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ABSTRACT

Recent breakthroughs in text-to-image synthesis have been driven by diffusion
models trained on billions of image-text pairs. Adapting this approach to 3D synthe-
sis would require large-scale datasets of labeled 3D data and efficient architectures
for denoising 3D data, neither of which currently exist. In this work, we circum-
vent these limitations by using a pretrained 2D text-to-image diffusion model to
perform text-to-3D synthesis. We introduce a loss based on probability density
distillation that enables the use of a 2D diffusion model as a prior for optimization
of a parametric image generator. Using this loss in a DeepDream-like procedure,
we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF)
via gradient descent such that its 2D renderings from random angles achieve a low
loss. The resulting 3D model of the given text can be viewed from any angle, relit
by arbitrary illumination, or composited into any 3D environment. Our approach
requires no 3D training data and no modifications to the image diffusion model,
demonstrating the effectiveness of pretrained image diffusion models as priors. See
dreamfusionpaper.github.io for a more immersive view into our 3D results.

1 INTRODUCTION

Generative image models conditioned on text now support high-fidelity, diverse and controllable
image synthesis (Nichol et al., 2022; Ramesh et al., 2021; 2022; Saharia et al., 2022; 2021a; Yu et al.,
2022; Saharia et al., 2021b). These quality improvements have come from large aligned image-text
datasets (Schuhmann et al., 2022) and scalable generative model architectures. Diffusion models are
particularly effective at learning high-quality image generators with a stable and scalable denoising
objective (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021). Applying diffusion models
to other modalities has been successful, but requires large amounts of modality-specific training data
(Chen et al., 2020; Ho et al., 2022; Kong et al., 2021). In this work, we develop techniques to transfer
pretrained 2D image-text diffusion models to 3D object synthesis, without any 3D data (see Figure 1).
Though 2D image generation is widely applicable, simulators and digital media like video games and
movies demand thousands of detailed 3D assets to populate rich interactive environments. 3D assets
are currently designed by hand in modeling software like Blender and Maya3D, a process requiring a
great deal of time and expertise. Text-to-3D generative models could lower the barrier to entry for
novices and improve the workflow of experienced artists.

3D generative models can be trained on explicit representations of structure like voxels (Wu et al.,
2016; Chen et al., 2018) and point clouds (Yang et al., 2019; Cai et al., 2020; Zhou et al., 2021), but
the 3D data needed is relatively scarce compared to plentiful 2D images. Our approach learns 3D
structure using only a 2D diffusion model trained on images, and sidesteps this issue. GANs can learn
controllable 3D generators from photographs of a single object category, by placing an adversarial
loss on 2D image renderings of the output 3D object or scene (Henzler et al., 2019; Nguyen-Phuoc
et al., 2019; Or-El et al., 2022). Though these approaches have yielded promising results on specific
object categories such as faces, they have not yet been demonstrated to support arbitrary text.

Neural Radiance Fields, or NeRF (Mildenhall et al., 2020) are an approach towards inverse rendering
in which a volumetric raytracer is combined with a neural mapping from spatial coordinates to color
and volumetric density. NeRF has become a critical tool for neural inverse rendering (Tewari et al.,
2022). Originally, NeRF was found to work well for “classic” 3D reconstruction tasks: many images
of a scene are provided as input to a model, and a NeRF is optimized to recover the geometry of that
specific scene, which allows for novel views of that scene from unobserved angles to be synthesized.
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an orangutan making a clay bowl on a throwing wheel* a raccoon astronaut holding his helmet† a blue jay standing on a large basket of rainbow macarons*

a corgi taking a selfie* a table with dim sum on it† a lion reading the newspaper*

Michelangelo style statue of dog reading news on a cellphone a tiger dressed as a doctor* a steam engine train, high resolution*

a frog wearing a sweater* a humanoid robot playing the cello* Sydney opera house, aerial view†

an all-utility vehicle driving across a stream† a chimpanzee dressed like Henry VIII king of England* a baby bunny sitting on top of a stack of pancakes†

a sliced loaf of fresh bread a bulldozer clearing away a pile of snow* a classic Packard car*

zoomed out view of Tower Bridge made out of gingerbread and candy‡ a robot and dinosaur playing chess, high resolution* a squirrel gesturing in front of an easel showing colorful pie charts

Figure 1: DreamFusion uses a pretrained text-to-image diffusion model to generate realistic 3D
models from text prompts. Rendered 3D models are presented from two views, with textureless
renders and normals to the right. See dreamfusionpaper.github.io for videos of these results.
Symbols indicate the following prompt prefixes which we found helped to improve the quality and
realism:

* a DSLR photo of... † a zoomed out DSLR photo of... ‡ a wide angle zoomed out DSLR photo of...
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Many 3D generative approaches have found success in incorporating NeRF-like models in the
generative process (Schwarz et al., 2020; Chan et al., 2021b;a; Gu et al., 2021; Liu et al., 2022). One
such approach is Dream Fields (Jain et al., 2022), which uses the frozen image-text joint embedding
models from CLIP (Radford et al., 2021) and an optimization-based approach to train NeRFs. This
work showed that pretrained 2D image-text models may be used for 3D synthesis, though 3D objects
produced by this approach tend to lack realism and accuracy. CLIP has been used to guide other
approaches based on voxel grids and meshes (Sanghi et al., 2022; Jetchev, 2021; Wang et al., 2022).

We adopt a similar approach to Dream Fields, but replace CLIP with a loss derived from distillation
of a 2D diffusion model. Our loss is based on probabilty density distillation, minimizing the KL
divergence between a family of Gaussian distribution with shared means based on the forward
process of diffusion and the score functions learned by the pretrained diffusion model. The resulting
Score Distillation Sampling (SDS) method enables sampling via optimization in differentiable image
parameterizations. By combining SDS with a NeRF variant tailored to this 3D generation task,
DreamFusion generates high-fidelity coherent 3D objects and scenes for a diverse set of user-provided
text prompts.

2 DIFFUSION MODELS AND SCORE DISTILLATION SAMPLING

Diffusion models are latent-variable generative models that learn to gradually transform a sample
from a tractable noise distribution towards a data distribution (Sohl-Dickstein et al., 2015; Ho et al.,
2020). Diffusion models consist of a forward process q that slowly removes structure from data
x by adding noise, and a reverse process or generative model p that slowly adds structure starting
from noise zt. The forward process is typically a Gaussian distribution that transitions from the
previous less noisy latent at timestep t to a noisier latent at timestep t + 1. We can compute the
marginal distribution of the latent variables at timestep t given an initial datapoint x by integrating
out intermediate timesteps: q(zt|x) = N (αtx, σ

2
t I). The marginals integrating out the data density

q(x) are q(zt) =
∫
q(zt|x)q(x) dx, and correspond to smoothed versions of the data distribution.

The coefficients αt and σt are chosen such that q(zt) is close to the data density at the start of the
process (σ0 ≈ 0) and close to Gaussian at the end of the forward process (σT ≈ 1), with α2

t = 1−σ2
t

chosen to preserve variance (Kingma et al., 2021; Song et al., 2021).

The generative model p is trained to slowly add structure starting from random noise p(zT ) = N (0, I)
with transitions pϕ(zt−1|zt). Theoretically, with enough timesteps, the optimal reverse process step
is also Gaussian and related to an optimal MSE denoiser (Sohl-Dickstein et al., 2015). Transitions
are typically parameterized as pϕ(zt−1|zt) = q(zt−1|zt,x = x̂ϕ(zt; t)) where q(zt−1|zt,x) is a
posterior distribution derived from the forward process and x̂ϕ(zt; t) is a learned approximation of the
optimal denoiser. Instead of directly predicting x̂ϕ, Ho et al. (2020) trains an image-to-image U-Net
ϵϕ(zt; t) that predicts the noise content of the latent zt: E[x|zt] ≈ x̂ϕ(zt; t) = (zt − σtϵϕ(zt; t)) /αt.
The predicted noise can be related to a predicted score function for the smoothed density ∇zt

log p(zt)
through Tweedie’s formula (Robbins, 1992): ϵϕ(zt; t)=−σtsϕ(zt; t).

Training the generative model with a (weighted) evidence lower bound (ELBO) simplifies to a
weighted denoising score matching objective for parameters ϕ (Ho et al., 2020; Kingma et al., 2021):

LDiff(ϕ,x) = Et∼U(0,1),ϵ∼N (0,I)

[
w(t)∥ϵϕ(αtx+ σtϵ; t)− ϵ∥22

]
, (1)

where w(t) is a weighting function that depends on the timestep t. Diffusion model training can
thereby be viewed as either learning a latent-variable model (Sohl-Dickstein et al., 2015; Ho et al.,
2020), or learning a sequence of score functions corresponding to noisier versions of the data (Vincent,
2011; Song & Ermon, 2019; Song et al., 2021). We will use pϕ(zt; t) to denote the approximate
marginal distribution whose score function is given by sϕ(zt; t) = −ϵϕ(zt; t)/σt.

Our work builds on text-to-image diffusion models that learn ϵϕ(zt; t, y) conditioned on text embed-
dings y (Saharia et al., 2022; Ramesh et al., 2022; Nichol et al., 2022). These models use classifier-free
guidance (CFG, Ho & Salimans, 2022), which jointly learns an unconditional model to enable higher
quality generation via a guidance scale parameter ω: ϵ̂ϕ(zt; y, t) = (1 + ω)ϵϕ(zt; y, t)− ωϵϕ(zt; t).
CFG alters the score function to prefer regions where the ratio of the conditional density to the
unconditional density is large. In practice, setting ω > 0 improves sample fidelity at the cost of
diversity. We use ϵ̂ and p̂ throughout to denote the guided version of the noise prediction and marginal
distribution.
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Updates parameters with SGD:Updates sample in pixel space:

Score Distillation SamplingAncestral Sampling

Figure 2: Comparison of 2D sampling methods from a text-to-image diffusion model with text “a
photo of a tree frog wearing a sweater.” For score distillation sampling, as an example we use an image
generator that restricts images to be symmetric by having x = (flip(θ), θ).

2.1 HOW CAN WE SAMPLE IN PARAMETER SPACE, NOT PIXEL SPACE?

Existing approaches for sampling from diffusion models generate a sample that is the same type and
dimensionality as the observed data the model was trained on (Song et al., 2021; 2020). Though
conditional diffusion sampling enables quite a bit of flexibility (e.g. inpainting), diffusion models
trained on pixels have traditionally been used to sample only pixels. We are not interested in sampling
pixels; we instead want to create 3D models that look like good images when rendered from
random angles. Such models can be specified as a differentiable image parameterization (DIP,
Mordvintsev et al., 2018), where a differentiable generator g transforms parameters θ to create
an image x = g(θ). DIPs allow us to express constraints, optimize in more compact spaces (e.g.
arbitrary resolution coordinate-based MLPs), or leverage more powerful optimization algorithms for
traversing pixel space. For 3D, we let θ be parameters of a 3D volume and g a volumetric renderer.
To learn these parameters, we require a loss function that can be applied to diffusion models.

Our approach leverages the structure of diffusion models to enable tractable sampling via optimization
— a loss function that, when minimized, yields a sample. We optimize over parameters θ such that
x = g(θ) looks like a sample from the frozen diffusion model. To perform this optimization, we
need a differentiable loss function where plausible images have low loss, and implausible images
have high loss, in a similar style to DeepDream (Mordvintsev et al., 2015). We first investigated
reusing the diffusion training loss (Eqn. 1) to find modes of the learned conditional density p(x|y).
While modes of generative models in high dimensions are often far from typical samples (Nalisnick
et al., 2018), the multiscale nature of diffusion model training may help to avoid these pathologies.
Minimizing the diffusion training loss with respect to a generated datapoint x = g(θ) gives
θ∗ = argminθ LDiff(ϕ,x = g(θ)). In practice, we found that this loss function did not produce
realistic samples even when using an identity DIP where x = θ. Concurrent work from Graikos et al.
(2022) shows that this method can be made to work with carefully chosen timestep schedules, but we
found this objective brittle and its timestep schedules challenging to tune.

To understand the difficulties of this approach, consider the gradient of LDiff:

∇θLDiff(ϕ,x = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)︸ ︷︷ ︸

Noise Residual

∂ϵ̂ϕ(zt; y, t)

zt︸ ︷︷ ︸
U-Net Jacobian

∂x

∂θ︸︷︷︸
Generator Jacobian

]
(2)

where we absorb the constant αtI = ∂zt/∂x into w(t), and use the classifier-free-guided ϵ̂ϕ. In
practice, the U-Net Jacobian term is expensive to compute (requires backpropagating through the
diffusion model U-Net), and poorly conditioned for small noise levels as it is trained to approximate
the scaled Hessian of the marginal density. We found that omitting the U-Net Jacobian term leads to
an effective gradient for optimizing DIPs with diffusion models:

∇θLSDS(ϕ,x = g(θ)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
(3)

Intuitively, this loss perturbs x with a random amount of noise corresponding to the timestep t, and
estimates an update direction that follows the score function of the diffusion model to move to a
higher density region. While this gradient for learning DIPs with diffusion models may appear ad
hoc, in Appendix A.4 we show that it is the gradient of a weighted probability density distillation
loss (van den Oord et al., 2018) using the learned score functions from the diffusion model:

∇θLSDS(ϕ,x = g(θ)) = ∇θEt [σt/αtw(t)KL(q(zt|g(θ); y, t)∥pϕ(zt; y, t))] . (4)
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Figure 3: DreamFusion generates 3D objects from a natural language caption such as “a DSLR photo
of a peacock on a surfboard.” The scene is represented by a Neural Radiance Field that is randomly
initialized and trained from scratch for each caption. Our NeRF parameterizes volumetric density and
albedo (color) with an MLP. We render the NeRF from a random camera, using normals computed
from gradients of the density to shade the scene with a random lighting direction. Shading reveals
geometric details that are ambiguous from a single viewpoint. To compute parameter updates,
DreamFusion diffuses the rendering and reconstructs it with a (frozen) conditional Imagen model to
predict the injected noise ϵ̂ϕ(zt|y; t). This contains structure that should improve fidelity, but is high
variance. Subtracting the injected noise produces a low variance update direction stopgrad[ϵ̂ϕ − ϵ]
that is backpropagated through the rendering process to update the NeRF MLP parameters.

We name our sampling approach Score Distillation Sampling (SDS) as it is related to distillation, but
uses score functions instead of densities. We refer to it as a sampler because the noise in the variational
family q(zt| . . .) disappears as t → 0 and the mean parameter of the variational distribution g(θ)
becomes the sample of interest. Our loss is easy to implement (see Fig. 8), and relatively robust to
the choice of weighting w(t). Since the diffusion model directly predicts the update direction, we do
not need to backpropagate through the diffusion model; the model simply acts like an efficient,
frozen critic that predicts image-space edits.

Given the mode-seeking nature of LSDS, it may be unclear if minimizing this loss will produce good
samples. In Fig. 2, we demonstrate that SDS can generate constrained images with reasonable quality.
Empirically, we found that setting the guidance weight ω to a large value for classifier-free guidance
improves quality (Appendix Table 10). SDS produces detail comparable to ancestral sampling, but
enables new transfer learning applications because it operates in parameter space.

3 THE DREAMFUSION ALGORITHM

Now that we have demonstrated how a diffusion model can be used as a loss within a generic
continuous optimization problem to generate samples, we will construct our specific algorithm that
allows us to generate 3D assets from text. For the diffusion model, we use the Imagen model from
Saharia et al. (2022), which has been trained to synthesize images from text. We only use the 64× 64
base model (not the super-resolution cascade for generating higher-resolution images), and use
this pretrained model as-is with no modifications. To synthesize a scene from text, we initialize a
NeRF-like model with random weights, then repeatedly render views of that NeRF from random
camera positions and angles, using these renderings as the input to our score distillation loss function
that wraps around Imagen. As we will demonstrate, simple gradient descent with this approach
eventually results in a 3D model (parameterized as a NeRF) that resembles the text. See Fig. 3 for an
overview of our approach.

3.1 NEURAL RENDERING OF A 3D MODEL

NeRF is a technique for neural inverse rendering that consists of a volumetric raytracer and a
multilayer perceptron (MLP). Rendering an image from a NeRF is done by casting a ray for each
pixel from a camera’s center of projection through the pixel’s location in the image plane and out into
the world. Sampled 3D points µ along each ray are then passed through an MLP, which produces 4
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scalar values as output: a volumetric density τ (how opaque the scene geometry at that 3D coordinate
is) and an RGB color c. These densities and colors are then alpha-composited from the back of the
ray towards the camera, producing the final rendered RGB value for the pixel:

C =
∑

iwici , wi = αi

∏
j<i(1− αj) , αi = 1− exp (−τi ∥µi − µi+1∥) , (5)

In the traditional NeRF use-case we are given a dataset of input images and associated camera
positions and the NeRF MLP is trained from random initialization using a mean squared error loss
function between each pixel’s rendered color and the corresponding ground-truth color from the input
image. This yields a 3D model (parameterized by the weights of the MLP) that can produce realistic
renderings from previously-unseen views. Our model is built upon mip-NeRF 360 (Barron et al.,
2022), which is an improved version of NeRF that reduces aliasing. Though mip-NeRF 360 was
originally designed for 3D reconstruction from images, its improvements are also helpful for our
generative text-to-3D task (see Appendix for details).

Shading. Traditional NeRF models emit radiance, which is RGB color conditioned on the ray
direction from which the 3D point is being observed. In contrast, our MLP parameterizes the color of
the surface itself, which is then lit by an illumination that we control (a process commonly referred to
as “shading”). Previous work on generative or multiview 3D reconstruction using NeRF-like models
have proposed a variety of reflectance models (Bi et al., 2020; Boss et al., 2021; Srinivasan et al.,
2021; Pan et al., 2022). We use an RGB albedo ρ (the color of the material) for each point:

(τ, ρ) = MLP (µ; θ) , (6)
where τ is volumetric density. Calculating the final shaded output color for the 3D point requires a
normal vector indicating the local orientation of the object’s geometry. This surface normal vector can
be computed by normalizing the negative gradient of density τ with respect to the 3D coordinate µ:
n = −∇µτ/ ∥∇µτ∥ (Yariv et al., 2020; Srinivasan et al., 2021). With each normal n and material
albedo ρ, assuming some point light source with 3D coordinate ℓ and color ℓρ, and an ambient light
color ℓa, we render each point along the ray using diffuse reflectance (Lambert, 1760; Ramamoorthi
& Hanrahan, 2001) to produce a color c for each point:

c = ρ ◦ (ℓρ ◦max (0,n · (ℓ− µ)/ ∥ℓ− µ∥) + ℓa) . (7)
With these colors and our previously-generated densities, we approximate the volume rendering
integral with the same rendering weights wi used in standard NeRF (Equation 5). As in previous work
on text-to-3D generation (Hong et al., 2022; Michel et al., 2021), we find it beneficial to randomly
replace the albedo color ρ with white (1, 1, 1) to produce a “textureless” shaded output. This prevents
the model from producing a degenerate solution in which scene content is drawn onto flat geometry
to satisfy the text conditioning. For example, this encourages optimization to yield a 3D squirrel
instead of a flat surface containing an image of a squirrel, both of which may appear identical from
certain viewing angles and illumination conditions.

Scene Structure. While our method can generate some complex scenes, we find that it is helpful to
only query the NeRF scene representation within a fixed bounding sphere, and use an environment
map generated from a second MLP that takes positionally-encoded ray direction as input to compute
a background color (architecture details in Appendix A.2). We composite the rendered ray color on
top of this background color using the accumulated α value. This prevents the NeRF model from
filling up space with density very close to the camera while still allowing it to paint an appropriate
color or backdrop behind the generated scene. For generating single objects instead of scenes, a
reduced bounding sphere can be useful.

Geometry regularizers. The mip-NeRF 360 model we build upon contains many other details
that we omit for brevity. We include a regularization penalty on the opacity along each ray similar
to Jain et al. (2022) to prevent unneccesarily filling in of empty space. To prevent pathologies in
the density field where normal vectors face backwards away from the camera we use a modified
version of the orientation loss proposed in Ref-NeRF (Verbin et al., 2022). This penalty is important
when including textureless shading as the density field will otherwise attempt to orient normals away
from the camera so that the shading becomes darker. Full details on these regularizers and additional
hyperparameters of NeRF are presented in the Appendix A.2.

3.2 TEXT-TO-3D SYNTHESIS

Given a pretrained text-to-image diffusion model, a differentiable image parameterization in the form
of a NeRF, and a loss function whose minima are good samples, we have all the components needed
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Figure 4: DreamFusion can be used to create and refine 3D scenes. Here we iteratively refine an
example text prompt, while rendering each generated scene from four different viewpoints.

for text-to-3D synthesis using no 3D data. For each text prompt, we train a randomly initialized NeRF
from scratch. Each iteration of DreamFusion optimization performs the following: (1) randomly
sample a camera and light, (2) render an image of the NeRF from that camera and shade with the
light, (3) compute gradients of the SDS loss with respect to the NeRF parameters, (4) update the
NeRF parameters using an optimizer. We detail each of these steps below, and present pseudocode in
Appendix 8.

1. Random camera and light sampling. At each iteration, a camera position is randomly sampled
in spherical coordinates, with elevation angle ϕcam ∈ [−10°, 90°], azimuth angle θcam ∈ [0°, 360°],
and distance from the origin in [1, 1.5]. For reference, the scene bounding sphere described previously
has radius 1.4. We also sample a “look-at” point around the origin and an “up” vector, and combine
these with the camera position to create a camera pose matrix. We additionally sample a focal length
multiplier λfocal ∈ U(0.7, 1.35) such that the focal length is λfocalw, where w = 64 is the image
width in pixels. The point light position ℓ is sampled from a distribution centered around the camera
position. We found using a wide range of camera locations to be critical for synthesizing coherent 3D
scenes, and a wide range of camera distances helps to improve the resolution of the learned scene.

2. Rendering. Given the camera pose and light position, we render the shaded NeRF model at
64× 64 resolution as described in Section 3.1. We randomly choose between the illuminated color
render, a textureless render, and a rendering of the albedo without any shading.

3. Diffusion loss with view-dependent conditioning. Text prompts often describe canonical views
of an object that are not good descriptions when sampling different views. We therefore found it
beneficial to append view-dependent text to the provided input text based on the location of the
randomly sampled camera. For high elevation angles ϕcam > 60°, we append “overhead view.” For
ϕcam ≤ 60°, we use a weighted combination of the text embeddings for appending “front view,” “side
view,” or “back view” depending on the value of the azimuth angle θcam (see App. A.2 for details).
We use the pretrained 64 × 64 base text-to-image model from Saharia et al. (2022). This model
was trained on large-scale web-image-text data, and is conditioned on T5-XXL text embeddings
(Raffel et al., 2020). We use a weighting function of w(t) = σ2

t , but found that a uniform weighting
performed similarly. We sample t ∼ U(0.02, 0.98), avoiding very high and low noise levels due to
numerical instabilities. For classifier-free guidance, we set ω = 100, finding that higher guidance
weights give improved sample quality. This is much larger than image sampling methods, and is
likely required due to the mode-seeking nature of our objective which results in oversmoothing at
small guidance weights (see Appendix Table. 10). Given the rendered image and sampled timestep t,
we sample noise ϵ and compute the gradient of the NeRF parameters according to Eqn. 3.

4. Optimization. Our 3D scenes are optimized on a TPUv4 machine with 4 chips. Each chip renders
a separate view and evaluates the diffusion U-Net with per-device batch size of 1. We optimize for
15,000 iterations which takes around 1.5 hours. Compute time is split evenly between rendering the
NeRF and evaluating the diffusion model. Parameters are optimized using the Distributed Shampoo
optimizer (Anil et al., 2020). See Appendix A.2 for optimization settings.
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Table 1: Evaluating the coherence of DreamFusion
generations with their caption using different CLIP
retrieval models. We compare to the ground-truth
MS-COCO images in the object-centric subset of
Jain et al. (2022) as well as Khalid et al. (2022).
†Evaluated with only 1 seed per prompt. Metrics
shown in parentheses may be overfit, as the same
CLIP model is used during training and eval.

Method
R-Precision ↑

CLIP-B/32 CLIP-B/16 CLIP-L/14
Color Geo Color Geo Color Geo

GT Images 77.1 – 79.1 – – –

Dream Fields 68.3 – 74.2 – – –
(reimpl.) 78.6 1.3 (99.9) (0.8) 82.9 1.4

CLIP-Mesh 67.8 – 75.8 – 74.5† –
DreamFusion (base) 81.5 0.02 84.7 0.03 88.4 0.05
DreamFusion 75.1 42.5 77.5 46.6 79.7 58.5
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of cheesecake surrounded by a 

moat made of ice cream
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pink flowers
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(reimpl.)

Dream 
Fields

CLIP- 
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Dream- 
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Figure 5: Qualitative comparison with baselines.

4 EXPERIMENTS

We evaluate the ability of DreamFusion to generate coherent 3D scenes from a variety of text prompts.
We compare to existing zero-shot text-to-3D generative models, identify the key components of our
model that enable accurate 3D geometry, and explore the qualitative capabilities of DreamFusion
such as the compositional generation shown in Figure 4.

3D reconstruction tasks are typically evaluated using reference-based metrics which compares
recovered geometry to some ground truth. The view-synthesis literature often uses PSNR to compare
rendered views with a held-out photograph. These reference-based metrics are difficult to apply to
zero-shot text-to-3D generation, as there is no “true” 3D scene corresponding to our text prompts.
Following Jain et al. (2022), we evaluate the CLIP R-Precision (Park et al., 2021a), an automated
metric for the consistency of rendered images with respect to the input caption. The R-Precision is
the accuracy with which CLIP (Radford et al., 2021) retrieves the correct caption among a set of
distractors given a rendering of the scene. We use the 153 prompts from the object-centric COCO
validation subset of Dream Fields. We also measure CLIP R-Precision on textureless renders to
evaluate geometry since we found existing metrics do not capture the quality of the geometry, often
yielding high values when texture is painted on flat geometry.

Table 1 reports CLIP R-Precision for DreamFusion and several baselines. These include Dream Fields,
CLIP-Mesh (which optimizes a mesh with CLIP), DreamFusion without any view augmentations,
view-dependent prompts, or shading (base) and an oracle that evaluates the original captioned image
pairs in MS-COCO. We also compare against an enhanced reimplementation of Dream Fields where
we use our own 3D representation (Sec. 3.1). Since this evaluation is based on CLIP, Dream Fields and
CLIP-Mesh have an unfair advantage as they use CLIP during training. Despite this, DreamFusion
outperforms both baselines on color images, and approaches the performance of ground truth images.
While our implementation of Dream Fields performs nearly at chance when evaluating geometry
(Geo) with textureless renders, DreamFusion is consistent with captions 58.5% of the time. See
Appendix A.3 for more details of the experimental setup.

Ablations. Fig. 6 shows CLIP R-Precision for a simplified DreamFusion ablation and progressively
adds in optimization choices: a large ranges of viewpoints (ViewAug), view-dependent prompts
(ViewDep), optimizing illuminated renders in addition to unlit albedo color renders (Lighting), and
optimizing textureless shaded geometry images (Textureless). We measure R-Precision on the albedo
render as in baselines (left), the full shaded render (middle) and the textureless render (right) to check
geometric quality. Geometry significantly improves with each of these choices and full renderings
improve by +12.5%. Fig. 6 shows qualitative results for the ablation. This ablation also highlights
how the albedo renders can be deceiving: our base model achieves the highest score, but exhibits
poor geometry (the dog has multiple heads). Recovering accurate geometry requires view-dependent
prompts, illumination and textureless renders.
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Figure 6: An ablation study of DreamFusion. Left: We evaluate components of our unlit renderings
on albedo, full shaded and illuminated renderings and textureless illuminated geometry using CLIP
L/14 on object-centric COCO. Right: visualizations of the impact of each ablation for “A bulldog
is wearing a black pirate hat.” on albedo (top), shaded (middle), and textureless renderings (bottom).
The base method (i) without view-dependent prompts results in a multi-faced dog with flat geometry.
Adding in view-dependent prompts (ii) improves geometry, but the surfaces are highly non-smooth
and result in poor shaded renders. Introducing lighting (iii) improves geometry but darker areas (e.g.
the hat) remain non-smooth. Rendering without color (iv) helps to smooth the geometry, but also
causes some color details like the skull and crossbones to be “carved” into the geometry.

5 DISCUSSION

We have presented DreamFusion, an effective technique for text-to-3D synthesis for a wide range of
text prompts. DreamFusion works by transferring scalable, high-quality 2D image diffusion models
to the 3D domain through our use of a novel Score Distillation Sampling approach and a novel
NeRF-like rendering engine. DreamFusion does not require 3D or multi-view training data, and uses
only a pre-trained 2D diffusion model (trained on only 2D images) to perform 3D synthesis.

Though DreamFusion produces compelling results and outperforms prior work on this task, it still
has several limitations. SDS is not a perfect loss function when applied to image sampling, and often
produces oversaturated and oversmoothed results relative to ancestral sampling. While dynamic
thresholding (Saharia et al., 2022) partially ameliorates this issue when applying SDS to images, it
did not resolve this issue in a NeRF context. Additionally, 2D image samples produced using SDS
tend to lack diversity compared to ancestral sampling, and our 3D results exhibit few differences
across random seeds. This may be fundamental to our use of reverse KL divergence, which has
been previously noted to have mode-seeking properties in the context of variational inference and
probability density distillation.

DreamFusion uses the 64× 64 Imagen model, and as such our 3D synthesized models tend to lack
fine details. Using a higher-resolution diffusion model and a bigger NeRF would presumably address
this, but synthesis would become impractically slow. Hopefully improvements in the efficiency of
diffusion and neural rendering will enable tractable 3D synthesis at high resolution in the future.

The problem of 3D reconstruction from 2D observations is widely understood to be highly ill-posed,
and this ambiguity has consequences in the context of 3D synthesis. Fundamentally, our task is hard
for the same reason that inverse rendering is hard: there exist many possible 3D worlds that result
in identical 2D images. The optimization landscape of our task is therefore highly non-convex, and
many of the details of this work are designed specifically to sidestep these local minima. But despite
our best efforts we still sometimes observe local minima, such as 3D reconstructions where all scene
content is “painted” onto a single flat surface. Though the techniques presented in this work are
effective, this task of “lifting” 2D observations into a 3D world is inherently ambiguous, and may
benefit from more robust 3D priors.
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ETHICS STATEMENT

Generative models for synthesizing images carry with them several ethical concerns, and these
concerns are shared by (or perhaps exacerbated in) 3D generative models such as ours.

Because DreamFusion uses the Imagen diffusion model as a prior, it inherits any problematic biases
and limitations that Imagen may have. While Imagen’s dataset was partially filtered, the LAION-
400M (Schuhmann et al., 2022) subset of its data was found to contain undesirable images (Birhane
et al., 2021). Imagen is also conditioned on features from a pretrained large language model, which
itself may have unwanted biases. It is important to be careful about the contents of datasets that are
used in text-to-image and image-to-3D models so as to not propagate hateful media.

Generative models, in the hands of bad actors, could be used to generate disinformation. Disinforma-
tion in the form of 3D objects may be more convincing than 2D images (though renderings of our
synthesized 3D models are less realistic than the state of the art in 2D image synthesis).

Generative models such as ours may have the potential to displace creative workers via automation.
That said, these tools may also enable growth and improve accessibility for the creative industry.

REPRODUCIBILITY STATEMENT

The mip-NeRF 360 model that we build upon is publicly available through the “MultiNeRF” code
repository (Mildenhall et al., 2022). While the Imagen diffusion model is not publicly available, other
conditional diffusion models may produce similar results with the DreamFusion algorithm. To aid
reproducibility, we have included a schematic overview of the algorithm in Figure 3, pseudocode for
Score Distillation Sampling in Figure 8, hyperparameters in Appendix A.2, and additional evaluation
setup details in Appendix A.3. Derivations for our loss are also included in Appendix A.4.
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A APPENDIX

A.1 PSEUDOCODE FOR ANCESTRAL SAMPLING AND OUR SCORE DISTILLATION SAMPLING.

z_t = random.normal(img_shape)
for t in linspace(tmax, tmin, nstep):
epshat_t = diffusion_model.epshat(z_t, y, t) # Score function evaluation.
if t > tmin:
eps = random.normal(img_shape)
z_t = ddpm_update(z_t, epshat_t, eps) # 1 iteration, decreases noise level.

x = diffusion_model.xhat(z_t, epshat_t, t_min) # Tweedie’s formula: denoise the last
step.

return x

Figure 7: Pseudocode for ancestral sampling from DDPM where y is the optional conditioning signal
e.g. a caption. Typically, tmax = 1 and tmin = 1/nstep. Timestep t monotonically decreases.

params = generator.init()
opt_state = optimizer.init(params)
diffusion_model = diffusion.load_model()
for nstep in iterations:
t = random.uniform(0., 1.)
alpha_t, sigma_t = diffusion_model.get_coeffs(t)
eps = random.normal(img_shape)
x = generator(params, <other arguments>...) # Get an image observation.
z_t = alpha_t * x + sigma_t * eps # Diffuse observation.
epshat_t = diffusion_model.epshat(z_t, y, t) # Score function evaluation.
g = grad(weight(t) * dot(stopgradient[epshat_t - eps], x), params)
params, opt_state = optimizer.update(g, opt_state) # Update params with optimizer.

return params

Figure 8: Pseudocode for Score Distillation Sampling with an application-specific generator that
defines a differentiable mapping from parameters to images. The gradient g is computed without
backpropagating through the diffusion model’s U-Net. We used the stopgradient operator to
express the loss, but the parameter update can also be easily computed with an explicit VJP: g =
matmul(weight(t) * (-epshat t - eps), grad(x, params)).

A.2 NERF DETAILS AND TRAINING HYPERPARAMETERS

Our model builds upon mip-NeRF 360 (Barron et al., 2022) (starting from the publicly available
implementation 2022), which is an improved version of NeRF (Mildenhall et al., 2020). The main
modification this model makes to NeRF is in how 3D point information is passed to the NeRF MLP.
In NeRF, each 3D input point is mapped to a higher dimensional space using a sinusoidal positional
encoding function (Vaswani et al., 2017). In mip-NeRF, this is replaced by an integrated positional
encoding that accounts for the “width” of the ray being rendered (based on its pixel footprint in the
image plane) and the length of each interval [di, di+1] sampled along the ray (Barron et al., 2021).
This allows each interval along a ray to be represented as a Gaussian distribution with mean µ and
covariance matrix Σ that approximates the interval’s 3D volume.

Mip-NeRF covariance annealing. As in mip-NeRF, each mean µ is the 3D coordinate of the
center of the ray interval, but unlike mip-NeRF we do not use a covariance derived from camera
geometry, but instead define each Σ as:

Σ = λ2
ΣI3 (8)

Where λΣ is a scale parameter that is linearly annealed from a large value to a small value during
training. Representative settings are 5 × 10−2 and 2 × 10−3 for the initial and final values of
λΣ, linearly annealed for the first 5k steps of optimization (out of 15k total). This “coarse to fine”
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annealing of a scale parameter has a similar effect as the annealing used by Park et al. (2021b)
but uses integrated positional encoding instead of traditional positional encoding. The underlying
sinusoidal positional encoding function uses frequencies 20, 21, . . . , 2L−1, where we set L = 8.

MLP architecture changes. Our NeRF MLP consists of 5 ResNet blocks (He et al., 2016) with
128 hidden units, Swish/SiLU activation (Hendrycks & Gimpel, 2016), and layer normalization (Ba
et al., 2016) between blocks. We use an exp activation to produce density τ and a sigmoid activation
to produce RGB albedo ρ.

Environment Map MLP. We use an additional MLP to create an environment map allowing the
bounded NeRF MLP to be rendered on a contextually-relevant and optimized background. This MLP
takes a positionally-encoded ray direction as input, and outputs an RGB color. We use positional
encodings with frequencies 20, . . . , 24, and an MLP with 3 hidden layers of 64 units. The output of
this MLP is passed through a sigmoid activation to produce RGB values between 0 and 1.

Shading hyperparameters. For the first 1k steps of optimization we set the ambient light color ℓa
to 1 and the diffuse light color ℓρ to 0, which effectively disables diffuse shading. For the remaining
steps we set ℓa = [0.1, 0.1, 0.1] and ℓρ = [0.9, 0.9, 0.9] with probability 0.75, otherwise ℓa = 1,
ℓρ = 0, i.e. we use diffuse shading 75% of the time. When shading is on (ℓρ > 0), we choose
textureless shading (ρ = 1) with probability 0.5.

Spatial density bias. To aid in the early stages of optimization, we add a small “blob” of density
around the origin to the output of the MLP. This helps focus scene content at the center of the 3D
coordinate space, rather than directly next to the sampled cameras. We use a Gaussian PDF to
parameterize the added density:

τinit(µ) = λτ · exp
(
−∥µ∥2

2σ2
τ

)
. (9)

Representative settings are λτ = 5 for the scale parameter and στ = 0.2 for the width parameter.
This density is added to the τ output of the NeRF MLP.

Additional camera and light sampling details. Uniformly sampling camera elevation ϕcam in
angular space does not produce uniform samples over the surface of the sphere — the area around the
pole is oversampled. We found this bias to be helpful in practice, so we sample ϕcam from this biased
distribution with probability 0.5, otherwise we sample from a true uniform-in-area distribution on a
half-sphere. The sampled camera position is perturbed by a small uniform offset U(−0.1, 0.1)3. The
“look-at” point is sampled from N (0, 0.2I) and the default “up” vector is perturbed by noise sampled
from N (0, 0.02I). This noise acts as an additional augmentation, and ensures a wider diversity of
viewpoints are seen during training.

We separately sample the direction and norm of the light position vector ℓ. To sample the direction,
we sample from N (pcam, I) where pcam is the camera position (this ensures that the point light usually
ends up on the same side of the object as the camera). The norm ∥ℓ∥ is sampled from U(0.8, 1.5),
while ∥pcam∥ ∼ U(1.0, 1.5).

Regularizer hyperparameters. We use the orientation loss proposed by Ref-NeRF (Verbin et al.,
2022) to encourage normal vectors of the density field to face toward the camera when they are
visible (so that the camera does not observe geometry that appears to face “backwards” when shaded).
We place a stop-gradient on the rendering weights wi, which helps prevent unintended local minima
where the generated object shrinks or disappears:

Lorient =
∑

istop grad(wi)max(0,ni · v)2 , (10)

where v is the direction of the ray (the viewing direction). We also apply a small regularization to
the accumulated alpha value (opacity) along each ray: Lopacity =

√
(
∑

i wi)2 + 0.01. This discour-
ages optimization from unnecessarily filling in empty space, and improves foreground/background
separation.

For orientation loss Lorient, we find reasonable weights to lie in [10−1, 10−3]. If orientation loss is too
high, surfaces become oversmoothed. In most experiments, we set the weight to 10−2. This weight
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is annealed in starting from 10−4 over the first 5k (out of 15k) steps. For accumulated alpha loss
Lopacity, we find reasonable weights to lie in [10−3, 5× 10−3].

View-dependent prompting. We interpolate between front/side/back view prompt augmentations
based on which quadrant contains the sampled azimuth θcam. We experimented with different ways
of interpolating the text embeddings, but found that simply taking the text embedding closest to the
sampled azimuth worked well.

Optimizer. We use Distributed Shampoo (Anil et al., 2020) with β1 = 0.9, β2 = 0.9,
exponent override = 2, block size = 128, graft type = SQRT N, ϵ = 10−6, and a linear
warmup of learning rate over 3000 steps from 10−9 to 10−4 followed by cosine decay down to 10−6.
We found this long warmup period to be helpful for improving the coherence of generated geometry.

A.3 EXPERIMENTAL SETUP

Our computation of R-Precision differs slightly from baselines. As mentioned, CLIP-based text-to-3D
systems are prone to overfitting the evaluation CLIP R-Precision metric since the model used for
training is similar to the evaluation model. To minimize this problem, Dream Fields (Jain et al., 2022)
and CLIP-Mesh (Khalid et al., 2022) evaluate renderings at a single held out view at a 45◦ elevation,
higher than is seen during training (maximum 30◦). DreamFusion evaluates at 30◦ since it is not
prone to this issue, but averages the metric over multiple azimuths to reduce variance. In our main
results in Table 1, we evaluate all captions with 2 generation seeds unless otherwise noted.

A.4 DERIVING THE SCORE DISTILLATION SAMPLING LOSS AND GRADIENTS

The score distillation sampling loss LSDS presented in Eqn. 4 was inspired by work on probability
density distillation (Huang et al., 2019; Ping et al., 2019; van den Oord et al., 2018). We use this loss
to find modes of the score functions that are present across all noise levels in the diffusion process.
Here we show how the gradient of this loss leads to the same update as optimizing the training loss
LDiff, but without the term corresponding to the Jacobian of the diffusion U-Net. First, we consider
gradients with respect to a single KL term:

KL(q(zt|x = g(θ))∥pϕ(zt|y)) = Eϵ [log q(zt|x = g(θ))− log pϕ(zt|y)] (11)

∇θKL(q(zt|x = g(θ))∥pϕ(zt|y)) = Eϵ

[
∇θ log q(zt|x = g(θ))︸ ︷︷ ︸

(A)

−∇θ log pϕ(zt|y)︸ ︷︷ ︸
(B)

]
(12)

The second term (B) can be related to ϵ̂ by the chain rule, relying on sϕ(zt|y) ≈ ∇zt log pϕ(zt|y):

∇θ log pϕ(zt|y) = sϕ(zt|y)
∂zt
∂θ

= αtsϕ(zt|y)
∂x

∂θ
= −αt

σt
ϵ̂ϕ(zt|y)

∂x

∂θ
(13)

The first term (A) is the gradient of the entropy of the forward process with respect to the mean
parameter, holding the variance fixed. Because of the fixed variance, the entropy is constant for a
given t and the total gradient of (A) is 0. However, we can still write out its gradient in terms of the
“score function” (the gradient of the log probability with respect to parameters) and path derivative
(the gradient of the log probability with respect to the sample):

∇θ log q(zt|x) =
( ∂ log q(zt|x)

∂x︸ ︷︷ ︸
parameter score

+
∂ log q(zt|x)

∂zt

∂zt
∂x︸ ︷︷ ︸

path derivative

)
αt

∂x

∂θ
=

(
αt

σt
ϵ− αt

σt
ϵ

)
αt

∂x

∂θ
= 0. (14)

Sticking-the-Landing (Roeder et al., 2017) shows that keeping the path derivative gradient while
discarding the score function gradient can lead to reduced variance as the path derivative term can
be correlated with other terms in the loss. Here, the other term (B) corresponds to a prediction of
ϵ, which is certainly correlated with the RHS of equation 14. Putting these together, we can use a
“sticking-the-landing”-style gradient of our loss by thinking of ϵ as a control variate for ϵ̂:

∇θLSDS = Et,zt|x

[
w(t)

σt

αt
∇θKL(q(zt|x = g(θ))∥pϕ(zt|y))

]
(15)

= Et,ϵ

[
w(t) (ϵ̂(zt|y)− ϵ)

∂x

∂θ

]
. (16)
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In practice, we find that including ϵ in the gradient leads to lower-variance gradients that speed up
optimization and can produce better final results.

In related work, Graikos et al. (2022) also sample diffusion models by optimization, thereby
allowing parameterized samples. Their divergence KL(h(x) ∥ pϕ(x|y)) reduces to the loss
Eϵ,t∥ϵ − ϵ̂θ(zt|y; t)∥22 − log c(x, y). The squared error requires costly backpropagation through
the diffusion model ϵ̂θ, unlike SDS. DDPM-PnP also uses an auxiliary classifier c, while we use CFG.

A few other works have updates resembling Score Distillation Sampling for different applications.
Gradients of the entropy of an implicit model have been estimated with an amortized score model
at a single noise level (Lim et al., 2020), though that work does not use our control variate based
on subtracting the noise from ϵ̂. SDS could also ease optimization by using multiple noise levels.
GAN-like amortized samplers can be learned by minimizing the Stein discrepancy (Hu et al., 2018;
Grathwohl et al., 2020), where the optimal critic resembles the difference of scores in our loss (Eqn. 3).

A.5 IMPACT OF SEED AND GUIDANCE WEIGHT

We find that large guidance weights are important for learning high-quality 3D models. Unlike image
synthesis models that use guidance weights ω ∈ [5, 30], DreamFusion uses weights up ω = 100, and
works at even larger guidance scales without severe artifacts. This may be due to the constrained
nature of the optimization problem: colors output by our MLP are bounded to [0, 1] by a sigmoid
nonlinearity, whereas image samplers need clipping.

We also find that our method does not yield large amounts of diversity across random seeds. This is
likely due to the mode-seeking properties of LSDS combined with the fact that at high noise levels, the
smoothed densities may not have many distinct modes. Understanding the interplay between guidance
strength, diversity, and loss functions remains an important open direction for future research.

A.6 EXTENDED QUALITATIVE COMPARISON WITH PRIOR WORK

In Figure 11, we compare DreamFusion to Dream Fields on several prompts from the object-centric
MS-COCO validation set.
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Figure 9: A 2D sweep over guidance weights and random seeds for two different prompts (“a zoomed
out DSLR photo of a robot couple fine dining” and “a DSLR photo of a chimpanzee dressed like
Henry VIII king of England”).
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Figure 10: Comparison of the CLIP loss from Dream Fields (top) and our SDS loss. For fair
comparison of the loss functions in isolation, we use all of our proposed methods including view-
dependent prompts, shading, optimizing untextured renderings, and regularizers, with the same 3D
NeRF representation. Qualitatively, 3D scenes generated with SDS (ours) are much more coherent
than scenes generated with a CLIP loss.
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Figure 11: Comparison between DreamFusion and Dream Fields (Jain et al., 2022) on object-centric
MS-COCO prompts. Odd rows are results from DreamFusion, and even rows are results from Dream
Fields. DreamFusion exhibits increased global coherence and quality.
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