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Abstract

Deep reinforcement learning (RL) agents frequently suffer from neuronal activity
loss, which impairs their ability to adapt to new data and learn continually. A
common method to quantify and address this issue is the 7-dormant neuron ratio,
which uses activation statistics to measure the expressive ability of neurons. While
effective for simple MLP-based agents, this approach loses statistical power in
more complex architectures. To address this, we argue that in advanced RL agents,
maintaining a neuron’s learning capacity, its ability to adapt via gradient updates,
is more critical than preserving its expressive ability. Based on this insight, we
shift the statistical objective from activations to gradients, and introduce GraMa
(Gradient Magnitude Neural Activity Metric), a lightweight, architecture-agnostic
metric for quantifying neuron-level learning capacity. We show that GraMa effec-
tively reveals persistent neuron inactivity across diverse architectures, including
residual networks, diffusion models, and agents with varied activation functions.
Moreover, resetting neurons guided by GraMa (ReGraMa) consistently improves
learning performance across multiple deep RL algorithms and benchmarks, such
as MuJoCo and the DeepMind Control Suite. We make our code available?.

1 Introduction

Deep reinforcement learning (Deep RL) has achieved remarkable success across a variety of domains,
including robotics [Liu et al., 2021], foundation model fine-tuning [Shao et al., 2024, Liu et al.,
2025c, Yu et al., 2025, Li et al., 2025, Lu et al., 2025, Liu et al., 2025b], and game playing [Berner
etal., 2019, Schwarzer et al., 2023]. These advancements have been driven by the expressive power
and adaptive learning ability of neural networks which effectively approximate and optimize value
functions and/or policies [Sokar et al., 2023]. However, recent studies have uncovered a critical and
often underexplored challenge: as training progresses, subsets of neurons in these networks often
experience a progressive loss of activity and become dormant [Sokar et al., 2023, Ma et al., 2024,
Qin et al., 2024]. This phenomenon reduces the learning capacity of the network, comprising its
ability to adapt to non-stationary data distributions [Nikishin et al., 2022], which in turn hinders their
ability to acquire new knowledge and adapt to evolving environments [Abbas et al., 2023]. Despite
its importance, quantifying and mitigating neuronal activity remains challenging due to its complex
underlying mechanisms [Lyle et al., 2023, Obando Ceron et al., 2023, Nauman et al., 2024a, Lyle
et al., 2024].

To address this problem, a primary principle has been to restore a network’s learning ability by
reactivating or resetting inactive neurons. These approaches span multiple granularities: model-level
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and layer-level resets that reinitialize specific layers, while straightforward, often lead to catastrophic
forgetting [Nikishin et al., 2023]. On the other hand, neuron-dependent resets (e.g., ReDo [Sokar
et al., 2023]) target specific underperforming neurons [Xu et al., 2023] and provide a finer-grained
approach by selectively reinitializing a subset of neurons identified as dormant, which mitigates
forgetting and maintains computational efficiency.

The effectiveness of neuron-dependent resets hinges critically on having a reliable criterion to identify
which neurons require initialization. Existing methods primarily rely on activation-based metrics,
such as the 7 dormant neuron metric [Sokar et al., 2023], which measures neuronal inactivity based
on activation values (i.e., the output of activation functions). It has demonstrated utility in standard
architectures, and has been used to guide targeted neuron resets to restore activity in simple settings
such as serial MLPs with ReLU activations [Agarap, 2018], providing a simple means of maintaining
learning capability without relying on auxiliary networks [Nikishin et al., 2023] or models [Lee et al.,
2024]. By identifying neurons with weak or no activation and selectively reinitializing them, the
activation-based dormancy metrics become a widely adopted tool for restoring learning capabilities
and preventing performance plateau in standard deep RL settings [Farias and Jozefiak, 2025, Liu
et al., 2025a, Juliani and Ash, 2024].

However, deep RL architectures have rapidly
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intended enhancement. This mismatch arises

because activation-based metrics focus solely on a neuron’s current output, evaluating its expressive
capacity (how strongly it activates), while neglecting its learning capacity (how effectively it can adapt
to new data distributions). Consequently, it becomes particularly problematic as deep RL architectures
evolve beyond simple feedforward networks to incorporate advanced structural elements, diverse
activation functions, and sophisticated normalization techniques. In these modern architectures, a
neuron’s activation magnitude often fails to accurately reflect its true learning potential.
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As shown in Fig. 1, ReDo struggles to identify

To address this mismatch, we propose a fundamental shift in perspective: from evaluating neurons
based on their outputs to evaluating their learning potential by leveraging gradient magnitude. While
activation values only capture what a neuron currently expresses, gradients tend to measure a neuron’s
capacity in response to the given situation that directly drives parameter updates. This makes it a
general and natural proxy for neuronal health across architectural variations. Building upon this
insight, we introduce GraMa (Gradient Magnitude based Neuronal Activity Metric), a robust and
lightweight framework for quantifying neuronal activity via the gradient magnitudes. GraMa maintains
validity across diverse architectural patterns, making it well-suited for modern deep RL agents.

In addition, GraMa imposes negligible computational and memory overhead by utilizing information
already present in the optimization pipeline, which is a critical consideration for resource-intensive RL
training. Leveraging GraMa’s efficiency, we develop a targeted neuron reset mechanism, (ReGraMa),



that selectively reinitializes inactive neurons that have lost their learning capacity during training. This
mechanism demonstrates robust efficiency across various architectures, including the SAC variant
[Nadimpalli et al., 2025], the residual BRO-net [Nauman et al., 2024b], and the diffusion-based
policy DACER [Wang et al., 2024].

Our contributions are summarized as follows:

* We show that the widely-adopted activation-based neuronal health measurements lose sta-
tistical power in complex architectures and provide a qualitative analysis of the underlying
causes.

» We reframe neuronal health evaluation through Grama, a gradient-based metric that quan-
tifies learning potential independently of architectural complexity, and demostrate that
neuronal learning capacity degradation affects even state-of-the-art network developments.

* We develop (ReGraMa), an efficient neuron resetting mechanism guided by GraMa, which
effectively restores neuronal activity across a wide range of network architectures.

* We conduct extensive experiments on MuJoCo [Brockman et al., 2016], DeepMind Control
Suite [Tassa et al., 2018], showing that GraMa-guided resetting improves performance and
learning stability across diverse architectures.

2 Background

A reinforcement learning (RL) problem is typically formalized as a Markov Decision Process
(MDP), defined by the tuple (S,.A, P, R,~), where S is the state space, A the action space, P
the transition probability function S x A X S — [0, 1], R the reward function S x A — R, and
~ € [0, 1) the discount factor. The state-action value function under policy  is given by:Q™ (s, a) =
Er >0V R(st,at) | so = s,a0 = a] . The objective is to find a policy 7 that maximizes the ex-
pected return Q™ (s, a) for each state s. In actor-critic-based deep RL, the Q-function is approximated
by a neural network )y with parameters 6. During training, the agent interacts with the environment
and stores trajectories in a replay buffer D. Mini-batches sampled from D are used to update Q9 by
minimizing the temporal difference loss:L£g(0) = Es a.r5n~p [(Qa(s,a) — Q7 (s,a))?] , where
the target is given by Q7 (s, a) = R(s,a) +7Qg(s',75(s")). and 8, ¢ denote the parameters of target
critic and actor networks, respectively.

Neuronal activity measurement based on activation value. Recent studies have identified that
the dynamic and non-stationary nature of RL objectives can cause neurons to permanently lose their
activity [Lu et al., 2018], impairing the network’s ability to fit new data and thereby limiting learning
progress [Nikishin et al., 2022, Ceron et al., 2024]. This phenomenon, referred to as the dormant
neuron phenomenon, has been quantitatively characterized using the T—dormant neuron ratio [Sokar
et al., 2023], and serves as a core metric for assessing neuron-level plasticity [Xu et al., 2023, Qin
et al., 2024, Liu et al., 2025a]. Specifically, a neuron ¢ in layer ¢ is considered 7-dormant if its
normalized activation (see Eq. 1) falls below a threshold 7, where H ¢ is the number of neurons in
layer ¢, and D denotes the data distribution. h¢(x) represents the activation value of neuron 4 given
nput x.
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3 Related Work

Dynamic objectives may cause irreversible damage to the neuronal activity of networks during
training [Lyle et al., 2023, Nauman et al., 2024a], which is also significant in the field of multi-agent
RL [Qin et al., 2024] and visual deep RL [Ma et al., 2024]. This issue may lead to the phenomenon
where deep learning agents progressively lose their ability to fit new data [Abbas et al., 2023], and
limit their capacity for continual learning [Elsayed and Mahmood, 2024]. In the field of Deep RL,
there are some factors that have been found to have a direct correlation with the activity of neurons
[Juliani and Ash, 2024, Mayor et al., 2025, Castanyer et al., 2025]. Among these, activation functions
play a particularly important role, recent findings indicate that replacing ReL.U activation can help
preserve neuron-level learning capacity [Abbas et al., 2023].
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Figure 2: Key techniques involved in advanced models may reduce the efficiency of activation-based
metrics. (a) The final activation values observed after branch fusion no longer accurately reflect the individual
contributions of neurons in each branch. (b) A near-zero value fails to represent the expressivity with non-ReL.U
activation function. (c) Normalization confuses ReDo by modifying the neuron’s outlier output.

Certain loss functions, especially those incorporating L2 regularization, have been found to mitigate
the network’s activity degradation [Kumar et al., 2023]. Another relevant line of research explores
architectural adjustments such as scaling up [Nikishin et al., 2023] or topology growth [Liu et al.,
2025a]. These methods can introduce modules that enhance the proportion of active, high-quality
neurons. A separate and increasingly influential line of research focuses on directly manipulating
model parameters to recover their activity. Resetting neural networks, either periodically or selectively,
has been shown to be both effective and easy to implement [Farias and Jozefiak, 2025]. For instance,
Nikishin et al. [2022] demonstrates the benefits of periodic resets for continual learning.

Similarly, Ma et al. [2024] shows that selectively resetting specific layers can improve stability
without sacrificing expressive capacity. At a finer granularity, ReDO [Sokar et al., 2023] introduces
a neuron-level resetting scheme that outperforms earlier coarse strategies in terms of stability and
precision. However, ReDQO’s reliance on activation-based quantization limits its applicability to more
complex architectures [Lyle et al., 2023, 2024]. To address this limitation, we introduce a novel
neuronal activity quantification approach based on gradient magnitudes, enabling generalized activity
estimation and recovery across arbitrary network designs. Notably, Ji et al. [2024] provided the
first empirical evidence in model-free reinforcement learning of a strong correlation between the
internal gradient dynamics of the agent’s policy network and its learning capacity, offering compelling
motivation for the present study.

4 Gradient Magnitude based Neuronal Activity Metric (GraMa)

In this section, we qualitatively investigate ReDo’s limitations from the perspective of architectural
composition Sec. 4.1. We then introduce GraMa (Sec. 4.2), a novel neuronal activity metric that
redefines the statistical objective from activation values to gradient magnitudes. Next, we perform an
in-depth analysis of the characteristics of low learning capacity neurons using GraMa, and provide
both theoretical and empirical analyses of the performance similarity between GraMa and ReDo on
simple architectures. Finally, we analyze the advantages of GraMa in complex architectures.

4.1 Misalignment of activation-based neuron activity detection in modern architectures

The widely adopted activation-based neu-
ron activity measures [Sokar et al., 2023]
operate on the assumption that a neuron’s
activation magnitude directly corresponds
to its contribution to learning. Motivated by
the development of more complex network
structures in language and vision domains,
recent trends in deep RL have moved be-
yond simple serial MLP architectures with
ReLU activations towards more sophisti-
cated network designs for scaling. However, (a) ReDo (b) ReGraMa

Fhls, assumption becomes 1nf:reasmgly fr. ag- Figure 3: ReDo fails to reset neurons with low learning
ile in modern complex architectures which capacity (red), while also incorrectly resets the neurons
are rapidly becoming standard practice. We  with high learning capacity (dark blue), including those
reveal a misalignment between activation with both high learning capacity and high expressiveness
values and actual learning potential, leading (white). This plot shows the proportion of resetting 4 neuron
to inefficient neuron identification. types during the same reset step in the Dog Walk task.
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Motivating example.

To systematically analyze this misalignment, we evaluate BRO-net [Nauman

et al., 2024b], a recently proposed architecture, on the challenging Dog Walk task [Tassa et al.,
2018]. We categorized neurons into four quadrants based on their expressive capacity (measured by
activation magnitude) and learning capacity (measured by gradient magnitude), which we introduce
in more detail in Sec. 4.2. Neurons are ranked according to these two criteria, and we select the top
25% of neurons in each ranking, so as to provide an understanding of the types of neurons reset by
each method. The results in Fig. 3 demonstrate that ReDo cannot accurately identify neurons that
have genuinely lost their learning capacity (red) based on their activation values. More importantly,
ReDo mistakenly resets a significant number of neurons with high learning capacity that are less
expressive at the moment (dark blue).

Analysis.

In addition to the primary factor of statistical objectives, we identify three key archi-

tectural features that may undermine the reliability of activation-based neuron dormancy detection.
Fig. 2 provides an intuitive illustration of each. (i) Multi-branch network structures. In modern
architectures like ResNets [He et al., 2015], information flows through multiple branches before
being fused and passing through activation functions. This architectural pattern introduces a critical
problem: the final activation values observed after branch fusion no longer accurately reflect the
individual contributions of neurons in each branch. Our experiments with Resnet-SAC [Shah and
Kumar, 2021] shown in Fig. 4 (a) confirm this effect, where the results suggest that activation-based
methods lose their ability to identify dormant neurons and limits the performance of the agent. (ii)
Non-ReLU activation function. The interpretability of activation values is highly dependent on the
specific activation function used. While ReLU creates a clear distinction between “dead” (output=0)
and “active” neurons, this clarity breaks down when considering alternative activation functions. For
example, with Leaky ReLU, neurons may remain expressive and contribute to learning even when
their pre-activation values are negative.

As a result, solely relying on activation values to measure neuron dormancy becomes unreliable
and may lead to misidentification. Our experiments replacing ReLU with Leaky ReL.U in SAC
(Fig. 4 (b)) demonstrate this problem, where the activation-based method (ReDo) shows considerable
reset activity during early learning with lower performance, indicating that it struggles to establish
meaningful dormancy criteria. (iii) Normalization layers. Normalization techniques modify the
distribution of neuron outputs before they pass through activation functions. This process adjusts
outliers and rescales values across entire layers, causing post-normalization values to lose a direct
correspondence with individual neuron functionality. Thus, activation values measured after normal-
ization may no longer accurately reflect a neuron’s learning capacity. Our experiments incorporating
layer normalization into SAC, Fig. 4 (c) reveal that the activation-based method struggles to maintain
consistent neuron assessment, whereas our method consistently identifies relevant neurons throughout

the learning process.
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Figure 4: Empirical validation corresponding to the three cases of Fig. 2. Top row records the proportion of
reset neurons. Bottom row shows the performance. Each curve represents the average over 3 seeds (Dog Walk).
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Figure 5: (Left) Execution time comparison based on BRO-net (RTX3090 GPU); (Right) The results verify that
ReGraMa is as effective as ReDo on traditional network architectures. The backbone, hyperparameter settings
and number of seeds are the same for all experiments.

4.2 Gradient Magnitude based Neuronal Activity Metric (GraMa)

Learning activity is directly related to the gradient received by a neuron during training [Zhou and
Ge, 2024]. A natural and simple way to enhance ReDo-like metrics is to count how many neurons in
each network layer fail to obtain meaningful gradients from the current sample batch. Given an input

distribution D, let |V;: L(z)| denote the gradient magnitude of the neuron i in layer £ under input

x € D and H* be the number of neurons in layer £. Based on Eq. 1, we compute a learning capacity
score for each neuron using the normalized average of the corresponding layer ¢, as shown in Eq. 2.

Evep [Vp L(z)|

Gt = — . 2)
HT Zkeh Ezen |thL(x)|

§r§Ma d‘etermines that neuron 7 in layer / Algorithm 1: ReGraMa
is inactive when Gf < 7. GraMa has the
same form as the dormant neuron ratio, but
redefines its core signal, using gradient magni-
tudes |V, L(x)| rather than activation values

Input : Model 6, threshold 7, frequency A,
while ¢t < maximum training time do
Update 6 with regular RL loss;

. if ¢ mod A; == 0 then
hi(z). The pre-set threshold 7 allows us to for each layer ¢ do

detect neurons with outlier gradient magni- for eachneuron i do

tude. Since gradient information is available Calculate G > Eq. 2
in the tensor after backpropagation at each Gl < 7 thlen

step, there is no need to store the intermediate Reinitiali ..
outputs of each neuron during forward com- L einitialize neuron ¢;
putation,which is required by activation-based
metrics. This makes GraMa lightweight, as
verified in Fig. 5 (left).

Resetting neurons guided by GraMa (ReGraMa). Neuron resetting is a simple technique widely
used to preserve the learning capacity of deep RL agents [Nikishin et al., 2022]. Our approach follows
the ReDo pipeline [Sokar et al., 2023], as outlined in Algorithm 1: during training, we periodically
quantify the activity of neurons in all layers using GraMa; any neuron i with G¢ < 7 is considered
inactive and reinitialized. Specifically, reinitialization involves resetting incoming weights to the
original weight distribution, while outgoing weights are set to zero.

The ratio of low learning capacity neurons is inversely related to performance. We control
the number of reset neurons in ReGraMa to evaluate the performance of four agents with varying
proportions of low learning capacity neurons on the Dog Walker task. Results in Fig. 6 (a) indicate
that performance degrades significantly as the ratio of low learning capacity neurons increases.

Neuron loss of learning capacity is irreversible. We use GraMa with a threshold of 7 = 0.0095 to
sample 1000 inactive neurons in the pre-training period of vanilla agent. We then trace the change
of their learning capacity scores and analyze the score distribution over time, as shown in Fig. 6
(b). The results indicate that none of the sampled neurons exceed the threshold of 0.0095 as training
progresses. This suggests that such neurons are unable to recover their learning ability independently,
further underscoring the importance of resetting neurons with low learning capacity.
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Figure 6: (a): Low learning capacity neurons have a direct negative impact on agent performance. X-axis
represents the normalized performance, and the Y-axis denotes the BRO-nets with different proportions of low
learning capacity neurons. (b): Neuron loss of learning capacity is irreversible. x-axis denotes the number of
neurons under each GraMa score, and the y-axis shows the training phase. (define > 0.0095 as active).

Equivalence of ReGraMa to ReDo in traditional architectures. We theoretically analyze the simi-
larities between ReGraMa and ReDo in traditional architectures (MLP with ReLU activations [Sokar
et al., 2023]) and draw the following conclusions:

Theorem 1. If neuron i is dormant (st = 0), then both V. f = 0 and G¢ = 0.

Proof. From the dormant neuron formula (Eq. 1), we can conclude that:
s£=0 <= Eueplhi(z)|=0.

Since |h¢(x)| > 0, |h¢(x)] =0 <= h%(z) = 0. This means the neuron is almost never activated
on the dataset D. The derivative of the ReLLU [Agarap, 2018] activation function is:

ont(z) {1 if 2f(z) > 0,

0zf(x) 0 ifzf(z) <0.

z represents the output after passing through the activation function. Thus, if hf(a:) = 0, then
z¥(z) < 0, and during backpropagation, the gradient turns to zero:
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Takeaway. We prove that, in the traditional architecture (MLP with ReLU), neurons that are
identified as inactivate by ReDo will also be identified as such by ReGraMa.

Empirical verification. We trained a traditional fully connected network with ReL.U on the CIFAR-
100 benchmark [Krizhevsky, 2009], following the continuous learning experimental setup in Dohare
et al. [2024]. Every 15 epochs, a new category of data is added to the training set, requiring the agent
to classify samples from the whole data distribution. The two gray curves in Fig. 5 (right) show that
the vanilla agent’s accuracy gradually declines as training progresses, indicating a loss of learning
ability. Meanwhile, the proportion of inactive neurons detected by GraMa increases over time and
fluctuates with the same periodicity as the accuracy curve, with both stabilizing around epoch 150. To
further validate ReGraMa, we conducted a two-part intervention study: (1) We reset neurons identified
as inactive by the 7—dormant neuron ratio (ReDo) whenever a new data category is introduced. The
resulting pink curves in Fig. 5 show that resetting dormant neurons can both improve performance
and reduce GraMa ratio. (2) We then reset neurons flagged by ReGraMa as having low activity. This
intervention produced improvements similar to those of ReDo, as illustrated by the in
Fig. 5. These results suggest that ReGraMa is as effective as the ReDo metric in identifying neuronal
inactivity in simple network architectures.



ReGraMa identifies inactive neurons more ef-
fectively in complex architectures. When
moving to more complex architectures, reset-
ting neurons based solely on activation values
becomes less reliable. In deep networks with
normalization layers, residual connections, or
context-dependent features, activations can fluc-
tuate substantially even for neurons that are not
meaningfully contributing to learning. As a
result, activation magnitude alone is a noisy
indicator of long-term inactivity. To examine
this limitation, we compared activation-based
and gradient-based criteria by pruning the cor-
responding neurons from a complex BRO-net
agent and evaluating the resulting performance.
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Figure 7: Pruning neurons identified as inactive by
The degree of post-pruning performance degra- ReGraMa during the training has less impact on the
dation reflects both the relevance of the pruned performance in Dog Walk. Standard denotes vanilla
neurons and the reliability of the underlying agent. Curves show the average over four seeds.
metric. As shown in Fig. 7, pruning neurons
identified by ReGraMa causes only minimal performance loss, indicating that gradient magnitude
provides a more stable and task-relevant measure of neuronal inactivity. This finding suggests that
ReGraMa detects structural inactivity—neurons that remain consistently uninformative during opti-
mization—rather than transient activation noise. Such stability is particularly advantageous in large,
modular architectures, where distinguishing genuine inactivity from context-specific silence is critical
for effective pruning and interpretability.

5 Experiments

We conduct a series of experiments to investigate whether ReGraMa can mitigate neuronal activity
loss and enhance performance. Specifically, we evaluate the effectiveness of ReGraMa across three
representative and widely adopted architecture types: (i) the residual network-based policy (Sec. 5.1),
(ii) the online policy parameterized by a diffusion model (Sec. 5.2), and (iii) the MLP policy featuring
various activation functions (Sec. 5.3). Finally, we verify the robustness of ReGraMa with respect to
the threshold 7 (Appendix B).
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Figure §: Performance and neuron inactivity with the default BRO-net size. (Top row) Episode return across
four environments (Humanoid Stand, Dog Walk, Dog Stand, Humanoid Walk). (Bottom row) Corresponding
proportion of inactive neurons. ReGraMa consistently achieves higher returns while maintaining fewer inactive
neurons compared to ReDo and the vanilla baseline, demonstrating its effectiveness in stabilizing learning
dynamics. Results are averaged over four seeds.

5.1 Residual Net-based Policy

Experiment setup. Recent studies [Nauman et al., 2024b, Lee et al., 2025a] have shown that
integrating residual modules into deep RL agents can significantly improve representation capability



on complex visual tasks. We choose BRO-net [Nauman et al., 2024b] as a representative baseline and
evaluate all methods on four challenging tasks from the DeepMind Control Suite [Tassa et al., 2018].
All the algorithm parameters follow the default settings. We set the empirical threshold 7 = 0.01 for
ReGraMa, and use the same ReDo’s hyperparameters. The reset period is fixed at 1000 steps. Further
details are provided in Appendix A.1.

Main results. Results in Fig. 8 show that ReGraMa can accurately reset the neurons with low activity
in each stream of the multi-branch network, thus effectively maintaining the learning capacity of
the deep RL agent on the four complex tasks and enabling continual learning. In contrast, ReDo
performs poorly. This performance gap arises because, as discussed in Sec. 4.1, ReDo misidentifies
inactive neurons in multi-branch networks, undermining the effectiveness of its reset schedule.
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ate both ReDo and ReGraMa under increased network
depth using the BRO-net architecture across four chal-
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lization of added capacity. In this context, we analyze Figure 9: ReGraMa is more robust under net-
whether the gradient-based reset criterion of ReGraMa  work scaling. Results averaged over four DMC
remains effective under larger model scales. tasks with 12 seeds per method.
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Results show that ReGraMa consistently preserves stable performance improvements as network depth
increases, demonstrating that its gradient-driven measure generalizes well across scales. In contrast,
activation-based resetting (ReDo) fails to exploit the additional representational capacity, showing
marginal gains at best and even degrading performance in the 2x model. These findings indicate that
ReGraMa scales more gracefully with model size, effectively leveraging deeper architectures without
introducing instability.

5.2 Diffusion Model-Based Policy

Experiment setup. Recent works have demon-
strated that diffusion models, due to their strong ex- ReDo -
pressiveness over multi-modal distributions, can sig-
nificantly improve RL performance on complex con-
trol tasks [Chi et al., 2023]. We use DACER [Wang oo 02
et al., 2024], a recent online diffusion policy, as a base-

line and test ReDo and ReGraMa on two MuJoCo-v4 Figure 10: Normalized scores for Ant and
tasks from the original paper. DACER relies on a Unet Walker2d. Boxes show 4 seeds, whiskers in-
backbone with Swish activations. All parameters fol- dicate min/max, the midline denotes the median.
low official defaults. Hyperparameters for ReGraMa and ReDo are the same as in Sec. 5.1, and the
reset period is fixed at 1,000 steps. Full details are in Appendix A.2.
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Results. As shown in Fig. 10, ReGraMa 02| ReDo | — revo

. . . ReGraMa ReGraMa
maintains robust and consistent perfor- = — venia S Vanila |
mance on this complex architecture, £

whereas ReDo provides only marginal im- . %/_,__———-

provements. This discrepancy is explained
by the ratio of inactive neurons in Fig. 11, g R— L g e g
which reveals that ReDo fails to reset neu-

rons that have lost learning capacity. In  Fjgyre 11: Proportion of inactive neurons during training
contrast, ReGraMa accurately identifies and  across two MuJoCo tasks (Ant and Walker2d). ReGraMa
resets low-activity neurons, preserving the maintains a consistently lower ratio of inactive neurons com-
agent’s ability to learn and improving over- pared to ReDo and the vanilla baseline, indicating more effec-
all performance. tive identification and resetting of low-activity units.
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Figure 12: Effect of activation functions on performance and neuron inactivity. (Top row) Episode return
across training under different activation functions (ReLU, Sigmoid, Tanh). (Bottom row) Corresponding
proportion of inactive neurons. ReGraMa maintains higher performance and lower inactivity levels across all
activations, indicating that gradient-based resetting generalizes effectively beyond specific nonlinearities. Curves
are averaged over four seeds.

5.3 Activation Function Variants

Experiment setup. Nadimpalli et al. [2025] shows that saturated activation functions in the hidden
layers may improve RL agents’ performance. Following their setup, we replace ReLU in SAC with
Tanh and Sigmoid, keeping all other parameters as default. This enables us to evaluate the robustness
of ReGraMa across various activation functions while minimizing the influence of extraneous factors
on the experimental outcomes. We set 7 = 0 for ReGraMa, and configure ReDo as in Sec. 5.1. All
methods are evaluated on the challenging Ant task. Hyperparameter are provided in Appendix A.3.

Results. Results in Fig. 12 show that ReGraMa accurately identifies low-quality neurons, mitigating
neuronal inactivity and avoiding instability caused by false reset. While ReDo performs well under
the ReL.U, its performance degrades significantly with other activation functions, sometimes failing
below vanilla SAC. In Fig. 12(c), although ReGraMa outperforms ReDo under the Tanh activation
function, the proportion of inactive neurons gradually increases during training. We leave further
investigation into whether this behavior stems from the perspective of the activation function or reset
mechanism to future work.

6 Discussion

This research focuses on the critical issue of neuronal activity loss during training in deep RL agents.
We show that the commonly used 7-dormant neuron ratio (ReDo), which relies on neuron activations,
struggles to capture learning activity in modern, highly parameterized agents. This limitation arises
because activation sparsity does not directly reflect a neuron’s contribution to learning. We shift focus
from activations to gradients, and introduce GraMa, a simple, efficient, and architecture-agnostic
metric based on gradient magnitude. GraMa enables accurate tracking of neuron-level learning
dynamics across a broad range of network types, including residual and diffusion-based policies, and
substantially recovers learning activity via guiding neuron resetting (Sec. 4.2). Our findings suggest
that even high-capacity policies in deep RL suffer from underutilization at the neuron level, which
may hinder generalization, multi-task transfer, and continual adaptation as in supervised learning
[Dohare et al., 2024]. By providing a lightweight diagnostic and intervention tool, GraMa opens the
door to more principled approaches for maintaining continuous learning ability in deep RL agents.

Limitations. Our evaluation is limited to three representative neural architectures due to computa-
tional constraints. Future work will extend GraMa to more complex settings, including large-scale
transformer policies and multi-task environments. We aim for GraMa to serve as a practical tool for
diagnosing and preserving learning capacity in deep RL agents.
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A Experimental Details

A.1 Residual network based policy

BRO-net [Nauman et al., 2024b] is the first model-free algorithm to achieve near-optimal policies in
the notoriously challenging Dog and Humanoid tasks. Its residual module-based architecture also
gives it a powerful ability to scale up, making it widely concerned [Lee et al., 2025b,a]. To this end,
we choose BRO-net as the advanced agent for the multi-branch architecture to test the effectiveness
of our metrics. And our implementation of BRO-net is based on the official implementation .

BRO-net Architecture The detailed structure of the core block used in BRO-net is shown in Tab. 1.
The comprehensive Actor-Critic structure build by the above blocks is outlined in Tab. 2.

Table 1: BroNetBlock Structure. H;, denotes the block’s internal hidden dimension (e.g., 256).

Step Layer Configuration

1. FC Layer Linear(H,, Hy)

2. Norm + Act LayerNorm(H}), ReLU

3. FC Layer Linear(Hy, Hy)

4. Norm LayerNorm(Hjp)

5. Residual Output = Step 4 Output + Block Input

Table 2: Whole network architectures. The structure of BroNetBlock is detailed in Table 1.

Layer Actor Network Critic Network (per Critic)
Fully Connected (state dim,256) (state dim + action dim, 256)
LayerNorm LayerNorm LayerNorm

Activation ReLU ReLU

BroNetBlock N x BroNetBlock N x BroNetBlock
Fully Connected (256, 2 x action dim) (256, 1)
Activation Tanh None

Hyperparameter setting The shared hyperparameters of the BRO-net algorithm utilized in all our
experiments are outlined in Tab. 3. Both Redo and Grama were configured with the recommended
values for 7 (0.01 for Grama and 0.02 for ReDo) and the same reset frequency (every 1000 steps). To
reproduce the learning curves shown in the main text, we advise using seeds ranging from O to 4. For
the scale experiments, we increased the number of BroNetBlock from 1 to 4 in both actor and critic.

Table 3: Hyperparameter settings for BRO

Hyperparameter Value

Actor Learning Rate 1 x 10~*
Critic Learning Rate 1 x 1073

Replay Ratio 2
Discount Factor (y)  0.99
Batch Size 128
Buffer Size 1 x 108

Actor BroNetBlock 1
Critic BroNetBlock 2

Reset Specific Parameters

Reset 7 0.01
Reset Frequency 1000

3https ://github.com/naumix/BiggerRegularizedOtimistic_Torch
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A.2 Diffusion model based policy

Network Architecture As one of the recent works to successfully construct online policies based
on the diffusion model, Dacer has received extensive attention from the community and has been used
as a baseline by some recent studies [Dong et al., 2025, Ma et al., 2025]. To test the effectiveness of
our metrics in the advanced diffusion model policies, we chose the official Swish activation function
and U-net based Dacer as a baseline with complex architecure. We reproduce the version of the code
that introduces the two neuronal metrics into the policy model, based on the official code of DACER*.
Our detailed Structures were showen in Tab. 4.

Table 4: Network Structures for DACER.

Layer Actor Network Critic Network

Fully Connected (state dim + time embedding dim, 256)  (state dim + action dim, 256)
Activation ReLU ReLU

Fully Connected (256, 256) (256, 256)

Activation RelLLU ReLLU

Fully Connected (256, action dim) (256, 2)

Hyperparameter setting Our experiments adhere to the hyperparameter listed in Tab. 5. 7 for
ReDo: 0.02; 7 for Grama: 0.01; reset frequency (every 1000 steps). To reproduce the learning curves
shown in the main text, we advise using seeds ranging from 0 to 4.

Table 5: Hyperparameters for DACER Training

Hyperparameter Value
Actor Learning Rate 3x 1074
Critic Learning Rate 3x 1074
Alpha Learning Rate 3x1072
Discount Factor () 0.99
Batch Size 256
Replay Buffer Size 1 x 10°
Target Network Update Rate (1) 5 x 1073
Policy Update Delay 2

Hidden Layer Size 256
Reward Scale 1.0

Reset Specific Parameters

0.01
1000

Reset 7
Reset Frequency

A.3 MLP-based SAC

Network Architecture We utilize CleanRL for SAC (also Resnet SAC) implementation, which
can be found at https://github.com/vwxyzjn/cleanrl. This library is a reliable open-source
resource for deep reinforcement learning, designed in a PyTorch-friendly manner. And the detailed
structure is shown in Tab. 6.

Hyperparameter setting The shared hyperparameters for the SAC algorithm are summarized in
Tab. 7. Note: We impose a maximum reset percentage limitation of 5% exclusively for the Humanoid
task.

*https://github.com/happy-yan/DACER-Diffusion-with-Online-RL
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Table 6: Network Structures for SAC

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (state dim + action dim, 256)
Activation ReLU ReLU

Fully Connected (256, 256) (256, 256)

Activation ReLU ReLLU

Fully Connected (256, 2x action dim) (256, 1)

Activation Tanh None

Table 7: Hyperparameters for the SAC

Hyperparameter Value
Total Timesteps 3 x 106
Replay Buffer Size 1 x 108
Discount Factor () 0.99
Target Smoothing Coefficient (7)  0.005
Batch Size 256
Learning Starts 5 x 103
Policy Learning Rate 3x 1074
Q-Network Learning Rate 1x1073
Policy Update Frequency 2

Target Network Update Frequency 1
Automatic Entropy Tuning True

Reset Specific Parameters

Reset 7 0
Reset Frequency 1000
Max Reset percentage 5% (Humanoid)

B ReGraMa is more robust to the threshold 7

To assess the robustness of both metrics across varying thresholds, we use BRO-net as the backbone
and evaluate performance on the challenging DeepMind Control Suite Humanoid Walk task. By
systematically varying the 7 following the recommended setup, we found that ReGraMa consistently
outperformed ReDo (Fig. 13). This proves that, even with relaxed restrictions, ReGraMa has less
tendency to reset incorrectly.

C Additional experiments

We further select four tensor inputs for difficult DMC scenarios with tensor inputs. Experimental
results of Tab. 8 indicate that, in the BRO-net architecture, ReGraMa outperforms other methods and
highlights the robustness of the complex architecture, while ReBron [Qin et al., 2024] achieves good
performance by considering both overactive and dormant neurons, but has a slight negative impact
on Dog Walk. SP [Ash and Adams, 2019] and CBP [Dohare et al., 2024] show slight improvement
across all the tasks.

We add related experiments in the new version of the appendix. The effectiveness of the combination
of ReGraMa with weight decay (follow the optimal setting in Lyle et al. [2024]) and L2 init (A = 1le—2)
is tested in the DMC Quadruped Run task (3M step) based on DrQv2 [Yarats et al., 2021]. The
results in Tab. 9 show that combining two technologies with ReGraMa separately can further enhance
learning efficiency. However, the L2 init method, which maintains plasticity by incorporating L2
regularization into the loss function for the initial parameters, is more compatible with our approach.
However, the simultaneous use of these three technologies did not result in any further improvement.
In the future, we will conduct an in-depth analysis of the underlying reasons for the performance
differences resulting from the combination of ReGraMa with other technologies.
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Figure 13: Sample uniformly from [0, 0.1]. Each bar is the average of 4 seeds.

Table 8: Normalized score according to baseline (BRO-net policy, average of 3 runs).

Method Humanoid stand Humanoid Run  Dog stand Dog walk
vanilla BRO-net policy (baseline) 1.0 1.0 1.0 1.0
ReGraMa 1.21 £0.03 1.16 £ 0.08 1.124+0.08 1.08 +0.04
ReDo 1.17 £ 0.07 0.96 £+ 0.03 0.92+0.12 0.94+£0.06
S&P 1.05 £0.12 1.08 £0.04 0.95+0.07 1.07£0.02
ReBorn 1.13£0.06 1.05 £ 0.07 1.02£0.06 0.91+0.13
CBP 1.18 £0.02 0.99 +0.12 1.06 £0.04 1.09 £+ 0.07
Table 9: Performance.

Method Quadruped Run

vanilla policy 649.13 £ 182.43

ReGraMa 706 £ 127.25

ReGraMa + L2 init 742.36 +127.31

ReGraMa + weight decay 751.31 £ 94.26

ReGraMa + L2 init & weight decay

739.42 £+ 104.58
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