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Abstract

The performance of Large Language Models (LLMs) and the associated dollar
costs of API calls can fluctuate over time, potentially invalidating conclusions
drawn in prior research. To address this, we propose a Fair Evaluation protocol
for Test-Time Compute (FEval-TTC), designed to ensure consistent assessment
of test-time compute (TTC) methods, regardless of such fluctuations. FEval-
TTC focuses on the evaluation of TTC methods that utilize underlying Chains-of-
Thought (CoT). It supports evaluations across multiple LLMs on a diverse set of
mathematical and commonsense reasoning datasets. The few-shot prompting and
answer extraction processes are standardized across datasets, reducing both time
and monetary overhead for researchers. Furthermore, we provide a cost modelling
procedure that estimates both the token and dollar cost per query, facilitating
equitable comparisons of prevalent TTC methods. We open-source FEval-TTC for
public use at https://github.com/networkslab/feval_ttc.
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Figure 1: FEval-TTC comprises of three distinct groups of datasets, each consisting of ques-
tion–answer pairs (see Section 2.1). Each dataset is queried by multiple LLMs from different
families with a standardized query format. We provide 40 sampled Chains-of-Thoughts (CoTs) with
extracted answers, number of tokens, and the corresponding dollar cost of inference per question (see
Section 2.2).
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1 Introduction

The emergence of System-2 thinking in Large Language Models (LLMs) (Ji et al., 2025) has
introduced a new paradigm that leverages inference-time computation to enhance reasoning capa-
bilities (Snell et al., 2025). This paradigm involves allocating additional computational resources
during inference, such as extended token generation, to improve performance on complex reasoning
tasks (Yang et al., 2025). The additional computation may originate from a single LLM (Snell
et al., 2025) or from coordination among multiple LLMs (Qi et al., 2025). However, this increase in
generation leads to substantial time and financial costs, posing practical challenges that hinder rapid
experimentation and broader adoption.

In case a researcher is using an API, the monetary cost is primarily determined by commercial API
usage fees, which are typically charged by API providers based on token usage. For self-hosted
LLMs, monetary costs arise from the electricity consumed to operate GPUs. The time costs in both
cases arise primarily from the latency between initiating a request and receiving the response, since
the LLM generates tokens sequentially. Concurrently, the LLM landscape evolves rapidly, with
frequent model updates, new releases, and revisions to API pricing. Such volatility can undermine
the validity of prior research or create unfair advantages for newer methods if experimental setups do
not carefully control for differences in model performance and cost. Reusing results from published
work without accounting for these changes can further exacerbate these issues, leading to inaccurate
comparisons.

This Fair Evaluation protocol for Test-Time Compute (FEval-TTC) addresses these challenges by
enabling researchers to substantially reduce both computational and time costs, while preserving
fair and reproducible comparisons with prior work. FEval-TTC includes a comprehensive set of
pre-recorded model queries and responses, along with extracted answers and associated metadata.
For instance, applying self-consistency with 20 samples on the GSM8K dataset (Cobbe et al., 2021a)
using Mixtral 8×22B can take up to seven hours due to inference latency. In contrast, FEval-TTC
allows this evaluation to be completed in seconds by eliminating the need for live LLM calls. We
provide standardized requests and responses for sixteen datasets covering both commonsense and
mathematical reasoning tasks. Additionally, we introduce a unified cost model to ensure consistent
and fair estimation of both query and response costs across different methods and models.

The uniqueness of FEval-TTC lies in the following features:

• It supports several groups of reasoning tasks and multiple LLM model families.

• It is extensible in a trivial way to incorporate additional models, datasets, and prompting
techniques.

• It ensures a fair comparison of test-time algorithms by using a standardized set of LLM
responses and a unified monetary/token cost model.

• FEval-TTC significantly reduces the evaluation time and cost of common test-time inference
methods by leveraging pre-recorded LLM responses instead of issuing live queries.

2 FEval-TTC package overview

from feval_ttc import load , DatasetType , LLMType

dataset , [llm1 ,llm2] = load(DatasetType.SVAMP , \
[LLMType.LLaMA3B32 , LLMType.Qwen72B25 ])

for question_id , dataentry in dataset:
print("Question: ", dataentry.question)
print("True answer: ", dataentry.answer)
llm1_response = llm1(question_id , N=20)
print("1st CoT answer: ", llm1_response.cots [0]. answer)
print("Token cost: ", llm1_response.cots [0]. tokens)
print("USD Cost: ", llm1_response.cots [0]. dollar_cost)

Listing 1: Example of an interaction with the FEval-TTC package
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This section provides the architectural overview of the FEval-TTC. FEval-TTC is composed of two
main parts: Dataset module and LLM module. The Dataset module holds the list of questions and
answers and an interface to iterate over them (see Section 2.1). The LLM module stores multiple
Chain-of-Thoughts (CoTs) responses along with their extracted answers. The design of both modules
employs key-value dictionaries to facilitate seamless access to cached data. The main package
features an interface to load a Dataset module instance and a set of corresponding LLM module
instances. A usage example for research purposes is provided in Listing 1.

2.1 Dataset module

Dataset module instance contains a list of Dataentries (see Listing 2). Each Dataentry includes a
question and its ground-truth answer, collected from the corresponding datasets. We did not change
questions and answers, but the answer format was standardized across the package. For each dataset,
we provide a system prompt that was used to obtain LLM responses.

class DatasetEntry(BaseModel):
answer: str
question: str

class Dataset(BaseModel):
data: List[DatasetEntry]
datatype: DatasetType
system_prompt: str

Listing 2: Dataset module in FEval-TTC

FEval-TTC features datasets from three differ-
ent reasoning categories: commonsense reason-
ing, arithmetic reasoning, and mathematical rea-
soning. The commonsense reasoning group in-
cludes tasks designed to assess inference capabili-
ties using commonsense knowledge, such as Com-
monSenseQA (Talmor et al., 2019) and 11 BIG-
Bench-Hard (Suzgun et al., 2023) tasks. The arith-
metic reasoning group contains datasets such as
GSM8K (Cobbe et al., 2021a), SVAMP (Patel et al.,
2021), and AQuA (Ling et al., 2017), which require
basic calculation skills. The mathematical reasoning category targets advanced problem-solving
ability, represented by the MATH-500 (Hendrycks et al., 2021), which consists of competition-style
mathematical questions requiring rigorous algebraic and geometric manipulation.

2.2 LLM module class CoTMetadata(BaseModel):
dollar_cost: float
tokens: int

class CoT(BaseModel):
raw_text: str
answer: Optional[str]
metadata: CoTMetadata

class LLMRequest(BaseModel):
raw_text: str
dollar_cost: float
tokens: int

class LLMResponse(BaseModel):
cots: List[CoT]
request: LLMRequest
answers: List[str]

class LLMConfig(BaseModel):
name: LLMType
temperature: float
max_tokens: int

class LLM(BaseModel):
config: LLMConfig
responses: List[LLMResponse]

Listing 3: LLM modules in FEval-TTC

LLM instance represents a real-world API,
such as OpenAI1. For each question, the in-
stance returns an LLMResponse object. It pro-
vides access to a few-shot LLMRequest prompt,
which includes the official few-shot examples
for a corresponding dataset, and to a set of CoT.
Each CoT object consists of the raw API re-
sponse and extracted answer. Note that not all
CoTs contain answers that could be extracted;
therefore, the answer field is set to None, when
such a failure occurs. The answers extracted
from CoTs are standardized across datasets.
The evaluation protocol is designed to be non-
restrictive, allowing seamless integration with
a researcher’s existing methodology. In prac-
tice, evaluating a test-time compute algorithm
using FEval-TTC simply involves replacing
live LLM API calls with provided responses.

We feature five common LLM families. Each
model is queried 40 times using a few-shot
CoT prompt with standard few-shot examples.
The reasoning model o3-mini is queried 3
times using zero-shot instructions to save cost.
Specifically, FEval-TTC includes CoTs from
the following LLMs.

1https://platform.openai.com/docs/overview
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LLaMA: Llama 3.2-1B-Instruct, Llama 3.2-
3B-Instruct, Llama 3.3-70B-Instruct, and
Llama-3.1-405B-Instruct.
QWEN: Qwen2.5-1.5B-Instruct, Qwen2.5-32B-Instruct, and Qwen2.5-72B-Instruct.
Deepseek: Deepseek-V3.
Mistral: Mixtral-8x7B, and Mixtral-8x22B.
GPT: GPT 3.5 Turbo, GPT-4o-mini, and o3-mini (reasoning).

2.3 Dollar cost modelling

FEval-TTC uses a unified monetary cost model to compute the dollar cost of an LLM response:

DollarCost(INP,OUT) = 10−6 (Ci Token(INP) + Co Token(OUT)) , (1)

where Ci is the input processing cost of the model in USD per million tokens, Co is model’s output
cost in USD for generation of a million tokens, Token(INP) is the number of tokens in input prompt
(from LLMRequest) and Token(OUT) is the number of tokens generated by the LLM (from CoT). In
our cost model, we assume that an LLM can be prompted once to sample multiple outputs, therefore,
OUT may include multiple CoTs for a single input INP.

We adopt this simplified cost model to enable fair comparisons of LLM responses, independent of
external factors such as the query date or caching strategies used. We provide additional details in
Appendix A.

3 Evaluation examples

In order to demonstrate the use of our protocol, we present some examples of common Test-
Time Compute methods evaluated on FEval-TTC. Table 1 and Figure 2 show the results of Self-
Consistency (Wang et al., 2023) and Best-of-N (Cobbe et al., 2021b) algorithms. FEval-TTC also
supports the evaluation of many existing training-free, adaptive self-consistency methods (Aggarwal
et al., 2023; Zhu et al., 2024; Wang et al., 2024) for reducing the sampling cost of Self-Consistency.
Table 2 and Figure 3 demonstrate the evaluation of multi-LLM (cascade) methods such as Mixture of
Thoughts (Yue et al., 2024) and ModelSwitch (Chen et al., 2025). Other cascade approaches, such as
FrugalGPT (Aggarwal et al., 2024) and TREACLE (Zhang et al., 2024), can also be evaluated using
FEval-TTC.
Table 1: Accuracies of Self-Consistency (SC)
and Best-of-N (BoN) with 20 CoTs with
AQuA dataset.

Method Mixtral 8x22B Qwen 32B

SC-20 0.787 ($1.76) 0.870 ($0.24)
BoN-20 0.606 ($1.76) 0.870 ($0.24)

Table 2: Accuracies of Mixture of
Thoughts (MoT) and ModelSwitch (MS)
with LLaMA-70B and GPT-4o-mini.

Method Ruin names GSM8k

MoT 0.924 ($0.44) 0.960 ($2.21)
MS 0.916 ($0.13) 0.961 ($0.64)

0 5 10 15 20 25 30 35 40 45
No. CoTs

83

84

85

86

87

88

89

Re
as

on
in

g 
Ac

cu
ra

cy
 (%

)

SC
BoN

Figure 2: Evaluation of CoT+SC and Best-of-
N algorithms on AQuA dataset using Qwen
32B for varying number of CoTs.
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ing Llama models for varying computational
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4 Conclusion

We introduce FEval-TTC, an open-source framework for fast, fair, and low-cost evaluation of common
test-time compute (TTC) methodologies. By replacing LLM API calls with FEval-TTC API calls,
researchers can reduce evaluation time from hours to seconds at negligible cost. Our unified cost
model enables fair comparisons across methods, independent of API pricing fluctuations. FEval-TTC
facilitates the integration of new datasets and models through the application of standard prompting
techniques.
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A Unified cost model details

Table 3: USD cost per million tokens for LLMs used in FEval-TTC. The costs are valid as of
02/06/2025.

LLM Input Cost Ci ($/M tokens) Output Cost Co ($/M tokens)
LLaMA 3.2 1B-Instruct 0.005 0.01
LLaMA 3.2 3B-Instruct 0.01 0.02
LLaMA 3.3 70B-Instruct 0.13 0.40
LLaMA 3.1 405B-Instruct 1.00 3.00

Qwen 2.5 1B-Instruct 0.02 0.06
Qwen 2.5 32B-Instruct 0.06 0.20
Qwen 2.5 72B-Instruct 0.13 0.40

GPT 3.5-Turbo 0.50 1.50
GPT 4o-mini 0.15 0.60
OpenAI o3-mini 1.10 4.40

Mixtral-8x7B-Instruct 0.08 0.24
Mixtral-8x22B-Instruct 0.40 1.20

DeepSeek-V3 0.50 1.50

FEval-TTC includes CoTs from various LLaMA, QWEN, Deepseek, Mistral, and GPT models. We
collected responses from the GPT model family using the OpenAI API2. OpenAI API prices are
publicly available at https://platform.openai.com/docs/pricing. We used a commercial
API service3 to query other model families. The price information for LLaMA, QWEN, Deepseek,
and Mistral model families can be found at https://nebius.com/prices-ai-studio. The
detailed USD costs per million tokens for different LLMs are shown in Tables 3. All costs were
recorded as of June 2, 2025.

In our package, we provide access to both token counts and dollar cost. Our unified model of dollar
cost (1) is proportional to the number of tokens. Commercial API pricing is subject to change over
time, typically at least once per year. By fixing the dollar cost model in our protocol, we ensure

2https://openai.com/api
3https://docs.nebius.com/studio/inference/api
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that cost comparisons remain consistent and are unaffected by such pricing changes. This design
guarantees that comparisons between methods yield stable and fair conclusions, independent of future
modifications to commercial API pricing policies.

B Licensing

The terms of use for OpenAI API 4 and Nebius API 5 services grant the users full ownership of the
LLM inputs and outputs provided by the API. We distribute the collection of LLM inputs and CoT
outputs under the Open Database License. We grant rights of distribution, utilization, modification,
and extension of the collection under the condition of a copyright notice.

Our Python package includes questions and ground truth answers for six datasets (including causal
judgment, date understanding, disambiguationQA, formal fallacies, geometric shapes, movie recom-
mendation, penguins, ruin names, snarks, sports, and temporal sequences tasks of Big-Bench-Hard).
These datasets are provided for the convenience of the users. We do not claim any ownership
rights over the datasets included in the FEval-TTC package. These datasets are independent assets
distributed under the following licenses:

• CommonSenseQA (Talmor et al., 2019) under an MIT license
• Big-Bench-Hard (Suzgun et al., 2023) under the MIT license
• GSM8K (Cobbe et al., 2021a) under the MIT license
• SVAMP (Patel et al., 2021) under the MIT license
• AQuA (Ling et al., 2017) under an Apache License, Version 2.0
• MATH-500 (Hendrycks et al., 2021) under the MIT license

4https://docs.studio.nebius.com/legal/terms-of-service#10-intellectual-property
“You hold exclusive ownership of all rights, titles, and interests (including intellectual property rights) to Your
Inputs” & “We do not claim any rights to Inputs and Outputs”

5https://openai.com/policies/row-terms-of-use/#content
“As between you and OpenAI, and to the extent permitted by applicable law, you (a) retain your ownership
rights in Input and (b) own the Output. We hereby assign to you all our right, title, and interest, if any, in and to
Output.”
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