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ABSTRACT

Large Language Models (LLMs) rely on safety alignment to produce socially
acceptable responses. However, this behavior is known to be brittle: further fine-
tuning, even on benign or lightly contaminated data, can degrade safety and reintro-
duce harmful behaviors. A growing body of work suggests that alignment may cor-
respond to identifiable directions in weight space, forming subspaces that could, in
principle, be isolated or preserved to defend against misalignment. In this work, we
conduct a comprehensive empirical study of this perspective. We examine whether
safety-relevant behavior is concentrated in specific linear subspaces, whether it can
be separated from general-purpose learning, and whether harmfulness arises from
distinguishable patterns in activations. Across both weight and activation spaces,
our findings are consistent: subspaces that amplify safe behaviors also amplify
useful ones, and prompts with different safety implications activate overlapping
representations. Rather than residing in distinct directions, we show that safety is
highly entangled with the general learning components of the model. This suggests
that subspace-based defenses face fundamental limitations and underscores the
need for alternative strategies to preserve safety under continued training. We cor-
roborate these findings with multiple experiments on five open-source LLMs from
the Llama and Qwen families. Our code is available anonymously at: https://
anonymous.4open.science/r/safety-subspaces-anon-E3CB.

1 INTRODUCTION

Large Language Models (LLMs) show strong performance across a wide range of general-purpose
tasks (1; 51; 60; 61; 63; 70). To ensure these models behave responsibly and align with human values,
they undergo an additional process of safety alignment. This alignment is typically achieved during
the post-training stage, enabling models to improve response quality, and refuse harmful prompts
over the pre-trained stage. Despite known jailbreak methods that can bypass safeguards, aligned
models are generally considered significantly safer than their base versions (44; 52; 67).

However, this alignment is fragile. Since safety is encoded in the model’s weights, any modification,
such as further fine-tuning (FT), can compromise it. This exposes a deeper attack surface beyond
prompt engineering: an adversary could insert a small number of malicious samples into a training
set to subvert alignment (4; 71; 72; 76). Recent work shows that even benign FT, low-rank adaptation,
or pruning can degrade a model’s safety profile (16; 17; 36; 50; 66). A growing line of research seeks
to leverage the learned safety adherence to design defenses against adversarial attacks and interpret
alignment mechanisms(3; 11; 20; 28; 33; 37; 69).

Fine-tuning (FT) is used to adapt an LLM to new and personalized domains and plays a key role
in the widespread adoption of LLMs across diverse contexts. Preserving alignment in this setting,
while retaining the improvements achieved through FT, is therefore both a practical concern and a
technically challenging problem. This raises a natural question: Does there exist a subspace, whether
in weight space or activation space, that uniquely encodes safety alignment information without
affecting performance? If such a property exists, it could, in principle, enable the preservation of
safety while maintaining model performance under continued training.
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To construct defenses, prior works (20; 37) have typically derived safety subspaces using one of
two approaches: weight updates from general alignment (aligned–base model deltas) or updates
from targeted safety tuning (safety–base model deltas). Our goal is to comprehensively investigate
these so-called “safety subspaces” in order to determine whether the information they contain is truly
specific to safety. If so, we could separate unsafe information from the useful knowledge learned
during FT through simple projections, thereby ensuring that our fine-tuned models are both robust to
safety and high-performing.

To explore this question, we design four experiments probing the geometry of safety-related behavior
across both model weights and activations. We begin by analyzing FT updates derived from purely
useful and purely harmful datasets. These updates are projected into the candidate “safety subspaces”
to test whether harmful updates are more expressive than useful ones within these subspaces. Next,
we design an experiment involving contaminated FT, where a small fraction of harmful samples is
mixed into an otherwise benign dataset. By projecting updates into the orthogonal complement of the
candidate subspaces, we test whether harmful components can be selectively removed. From these
experiments, we conclude that the candidate subspaces are not safety-specific but instead capture
general learning. This leads us to ask whether any distinct safety subspace exists at all. To address
this, our third experiment performs pairwise comparisons among useful, harmful, and safety updates
to determine which pairs share the greatest similarity. Surprisingly, the similarity between harmful
and safety updates is never the highest, as one might expect, and is sometimes even the lowest.
Finally, in our fourth experiment, we extend this analysis to activation space, examining whether
safety-specific attributes are distinguishable in activations rather than weights.

Across all experiments, we find no evidence that any linear subspace-whether in weight or activation
space-captures safety-specific behavior in isolation. Although certain subspaces, such as those derived
from the principle components of alignment or safety-specific updates, are impactful, they amplify
both safe and useful behaviors alike, indicating that safety is deeply entangled with general learning.
Similarly, activations from harmful and helpful prompts occupy overlapping regions of activation
space, providing no evidence for distinct safety-related regions. Together, these findings reveal a
fundamental limitation of linear subspace-based strategies. Since safe and harmful behaviors cannot
be cleanly separated linearly, then projection- or filtering-based defenses are unlikely to suppress
harmfulness without incurring comparable losses in utility. Our key contributions are as follows:

• We show that subspaces derived from alignment and safety-specific updates are not uniquely tied
to safety; instead, they amplify both useful and harmful behaviors alike, implying that safety is
deeply entangled with general learning (Section 3).

• We demonstrate that safety and harmful updates share no relatively significant subspace overlap,
confirming that no region of weight space can be isolated specifically for safety (Section 5).

• Finally, we reaffirm this hypothesis in activation space, showing that harmful prompts do not
activate distinct linear regions We observe that safety and harmful updates do not exhibit relatively
higher within-task subspace overlap than cross-task comparisons, providing no evidence for a
weight-space region that isolates safety from general learning signals (Section 6).

• Across multiple experiments on five open-source LLMs from the Llama and Qwen families, we
consistently observe patterns inconsistent with linear separability of safety alignment, pointing to
inherent limitations in subspace-based defenses.

2 PRELIMINARIES

Notation. Let W0 denote the parameters of the base model and WA that of the aligned model.
We denote the parameters of the model after safety tuning, i.e., fine-tuning specifically for harmless
responses and refusals, using WS. We further fine-tune the aligned and the safety-tuned models
on a task-specific dataset Dj, where j ∈ {Useful,Harmful,Contaminated}, resulting in parameters
WFT,j . We decompose the total parameter update as the sum of two components:

∆A := WA −W0 ∆S := WS −W0 (alignment/safety-specific updates) (1)

∆j
T := WFT,j −WA/WS (task-specific updates). (2)

Importance of Alignment Update (∆A). Alignment training typically emphasizes behavioral
properties such as harmlessness, helpfulness, and honesty. Empirical studies (11; 20; 44) suggest
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Figure 1: The base model W0 is aligned/safety-tuned to produce the model WA/S . Step 1: The
difference ∆A/S = WA/S−Wo defines an alignment/safety-specific direction, from which projection
matrices Pk (top-K subspace) and P⊥

k (orthogonal subspace) are derived. WA/S is then fine-tuned
on three datasets: helpful, harmful, and contaminated, to yield Wuseful, Wharmful, and Wcontaminated,
with updates ∆tj . Step 2: Project ∆tj using Pk and P⊥

k , and add back to WA/S to obtain projected
models for evaluation. In addition, SVD is performed on the task-specific updates, and the Mode
Subspace Overlap (MSO) is computed between the top-K singular vectors.

that the alignment update ∆A encodes directions in parameter space that are strongly correlated with
these safety attributes. This stage is also the sole point in production model training where safety is
explicitly introduced into the model. Our goal is to systematically control the extent to which the
subsequent task-specific update ∆j

T interacts with these alignment directions.

Importance of Safety-Specific Update (∆S). We also aim to capture safety more directly, disen-
tangling it from the broader behavioral changes introduced during the alignment stage. Safety tuning
focuses explicitly on refusal and harmlessness, without simultaneously shaping general instruction-
following ability. A subtle but important detail is that we use a distribution for safety tuning that
is distinct from the one used for harmful fine-tuning, ensuring that our analysis captures genuine
interactions rather than artifacts of dataset overlap. Our objective here is to systematically analyze
how subsequent task-specific updates ∆j

T interact with these safety directions.

Constructing the Alignment & Safety Subspaces. To construct the alignment and safety sub-
spaces, each tensor in the updates ∆A/∆S is first reshaped into a matrix (flattened if needed)
VA, VS ∈ RM×N . From here on, we use VA/S to refer to both VA, VS. We perform a thin singular
value decomposition (SVD) of the form VA/S = UΣV ⊤, which reveals the principal directions of
parameter change (13; 43), ranked by their contribution to the Frobenius norm. The top k (Top-K)
right singular vectors in V are then selected to define the alignment/safety-specific subspace:

Sk := span(Uk), Uk ∈ RM×k, k ≤ rank(VA/S). (3)

Intuitively, Sk captures the k most significant directions of parameter shifts resulting from alignment
or safety-specific training. The subspaces naturally induce projection operators:

Pk := UkU
⊤
k , P⊥

k := I − Pk, (4)

where Pk projects a matrix onto the alignment/safety-specific subspace, and P⊥
k onto its orthogonal

complement.

Projection Schemes. Given a fractional rank hyperparameter ϱ ∈ (0, 1], we determine k =
⌊ϱ ·min(M,N)⌋ and apply one of two projection-based update schemes to the task-specific update:

Parallel : ∆̃j
T = Pk∆

j
T, Wparallel = WA/S + ∆̃j

T, (5)

Orthogonal : ∆̃j
T = P⊥

k ∆j
T, Worthogonal = WA/S + ∆̃j

T. (6)

Eqn. 5 retains the update components that align with the candidate safety directions, while Eqn.
6 removes this component, retaining only the update orthogonal to the candidate safety subspace.
Figure 1 provides an overview of our process.
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Control Experiments. To further assess the specificity and effectiveness of the chosen safety
subspace, we introduce two control experiments:

• Random-K: Instead of using the top-k singular vectors from the SVD of VA/S, we randomly
sample k singular vectors from the full set to construct a randomized safety subspace.

• Random: We replace VA/S with a random matrix of the same dimensions, perform its SVD, and
use the top-k singular vectors to define a synthetic safety subspace.

Energy-Kept Ratio. We introduce the fractional energy metric to quantify the extent of overlap
between the task update and the safety subspace:

Ek(∆j
T) :=

∥Pk∆
j
T∥2F

∥∆j
T∥2F

, E⊥
k (∆j

T) = 1− Ek(∆j
T). (7)

Mode Subspace Overlap (MSO). Let V ∈ Rd×nV and W ∈ Rd×nW be two matrices with a
shared ambient dimension d but possibly different column counts. We extract their principal directions
by taking the thin SVD:

V = UV ΣV V
⊤
V , W = UWΣWV ⊤

W . (8)
For a chosen energy-retention fraction η ∈ (0, 1], we select the smallest kV and kW such that the
top kV (resp. kW ) left singular vectors capture at least an η-fraction of ∥ΣV ∥2F (resp. ∥ΣW ∥2F ). This
yields orthonormal bases QV ∈ Rd×kV and QW ∈ Rd×kW . The overlap matrix is then defined as:

S = Q⊤
V QW ∈ RkV ×kW . (9)

To quantify the similarity between these η-energy subspaces, we use the MSO metric defined as:

MSO(V,W; η) =
∥S∥2F

min(kV , kW )
, 0 ≤ MSO ≤ 1. (10)

Intuitively, MSO(V,W; η) measures the overlap between the top-η energy components of V and
W: it equals 0 for orthogonal subspaces and 1 for identical spans. As a baseline, the expected overlap
between random subspaces of dimensions kV and kW in Rd is given analytically by:

E[overlap] =
max(kV , kW )

d
. (11)

Models Used. We evaluate base and aligned versions of five open-source LLMs: Llama 3.2 1B
(12), Llama 2 7B (63), Qwen-2.5 1B (70), Qwen-2.5 3B, and Qwen-2.5 7B. To obtain safety-tuned
variants, we fine-tune the base models on the safety-specific BeaverTails dataset (31), using only
entries labeled is_safe = True.

3 DO ALIGNMENT SUBSPACES ENCODE SAFETY?

A central question in understanding safety alignment is whether specific directions in weight space,
such as those defined by the difference between a base model and its RLHF-aligned counterpart,
encode information unique to safety. If this is the case, constraining FT updates to lie within these
subspaces could provide a principled approach to guarding against harmful optimization. We begin
our investigation by examining whether task-specific FT updates align differently with the top
directions of the alignment and safety-specific matrices, depending on whether the task is helpful or
harmful.

Experimental Setup. We fine-tune the aligned and safety-tuned models on two distinct datasets.
The first is a 20K subset of MetaMathQA (75), a benchmark of math word problems representing a
useful task without safety concerns. The second is a 4K unsafe subset of BeaverTails (31), a synthetic
dataset of harmful instruction–response pairs designed to elicit unsafe behavior. The resulting weight
updates are denoted as ∆Useful

T and ∆Harmful
T , respectively. To quantify behavioral effects, we evaluate

harmfulness on AdvBench (80), with GPT-4o-mini (27) scoring each response from 1 (least harmful)
to 5 (most harmful); the final score is the average across samples. Utility is measured as accuracy on
the GSM8k test set (9), based on final-answer correctness. For each setting, we compute harmfulness,
utility, and the energy-kept ratio for the projected models Wparallel and Worthogonal, as well as for the
base, aligned, fine-tuned, and control models.

4
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Figure 2: Parallel projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful and Full Harmful data, utility for models
fine-tuned on Full Useful, and harmfulness for models fine-tuned on Full Harmful.

Results: Energy Is Uniform Across Subspaces, Performance Is Not. As shown in Figures 2
and 6 (Appendix C), the fraction of energy retained in projected updates increases linearly with
subspace rank and is consistent across all three subspace types. This pattern holds for both helpful
and harmful updates. We find no evidence that update energy is preferentially concentrated in the top
directions of ∆A/S for safe versus unsafe FT. This suggests that if a “safety subspace” exists, it is not
revealed simply through energetic alignment with the dominant directions of ∆A/S. At the same time,
while energy is evenly distributed, behavioral impact is not. Figure 2 and Table 1 show that projecting
∆Useful

T onto the top-k directions consistently improves utility relative to random projections with
equal energy. Similarly, projecting ∆Harmful

T onto the same directions increases harmfulness. Thus,
the top singular directions of ∆A/S are not uniquely aligned with safety, but they are generally potent:
updates along these directions are more effective, whether the goal is to enhance utility or to elicit
harmful behavior. Comprehensive results for all models are provided in Table 4 (Appendix C).

Table 1: Parallel projection-based update schemes across varying SVD fractions. We report the utility
for models fine-tuned on Full Useful data, and harmfulness for models fine-tuned on Full Harmful.

Model Method Utility (↑) Harmful Score (↓)
Aligned SVD Fractions FT Aligned SVD Fractions FT

0.01 0.25 0.50 0.75 0.99 0.01 0.25 0.50 0.75 0.99

Qwen-2.5 1.5B
Top-K 0.47 0.50 0.53 0.55 0.57 0.58 0.61 1.55 1.62 1.80 1.92 1.90 1.97 2.09
Random-K 0.47 0.49 0.50 0.53 0.56 0.58 0.61 1.55 1.55 1.66 1.78 1.92 2.00 2.09
Random 0.47 0.49 0.50 0.53 0.53 0.56 0.61 1.55 1.56 1.65 1.74 1.83 1.95 2.09

Llama-3.2 1B
Top-K 0.13 0.14 0.21 0.25 0.30 0.34 0.36 2.80 2.89 3.29 3.51 3.66 3.84 4.07
Random-K 0.13 0.13 0.16 0.23 0.29 0.34 0.36 2.80 2.83 3.11 3.37 3.55 3.84 4.07
Random 0.13 0.13 0.17 0.22 0.29 0.34 0.36 2.80 2.81 3.05 3.34 3.56 3.83 4.07

Implications: Alignment Directions Reflect General Learning, Not Safety. This symmetry
across tasks is important. The fact that top-k directions amplify both helpful and harmful behaviors
equally suggests they do not encode alignment directly. Instead, they represent axes of general
parameter sensitivity, ie. directions where updates tend to induce large changes in model behavior.
This holds for both alignment and safety-specific updates, implying that disentangling safety offers
no clear separation or benefit. In this sense, ∆A/S captures a general learning geometry: directions
that are highly effective for optimization but not inherently safe. We draw three key takeaways. First,
neither helpful nor harmful updates preferentially align with the top subspaces of ∆A or ∆S in terms
of energy. Second, these same subspaces are more behaviorally expressive, amplifying both utility
and harmfulness depending on the task. Third, this challenges the assumption that ∆A/S encode

5
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safety-specific information expressed in their top subspaces. Thus, using ∆A/S to constrain updates
regulates the magnitude of behavioral change, but not its ethical nature.

4 CAN HARMFUL SUBSPACES BE REMOVED?

Having analyzed helpful and harmful updates in isolation, we now turn to a more realistic scenario:
contaminated FT. This setting involves adding a small fraction of harmful examples to an otherwise
benign dataset, producing updates that blend both signals. Prior work has shown that even limited
contamination can erode safety, causing models to revert to unsafe behaviors (4; 36; 50; 72; 76). While
earlier experiments identified expressive subspaces, we now ask the reverse question: can harmful
components of an update be removed? We test whether filtering specific subspaces, particularly those
aligned with the dominant directions of the alignment or safety-tuned matrix, can reduce harmfulness
while preserving utility.

Figure 3: Orthogonal projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful, Full Harmful and Contaminated data; and
utility and harmfulness for models fine-tuned on Contaminated.

Experimental Setup. We construct a contaminated dataset by mixing 20% harmful data from
BeaverTails with 80% of the 20K MetaMathQA subset. FT on this mixture produces a single
contaminated update, ∆T . To suppress harmful behavior, we apply the orthogonal projection strategy
from Section 2, removing components along the top-k alignment directions. Specifically, we compute
∆̃T = P⊥

k ∆T , where P⊥
k projects onto the complement of the alignment subspace. We then evaluate

the resulting models on GSM8K (utility) and AdvBench (harmfulness). Our objective is to test
whether removing alignment-aligned components can reduce harmfulness while preserving task
performance.

Results: Utility And Harmfulness Drop Together. Figures 3 and 7 (Appendix D) show the effects
of orthogonal projection on retained energy, utility, and harmfulness. As k increases, meaning more
of the update is removed, retained energy declines steadily across all projection types (random, top-k,
and random-k). Utility and harmfulness scores (Figure 3, Table 2) follow a similar downward trend.
The rate of decline, however, differs by projection strategy. Removing top-k alignment components
reduces utility more sharply than random projections, while harmfulness decreases at a similar
rate. This indicates no selective suppression of harmful behavior. In effect, safety gains come at a
proportional cost to task performance, with no clear advantage in targeting the alignment subspace.
Comprehensive results for all models are provided in Table 5 (Appendix D).

6
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Table 2: Parallel projection-based update schemes across varying SVD fractions. We report the utility
and harmfulness for models fine-tuned on Contaminated data.

Model Method Utility (↑) Harmful Score (↓)
Aligned SVD Fractions FT Aligned SVD Fractions FT

0.01 0.25 0.50 0.75 0.99 0.01 0.25 0.50 0.75 0.99

Qwen-2.5 1.5B
Top-K 0.47 0.50 0.53 0.55 0.57 0.58 0.60 1.55 1.58 1.65 1.80 1.91 1.92 2.16
Random-K 0.47 0.49 0.52 0.53 0.55 0.55 0.60 1.55 1.56 1.62 1.63 1.87 1.92 2.16
Random 0.47 0.49 0.50 0.52 0.52 0.54 0.61 1.55 1.58 1.64 1.68 1.74 1.92 2.16

Qwen-2.5 3B
Top-K 0.61 0.63 0.64 0.65 0.68 0.69 0.73 1.47 1.49 1.58 1.69 1.76 1.83 1.99
Random-K 0.61 0.62 0.64 0.64 0.66 0.69 0.73 1.47 1.45 1.55 1.62 1.65 1.91 1.99
Random 0.61 0.62 0.63 0.64 0.65 0.68 0.73 1.47 1.45 1.50 1.57 1.75 1.83 1.99

Qwen-2.5 7B
Top-K 0.74 0.74 0.75 0.75 0.75 0.78 0.81 1.30 1.31 1.56 1.60 1.68 1.67 1.96
Random-K 0.74 0.74 0.75 0.76 0.75 0.78 0.81 1.30 1.35 1.41 1.46 1.59 1.67 1.96
Random 0.74 0.74 0.75 0.75 0.75 0.78 0.81 1.30 1.34 1.40 1.48 1.56 1.63 1.96

Implications: No Selective Removal Is Possible. These results establish that the top subspaces of
alignment or safety-tuned updates do not uniquely encode safety or harmfulness. Removing these
directions degrades both utility and harmfulness at similar rates. If harmful behavior were confined
to distinct subspaces, we would expect a steeper drop in harmfulness than in utility, yet this is not
observed. Even if safety-relevant directions exist, they cannot be recovered from the alignment
or safety-tuned matrices alone, particularly under contamination. The update blends helpful and
harmful objectives, making its projection agnostic to intent. As a result, orthogonal projection fails
to selectively suppress harmful behavior. Thus, subspace filtering based on alignment directions
imposes a strict trade-off: improvements in safety come only at a proportional cost to utility.

We test whether projecting individual layers can cleanly separate safety and learning directions in
Appendix I. Specifically, we repeat the two weight-space analyses described above and observe that
no layer provides such separation.

5 ARE SAFETY WEIGHT SUBSPACES DISTINCT?

Figure 4: Mode Subspace Overlap (MSO) at the 70- and 85- percentile layers for pairwise comparisons
of the dominant subspaces from Harmful fine-tuned (H), Aligned (A), and Base (B) models.

A natural question is whether a dedicated region of parameter space, which we might call a “safety
subspace,” captures safety-specific behavior. Such a subspace should satisfy two criteria: (i) safety-
relevant updates, whether from alignment or harmful FT, should lie predominantly within it; and
(ii) task-specific updates unrelated to safety should have minimal overlap, with projections onto the
subspace leaving model safety unchanged. Our earlier results argue against the top subspaces of the
alignment or safety-tuned matrices meeting these criteria. Nevertheless, it remains open whether
some other set of directions, possibly outside these subspaces, could fulfill this role. To investigate
this, we directly compare the dominant subspaces of different update types.

7
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Experimental Setup. We compare the principal subspaces of three updates: the alignment update
∆A (from the base to the aligned model), the harmful FT update ∆Harmful

T (trained on BeaverTails),
and the useful FT update ∆Useful

T (trained on a 20K subset of MetaMathQA). Notably, the negated
alignment update −∆A reverses alignment by pushing the model back toward its unaligned base
state, effectively acting as a harmful update and serving as a useful reference point. We repeat these
experiments for safety-tuned updates as well. For a given energy threshold η ∈ (0, 1], we compute
MSO(·, ·; η) (Section 2) for three pairs: (i)

(
∆Useful

T ,∆Harmful
T

)
, to assess whether helpful and harmful

FT affect similar subspaces; (ii)
(
∆Useful

T ,−∆A

)
, to test the relationship between helpful updates

and reversed alignment; and (iii)
(
∆Harmful

T ,−∆A

)
, to compare two harmful directions. We sweep

over η, with smaller values isolating high-energy directions and larger values approaching full-rank
overlap. As a baseline, we include the random-subspace expectation max(kV , kW )/d; values above
this baseline indicate significant geometric alignment, while values near it suggest chance-level
overlap.

Results: Representations Overlap Across Tasks. Figures 4 and 8 (Appendix E) show the pairwise
overlap between the dominant subspaces (top-k directions) of each update. We report per-layer
results in Figures 10, 11, 12, 13, and 14 (Appendix G), all of which show results consistent with our
observations. All pairs exhibit greater overlap than random baselines, indicating shared structure.
However, in Figure 4, the strongest overlap is between the useful and harmful updates, rather than
between alignment and harmful updates, as one might expect if safety were a shared component.
This is a key finding. If a safety subspace existed, it would likely appear in the shared directions
between alignment and harmful updates (or between safety and harmful updates), which affect safety
in opposite ways. The absence of such overlap suggests that no consistent, linear safety-specific
subspace exists. For safety-tuned models (Figure 8), the strongest overlap occurs between the useful
and safety-specific updates, an even more counterintuitive result. This implies that, in terms of
subspace overlap, the useful update lies closer to the safety-specific update than the harmful update
does. Strikingly, this overlap is much larger than that between the harmful and safety-specific updates,
even though, semantically, one might expect the latter to be most similar.

Implications: Shared Weight Subspaces Drive Behavior, Not Safety. Taken together, our results
suggest that safety-relevant updates do not reside in a well-defined or isolatable subspace. Instead,
alignment, safety, and harmfulness operate over complex, task-dependent directions. The strong
overlap between harmful and helpful update subspaces indicates that these directions form a general
learning subspace, expressive across tasks but agnostic to safety. Thus, we find no evidence of a
distinct safety subspace, and linear subspace methods cannot cleanly isolate safety in parameter space.
This highlights a fundamental limitation in subspace-based defences: attempts to filter safety-relevant
components suppress general learning as well.

We repeat all of our weight-space analyses for a model safety-tuned using only Direct Preference
Optimization (DPO) in Appendix H, to assess whether our findings remain consistent across different
safety training strategies. We find that all our results transfer cleanly to this setting.

6 DO SAFETY SUBSPACES EXIST IN ACTIVATION SPACE?

So far, our analysis has focused on weight space, probing whether certain update directions encode
safety-related behavior. Finding no evidence of distinct safety subspaces at the parameter level raises
a final question: do safety-relevant inputs elicit distinct activation patterns, even when their weight
updates overlap? Although weight updates may distribute broadly, inputs might still selectively
activate specific directions. We investigate this possibility in the following section.

Experimental Setup. We compare internal activations induced by different prompt categories.
Specifically, we pass useful (benign) prompts from the MATH dataset (19) and harmful prompts
from BeaverTails (test set) and ToxiGen (15) through three models: the aligned model, the useful
fine-tuned model, and the contaminated fine-tuned model. For each prompt, we record the hidden
state of the last generated token (35) at each transformer layer ℓ ∈ 0, . . . , L. At each layer, these
hidden states are stacked into activation matrices of shape Rn×d, where d is the hidden size and n is
the number of prompts (5000 per dataset). We then compute MSO (see Section 2) between activation
matrices from different datasets, sweeping over energy thresholds η. Smaller values of η capture
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Figure 5: Average Mode Subspace Overlap (MSO) across layers in the 65–90% depth range for
pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2) prompt sets.

high-energy activation modes, while larger values approximate full-rank comparisons. We plot MSO
curves alongside the random-subspace baseline max(kUseful, kHarmful)/d and report averages over
layers in the 65–90% depth percentile.

Results: Representation Subspaces Overlap Across Tasks. Figure 5 shows MSO values across all
pairs of prompt categories. Useful and harmful prompts consistently exhibit overlap above the random
baseline, indicating activation of shared high-energy subspaces in activation space. Interestingly, the
overlap between the two harmful prompt sets is not always greater than their overlap with useful
prompts; in some cases, the useful–harmful overlap exceeds the harmful–harmful overlap. The degree
of overlap also varies across model configurations. Some models show strong alignment even in the
top subspaces, while others exhibit more gradual increases, with overlap becoming significant only at
higher energy thresholds. This variability suggests that representational similarity depends more on
model-specific factors than on the safety content of the prompts. Additional results on other models
are provided in Figure 9 (Appendix F). We report additional analysis experiments in Appendix K.

Implications: Shared Activation Subspaces Drive Behavior, Not Safety. These observations
suggest that while all prompt types activate shared subspaces more than expected by chance, there
is no evidence of a distinct safety-violating subspace. If such a subspace existed, activations from
harmful prompts would consistently show greater mutual overlap than with useful prompts, which
is not observed. Instead, prompts with different safety implications are processed through broadly
overlapping representations. This supports our earlier hypothesis: the directions most responsible for
behavior correspond to general-purpose representational subspaces rather than safety-specific ones.
These directions are activated across tasks and prompt types, indicating that LLMs do not internally
separate “safe” and “unsafe” activation modes but instead rely on shared, high-impact subspaces.
We therefore find no evidence of a distinct safety subspace even in activation space. Together with
our weight-space results, this suggests that both aligned and harmful behaviors arise from shared
representational mechanisms rather than separable subspaces.

7 CONCLUSION

This work set out to investigate how safety alignment is encoded in LLMs and whether it can be
isolated in weight or activation space. Our findings challenge the common assumption that alignment
or safety-specific updates correspond to unique “safety subspaces”. Subspaces with strong behavioral
impact are not unique to safety; rather, they amplify both utility and harmfulness, indicating that
safety is deeply entangled with general learning. Similarly, harmful and useful prompts activate
overlapping regions of activation space, providing no evidence for a distinct safety subspace. Together,
these results establish that safety alignment is not linearly separable in LLMs. While this complicates
the development of subspace-based defenses, it also highlights the potential of high-impact directions,

9
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if appropriately constrained, for guiding both safe fine-tuning and activation-level control. More
broadly, our work calls for rethinking assumptions in interpretability and alignment research, and for
developing methods that explicitly account for the entangled nature of representations.

REPRODUCIBILITY STATEMENT

We place a strong emphasis on reproducibility. To this end, we make our im-
plementation publicly available at https://anonymous.4open.science/r/
safety-subspaces-anon-E3CB, and also include it in the supplementary material. A
complete description of the experimental setup is provided throughout the paper in Sections 3, 4, 5
and 6, with additional hyperparameter details in Appendix B. All experiments are conducted on
widely used, publicly available benchmark datasets, which we summarize in Appendix M.
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A RELATED WORK

Safety Alignment and Task-Specific Fine-Tuning in LLMs. Large Language Models (LLMs) do
not inherently follow instructions and often exhibit socially undesirable behaviors. To address this,
various post-training methods, instruction-tuning and reinforcement learning from human feedback,
are applied to align base LLMs with human values and improve their instruction-following capabilities
(44; 52; 56; 67). However, studies have shown that fine-tuning these aligned models on harmful
data can undo this alignment, restoring their original, socially unacceptable behaviors (71). This
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unalignment phenomenon has been demonstrated in both open-source models (36; 72) and proprietary
models (4; 50; 76) via publicly available fine-tuning APIs, thereby exposing a new attack surface
(10; 25; 32). Moreover, even fine-tuning on benign downstream tasks can degrade alignment (16; 17).

Defense Methods. To safeguard aligned LLMs against unalignment during fine-tuning, defenses
have been proposed at three stages of the pipeline: the alignment stage, the fine-tuning stage, and the
post-processing stage. The effectiveness of these defense methods is evaluated using downstream
model utility and harmfulness (22).

Alignment Stage Defenses. Alignment stage defenses update the initial instruction-tuning process
to ensure that downstream fine-tuning cannot easily overwrite the model’s safety behavior. One
approach augments the alignment loss, making harmful representations harder to recover during
fine-tuning updates (54). Another line of work relies on safety-oriented data curation to preserve
alignment under downstream fine-tuning(40). Adversarial and meta-learning techniques have also
been combined to develop tamper-resistant methods that prevent harmfulness while maintaining task
performance (59). A separate strategy introduces a regularization term to the alignment loss, which
has been shown to preserve safety after fine-tuning (24). Perturbing safety-critical layers during
instruction-tuning has also been shown to protect alignment (39). Additional work traces unalignment
to excessive dependence on maximum-likelihood training, motivating an integrity preserving variant
of this method (7). A study on “shallow alignment” also shows that instruction-tuning influences
only the first few output tokens, whereas deeper alignment improves robustness (49).

Fine-Tuning Stage Defenses. Fine-tuning stage defenses modify the fine-tuning process to ensure
that the model’s alignment is preserved after update. One class of defenses focuses on data curation,
augmenting the fine-tuning dataset to maintain alignment after update (5; 14). Another approach
uses safety examples prefixed with a secret prompt, which act as backdoor triggers to reactivate
safe behavior after fine-tuning (64). A data ranking based strategy has also been proposed, where
low-quality data is down-ranked and high-quality data is up-ranked to better preserve safety (58). It
has also been shown that prompt templates play an important role; removing the safety prompt during
fine-tuning and reintroducing it at inference time can maintain alignment (42).

Optimization based defenses are another type of fine-tuning stage defenses. One line of work splits
fine-tuning into an alignment phase and a utility phase, safeguarding both safety and task performance
(23). Another approach combines safety and helpfulness objectives into a single loss (77).

Parameter level methods can also be used to preserve safety. One strategy identifies safety neurons
and updates only those parameters (78). Another approach involves localizing safety layers and
freezing their gradients, which has been shown to prevent unalignment (38). Another line of work
explores constraining parameter changes to directions orthogonal to existing safety features, showing
that this method preserves alignment (37). It has also been shown that harmful data can be filtered by
matching fine-tuning embeddings against the top-k singular vectors of an activation matrix generated
using a harmful dataset (8).

Post-Processing Stage Defenses. Post-processing stage defenses adjust the fine-tuned model to
restore alignment and preserve usefulness. One approach adds a safety vector, defined as the difference
between aligned and unaligned weights, to the fine-tuned parameters to regain safe behavior (3).
Another line of work projects the fine-tuning update onto the alignment vector when their similarity
drops below a threshold, or selectively merges layers from the fine-tuned and aligned models under
the same criterion to achieve a similar effect (11; 20). A third strategy removes parameters identified
as harmful after fine-tuning to restore alignment (21). It has been shown that safety directions in
attention-head activations can also be located and used for targeted intervention (79) to realign the
fine-tuned model. Another method detects update parameters whose signs contradict the original
alignment and removes them (69). Additional work restores/finds safety-critical neurons (6; 73),
fuses aligned and fine-tuned models (74), or adds an optimized post-hoc perturbation to recover
alignment (65).

Safety Mechanisms in Fine-Tuned and Aligned LLMs. Recent studies have examined how LLMs
express safety over neurons, layers, and activations. One study finds that safety related information
is language agnostic, identifies parameters whose modification affects alignment, and shows that
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Figure 6: Parallel projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful and Full Harmful data, utility for models
fine-tuned on Full Useful, and harmfulness for models fine-tuned on Full Harmful.

freezing these parameters during fine-tuning does not ensure safety (48). Another line of work locates
sparse regions in parameter space whose removal weakens alignment, and likewise observes that
freezing these regions alone is insufficient to maintain model alignment (66). A separate analysis
maps a safety basin in weight space, noting that random perturbations inside the basin leave safety
intact, whereas fine-tuning moves weights outside it (47). Work on the activation residual stream
isolates a refusal direction, removing this direction prevents refusal to harmful prompts, while adding
it triggers refusal to benign ones (2). Other work shows that safety in models is governed by multiple
directions in residual stream space, and that refusal rates drop when prompts avoid tokens activating
these directions (45). Finally, a study shows that safety fine-tuning minimally adjusts MLP weights
by pushing unsafe inputs into the weights’ null space, leading models to process adversarial prompts
as safe (29).

B EXPERIMENTAL DETAILS

We implemented all experiments using PyTorch (46) and the HuggingFace Transformers library (68).
We ran all experiments on a single NVIDIA A6000 GPU (48 GB). To save memory, all base models
are initalized in torch.bfloat16 precision. All models are trained using the AdamW optimizer
(41). Detailed hyperparameter configurations for full fine-tuning (and safety-tuning) of each model
are presented in Table 3.

Table 3: Hyperparameter settings for fine-tuning the various models.

Optimizer AdamW
Batch size 1
Max. Seq. Len 512
Grad Acc. Steps 32
Epochs 1
Learning Rate 1× 10−5

LR Scheduler Cosine
Warmup Ratio 0.02

C DO ALIGNMENT SUBSPACES ENCODE SAFETY?

We provide additional results in Figure 6 and Table 4 to support the analysis presented in Section 3.
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Table 4: Parallel projection-based update schemes across varying SVD fractions. We report the utility
for models fine-tuned on Full Useful data, and harmfulness for models fine-tuned on Full Harmful.

Model Method
Utility (↑)

SVD Fractions
Harmful Score (↓)

SVD Fractions

0.01 0.25 0.50 0.75 0.99 0.01 0.25 0.50 0.75 0.99

Qwen-2.5 1.5B

Base 0.21 3.27
Aligned 0.47 1.55
Fine-Tuned 0.61 2.09
Top-K 0.50 0.53 0.55 0.57 0.58 1.62 1.80 1.92 1.90 1.97
Random-K 0.49 0.50 0.53 0.56 0.58 1.55 1.66 1.78 1.92 2.00
Random 0.49 0.50 0.53 0.53 0.56 1.56 1.65 1.74 1.83 1.95

Llama-3.2 1B

Base 0.03 4.13
Aligned 0.13 2.80
Fine-Tuned 0.36 4.07
Top-K 0.14 0.21 0.25 0.30 0.34 2.89 3.29 3.51 3.66 3.84
Random-K 0.13 0.16 0.23 0.29 0.34 2.83 3.11 3.37 3.55 3.84
Random 0.13 0.17 0.22 0.29 0.34 2.81 3.05 3.34 3.56 3.83

Llama-3.2 1B

Base 0.026 4.13
Safety-Tuned 0.032 3.41
Fine-Tuned 0.075 3.79
Top-K 0.026 0.026 0.037 0.041 0.039 3.47 3.55 3.63 3.71 3.69
Random-K 0.031 0.026 0.033 0.037 0.042 3.46 3.46 3.54 3.66 3.69
Random 0.031 0.026 0.030 0.038 0.039 3.44 3.48 3.54 3.61 3.66

Qwen-2.5 3B

Base 0.44 2.53
Aligned 0.61 1.47
Fine-Tuned 0.72 2.16
Top-K 0.63 0.64 0.65 0.68 0.69 1.48 1.71 1.81 1.91 1.92
Random-K 0.62 0.63 0.64 0.65 0.69 1.44 1.55 1.62 1.74 1.91
Random 0.62 0.63 0.64 0.65 0.68 1.44 1.50 1.66 1.75 1.83

Qwen-2.5 7B

Base 0.69 1.90
Aligned 0.74 1.30
Fine-Tuned 0.81 2.12
Top-K 0.72 0.74 0.76 0.77 0.77 1.34 1.56 1.66 1.76 1.84
Random-K 0.73 0.75 0.74 0.75 0.77 1.34 1.44 1.53 1.64 1.84
Random 0.74 0.75 0.75 0.76 0.76 1.33 1.40 1.48 1.56 1.75

Llama-2 7B

Base 0.05 4.27
Aligned 0.20 1.74
Fine-Tuned 0.30 3.41
Top-K 0.21 0.24 0.26 0.28 0.29 1.81 2.34 2.61 2.90 3.15
Random-K 0.20 0.23 0.25 0.28 0.29 1.74 1.91 2.09 2.63 3.13
Random 0.20 0.23 0.25 0.28 0.28 1.77 1.91 2.15 2.57 3.03

Llama-2 7B

Base 0.053 4.27
Safety-Tuned 0.024 3.54
Fine-Tuned 0.151 3.84
Top-K 0.030 0.042 0.058 0.082 0.122 3.54 3.67 3.70 3.78 3.79
Random-K 0.026 0.029 0.043 0.067 0.117 3.55 3.59 3.66 3.75 3.79
Random 0.026 0.033 0.042 0.064 0.112 3.55 3.58 3.68 3.76 3.79

D CAN HARMFUL SUBSPACES BE REMOVED?

Figure 7 and Table 5 presents supplementary results that further substantiate the findings discussed in
Section 4.

E ARE SAFETY WEIGHT SUBSPACES DISTINCT?

To supplement the analysis in Section 5, we report extended results in Figure 8.
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Figure 7: Orthogonal projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful, Full Harmful and Contaminated data; and
utility and harmfulness for models fine-tuned on Contaminated.

Figure 8: MSO at the 70-, 80-, and 85- percentile layers for pairwise comparisons of the dominant
weight subspaces from Harmful fine-tuned (H), Safety-Tuned (S), and Base (B) models.

F DO SAFETY SUBSPACES EXIST IN ACTIVATION SPACE?

To complement the discussion in Section 6, we include extended results in Figure 9.

G CAN SAFETY WEIGHT SUBSPACES BE DISTINCT LAYERWISE?

To complete the analysis in Section 5, we report per-layer results in Figures 10, 11, 12, 13, and 14.
We observe that the strongest overlap is never between the alignment and harmful updates, contrary
to what one might expect if safety were represented as a shared component. This pattern is consistent
across all layers and all models.

H EFFECT OF SAFETY-TUNING VIA DIRECT PREFERENCE OPTIMIZATION

In this section, we extend our study to include a different alignment method, specifically the widely-
used Direct Preference Optimization (DPO, (53)). This allows us to study how overlap varies under a
different alignment method. In doing so, we can determine whether the entanglement we observe is a
fundamental property of the model’s architecture or a consequence of the alignment procedure, and
whether it persists across different forms of safety training.
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Table 5: Parallel projection-based update schemes across varying SVD fractions. We report the utility
and harmfulness for models fine-tuned on Contaminated data.

Model Method
Utility (↑)

SVD Fractions
Harmful Score (↓)

SVD Fractions

0.01 0.25 0.50 0.75 0.99 0.01 0.25 0.50 0.75 0.99

Qwen-2.5 1.5B

Base 0.21 3.27
Aligned 0.47 1.55
Fine-Tuned 0.60 2.16
Top-K 0.50 0.53 0.52 0.55 0.56 1.59 1.65 1.79 1.91 1.92
Random-K 0.49 0.52 0.53 0.55 0.55 1.56 1.62 1.63 1.87 1.92
Random 0.49 0.50 0.52 0.52 0.54 1.58 1.64 1.68 1.74 1.92

Llama-3.2 1B

Base 0.03 4.13
Aligned 0.13 2.80
Fine-Tuned 0.37 3.60
Top-K 0.14 0.20 0.25 0.29 0.33 2.84 2.90 3.05 3.36 3.45
Random-K 0.13 0.16 0.22 0.29 0.33 2.81 2.90 3.03 3.19 3.45
Random 0.13 0.16 0.22 0.28 0.33 2.84 2.90 3.19 3.19 3.45

Llama-3.2 1B

Base 0.026 4.13
Safety-Tuned 0.032 3.41
Fine-Tuned 0.068 3.65
Top-K 0.027 0.026 0.033 0.048 0.039 3.42 3.48 3.59 3.56 3.62
Random-K 0.030 0.026 0.033 0.042 0.040 3.43 3.44 3.40 3.46 3.60
Random 0.032 0.026 0.032 0.039 0.039 3.42 3.49 3.44 3.53 3.59

Qwen-2.5 3B

Base 0.44 2.53
Aligned 0.61 1.47
Fine-Tuned 0.73 1.99
Top-K 0.62 0.63 0.65 0.68 0.69 1.49 1.58 1.69 1.76 1.83
Random-K 0.62 0.64 0.64 0.66 0.69 1.45 1.55 1.62 1.65 1.91
Random 0.62 0.63 0.64 0.65 0.68 1.45 1.50 1.57 1.75 1.83

Qwen-2.5 7B

Base 0.69 1.90
Aligned 0.74 1.30
Fine-Tuned 0.81 1.96
Top-K 0.74 0.75 0.75 0.75 0.78 1.30 1.55 1.60 1.68 1.67
Random-K 0.74 0.75 0.76 0.75 0.78 1.35 1.41 1.46 1.59 1.67
Random 0.74 0.75 0.75 0.75 0.78 1.34 1.40 1.48 1.56 1.63

Llama-2 7B

Base 0.05 4.27
Aligned 0.20 1.74
Fine-Tuned 0.30 3.08
Top-K 0.21 0.23 0.25 0.27 0.28 1.77 1.91 2.15 2.38 2.74
Random-K 0.20 0.23 0.26 0.28 0.28 1.74 1.91 2.09 2.38 2.79
Random 0.20 0.23 0.25 0.27 0.28 1.77 1.91 2.15 2.38 2.74

Llama-2 7B

Base 0.053 4.27
Safety-Tuned 0.024 3.54
Fine-Tuned 0.168 3.89
Top-K 0.029 0.036 0.055 0.082 0.127 3.49 3.69 3.76 3.83 3.85
Random-K 0.026 0.032 0.042 0.062 0.128 3.59 3.58 3.75 3.79 3.89
Random 0.026 0.036 0.041 0.065 0.122 3.57 3.64 3.74 3.78 3.89

We repeat the full weight-space analyses from Sections 3, 4, and 5 for a Llama-3.2 1B model that we
safety-tuned using DPO on the PKU-SafeRLHF dataset (30). We train the model for 5k steps on a
10k-example subset of the dataset.

The results are shown in Figures 15, 16, and 17. We observe that all of our previous hypotheses
and analyses hold consistently across these experiments. Together, these findings suggest that the
underlying geometric behavior we identify is robust to the choice of alignment method.
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Figure 9: MSO across layers in the 65–90% depth range for pairwise comparisons of activations from
Useful (U) and multiple Harmful (H1, H2) prompt sets.

I DO SAFETY AND LEARNING DECOUPLE AT ANY LAYER?

In this section, we investigate whether a layer-specific strategy exists for isolating safety and learning
subspaces. Specifically, we ask whether projecting (k) components from a single layer yields different
behavior than projecting the same number of components across all layers.

We test this on Qwen2.5-1.5B by repeating the experiments from Sections 3 and 4, but restricting the
projection to individual layers. We evaluate approximately every third layer in the network, resulting
in 10 distinct layers.

The results, shown in Figures 18 and 19, reinforce our earlier hypothesis: no individual layer exhibits
a clean separation between safety and learning directions. This further strengthens our claim that
safety and task-learning signals are geometrically entangled throughout the model.

J ROBUSTNESS CHECKS: GENERAL ABILITY AND OVER-REFUSAL

J.1 ASSESSING GENERAL ABILITY CONFOUNDS VIA MMLU

We want to test whether the harmfulness metric is confounded with general ability (instruction
following and coherence). More concretely, we aim to determine whether the results reported in our
paper could simply be due to a loss in general capability. To evaluate this, we use MMLU (Massive
Multitask Language Understanding, (18)), a widely used benchmark for general ability. We repeat
the experiments from Sections 3 and 4 and report results in Figures 20 and 21 for Qwen-2.5 1.5B and
3B.

We observe that MMLU accuracy remains stable at approximately 61–62% and 64–65%, respectively
for the two models, across all projection settings, indicating no degradation in general ability. This
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Figure 10: MSO at all layers for pairwise comparisons of the dominant weight subspaces from
Harmful fine-tuned (H), Aligned (A), and Base (B) models (Qwen-2.5 1.5B).

strengthens our findings and confirms that our analysis is scientifically robust rather than an artifact
of reduced model capability.

J.2 RULING OUT OVER-REFUSAL AS A CONFOUNDING FACTOR

We test whether projection induces over-refusal, which would indicate that our safety results might
be confounded by models incorrectly rejecting benign queries. To evaluate this, we measure refusal
rates on benign prompts using XSTest (55), which ideally should not be refused. We repeat the
experiments from Sections 3 and 4 and report results in Figures 20 and 21 for Qwen-2.5 1.5B and 3B.

Across all projection settings, refusal rates remain very low, around 3–4% and 5–6% respectively for
the two models. These consistently low rates indicate that our safety metrics are robust and that the
findings reported in the paper are not confounded by projection-induced over-refusal.

K ADDITIONAL ACTIVATION SPACE ANALYSES

We do several experiments to complement the discussion in Section 6.

K.1 ACTIVATION SPACE ANALYSIS ACROSS ALL LAYERS

We report activation-space results layer by layer to fully capture layer-specific behavior. These results
are shown for Qwen-2.5 1.5B, in Figures 22, 23, and 24. We observe that our hypothesis and findings
hold consistently across all layers.

K.2 IMPACT OF USING EARLY TOKEN WINDOWS

We show the effect of using earlier token windows in Figure 25 for Qwen-2.5 1.5B and 3B. We
observe that our results and hypothesis hold true in this setting as well.
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Figure 11: MSO at all layers for pairwise comparisons of the dominant weight subspaces from
Harmful fine-tuned (H), Aligned (A), and Base (B) models (Qwen-2.5 3B).
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Figure 12: MSO at all layers for pairwise comparisons of the dominant weight subspaces from
Harmful fine-tuned (H), Aligned (A), and Base (B) models (Qwen-2.5 7B).

Figure 13: MSO at all layers for pairwise comparisons of the dominant weight subspaces from
Harmful fine-tuned (H), Aligned (A), and Base (B) models (Llama-3.2 1B).
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Figure 14: MSO at all layers for pairwise comparisons of the dominant weight subspaces from
Harmful fine-tuned (H), Aligned (A), and Base (B) models (Llama-2 7B).

Figure 15: Parallel projection-based update schemes across varying SVD fractions (Llama-3.2 1B).
We report the energy-kept ratio for models fine-tuned on Full Useful and Full Harmful data, utility
for models fine-tuned on Full Useful, and harmfulness for models fine-tuned on Full Harmful. Model
alignment was performed using DPO.

Figure 16: Orthogonal projection-based update schemes across varying SVD fractions (Llama-3.2 1B).
We report the energy-kept ratio for models fine-tuned on Full Useful, Full Harmful and Contaminated
data; and utility and harmfulness for models fine-tuned on Contaminated. Model alignment was
performed using DPO.
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Figure 17: MSO at all layers for pairwise comparisons of the dominant subspaces from Harmful
fine-tuned (H), Aligned (A), and Base (B) models (Llama-3.2 1B). Model alignment was performed
using DPO.

K.3 IMPACT OF USING REFUSAL PROMPTS

We investigate the effect of using a refusal-oriented dataset (harmless prompts from Extended Refusal,
(57)) as the counterpart to harmful prompts. Instead of relying on a generic “useful” dataset such as
MATH, this allows us to test whether our findings depend on the choice of benign data. As shown for
Qwen-2.5 1.5B in Figure 26, the results remain consistent under this substitution.

L DISTINCTION FROM ACTIVATION STEERING METHODS

Our claims are compatible with the empirical success of activation steering methods. However,
they target a stronger assumption that is not established by those works: namely, that there exists a
relatively low-dimensional, stable “safety subspace” whose directions uniquely encode safety and
can be edited in isolation, without affecting acquired utility.

Prior work shows that for a given model checkpoint and prompt distribution, one can reliably extract
directions or small subspaces in the residual stream whose manipulation strongly affects refusal or a
unique safety characteristic. Examples include single refusal directions (2), conditional activation
steering (34), manifold steering for overthinking (26), and safety directions that become easier to find
in higher-dimensional models (62). These results demonstrate local linear controllability: in a given
model, at specific layers, there are directions along which safety behavior is highly sensitive.

What they do not by themselves establish is that these directions constitute a unique, model-level
safety subspace that is (i) conceptually specific to “safety” rather than general behavior, and (ii)
robust under fine-tuning or other parameter changes.

At the same time, a complementary body of work points toward a more entangled and multi-directional
picture: safety and helpfulness often trade off along shared directions (62), and safety behavior can
be mediated by structured sets of neurons or layers rather than a single feature (6; 78).

Taken together, these works suggest the following picture: activation steering can reliably surface
high-leverage (but local) directions that influence refusal within a fixed model, but this does not
imply that safety is represented by a stable linear subspace. Instead, the evidence is consistent with
safety being encoded through distributed mechanisms that vary across tasks and checkpoints. Our
claims target this stronger, subspace-level interpretation, rather than the more limited form of local
controllability demonstrated by steering methods. This is particularly important because a growing
body of work (e.g., SafeLoRA, SaLoRA, etc.) relies on this stronger assumption, despite there being
no evidence that local controllability extends to global safety behavior.
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Figure 18: Parallel projection-based update schemes across varying SVD fractions (when applied to
a specific layer only). We report the energy-kept ratio for models fine-tuned on Full Useful and Full
Harmful data, utility for models fine-tuned on Full Useful, and harmfulness for models fine-tuned on
Full Harmful.
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Figure 19: Orthogonal projection-based update schemes across varying SVD fractions (when applied
to a specific layer only). We report the energy-kept ratio for models fine-tuned on Full Useful, Full
Harmful and Contaminated data; and utility and harmfulness for models fine-tuned on Contaminated.
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Figure 20: Parallel projection-based update schemes across varying SVD fractions. We report a
general-ability metric (MMLU accuracy) for models fine-tuned on Full Useful, and refusal rates on
benign prompts (XSTest) for models fine-tuned on Full Harmful.

Figure 21: Orthogonal projection-based update schemes across varying SVD fractions. We report a
general-ability metric (MMLU accuracy) and refusal rates on benign prompts (XSTest) for models
fine-tuned on Contaminated.
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Figure 22: MSO across all layers for activations from Useful (Math) and Harmful (BeaverTails)
prompt sets.
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Figure 23: MSO across all layers for activations from Useful (Math) and Harmful (ToxiGen) prompt
sets.
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Figure 24: MSO across all layers for activations from different Harmful (BeaverTails, ToxiGen)
prompt sets.

Figure 25: Average MSO (for early token windows) across layers in the 65–90% depth range for
pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2) prompt sets.

Figure 26: Average MSO across layers in the 65–90% depth range for activations from Refusal and
Harmful prompt sets.
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M DATASET DETAILS

We use the MetaMathQA dataset (75) for fine-tuning, which reformulates existing math problems
from alternative perspectives without introducing new content. To evaluate performance, we rely
on the GSM8K benchmark (9), a dataset of elementary-level math questions that require multi-step
reasoning. Models are assessed based solely on the correctness of the final numerical answer. For
our activation-based analysis, we sample prompts from the MATH dataset (19), which contains
challenging, competition-style arithmetic problems.

BeaverTails (31) is a valuable dataset for studying safety by independently annotating ques-
tion–answer pairs for both helpfulness and harmlessness. We use the training set to fine-tune
models in both harmful and contaminated settings, and draw prompts from the test split for our
activation-based experiments.

AdvBench (80) consists of 500 prompts designed to elicit a wide range of harmful behaviors,
including profanity, threats, misinformation, discrimination, cybercrime, and other forms of dangerous
or illegal content framed as instructions. We use this benchmark to quantify model harmfulness:
higher success in responding to these prompts indicates greater unsafe behavior.

ToxiGen (15) is a large-scale dataset composed of both toxic and non-toxic statements. We use a
subset of its prompts to analyze model activations in response to harmful content.

MMLU (18): The Massive Multitask Language Understanding (MMLU) benchmark evaluates
general ability and knowledge. We use MMLU to test whether our harmfulness metric is confounded
with general ability.

Extended Refusal (57) is a dataset of prompts curated to evaluate whether models refuse queries. In
our work, we use its harmless subset as a refusal-oriented counterpart to harmful prompts.

XSTest (55) is a benchmark designed to measure refusal. We use XSTest to determine whether our
projection methods induce over-refusal.

PKU-SafeRLHF (30) is safety-alignment dataset constructed for reinforcement learning with human
feedback (RLHF), covering a wide spectrum of harmful and harmless interactions. We use PKU-
SafeRLHF to safety-tune a model using DPO.

N LIMITATIONS

Our study focuses on linear subspaces, providing a principled first step toward understanding the
geometric structure of safety alignment. While we do not explore non-linear representations, our
framework could be extended in future work to capture richer geometric phenomena. Our experiments
are restricted to open-weight models with publicly available base and aligned variants. These models
provide a controlled and interpretable setting, though extending to production-level closed-source
models remains an important direction for future work.

O USE OF LARGE LANGUAGE MODELS

Our use of LLMs is restricted to light writing assistance, including grammar polishing and enhancing
clarity.
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