
from that in the NC group. Therefore, these brain regions may serve as potential biomarkers for the
diagnosis of MCI and AD.

Discriminative Brain Regions. To futher evaluate the efficacy of the proposed method in identifying
biomarkers, we employ t-test on spatio-temporal feature of each brain region, thereby identifying the
10 most discriminative regions (p < 0.05). The visualization results are shown in Figure 5. For NC vs.
MCI, the significant brain regions are concentrated in the middle temporal gyrus and parahippocampal
gyrus, among others. This may be because MCI leads to visual impairments and memory deficits,
thereby causing abnormalities in the related brain regions [6, 44]. For NC vs. AD, key brain regions
include the amygdala and superior frontal gyrus, which are responsible for emotion regulation and

0

1

NC vs. AD

NC vs. MCI

(a) ADNI dataset

NC vs. TDPD

NC vs. PGPD

(b) PD dataset

Figure 5: Distribution of the 10 most discriminative brain regions on different diagnostic tasks.
Different colors indicate the relative importance of these brain regions.
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behavioral control and are closely related to the occurrence of AD [45]. For NC vs. TDPD, important
brain regions include the precentral gyrus and rolandic operculum, possibly because motor disorders
in TDPD patients disrupt the normal functioning of these motor control areas [46]. For NC vs. PGPD,
significant brain regions include the inferior occipital gyrus and lingual gyrus. This is because PGPD
patients exhibit abnormalities in processing complex visual scenes [7]. Therefore, the proposed
method can provide reasonable biomarkers for brain disease diagnosis.

Conclusion. In this paper, we propose the NeuroH-TGL to collaboratively capture neural nodes in
the brain that exhibit spatial density and significant temporal variability, addressing the shortcomings
of existing methods that overlook the spatio-temporal heterogeneity of nodes. Specifically, we first
decouple the DFBNs into topological consistency networks and temporal trend networks based on
their spatio-temporal coordination. Then, we measure the spatial density of topological consistency
networks and the temporal variability of temporal trend networks across global time domains,
respectively, to emphasize the significant spatio-temporal associations driven by these heterogeneous
nodes. Finally, we develop the TPGCN to model the influence of the historical state of heterogeneous
nodes on the current network configuration, enabling a comprehensive capture of dynamic topological
features. Extensive experiments show that NeuroH-TGL not only significantly enhances diagnostic
performance but also identifies abnormal spatio-temporal features caused by brain diseases.

Limitations and Future Work. The proposed method is based solely on a single fMRI modality,
overlooking the complementary information from other modalities. In future research, we will develop
a heterogeneity reorganization mechanism for DFBNs under structural connectivity constraints. This
framework will be capable of integrating complementary heterogeneity features between function
and structure to improve diagnostic accuracy and provide interpretability.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper introduces a novel Neuro-Heterogeneity guided Temporal Graph
Learning strategy (NeuroH-TGL) to identify the pivotal neural nodes that drive network
reorganization in the brain. This approach effectively captures the heterogeneous spatio-
temporal features within the brain, thereby enhancing the diagnostic performance of brain
diseases. Extensive experimental results validate the effectiveness of the proposed method
and identify effective biomarkers for brain disease diagnosis. Therefore, the main claims
made in the abstract and introduction accurately reflect the contributions and scope of the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a separate section titled ’Limitations and Future Work’
to discuss the limitations of the proposed method and future research plans. In this sec-
tion, the authors explicitly point out that due to the challenges in collecting multimodal
neuroimaging data, the study focuses solely on brain network analysis based on the fMRI
modality. Secondly, the paper proposes future directions for extending the framework to
construct multimodal dynamic brain networks, with particular emphasis on investigating
reorganization mechanisms of DFBNs under structural connectivity constraints to achieve
improved results. These efforts indicate that the authors have recognized the limitations of
the current research and have proposed specific measures for improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include theoretical results. But we formulate our question
and method with detailed formulas.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The article provides a detailed description of the experimental setup and
validates it on public datasets. Most importantly, in the supplemental materials, we provide
the source code. Therefore, the experimental results are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In this paper, we provide the link to the publicly available ADNI dataset, and
we upload the source code to the supplementary material. Therefore, the data and code are
accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides a detailed description of the dataset splits and hyperparam-
eter settings in the Implementation Details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides detailed information about the standard deviations of
comparison experiments and ablation studies in Appendix A and Appendix B, respec-
tively, offering readers sufficient information to assess the reliability and validity of the
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper explicitly states that the proposed method is trained on an NVIDIA
GeForce RTX 3080 GPU with 12GB of video memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: The ADNI dataset is a publicly available dataset that has been used in numerous
previous studies, and it is clearly free of ethical concerns. The Parkinson’s disease dataset is
collected in collaboration with our partner hospitals and has not been made public. However,
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the data collection is carried out with the consent of the participants, who are explicitly
informed about the purpose of the sample collection, and all personal information related
to the samples is anonymized. Therefore, it does not adversely affect any individuals.
Consequently, there are no ethical or moral issues present.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The experimental results in the paper clearly demonstrate that the proposed
method can effectively enhance the diagnostic performance of brain diseases and provide
reasonable biomarkers.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the source code paper we used properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code for the model and our analysis will be well documented, and will be
public on github.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix A: Comparison Results with Standard Deviation

Due to text layout and page limitations, only the mean values from 10 tests are presented in the main
text. To ensure a comprehensive presentation of the experimental results, we list the mean values and
standard deviations (std) for each evaluation metric in Table 4 and Table 5.

Table 4: Classification results (mean/std) of different methods on the ADNI dataset (%).

Type Method
ACC F1 AUC ACC F1 AUC

NC vs. MCI vs. AD NC vs. MCI

BrainNetCNN 57.06/03.87 38.06/05.63 54.81/05.50 71.34/04.51 81.16/04.21 55.54/07.73

FBNetGen 57.50/06.88 56.97/04.69 67.75/06.11 61.25/09.29 66.46/11.22 58.47/12.03

BNTransformer 60.21/03.78 40.94/07.51 61.96/06.90 69.75/06.17 79.65/04.68 57.58/09.83

BrainGNN 58.82/05.48 45.33/09.87 61.66/04.67 74.25/03.72 83.20/02.31 62.88/11.82

LSGNN 58.75/02.91 36.96/09.56 58.20/04.99 60.27/08.83 68.62/13.00 54.04/08.45

Static

ALTER 63.73/05.70 51.68/07.54 68.98/05.91 76.42/08.96 82.20/07.31 71.11/12.26

ACIFBN 62.35/05.02 57.88/06.12 70.42/03.40 71.25/04.37 78.96/05.37 64.49/08.50

DRAT 60.83/06.44 51.09/09.14 70.11/08.83 71.50/05.15 79.78/09.09 57.93/19.89

ST-GCN 67.50/05.27 41.68/09.89 59.07/09.93 73.44/02.52 83.88/17.67 54.22/11.43

ST-fMRI 57.45/04.30 38.79/12.07 64.84/07.52 71.81/02.95 81.71/03.72 61.41/06.51

STAGIN 56.46/05.62 27.75/05.83 54.76/05.34 69.25/03.54 80.97/01.53 56.44/07.40

OT-MCSTGCN 59.02/06.82 41.31/10.78 58.52/09.15 76.08/07.28 80.14/03.83 60.89/08.05

MGNN 61.76/05.63 51.38/09.65 66.74/06.20 77.46/06.32 83.16/06.23 70.51/12.48

Dynamic

NeuroH-TGL 72.19/06.31 57.81/13.21 70.49/12.30 78.50/05.27 84.35/03.88 72.61/07.13

Type Method
ACC F1 AUC ACC F1 AUC

NC vs. AD MCI vs. AD

BrainNetCNN 71.47/08.48 50.00/32.92 62.69/16.07 68.92/13.63 75.32/23.49 53.29/11.14

FBNetGen 63.33/07.86 58.50/10.03 57.53/11.74 65.83/10.40 73.71/08.32 64.07/12.72

BNTransformer 74.00/10.68 71.72/07.97 75.89/09.99 74.50/09.07 81.56/08.43 57.64/18.27

BrainGNN 74.05/08.36 62.90/10.90 68.66/08.10 79.19/04.37 87.36/02.79 64.12/12.39

LSGNN 70.42/06.83 53.07/18.88 66.26/13.00 64.05/09.21 73.72/10.06 56.11/07.38

Static

ALTER 75.23/07.32 59.18/24.16 74.25/10.48 82.43/05.70 88.45/04.11 73.50/10.80

ACIFBN 79.17/05.27 71.53/10.66 78.44/08.56 83.75/05.09 90.91/02.81 62.88/15.06

DRAT 72.92/08.79 55.79/24.21 68.62/10.45 80.31/07.79 88.02/04.79 70.01/17.71

ST-GCN 67.92/04.19 51.46/20.23 60.51/10.43 82.08/02.67 89.81/02.28 61.79/05.12

ST-fMRI 76.45/11.22 68.40/27.38 78.96/10.92 84.16/05.16 84.61/04.91 62.16/09.45

STAGIN 67.08/04.73 47.99/12.31 55.49/15.81 74.44/01.11 85.35/00.73 53.71/11.38

OT-MCSTGCN 73.75/08.34 57.61/23.67 66.41/12.45 76.26/06.02 85.40/03.93 68.15/06.89

MGNN 81.35/06.62 77.46/07.68 80.84/08.44 80.54/04.65 86.80/03.69 75.43/08.22

Dynamic

NeuroH-TGL 81.50/06.73 72.12/11.49 83.01/10.12 86.67/04.08 92.46/02.25 76.01/16.12
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Table 5: Classification results (mean/std) of different methods on the PD dataset (%).

Type Method
ACC F1 AUC ACC F1 AUC

NC vs. TDPD vs. PGPD NC vs. TDPD

Static

BrainNetCNN 55.70/11.68 46.09/12.90 67.16/10.13 85.67/06.80 81.98/08.07 83.52/11.72

FBnetGen 62.50/13.11 57.65/16.24 69.23/13.49 74.56/08.13 52.80/31.54 65.65/23.42

BNTransformer 63.75/05.48 56.47/08.10 71.75/03.40 82.50/06.12 70.88/24.91 74.83/12.12

BrainGNN 63.49/07.36 57.58/10.14 72.51/06.90 83.67/08.06 78.47/11.21 84.85/10.96

LSGNN 56.88/08.59 46.44/11.69 64.46/10.71 73.75/27.07 74.84/17.88 77.08/16.43

ALTER 62.28/07.85 48.47/13.40 63.23/13.95 86.56/09.63 80.83/16.55 78.38/18.57

Dynamic

ACIFBN 61.25/10.75 48.72/17.28 66.33/16.23 82.89/10.93 77.91/16.31 79.80/18.10

DRAT 61.88/08.13 54.72/07.69 64.66/07.81 74.75/12.47 67.53/24.90 79.20/17.45

ST-GCN 58.13/08.41 54.93/10.88 65.56/08.51 82.67/09.02 81.21/09.85 80.18/13/04

ST-fMRI 58.75/08.48 52.10/10.15 66.10/08.19 75.33/13.92 74.04/14.31 73.64/17.50

STAGIN 55.63/07.63 43.52/10.77 63.71/04.28 81.89/09.71 74.20/26.10 76.55/21.18

OT-MCSTGCN 59.38/08.95 38.24/08.67 62.37/14.32 81.56/10.89 79.31/13.10 81.59/13.40

MGNN 59.89/06.23 51.56/11.43 64.25/12.15 85.78/11.27 83.17/15.54 81.10/19.85

NeuroH-TGL 66.25/14.58 61.71/16.88 73.85/15.14 91.25/08.00 91.00/08.20 94.21/08.27

Type Method
ACC F1 AUC ACC F1 AUC

NC vs. PGPD TDPD vs. PGPD

Static

BrainNetCNN 79.55/08.81 75.32/16.97 73.10/21.24 74.00/09.95 79.43/09.10 69.78/19.29

FBnetGen 74.55/07.51 78.39/04.73 51.82/25.05 72.00/12.49 73.05/14.63 66.14/19.14

BNTransformer 79.00/09.60 77.18/15.50 78.62/11.08 76.73/09.82 79.50/09.28 70.20/14.43

BrainGNN 83.93/11.05 75.70/27.87 73.67/18.62 75.00/11.83 74.37/25.70 63.06/19.10

LSGNN 74.17/08.98 76.93/09.53 68.47/16.28 72.00/07.48 76.61/08.45 58.62/13.83

ALTER 80.53/07.60 78.55/15.06 74.91/13.03 79.55/08.18 83.11/07.73 68.64/20.59

Dynamic

ACIFBN 76.97/13.27 73.90/26.74 68.59/24.62 74.18/14.29 73.36/26.45 63.79/10.20

DRAT 72.83/12.89 66.37/27.64 61.49/25.87 71.27/07.79 79.67/05.16 59.69/21.38

ST-GCN 79.70/10.05 72.80/20.98 77.15/13.92 74.45/14.45 72.67/27.77 67.44/18.90

ST-fMRI 78.33/09.28 81.79/08.50 74.27/11.15 71.67/07.93 72.96/13.02 44.33/23.31

STAGIN 82.20/06.04 80.89/10.86 79.30/09.40 78.00/13.27 63.00/36.08 59.85/21.41

OT-MCSTGCN 82.20/08.69 83.59/09.09 75.50/15.85 75.82/11.14 73.39/25.59 63.05/18.53

MGNN 78.79/09.38 80.14/10.92 73.22/16.48 78.73/07.00 74.98/25.74 69.43/16.27

NeuroH-TGL 87.17/08.40 89.38/05.29 88.42/12.64 83.75/09.76 86.80/08.57 82.91/15.43
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B Appendix B: Ablation Results with Standard Deviation

Similarly, to ensure a comprehensive presentation of the ablation results, we list the mean values and
standard deviations for each evaluation metric in Table 6 and Table 7.

Table 6: Ablation results (mean/std) of the proposed method on the ADNI dataset (%).

Method
ACC F1 AUC ACC F1 AUC

NC vs. MCI vs. AD NC vs. MCI
w/o STPD 66.88/02.50 35.00/05.06 57.22/06.68 73.75/04.64 83.20/02.15 62.16/08.43
w/o STHW 65.21/04.85 54.88/11.18 67.21/04.89 74.25/05.25 82.94/02.96 63.90/07.58
w/o STPGC 65.80/04.33 60.13/06.91 70.98/05.18 74.00/04.06 82.58/02.27 64.76/09.32

NeuroH-TGL 72.19/06.31 57.81/13.21 70.49/12.30 78.50/05.27 84.35/03.88 72.61/07.13

Method
ACC F1 AUC ACC F1 AUC

NC vs. AD MCI vs. AD
w/o STPD 76.67/06.24 71.42/10.93 76.87/09.74 81.67/03.33 88.77/02.59 72.9513.90
w/o STHW 77.08/05.97 70.36/10.05 74.69/08.72 78.06/04.72 86.63/02.69 67.01/13.40
w/o STPGC 77.91/06.47 72.77/08.43 77.35/09.11 82.08/06.47 89.00/03.65 68.66/20.30

NeuroH-TGL 81.50/06.73 72.12/11.49 83.01/10.12 86.67/04.08 92.46/02.25 76.01/16.12

Table 7: Ablation results (mean/std) of the proposed method on the PD dataset (%).

Method
ACC F1 AUC ACC F1 AUC

NC vs. TDPD vs. PGPD NC vs. TDPD
w/o STPD 65.00/03.00 55.15/04.44 64.57/06.56 86.2510.38 87.06/09.10 83.54/15.76
w/o STHW 63.60/03.56 52.48/09.00 65.53/06.12 83.50/07.68 80.96/08.49 79.78/12.56
w/o STPGC 64.38/07.42 55.18/08.81 64.40/09.95 84.75/07.94 83.73/07.99 88.53/09.50

NeuroH-TGL 66.25/14.58 61.71/16.88 73.85/15.14 91.25/08.00 91.00/08.20 94.21/08.27

Method
ACC F1 AUC ACC F1 AUC

NC vs. PGPD TDPD vs. PGPD
w/o STPD 83.75/09.21 85.76/09.05 86.12/09.29 81.25/10.08 86.21/08.81 70.50/14.04
w/o STHW 79.33/09.13 82.47/77.58 79.93/11.89 78.75/08.80 81.96/15.01 69.91/29.99
w/o STPGC 80.50/09.13 82.64/09.05 81.16/09.47 76.00/08.00 78.23/09.10 70.65/13.63

NeuroH-TGL 87.17/08.40 89.38/05.29 88.42/12.64 83.75/09.76 86.80/08.57 82.91/15.43
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