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ABSTRACT

This paper explores the theoretical foundations of Adam, a widely used adap-
tive optimizer. Building on recent developments in non-convex optimization and
online learning, particularly the discounted-to-nonconvex conversion framework,
we present two aspects of results: First, we introduce clip-free FTRL, a novel
variant of the classical Follow-the-Regularized-Leader (FTRL) algorithm. Unlike
scale-free FTRL and the recently proposed β-FTRL, our clip-free variant elimi-
nates the need for clipping operations, aligning more closely with Adam’s prac-
tical implementation. This modification provides deeper theoretical insights into
Adam’s empirical success and aligns the theoretical framework with practical im-
plementations. By incorporating a refined analysis, our second result establishes
a theoretical guarantee for the Last Iterate Convergence (LIC) under the proposed
discounts-to-nonconvex conversion algorithm in LIC, which differs from the pre-
vious guarantee that has convergence evenly distributed in all iterations. Addition-
ally, we extend this result to provide the last iterate convergence guarantee for the
popular β-FTRL algorithm under the same framework. However, the derived last
iterate convergence of β-FTRL reveals a persistent fixed error, potentially suggest-
ing either limitations in popular online learning methods or the need for additional
assumptions about the objective function.

1 INTRODUCTION

Adaptive optimizers, particularly Adam (and AdamW)(Kingma, 2014; Loshchilov, 2017), are fun-
damental to the success of large-scale first-order optimization tasks, such as training large language
models (Devlin, 2018; Radford et al., 2019; Bommasani et al., 2021; Touvron et al., 2023; Team
et al., 2023). However, the theoretical underpinnings of Adam’s performance remain elusive. While
many efforts have been made to establish Adam’s convergence equivalence to stochastic gradient
descent (SGD), Adam usually demonstrates superior performance over SGD in practical scenarios.
Unfortunately, most existing theoretical analyses are often not enlightening and fail to adequately
account for Adam’s key components, such as momentum update and bias correction for the first and
second moments. These components are often seen as obstacles in theoretical proofs or are entirely
disregarded (Li et al., 2024; Wang et al., 2024). Understanding the design principles behind Adam
and explaining its performance advantages is an area in need of further exploration.

Recent advancements in the discounted-to-nonconvex conversion framework offer a promising av-
enue for understanding Adam’s effectiveness. Cutkosky et al. (2023) introduced the online-to-
nonconvex conversion framework, which deeply bridges non-smooth non-convex optimization with
online learning. Building upon this foundation, subsequent works (Zhang & Cutkosky, 2024; Ahn
& Cutkosky, 2024; Ahn et al., 2024) introduced the discounted-to-nonconvex conversion frame-
work, offering new insights into the relationship between adaptive optimizers and online learners.
This framework holds promise in revealing Adam’s underlying mechanisms and effectiveness from
a novel perspective.

The discounted-to-nonconvex framework consists of two primary components: the discounted-to-
nonconvex conversion algorithm and the corresponding online learning algorithm. The theoretical
foundation of the conversion algorithm ties the optimality condition of non-convex optimization,
such as the gradient norm, to the discounted regret of the associated online learner. Notably, it com-
mits the fact that each online learner is one-to-one corresponding to a specific optimizer, implying
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that the design of an effective non-convex optimizer is tantamount to creating an online learner that
minimizes discounted regret.

To further motivate this framework, the pioneering work (Ahn & Cutkosky, 2024) also proposes
the performance criterion, gradient adaptivity, to demonstrate Adam’s performance superiority over
SGD. For instance, the online learning method β-FTRL (Orabona & Pál, 2018; Zhang et al., 2024),
which is closely aligned with Adam, has been shown to better adapt to problem-dependent proper-
ties, i.e., offering stronger theoretical guarantees in scenarios where these properties are unknown.

In this paper, we extend the exploration of the discounted-to-nonconvex conversion framework,
mitigating the discrepancy between the framework and the practical practices of Adam and obtaining
notable theoretical improvements. Our key contributions are summarized as follows.

• We develop an online learning method, clip-free FTRL, which improves from previous
methods by eliminating the unrealistic clipping operation present in the previous ap-
proaches. To achieve clip-free, we adopt components from Adam’s update and incorporate
them in the recently proposed β-FTRL, leading to close alignment with Adam. This re-
sults in achieving comparable discounted regret to β-FTRL without the need for clipping,
offering a more comprehensive and practical understanding of Adam’s performance.

• Recognizing the limitations of previous discounted-to-nonconvex conversion algo-
rithm (Ahn & Cutkosky, 2024), which relied on Exponential Moving Average (EMA) pa-
rameters (Polyak & Juditsky, 1992; Ruppert, 1988) and spread convergence evenly across
all iterations, we propose a new conversion algorithm. This algorithm establishes a theo-
retical guarantee that bridges discounted regret and last iterate guarantees in non-convex
optimization. Additionally, we extend this framework to provide a last iterate convergence
guarantee for the popular β-FTRL algorithm, and the results reveal the necessity of further
investigation along this avenue.

1.1 RELATED WORK

Significant efforts have been dedicated to understanding Adam’s superior performance from two
perspectives: convergence rate and adaptivity. Various studies have analyzed Adam’s convergence
behavior, demonstrating that it achieves a convergence rate comparable to SGD for convex or smooth
nonconvex functions under different stochastic gradient conditions and hyper-parameter configura-
tions (Reddi et al., 2019; Zhou et al., 2018; Alacaoglu et al., 2020; Guo et al., 2021; Zhang et al.,
2022; Wang et al., 2024). However, these analyses often fail to capture the contributions of Adam’s
core components. Moreover, it is well established that under these function assumptions, SGD al-
ready achieves the minimax optimal convergence rate. Beyond convergence speed, studying the
adaptivity of Adam over complex deep-learning environments is also a popular trend to support the
success of Adam. Wang et al. (2023) showed that AdaGrad, a precursor to Adam, can adapt to
functions satisfying the generalized smoothness condition (Zhang et al., 2019), while plain SGD
may converge arbitrarily slowly. Subsequent work (Li et al., 2024) extended this analysis to Adam,
demonstrating its convergence under the generalized smoothness condition. Additionally, Craw-
shaw et al. (2022) highlighted the theoretical benefits of momentum updates, a component shared
by Adam, for SignSGD algorithm under the generalized smoothness condition.

Another important line of inquiry is the Last Iterate Convergence (LIC), which has garnered sub-
stantial attention in the literature and has been widely utilized. Most existing works focus on char-
acterizing the convergence behavior of SGD and SGD with Momentum (SGDM) under the convex
and strongly convex assumptions (Ghadimi & Lan, 2012; Sebbouh et al., 2021; Jain et al., 2019;
Tao et al., 2021). More recent work (Jin et al., 2022; Li et al., 2022) have extended these analyses to
non-convex functions.

2 PRELIMINARIES

In this section, we introduce the necessary assumptions regarding the function, stochastic gradient,
and domain, which are adopted from previous works (Cutkosky et al., 2023; Ahn & Cutkosky, 2024;
Zhang & Cutkosky, 2024). Particularly, Assumption 2.1 and Assumption 2.2 . These assumptions
are sufficient to design algorithms that achieve (λ, ϵ)-stationary points, defined in Definition 2.3,
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which is a common notation of optimality for non-convex and non-smooth optimization (Zhang &
Cutkosky, 2024; Ahn & Cutkosky, 2024; Zhang et al., 2019; Jordan et al., 2023; Tian et al., 2022). It
is worth noting that (λ, ϵ)-stationary point is a relaxed version of Goldstein stationary point (Gold-
stein, 1977), but retains the desirable properties, supporting the conversion from stationarity for
non-convex and non-smooth functions to first-order stationary points when the objective function is
smooth.

Assumption 2.1. Let F : Rd → R be a differentiable function with the following properties:

• The function F is bounded below by infx F (x). Meanwhile, defining ∆ := F (x0) −
infx F (x).

• The function F is well-behaved, i.e., ∀x and y, F (x)−F (y) =
∫ 1

0
⟨∇F (x+ t(y−x),y−

x)⟩dt.

• The function F is G-Lipshitz, i.e., ∀x, ||∇F (x)|| ≤ G.

• The stochastic gradient g ← StoGrad(x, r) for randomness r ∈ Z , and ∀x satisfies
E[g] = ∇F (x) and E[||g −∇F (x)||2] ≤ σ2. Note a quick result E[||g||2] ≤ G2 + σ2.

Assumption 2.2. Let domain D ⊆ Rd be bounded, i.e., ∀x ∈ D, ||x|| ≤ D.

Definition 2.3 (λ, ϵ-stationary point). Supposing F (·) : Rd → R is differentiable. Then x is a
(λ, ϵ)-stationary point of F is ||∇F (x)||[λ] ≤ ϵ where

||∇F (x)||[λ] := inf
p∈P(Rd),Ey∼p[y]=x

{
||E[∇F (y)]||+ λE[||y − x||2]

}
.

Additionally, we introduce the basics of online learning and key regret definitions, especially β-
discounted regret, which are essential to our analysis. Online Linear Optimization (OLO) is an
iterative algorithm: at each iteration t, the online learner selects an action and then receives a linear
loss ℓt(·) := ⟨vt, ·⟩. The objective is to minimize the regret defined as the cumulative difference
between the learner’s loss and that of arbitrary comparator u. Iterative optimization algorithms share
a strong connection with adversarial online learning; for further details, we refer readers to Orabona
(2019).

Definition 2.4 (Static regret and β-discounted regret). For a comparator u, the regret is defined
as Regrett(u) :=

∑t
s=1 (ℓs(zs)− ℓs(u)), where ℓt(·) := ⟨vt, ·⟩ in this work. β-discounted re-

gret Further, supposing an algorithm discounting the loss by β−s, i.e., ℓ[β]t (·) = β−tℓt(·), the

corresponding β-discounted regret is defined as Regret[β]t (u) := βt
∑t

s=1

(
ℓ
[β]
s (zs)− ℓ

[β]
s (u)

)
=∑t

s=1⟨βt−svs, zs − u⟩.

3 BACKGROUND: BASICS OF DISCOUNTED-TO-NONCONVEX CONVERSION
AND FTRL ALGORITHMS

3.1 DISCOUNTED-TO-NONCONVEX CONVERSION ALGORITHM

This work is built upon the discounted-to-nonconvex conversion developed in Ahn et al. (2024);
Zhang & Cutkosky (2024); Ahn & Cutkosky (2024), outlined in Algorithm 1. Specifically, Ahn
& Cutkosky (2024) provides the enlightening theoretical result of the conversion framework that
the averaged gradient norm is upper bounded by the β-discounted regret of the associated online
learner. The result commits the fact that designing an online learner that achieves a low discounted
regret leads to an effective nonconvex optimizer, which again shines the one-to-one correspondence
between online learners and optimizers.

To facilitate comparisons, we embed the proposed discounted-to-nonconvex conversion algorithm
in Last Iterate Convergence (LIC) into the algorithm table here, i.e., Algorithm 1 in LIC. Additional
details are provided in Section 5.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Discounted-to-nonconvex conversion algorithm in Last Iterate Convergence (LIC)

Input: Initial point x0, T , online learning algorithm A outputting z, and discounting factor β ∈
(0, 1)
for t = 1 to T do

Receive zt from A
Update xt ← xt−1 + ρtzt, where ρt ∼ Exp(1) i.i.d.
Compute gt ← StoGrad(xt, rt) with freshly sampled randomness rt
Send ℓ

[β]
t (zt) := ⟨βT−tgt, zt⟩ to A

Vanilla algorithm: x̄t ← β−βt

1−βt x̄t−1 +
1−β
1−βtxt; LIC: pass. {For output.}

end for
Return xoutput where Vanilla algorithm: xoutput ∼ Unif (x̄t : t ∈ [T ]); LIC: xoutput = xT .

3.2 ONLINE LEARNING ALGORITHM: SCALE-FREE FTRL AND β-FTRL

Scale-free Follow-the-Regularized-Leader algorithm (FTRL) is a well-known algorithm in online
learning (Orabona & Pál, 2018). Under the online linear optimization setting, the goal of the algo-
rithm is to choose the increment zt at each iteration t to minimize the regret

∑T
t=1⟨vt, zt − u⟩. In

terms of the increment selecting strategy, scale-free FTRL tracks the history of linear loss function
ℓt(·) = ⟨vt, ·⟩ and adjusts its prediction based on accumulating of past vt and on the selected reg-
ularizers { 1

2αt
|| · ||2}, effectively leveraging all past information to refine future predictions. The

scale-free FTRL is presented in Algorithm 2 (scale-free FTRL).

Ahn et al. (2024); Ahn & Cutkosky (2024) provide the key insight that incorporating
the β-discounted regret into the scale-free FTRL algorithm, i.e., Algorithm 2 (β-FTRL), al-
most recovers the Adam algorithm, where the increment is choosing as a clipped version of
−η

∑t−1
s=1 β−svs√∑t−1

s=1 ||β−svs||2
originally. But it can be converted to Adam update (in vector form)

−η (1−β)/(1−βt)
∑t−1

s=1 βt−svs√
(1−β2)/(1−βt

2)
∑t−1

s=1 βt−s
2 ||vs||2

by selecting β2 as β2, absorbing constant (1 − β)/(
√
1− β2)

into η, adding coefficient βt/
√
βt
2 and bias correction

√
(1− βt

2)/(1− βt), and omitting ϵ.

To further motivate this framework, Theorem A.1 of Ahn & Cutkosky (2024) provides the static
regret of scale-free FTRL. Regarding β-FTRL, it is convenient to derive the guarantee of the β-

discounted regret as Regret[β]t (u) ≤ 4D
√

1−βT (G+σ)√
1−β

by substituting vt with β−tgt, demonstrated
in Theorem 9 of Ahn & Cutkosky (2024).

Equipped with the discounted regret bound and the theoretical guarantee of the discounted-to-
nonconvex conversion algorithm, we can conveniently derive the optimization guarantee in terms
of the nonconvex optimization.

Algorithm 2 Scale-free FTRL, β-FTRL
Input: Regularizers { 1

2αt
|| · ||2} : Rd → R, the bounded domain D

for t = 1 to T do
• Scale-free FTRL: zt = argmin

z∈D

[
1

2αt
||z||2 +

∑t−1
s=1⟨vs, z⟩

]
= −clipD

(
η

∑t−1
s=1 vs√∑t−1

s=1 ||vs||2

)
[a]

• β-FTRL: zt = argmin
z∈D

[
1

2αt
||z||2 +

∑t−1
s=1⟨β−svs, z⟩

]
= −clipD

(
η

∑t−1
s=1 β−svs√∑t−1

s=1 ||β−svs||2

)
[b]

Receive ℓt(·) = ⟨vt, ·⟩
end for

[a] By selecting αt as η/
√∑t−1

s=1 ||vs||2. And clipD(x) := xmin(D/||x||, 1).
[b] By selecting αt as η/

√∑t−1
s=1 ||β−svs||2.
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4 CLIP-FREE FTRL

Before formally presenting our proposed methods, we first introduce the underlying intuition. Con-
sidering the iterative update game: yt = yt−1 + zt where t ∈ {1, · · · , T} and zt := −gt. Addi-
tionally, {y0,gt} are bounded such that {||y0||, ||gt||} ≤ D. The objective is to bound the squared
norm of the output yT , denoted as L := ||yT ||2, by O(D2), which leads to the formulation of
Initial Bound below. However, the dependence on T is undesirable, motivating us to remove this
dependence in a subsequent formulation. Additionally, dependence on β can also be problematic,
especially when β is very small (e.g., β = 1 − 1

T ). Eliminating this dependence yields a third
formulation.

1. Initial Bound: L = ||y0 −
∑T

t=1 gt||2 ≤ 2||y0||2 + 2||
∑T

t=1 gt||2 ≤ 2(T + 1)D2

2. Removing Dependence on T by letting zt = βT−tgt where β ∈ (0, 1):

• L = ||y0 −
∑T

t βT−tgt||2 ≤ 2||y0||2 + 2||
∑T

t βT−tgt||2 ≤ 2D2 + 2D2

(1−β)2 ,

3. Removing Dependence on T and β by letting zt = (1− β)βT−tgt where β ∈ (0, 1):

• L = ||y0 − (1− β)
∑T

t βT−tgt||2 ≤ 2||y0||2 + 2(1− β)2||
∑T

t βT−tgt||2 ≤ 4D2.

This iterative framework emphasizes the importance of bounding the squared norm of the outputs,
a principle that also applies to bounding the outputs of an online learner. Notably, both scale-free
FTRL and β-FTRL in Algorithm 2 involve clipping operations to derive regret bounds, which serve
as explicit bounding mechanisms. However, such clipping operations can be less reflective of real-
world algorithm deployments. Moreover, reducing the squared norm of the online learner’s outputs
directly contributes to minimizing error in the variance term of the (λ, ϵ)-stationarity, as shown in
Lemma 10 of Ahn & Cutkosky (2024). This potentially results in a tighter non-convex optimization
guarantee.

However, applying the combined strategy of discounting by βT−t and scaling by 1−β is not directly
feasible for online learning methods like scale-free FTRL, which eliminates scaling due to its “scale-
free” nature. Thus, adapted strategy for bounding the output of an online learner is required. In
addition to bounding the outputs of online learners, it is crucial to maintain the same magnitude
of β-discounted regret when developing a method for clip-free operation. To address both of these
aspects, clip-free bounding implementation and consistent β-discounted regret, we now formally
introduce our proposed method: clip-free FTRL, as detailed in Algorithm 3.

A key distinction between clip-free FTRL and other variants, such as scale-free FTRL or β-FTRL,
is the removal of the clipping operation clipD(·) within the increment. In contrast to β-FTRL, our
method employs additional constant (1− β)/(

√
1− β2) and coefficient βt/

√
βt
2 for increment zt.

While these modifications may appear subtle, they contribute to achieving the theoretical advance-
ments described in Section 4.1. Notably, clip-free FTRL almost recovers Adam’s update, except for
the bias correction terms.

Algorithm 3 clip-free FTRL
Input: Regularizers { 1

2αt
|| · ||2} : Rd → R

for t = 1 to T do
zt = argmin

[
1

2αt
||z||2 + (1− β)

∑t−1
s=1⟨βt−1−svs, z⟩

]
= − η(1−β)

∑t−1
s=1 βt−1−svs√

(1−β2)
∑t−1

s=1 βt−1−s
2 ||vs||2

[a,b]

Receive ℓt(·) = ⟨vt, ·⟩
end for

[a] By selecting αt as η/
√
(1− β2)

∑t−1
s=1 β

t−1−s
2 ||vs||2.

[b] Skipping update with zero loss: if vt = 0, freezing the updating of index t, i.e., omitting the zero
term from subsequent summations and keeping the intermediate state at step t + 1 identical to that
at step t.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 DISCOUNTED REGRET OF CLIP-FREE FTRL

In this subsection, we aim to establish guarantees for clip-free FTRL in terms of the β-discounted re-
gret. As highlighted in previous work (Ahn & Cutkosky, 2024; Ahn et al., 2024; Zhang & Cutkosky,
2024), a smaller discounted regret often leads to more effective non-convex optimizer.

To support the proof of the discounted regret guarantee for the proposed clip-free FTRL, Theo-
rem 4.2, we first introduce Lemma 4.1, which characterizes the components of increment zt in
Algorithm 3. As shown in the result (C.2.) of the Lemma, zt becomes independent of T and β
when β and β2 are appropriately chosen. Results (C.1.) and (C.3.) serve as key steps in proving
Theorem 4.2.

Finally, Theorem 4.2 presents the β-discounted regret for clip-free FTRL. Under Assumption 2.1,

substituting vt with gt further gives the β-discount regret as Regret[β]t (u) ≤ 3D
√

1−βT
2 (G+σ)

1−β . Com-

pared to the β-discounted regret for scare-free FTRL, Regret[β]t (u) ≤ 4D
√

1−βT (G+σ)√
1−β

, as presented
in Theorem 9 of Ahn & Cutkosky (2024), the key distinction is that our method is clip-free.

Finally, to better motivate our algorithm design and results, we remark on the role of the additional
discounting factors β2, which differs from previous methods. At a high level, β2 is specifically
selected to ensure αt in Algorithm 3 is a non-increasing sequence w.r.t. t. Furthermore, the relation
between β and β2 is carefully designed to ensure ||zt|| is bounded throughout the iterations.

Lemma 4.1. Using the same notations in Algorithm 3. Further, defining (A.1). ṽt,β,T := (1 −
β)βT−tvt; (A.2). ˜̃vt,β,T := (1 − β)βT−t||vt||2, we have following re-formulations, (B.1). αt =

η√∑t−1
s=1

˜̃vs,β2,t−1

; (B.2). zt = − η
∑t−1

s=1 ṽs,β,t−1√∑t−1
s=1

˜̃vs,β2,t−1

. Further, assuming β2 ∈ (1− 1
a(T−1) , 1) and β ∈

(β2,
√
β2). Meanwhile, a is some tunable parameter satisfying maxs∈[t−1] ||vs||2 ≤ (a− 1)||vt||2

and a > 1, we have

(C.1). αt is a non-increasing sequence w.r.t. t;
(C.2). ||zt|| ≤ η. I.e., the norm of increment is bounded;

(C.3). ||ṽt,β,T ||2 ≤ (1− β2)˜̃vt,β2,T .

Theorem 4.2 (Discounted regret of clip-free FTRL). Using the same notations and hyper-parameter
selection of Lemma 4.1, for all T > 0, loss sequence ṽ1,β,T , · · · , ṽT,β,T , comparator u ∈ D,
i.e., ||u|| ≤ D (Assumption 2.2). Clip-free FTRL guarantees the β-discounted regret bound of

Regret[β]t (u) ≤ 3D
√
1−β2

1−β

√∑T
t=1 β

T−t
2 ||vt||2.

The proof of Lemma 4.1 is presented in Appendix A.1. The proof of Theorem 4.2 is inspired
by techniques from Ahn & Cutkosky (2024); Ahn et al. (2024); Tim (2021) and is presented in
Appendix A.1.

5 LAST ITERATE CONVERGENCE OF ADAPTIVE NONCONVEX OPTIMIZATION

In contrast to the previous section, which focused on online learning methods, this section delves
into the conversion algorithm. In Section 5.1, we introduce a new conversion algorithm and de-
rive its theoretical guarantee in terms of discounted regret and last iterate guarantee of gradient
norm, as stated in Theorem 5.1. This independent result serves as a critical connection between
the discounted regret of online learning algorithms and the last-iterate guarantees of non-convex
optimization. In the subsequent Section 5.2, we provide the last iterate convergence for β-FTRL in
non-convex optimization, building upon the new conversion algorithm.

5.1 GUARANTEE OF DISCOUNTED-TO-NONCONVEX CONVERSION IN LIC

In this subsection, we provide the guarantee of the proposed conversion algorithm (Algorithm 1
in LIC). Specifically, Algorithm 1 in LIC represents our new conversion algorithm, with the main
differences from the vanilla conversion algorithm highlighted in gray. However, there is no great
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burden: the intermediate status x̂t (for EMA) is removed, and the last iterate is selected as the
output.

As shown in Theorem 5.1, the gradient norm is upper bounded by the β-discounted regret of the
associated online learner, effectively bridging the nonconvex optimization with the design of online
learning algorithms. Additionally, we observe the indication of the last iterate convergence within
this framework, i.e., P(xt).
Theorem 5.1. Supposing that F satisfies Assumption 2.1. Then for the comparator sequence chosen
as ut := −D

∑t
s=1 β−s∇F (xs)

||
∑t

s=1 β−s∇F (xs)||
. The Algorithm 1 in LIC guarantees

E
[
||EP(xt)∇F (xt)

]
||] ≤ (1− β)∆

(1− βT )βD
+

2(1− β)
3
2 (G+ σ)T√

1− βTβ
+

2
√
(1− β)√
1− βT

σ (1)

+
(1− β)2T

(1− βT )βD
E
[
Et∼[T ]Regret[β]t (ut)

]
+

1− β

(1− βT )D
E
[
Regret[β]T (uT )

]
where xt is distributed over {xt}Tt=1 as P(xt) =

(1−β)βT−t

1−βT for t = 1, 2, · · · , T . The outer expec-
tation E[·] is w.r.t. randomness ρ and stochastic gradient randomness r.

The proof is inspired by techniques of Lemma 7 in Ahn & Cutkosky (2024) and is presented below.

Proof. . We start from
T∑

t=1

(F (xt)− F (xt−1)) =

T∑
t=1

(1− βT−t+1) (F (xt)− F (xt−1)) +

T∑
t=1

βT−t+1 (F (xt)− F (xt−1))

=

T∑
n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1)) +

T∑
t=1

βT−t+1 (F (xt)− F (xt−1))

−∆ ≤
T∑

n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1)) +

T∑
t=1

βT−t+1 (F (xt)− F (xt−1))

where the last inequality is by the fact that −
∑T

t=1 ((F (xt)− F (xt−1)) = F (x0) − F (xT ) ≤
F (x0)− infx F (x) = ∆.

Taking expectation on both sizes w.r.t. randomness ρ and stochastic gradient randomness r, mean-
while simplifying Eρ,r[·] as E[·], we get

−∆ ≤ E

[
T∑

n=1

n∑
t=1

βn−t(1− β) (F (xt)− F (xt−1))

]
︸ ︷︷ ︸

Part A

+E

[
T∑

t=1

βT−t+1 (F (xt)− F (xt−1))

]
︸ ︷︷ ︸

Part B

• Part A can be decomposed as

E

[
T∑

n=1

n∑
t=1

βn−t(1− β) (F (xt)− F (xt−1))

]
︸ ︷︷ ︸

Part A

(i)
= (1− β)E

[
T∑

n=1

n∑
t=1

βn−t⟨∇F (xt), zt⟩

]

= (1− β)E

[
T∑

n=1

n∑
t=1

βn−t⟨gt, zt⟩

]
= (1− β)E

[
T∑

n=1

n∑
t=1

βn−t (⟨gt, zt − un⟩+ ⟨gt,un⟩)

]

≤ (1− β)E

[
T∑

t=1

Regret[β]t (ut)

]
+ (1− β)E

 T∑
n=1

√√√√|| n∑
t=1

βn−tgt||2||un||2


= (1− β)TE

[
T∑

t=1

1

T
Regret[β]t (ut)

]
+ (1− β)D(G+ σ)

T∑
t=1

√
1− β2t

1− β

= (1− β)TE
[
Et∼[T ]Regret[β]t (ut)

]
+

√
(1− β)(1− βT )D(G+ σ)T
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where the last equality is probability conversion, and the (i) applies Lemma 3.1 in Zhang
& Cutkosky (2024).

• Part B can be decomposed as

E

[
T∑

t=1

βT−t+1 (F (xt)− F (xt−1))

]
︸ ︷︷ ︸

Part B

(i)
= E

[
T∑

t=1

βT−t+1⟨∇F (xt), zt⟩

]

= E

[
T∑

t=1

βT−t+1 (⟨∇F (xt),uT ⟩+ ⟨∇F (xt)− gt, zt − uT ⟩+ ⟨gt, zt − uT ⟩)

]

= E

 T∑
t=1

βT−t+1

⟨∇F (xt),uT ⟩︸ ︷︷ ︸
Part 1

+ ⟨∇F (xt)− gt,−uT ⟩︸ ︷︷ ︸
Part 2

+ ⟨gt, zt − uT ⟩︸ ︷︷ ︸
Part 3

 .

Here the (i) applies Lemma 3.1 in Zhang & Cutkosky (2024), and the last equality is by the
fact Er [⟨∇F (xt)− gt, zt⟩] = 0.

– Part B.1 can be further re-formulated as

E

[
T∑

t=1

βT−t+1⟨∇F (xt),uT ⟩

]

= βE

[〈
T∑

t=1

βT−t∇F (xt),−D
∑T

t=1 β
T−t∇F (xt)

||
∑T

t=1 β
T−t∇F (xt)||

〉]

= β
1− βT

1− β
E

[〈
T∑

t=1

1− β

1− βT
βT−t∇F (xt),−D

∑T
t=1

1−β
1−βT β

T−t∇F (xt)

||
∑T

t=1
1−β
1−βT βT−t∇F (xt)||

〉]

= −βD1− βT

1− β
E
[
||EP(xt)∇F (xt)||

]
where the last equality is probability conversion, where xt is distributed over {xt}Tt=1

as P(xt) =
(1−β)βT−t

1−βT for t = 1, 2, · · · , T .

– Part B.2 can be further re-formulated as

E

[
T∑

t=1

βT−t+1⟨∇F (xt)− gt,−uT ⟩

]
≤ βE


√√√√|| T∑

t=1

βT−t (F (xt)− gt) ||2||uT ||2


≤ βDE


√√√√ T∑

t=1

β2T−2t|| (F (xt)− gt) ||2

 ≤ σβD

√
1− βT

1− β

where the first inequality is due to Triangle inequality, the last inequality is due to the
bounded variance assumption on the stochastic gradient oracle.

– Part B.3 can be further re-formulated as

E

[
T∑

t=1

βT−t+1⟨gt, zt − uT ⟩

]
= βE

[
Regret[β]T (uT )

]
.
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Combining the final results of Part A and Part B, we have that

−∆ ≤(1− β)TE
[
Et∼[T ]Regret[β]t (ut)

]
+

√
(1− β)(1− βT )D(G+ σ)T

− βD
1− βT

1− β
E [||Ex̂∇F (x̂)] ||] + σβD

√
1− βT

1− β
+ βE

[
Regret[β]T (uT )

]
E [||Ex̂∇F (x̂)] ||] ≤ (1− β)∆

(1− βT )βD
+

2(1− β)
3
2 (G+ σ)T√

1− βTβ
+

2
√
(1− β)√
1− βT

σ

+
(1− β)2T

(1− βT )βD
E
[
Et∼[T ]Regret[β]t (ut)

]
+

1− β

(1− βT )D
E
[
Regret[β]T (uT )

]
which concludes our proof.

5.2 LAST ITERATE GUARANTEE FOR β-FTRL IN NON-CONVEX OPTIMIZATION

In this subsection, we aim to establish the last iterate guarantees for nonconvex optimization in terms
of the selected (λ, ϵ)-stationarity under the conversion framework presented in the above section. To
support the proof of our final result, Theorem 5.3, we first introduce the following Lemma 5.2, which
characterizes the decay component, i.e., 1−β

1−βT = O( 1
T ), in equation 1;

It is worth mentioning that our statement on the last-iterate guarantee offers the insight that the last
iterate has a higher likelihood of being selected compared to other iterations, distinguishing it from
the common last-iterate guarantee statements in Liu & Zhou (2023); Li et al. (2022).
Lemma 5.2. Supposing β = 1− 1

T and T ≥ 2, we have (1− βT ) > 0.632 and β > 0.5.

Proof. Consider the general form of an exponential limit limt→∞
(
1 + a

t

)t
= ea, which is mono-

tonically increasing w.r.t. t. Thus, we have (1− βT ) = 1− (1− 1
T )

T ≥ 1− limt→∞
(
1 + −1

t

)t
=

1− e−1 ≈ 0.632.

Equipped with the above Lemma 5.2 and Theorem 5.1, the nonconvex optimization guarantee in
terms of (λ, ϵ)-stationarity is presented as Theorem 5.3. We observe that Algorithm 1 in LIC se-
lecting A as β-FTRL converges to a region near (λ, ϵ)-stationarity, where the error is bounded by
O(λ+∆) and is independent over G and σ.
Theorem 5.3. Supposing F satisfies Assumption 2.1 and consider ∀λ > 0. Algorithm 1 in LIC
selecting A as β-FTRL and β = 1− 1

T guarantees

||∇F (x̂)||[λ] ≤ O(λ+∆) +
24(G+ σ)√

T
,

where x̂ is distributed over {xt}Tt=1 as P(xt) =
(1−β)βT−t

1−βT .

Proof. Denote x̂ := EP(xt) [xt] where P(xt) = (1−β)βT−t

1−βT , then the optimality condition (Defini-
tion 2.3) gives

||∇F (x̂)||[λ] = inf
{
||EP(xt)[∇F (xt)]||+ λEP(xt)[||xt − x̂||2]

}
.

Fisrtly, we deal with λEP(xt)[||xt − x̂||2].

By Lemma 10 of Ahn & Cutkosky (2024), we have EP(xt)[||xt − x̂||2] ≤ 12D2

(1−β)2 .

Secondly, we deal with ||Ep(x)[∇F (xt)]||.

Given inequality 1 in Theorem 5.1, substituting E
[
Regret[β]t (ut)

]
with corresponding upper bound

√
1−βT 4D(G+σ)√

1−β
further re-formulated inequality 1 as

||EP(xt) [∇F (xt)] || ≤
(1− β)∆

(1− βT )βD
+

6(1− β)
3
2 (G+ σ)T√

1− βTβ
+

4
√
1− β(G+ σ)√

1− βT
+

√
(1− β)√
1− βT

σ

9
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Combining the above two results, we have

||∇F (x̂)||[λ] ≤
(

12λD2

(1− β)2
+

(1− β)∆

(1− βT )βD

)
+

6(1− β)
3
2 (G+ σ)T√

1− βTβ
+

4
√
1− β(G+ σ)√

1− βT
+

√
(1− β)√
1− βT

σ

Supposing β := 1− 1
T , T > 2 and considering Lemma 5.2, i.e, 1−βT > 0.632,

√
1− βT > 0.794,

and β > 0.5, Meanwhile D = O(1− β) ,the above inequality can be further reformulated as

||∇F (x̂)||[λ] < O(λ+∆) +
16(G+ σ)√

T
+

6(G+ σ)√
T

+
2σ√
T

< O(λ+∆) +
24(G+ σ)√

T
,

which concludes the proof.

6 DISCUSSION

In this work, we propose the clip-free FTRL algorithm, expanding on pivotal contributions within
the discounted-to-online conversion framework, which is increasingly influential for analyzing and
designing adaptive optimizers. The introduced modification to the plain β-FTRL is subtle yet im-
pactful. Our analysis sheds light on the underlying mechanism of effective components of Adam.
However, our findings come with limitations:

• Compared with the Adam update (in its vector form) −η (1−β)/(1−βt)
∑t−1

s=1 βt−svs√
(1−β2)/(1−βt

2)
∑t−1

s=1 βt−s
2 ||vs||2

,

clip-free FTRL suggests an update of −η (1−β)
∑t−1

s=1 βt−svs√
(1−β2)

∑t−1
s=1 βt−s

2 ||vs||2
. The numerator

mt−1 := (1− β)
∑t−1

s=1 β
t−svs recovers the classical momentum update mt = βmt−1 +

(1 − β)vt . However, the discrepancy arising from the missing bias correction terms in
clip-free FTRL remains unexplored.

• Additionally, while Lemma 4.1 characterizes the relationship between β and β2, the prac-
tical values typically used in applications, i.e., β = 0.9 and β2 = 0.999, do not conform
to the theoretical condition β ∈ (β2,

√
β2). To achieve the bounded increment ||zt|| in the

proof of Lemma 4.1, we sequentially apply the Triangle inequality and Cauchy-Schwarz
inequality, referring to Verifying (C.2) in Appendix A.1, which may introduce larger er-
rors and restrict the selection range for β. However, it holds the potential to achieve more
relaxed conditions for β and presents an avenue for future work.

Regarding our analysis on the last iterate convergence, we introduce a new conversion algorithm
(Algorithm 1 in LIC) and provide a corresponding guarantee in Theorem 5.1. This result establishes
a bridge between the last-iterate convergence in nonconvex optimization and the the β-discounted
regret of online learning algorithms, which could be of independent interest. Nonetheless, a subse-
quent result built upon this conversion framework suggests an unsatisfactory convergence behaviors
of popular β-FTRL, which necessitates further investigation.

ETHICS STATEMENT

Our work primarily focuses on theoretical and practical developments in optimization methods,
which potentially enable efficient model training of deep model optimization tasks. However, we are
also aware that the advancements may have broader implications, some of which could potentially
have negative social impacts, such as misuse of the method in malicious application developments.
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A TECHNICAL PROOFS

A.1 PROOFS FOR SECTION: DISCOUNTED REGRET OF CLIP-FREE FTRL

Lemma 4.1. Using the same notations in Algorithm 3. Further, defining (A.1). ṽt,β,T := (1 −
β)βT−tvt; (A.2). ˜̃vt,β,T := (1 − β)βT−t||vt||2, we have following re-formulations, (B.1). αt =

η√∑t−1
s=1

˜̃vs,β2,t−1

; (B.2). zt = − η
∑t−1

s=1 ṽs,β,t−1√∑t−1
s=1

˜̃vs,β2,t−1

. Further, assuming β2 ∈ (1− 1
a(T−1) , 1) and β ∈

(β2,
√
β2). Meanwhile, a is some tunable parameter satisfying maxs∈[t−1] ||vs||2 ≤ (a− 1)||vt||2

and a > 1, we have

(C.1). αt is a non-increasing sequence w.r.t. t;
(C.2). ||zt|| ≤ η. I.e., the norm of increment is bounded;

(C.3). ||ṽt,β,T ||2 ≤ (1− β2)˜̃vt,β2,T .

Proof. Defining (A.1). ṽt,β,T := (1 − β)βT−tvt; (A.2). ˜̃vt,β,T := (1 − β)βT−t||vt||2, then, we
have the following formulations by the definitions

• (B.1).
∑t−1

s=1
˜̃vs,β2,t−1 = (1− β2)

∑t−1
s=1 β

t−1−s
2 ||vs||2. Thus αt =

η√∑t−1
s=1

˜̃vs,β2,t−1

;

• (B.2).
∑t−1

s=1 ṽs,β,t−1 = (1− β)
∑t−1

s=1 β
t−1−svs. Thus, zt = − η

∑t−1
s=1 ṽs,β,t−1√∑t−1
s=1

˜̃vs,β2,t−1

;

• (B.3).
∑t

s=1
˜̃vs,β2,t = β2

∑t−1
s=1

˜̃vs,β2,t−1 + (1 − β2)||vt||2. Thus, the value within the
square root of the denominator satisfies the convex combination type of update rule (clas-
sical momentum update).

Verifying (C.1). αt ≥ αt+1

Assuming vt = 0, we have αt = αt+1 by the algorithm design.

Assuming vt ̸= 0 and given (B.3).
∑t

s=1
˜̃vs,β2,t = β2

∑t−1
s=1

˜̃vs,β2,t−1 + (1− β2)||vt||2, to verify
αt ≥ αt+1 =⇒

∑t−1
s=1

˜̃vs,β2,t−1 ≤
∑t

s=1
˜̃vs,β2,t, it suffices to verify

⇐=
t−1∑
s=1

˜̃vs,β2,t−1 ≤ ||vt||2

⇐= (1− β2)

t−1∑
s=1

βt−1−s
2 ||vs||2 ≤ ||vt||2

⇐= max
s∈[t−1]

(||vs||2)(1− β2)

t−1∑
s=1

βt−1−s
2 ≤ ||vt||2

⇐= max
s∈[t−1]

(||vs||2)(1− βt−1
2 ) ≤ ||vt||2

(i)⇐= max
s∈[t−1]

(||vs||2)
1

a
≤ ||vt||2

(i) assumes β2 ∈
(
1− 1

a(T−1) , 1
)

universally where a > 1, T > 1. Thus, we have

βt−1
2 =

(
(1− 1

a(T−1) )
t−1, 1

)
, where its left hand side has lower bound (1 − 1

a(T−1) )
t−1 ≥

(1 − 1
a(T−1) )

T−1 ≥ 1 − 1
a . It suffices to have βt−1

2 ∈
(
1− 1

a , 1
)

=⇒ (1 − βt−1
2 ) ∈ (0, 1

a ).
Then, a is some tunable parameter to satisfy maxs∈[t−1] ||vs||2 ≤ a||vt||2.

Verifying (C.3). ||ṽt,β,T ||2 ≤ (1− β2)˜̃vt,β2,T

13
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To verify ||ṽt,β,T ||2 ≤ (1− β2)˜̃vt,β2,T , it suffices to verify

⇐= (1− β)2(β2)T−t||vt||2 ≤ (1− β2)
2βT−t

2 ||vt||2

⇐= β ≥ β2 and β2 ≤ β2

⇐= β ∈ (β2,
√

β2).

Proving (C.2). ||zt|| ≤ η

||zt|| = η
||
∑t−1

s=1 ṽs,β,t−1||√∑t−1
s=1

˜̃vs,β2,t−1

≤ η

∑t−1
s=1 ||ṽs,β,t−1||√∑t−1

s=1
˜̃vs,β2,t−1

≤ η

√
t− 1

√∑t−1
s=1 ||ṽs,β,t−1||2√∑t−1

s=1
˜̃vs,β2,t−1

≤ η

√
t− 1

√
1− β2

√∑t−1
s=1

˜̃vs,β2,t−1√∑t−1
s=1

˜̃vs,β2,t−1

≤ η

where the first inequality is by Triangle inequality, the second inequality is by Cauchy-Schwarz
inequality (considering the sum as the multiplication between all-ones vector and vector consisting
of each element of the sum), the third inequality is by ||ṽt,β,T ||2 ≤ (1−β2)˜̃vt,β2,T in (C.3), and the
last inequality is by β2 = 1− 1

a(t−1) in (C.1).

Verifying (C.4). ||ṽt,β,T ||2 +
∑t−1

s=1
˜̃vs,β2,t−1 ≤

∑t
s=1

˜̃vs,β2,t

It suffices to verify

(i)⇐= (1− β2)˜̃vt,β2,T +

t−1∑
s=1

˜̃vs,β2,t−1 ≤ (1− β2)||vt||2 + β2

t−1∑
s=1

˜̃vs,β2,t−1

⇐= (1− β2)

t−1∑
s=1

˜̃vs,β2,t−1 ≤ (1− β2)||vt||2 − (1− β2)˜̃vt,β2,T

⇐= (1− β2)
2
t−1∑
s=1

βt−1−s
2 ||vs||2 ≤ (1− β2)||vt||2 − (1− β2)

2βT−t
2 ||vt||2

⇐= (1− β2)(1− βt−1
2 ) max

s∈[t−1]
||vs||2 ≤ (1− β2)β2||vt||2

⇐= 1

a
max

s∈[t−1]
||vs||2 ≤ (1− 1

at
)||vt||2

⇐= max
s∈[t−1]

||vs||2 ≤ (a− 1)||vt||2

where (i) is by (C.3). Then, a is some tunable parameter satisfying maxs∈[t−1] ||vs||2 ≤ (a −
1)||vt||2.

We summarize the settings of hyper-parameters β2 ∈
(
1− 1

a(T−1) , 1
)

and β ∈ (β2,
√
β2). Mean-

while, a is some tunable parameter satisfying maxs∈[t−1] ||vs||2 ≤ (a− 1)||vt||2 and a > 1.

Theorem 4.2 (Discounted regret of clip-free FTRL). Using the same notations and hyper-parameter
selection of Lemma 4.1, for all T > 0, loss sequence ṽ1,β,T , · · · , ṽT,β,T , comparator u ∈ D,
i.e., ||u|| ≤ D (Assumption 2.2). Clip-free FTRL guarantees the β-discounted regret bound of

Regret[β]t (u) ≤ 3D
√
1−β2

1−β

√∑T
t=1 β

T−t
2 ||vt||2.

14
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Proof. Firstly, we define Ft(z) := 1
2αt
||z||2 + (1 − β)

∑t−1
s=1⟨βt−1−svs, z⟩, thus, zt =

− η(1−β)
∑t−1

s=1 βt−1−svs√
(1−β2)

∑t−1
s=1 βt−1−s

2 ||vs||2
= argminFt(z) by setting αt =

η√
(1−β2)

∑t−1
s=1 βt−1−s

2 ||vs||2
.

By the same notations in Lemma 4.1 and Lemma 7.1 in Orabona (2019),

T∑
t=1

⟨ṽt,β,T , zt − u⟩ ≤ 1

2αT+1
||u||2 +

T∑
t=1

Ft(zt)− Ft+1(zt+1) + ⟨ṽt,β,T , zt⟩︸ ︷︷ ︸
Component A

 (2)

Then, the component A can be re-formulated as,

Ft(zt)− Ft+1(zt+1) + ⟨ṽt,β,T , zt⟩
= Ft(zt) + ⟨ṽt,β,T , zt⟩ − Ft(zt+1) + (Ft(zt+1)− Ft+1(zt+1))

= Ft(zt) + ⟨ṽt,β,T , zt⟩ − Ft(zt+1)− ⟨ṽt,β,T , zt+1⟩+
1

2αt
||zt+1||2 −

1

2αt+1
||zt+1||2

≤ Ft(zt) + ⟨ṽt,β,T , zt⟩ − Ft(zt+1)− ⟨ṽt,β,T , zt+1⟩
= Ft(zt) + ⟨v̄t,β,T , zt⟩ − Ft(zt+1)− ⟨v̄t,β,T , zt+1⟩︸ ︷︷ ︸

Component A.1

+⟨ṽt,β,T − v̄t,β,T , zt − zt+1⟩,

where the first inequality is by (C.1). in Lemma 4.1, and v̄t,β,T := clip√∑t−1
s=1

˜̃vs,β2,t−1
(ṽt,β,T ).

Further, the above Component A.1 can be re-formulated as

Ft(zt) + ⟨v̄t,β,T , zt⟩ − Ft(zt+1)− ⟨v̄t,β,T , zt+1⟩ ≤ Ft(zt) + ⟨v̄t,β,T , zt⟩ −min
x

[Ft(x) + v̄t,β,T ,x⟩]

≤ αt

2
||∂zt [Ft(zt) + ⟨v̄t,β,T , zt⟩]||2

=
αt

2
||v̄t,β,T ||2

where the second inequality is by Ft(x)+⟨v̄t,β,T ,x⟩ is 1
αt

-strongly convex function and the property
of µ-strongly convex function, i.e., f(x)− f(x⋆) ≤ 1

2µ ||g||
2 given f(x). The last equality is by the

definition of zt, i.e., zt := argminFt(∆).

Then, equation 2 can be re-formulated as

T∑
t=1

⟨ṽt,β,T , zt − u⟩ ≤ 1

2αT+1
||u||2 +

T∑
t=1

αt

2
||v̄t,β,T ||2 +

T∑
t=1

⟨ṽt,β,T − v̄t,β,T , zt − zt+1⟩

=
D2

2η

√√√√ T∑
t=1

˜̃vt,β2,T︸ ︷︷ ︸
Part A

+
η

2

T∑
t=1

||v̄t,β,T ||2√∑t−1
s=1

˜̃vs,β2,t−1︸ ︷︷ ︸
Part B

+

T∑
t=1

⟨ṽt,β,T − v̄t,β,T , zt − zt+1⟩︸ ︷︷ ︸
Part C
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Then, we further decompose Part B and Part C.

η

2

T∑
t=1

||v̄t,β,T ||2√∑t−1
s=1

˜̃vs,β2,t−1︸ ︷︷ ︸
Part B

≤ η

2

T∑
t=1

√
2||v̄t,β,T ||2√

||v̄t,β,T ||2 +
∑t−1

s=1
˜̃vs,β2,t−1

≤ η

2

T∑
t=1

2
√
2||v̄t,β,T ||2√

||v̄t,β,T ||2 +
∑t−1

s=1
˜̃vs,β2,t−1 +

√∑t−1
s=1

˜̃vs,β2,t−1

=
η

2

T∑
t=1

2
√
2


√√√√||v̄t,β,T ||2 +

t−1∑
s=1

˜̃vs,β2,t−1 −

√√√√t−1∑
s=1

˜̃vs,β2,t−1


≤
√
2η

T∑
t=1


√√√√ t∑

s=1

˜̃vs,β2,t −

√√√√t−1∑
s=1

˜̃vs,β2,t−1


≤
√
2η

√√√√ T∑
t=1

˜̃vt,β2,T

where

• the first inequality is by the clipping operation v̄t,β,T := clip√∑t−1
s=1

˜̃vs,β2,t−1
(ṽt,β,T );

• the third inequality is by (C.4). in Lemma 4.1.

Denote Gt = maxs∈[t]

√
˜̃vs,β2,t with boundary case G0 = 0, then

T∑
t=1

⟨ṽt,β,T − v̄t,β,T , zt − zt+1⟩︸ ︷︷ ︸
Part C

=

T∑
t=1

⟨ṽt,β,T − clip√∑t−1
s=1

˜̃vs,β2,t−1
(ṽt,β,T ), zt − zt+1⟩

≤
T∑

t=1

||ṽt,β,T − clip√∑t−1
s=1

˜̃vs,β2,t−1
(ṽt,β,T )||2||zt − zt+1||2

≤ 2max
t∈[T ]

||zt||
T∑

t=1

||ṽt,β,T ||

1−min


√∑t−1

s=1
˜̃vs,β2,t−1

||ṽt,β,T ||
, 1


≤ 2max

t∈[T ]
||zt||

T∑
t=1

√
˜̃vt,β2,t

1−min


√∑t−1

s=1
˜̃vs,β2,t−1√

˜̃vt,β2,t

, 1


≤ 2max

t∈[T ]
||zt||

T∑
t=1

Gt

(
1−min

(
Gt−1

Gt
, 1

))

= 2max
t∈[T ]

||zt||
T∑

t=1

(Gt −Gt−1)

≤ 2max
t∈[T ]

||zt||GT

≤ 2η

√√√√ T∑
t=1

˜̃vt,β2,T ,

where
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• the third inequality is by (C.3). in Lemma 4.1, i.e., ||v̄t,β,T ||2 ≤ (1− β2)˜̃vt,β2,t ≤ ˜̃vt,β2,t;

• the forth inequality is by Gt−1 ≤
√∑t−1

s=1
˜̃vs,β2,t−1 and Gt ≥

√
˜̃vt,β2,t;

• and the last inequality is by (C.2). in Lemma 4.1.

Then, summing over Part A, Part B, and Part C gives

T∑
t=1

⟨ṽt,β,T , zt − u⟩ ≤ D2

2η

√√√√ T∑
t=1

˜̃vt,β2,T +
√
2η

√√√√ T∑
t=1

˜̃vt,β2,T + 2η

√√√√ T∑
t=1

˜̃vt,β2,T

≤ 3D

√√√√ T∑
t=1

˜̃vt,β2,T (by setting η = 0.38D)

T∑
t=1

⟨βT−tvt, zt − u⟩ ≤ 3D
√
1− β2

1− β

√√√√ T∑
t=1

βT−t
2 ||vt||2,

which concludes the proof.
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