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Abstract

We study a new non-stochastic federated multi-
armed bandit problem with multiple agents col-
laborating via a communication network. The
losses of the arms are assigned by an oblivious
adversary that specifies the loss of each arm not
only for each time step but also for each agent,
which we call “doubly adversarial”. In this set-
ting, different agents may choose the same arm in
the same time step but observe different feedback.
The goal of each agent is to find a globally best
arm in hindsight that has the lowest cumulative
loss averaged over all agents, which necessities
the communication among agents. We provide
regret lower bounds for any federated bandit algo-
rithm under different settings, when agents have
access to full-information feedback, or the bandit
feedback. For the bandit feedback setting, we pro-
pose a near-optimal federated bandit algorithm
called FEDEXP3. Our algorithm gives a positive
answer to an open question proposed in (Cesa-
Bianchi et al., 2016): FEDEXP3 can guarantee a
sub-linear regret without exchanging sequences of
selected arm identities or loss sequences among
agents. We also provide numerical evaluations of
our algorithm to validate our theoretical results
and demonstrate its effectiveness on synthetic and
real-world datasets.

1. Introduction
There is a rising trend of research on federated learning,
which coordinates multiple heterogeneous agents to collec-
tively train a learning algorithm, while keeping the raw data
decentralized (Kairouz et al., 2021). We consider the feder-
ated learning variant of a multi-armed bandit problem which
is one of the most fundamental sequential decision making
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problems. In standard multi-armed bandit problems, a learn-
ing agent needs to balance the trade-off between exploring
various arms in order to learn how much rewarding they are
and selecting high-rewarding arms. In federated bandit prob-
lems, multiple heterogeneous agents collaborate with each
other to maximize their cumulative rewards. The challenge
here is to design decentralized collaborative algorithms to
find a globally best arm for all agents while keeping their
raw data decentralized.

Finding a globally best arm with raw arm or loss sequences
stored in a distributed system has ubiquitous applications in
many systems built with a network of learning agents. One
application is in recommender systems where different rec-
ommendation app clients (i.e. agents) in a communication
network collaborate with each other to find news articles
(i.e. arms) that are popular among all users within a specific
region, which can be helpful to solve the cold start problem
(Li et al., 2010; Yi et al., 2021). In this setting, the system
avoids the exchange of users’ browsing history (i.e. arm or
loss sequences) between different clients for better privacy
protection. Another motivation is in international collabora-
tive drug discovery research, where different countries (i.e.
agents) cooperate with each other to find a drug (i.e. arm)
that is uniformly effective for all patients across the world
(Varatharajah & Berry, 2022). To protect the privacy of the
patients involved in the research, the exact treatment history
of specific patients (i.e. arm or loss sequences) should not
be shared during the collaboration.

The federated bandit problems are focused on identifying a
globally best arm (pure exploration) or maximizing the cu-
mulative group reward (regret minimization) in face of het-
erogeneous feedback from different agents for the same arm,
which has gained much attention in recent years (Dubey &
Pentland, 2020; Zhu et al., 2021; Huang et al., 2021; Shi
et al., 2021; Réda et al., 2022). In prior work, heterogeneous
feedbacks received by different agents are modeled as sam-
ples from some unknown but fixed distributions. Though
this formulation of heterogeneous feedback allows elegant
statistical analysis of the regret, it may not be adequate
for dynamic (non-stationary) environments. For example,
consider the task of finding popular news articles within a
region mentioned above. The popularity of news articles
on different topics can be time-varying, e.g. the news on
football may become most popular during the FIFA World
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Cup but may be less popular afterwards.

In contrast with the prior work, we introduce a new non-
stochastic federated multi-armed bandit problem in which
the heterogeneous feedback received by different agents are
chosen by an oblivious adversary. We consider a federated
bandit problem with K arms and N agents. The agents can
share their information via a communication network. At
each time step, each agent will choose one arm, receive the
feedback and exchange their information with their neigh-
bors in the network. The problem is doubly adversarial, i.e.
the losses are determined by an oblivious adversary which
specifies the loss of each arm not only for each time step but
also for each agent. As a result, the agents which choose the
same arm at the same time step may observe different losses.
The goal is to find the globally best arm in hindsight, whose
cumulative loss averaged over all agents is lowest, without
exchanging raw information consisting of arm identity or
loss value sequences among agents. As standard in online
learning problems, we focus on regret minimization over an
arbitrary time horizon.

1.1. Related work

The doubly adversarial federated bandit problem is related
to several lines of research, namely that on federated bandits,
multi-agent cooperative adversarial bandits, and distributed
optimization. Here we briefly discuss these related works.

Federated bandits Solving bandit problems in the fed-
erated learning setting has gained attention in recent years.
(Dubey & Pentland, 2020) and (Huang et al., 2021) con-
sidered the linear contextual bandit problem and extended
the LinUCB algorithm (Li et al., 2010) to the federated
learning setting. (Zhu et al., 2021) and (Shi et al., 2021)
studied a federated multi-armed bandit problem where the
losses observed by different agents are i.i.d. samples from
some common unknown distribution. (Réda et al., 2022)
considered the problem of identifying a globally best arm
for multi-armed bandit problems in a centralized federated
learning setting. All these works focus on the stochastic
setting, i.e. the reward or loss of an arm is sampled from
some unknown but fixed distribution. Our work considers
the non-stochastic setting, i.e. losses are chosen by an obliv-
ious adversary, which is a more appropriate assumption for
non-stationary environments.

Multi-agent cooperative adversarial bandit (Cesa-
Bianchi et al., 2016; Bar-On & Mansour, 2019; Yi & Vo-
jnovic, 2022) studied the adversarial case where agents re-
ceive the same loss for the same action chosen at the same
time step, whose algorithms require the agents to exchange
their raw data with neighbors. (Cesa-Bianchi et al., 2020)
discussed the cooperative online learning setting where the
agents have access to the full-information feedback and the

communication is asynchronous. In these works, the agents
that choose the same action at the same time step receive
the same reward or loss value and agents aggregate mes-
sages received from their neighbors. Our work relaxes this
assumption by allowing agents to receive different losses
even for the same action in a time step. Besides, we propose
a new algorithm that uses a different aggregation of mes-
sages than in the aforementioned papers, which is based on
distributed dual averaging method in (Nesterov, 2009; Xiao,
2009; Duchi et al., 2011).

Distributed optimization (Duchi et al., 2011) proposed
the dual averaging algorithm for distributed convex opti-
mization via a gossip communication mechanism. Sub-
sequently, (Hosseini et al., 2013) extended this algorithm
to the online optimization setting. (Scaman et al., 2019)
found optimal distributed algorithms for distributed convex
optimization and a lower bound which applies to strongly
convex functions. The doubly adversarial federated bandit
problem with full-information feedback is a special case
of distributed online linear optimization problems. Our
work complements these existing studies by providing a
lower bound for the distributed online linear optimization
problems. Moreover, our work proposes a near-optimal
algorithm for the more challenging bandit feedback setting.

1.2. Organization of the paper and our contributions

We first formally formulate the doubly adversarial feder-
ated bandit problem and the federated bandit algorithms
we study in Section 2. Then, in Section 3, we provide
two regret lower bounds for any federated bandit algorithm
under the full-information and bandit feedback setting, re-
spectively. In Section 4, we present a federated bandit algo-
rithm adapted from the celebrated Exp3 algorithm for the
bandit-feedback setting, together with its regret upper bound.
Finally, we show results of our numerical experiments in
Section 5.

Our contributions can be summarized as follows:

(i) We introduce a new federated bandit setting, doubly
adversarial federated bandits, in which no stochastic
assumptions are made for the heterogeneous losses re-
ceived by the agents. This adversarial setting comple-
ments the prior work focuses on the stochastic setting.

(ii) For both the full-information and bandit feedback set-
ting, we provide regret lower bounds for any federated
bandit algorithm. The regret lower bound for the full-
information setting also applies to distributed online
linear optimization problems, and, to the best of our
knowledge, is the first lower bound result for this prob-
lem.

(iii) For the bandit feedback setting, we propose a new near-
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optimal federated bandit Exp3 algorithm (FEDEXP3)
with a sub-linear regret upper bound. Our FEDEXP3
algorithm resolves an open question proposed in (Cesa-
Bianchi et al., 2016): it is possible to achieve a sub-
linear regret for each agent simultaneously without
exchanging both the action or loss information and the
distribution information among agents.

2. Problem setting
Consider a communication network defined by an undi-
rected graph G = (V, E), where V is the set of N agents
and (u, v) ∈ E if agent u and agent v can directly exchange
messages. We assume that G is simple, i.e. it contains
no self loops nor multiple edges. The agents in the com-
munication network collaboratively aim to solve a non-
stochastic multi-armed bandit problem. In this problem,
there is a fixed set A of K arms and a fixed time horizon T .
Each instance of the problem is parameterized by a tensor
L = (ℓvt (i)) ∈ [0, 1]T×N×K where ℓvt (i) is the loss associ-
ated with agent v ∈ V if it chooses arm i ∈ A at time step
t.

At each time step t, each agent v will choose its action
avt = i, observe the feedback Ivt and incur a loss defined as
the average of losses of arm i over all agents, i.e.,

ℓ̄t(i) =
1

N

∑
v∈V

ℓvt (i). (1)

At the end of each time step, each agent v ∈ V can commu-
nicate with their neighbors N (v) = {u ∈ V : (u, v) ∈ E}.
We assume a non-stochastic setting, i.e. the loss tensor L
is determined by an oblivious adversary. In this setting,
the adversary has the knowledge of the description of the
algorithm running by the agents but the losses in L do not
depend on the specific arms selected by the agents.

The performance of each agent v ∈ V is measured by its
regret, defined as the difference of the expected cumulative
loss incurred and the cumulative loss of a globally best fixed
arm in hindsight, i.e.

Rv
T (π, L) = E

[
T∑

t=1

ℓ̄t(a
v
t )−min

i∈A

{
T∑

t=1

ℓ̄t(i)

}]
(2)

where the expectation is taken over the action of all agents
under algorithm π on instance L. We will abbreviate
Rv

T (π, L) as Rv
T when the algorithm π and instance L

have no ambiguity in the context. We aim to characterize
maxLR

v
T (π, L) for each agent v ∈ V under two feedback

settings,

• full-information feedback: Ivt = ℓvt , and

• bandit feedback: Ivt = ℓvt (a
v
t ).

Let Fv
t be the sequence of agent v’s actions and feedback

up to time step t, i.e., Fv
t =

⋃t
s=1{avs , Ivs }. For a graph

G = (V, E), we denote as d(u, v) the number of edges of a
shortest path connecting nodes u and v in V and d(v, v) = 0.

We focus on the case when π is a federated bandit algorithm
in which each agent v ∈ V can only communicate with their
neighbors within a time step.
Definition 2.1 (federated bandit algorithm). A federated
bandit algorithm π is a multi-agent learning algorithm such
that for each round t and each agent v ∈ V , the action selec-
tion distribution pvt only depends on

⋃
u∈V Fu

t−d(u,v)−1.

From Definition 2.1, the communication between any two
agents u and v in G comes with a delay equal to d(u, v)+ 1.
Here we give some examples of π in different settings:

• when |V| = 1 and Ivt = ℓvt , π is an online learning
algorithm for learning with expert advice problems
(Cesa-Bianchi et al., 1997),

• when |V| = 1 and Ivt = ℓvt (a
v
t ), π is a sequential al-

gorithm for a multi-armed bandit problem (Auer et al.,
2002),

• when Ivt ∈ ∂fi(x
v
t ) for some convex function f(x),

π belongs to the black-box procedure for distributed
convex optimization over a simplex (Scaman et al.,
2019), and

• when G is a star graph, π is a centralized federated
bandit algorithm discussed in (Réda et al., 2022).

3. Lower bounds
In this section, we show two lower bounds on the cumu-
lative regret of any federated bandit algorithm π in which
all agents exchange their messages through the communi-
cation network G = (V, E), for full-information and bandit
feedback setting. Both lower bounds highlight how the cu-
mulative regret of the federated algorithm π is related to
the minimum time it takes for all agents in G to reach an
agreement on a globally best arm.

Agents reaching an agreement about a globally best arm
in hindsight is to find i∗ ∈ argmini∈A

∑T
t=1 ℓ̄t(i) by

each agent v exchanging their private information about
{
∑T

t=1 ℓ
v
t (i) : i ∈ A} with their neighbors. This is known

as a distributed consensus averaging problem (Boyd et al.,
2004). Let dv = |N (v)| and dmax = maxv∈V dv and
dmin = minv∈V dv . The dynamics of a consensus averag-
ing procedure is usually characterized by spectrum of the
Laplacian matrix M of graph G defined as

Mu,v :=


du if u = v

−1 if u ̸= v and (u, v) ∈ E
0 otherwise.
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Let λ1(M) ≥ · · · ≥ λN (M) = 0 be the eigenvalues
of the Laplacian matrix M . The second smallest eigen-
value λN−1(M) is the algebraic connectivity which ap-
proximates the sparest-cut of graph G (Arora et al., 2009).
In the following two theorems, we show that for any fed-
erated bandit algorithm π, there always exists a problem
instance and an agent whose worst-case cumulative regret
is Ω(λN−1(M)−1/4

√
T ).

Theorem 3.1 (Full-information feedback). For any feder-
ated bandit algorithm π, there exists a graph G = (V, E)
with Laplacian matrix M and a full-information feedback
instance L ∈ [0, 1]T×N×K such that for some v1 ∈ V ,

Rv1
T (π, L) = Ω

(
4

√
1 + dmax

λN−1(M)

√
T logK

)
. (3)

The proof, in Appendix A.1, relies on the existence of
a graph in which there exist two clusters of agents, A
and B, with distance d(A,B) = minu∈A,v∈B d(u, v) =

Ω
(√

(dmax + 1)/λN−1(M)
)

. Then, we consider an in-
stance where only agents in cluster A receive non-zero
losses. Based on a reduction argument, the cumulative
regrets for agents in cluster B are the same as (up to a
constant factor) the cumulative regret in a single-agent ad-
versarial bandit problem with feedback of delay d(A,B)
(see Lemma A.4 in Appendix A.1). Hence, one can
show that the cumulative regret of agents in cluster B is
Ω
(√

d(A,B)
√
T logK

)
.

Note that the doubly adversarial federated bandit with full-
information feedback is a special case of distributed online
linear optimization, with the decision set being a K − 1-
dimensional simplex. Hence, Theorem 3.1 immediately
implies a regret lower bound for the distributed online lin-
ear optimization problem. To the best of our knowledge,
this is the first non-trivial lower bound that relates the hard-
ness of distributed online linear optimization problem to the
algebraic connectivity of the communication network.

Leveraging the lower bound for the full-information setting,
we show a lower bound for the bandit feedback setting.
Theorem 3.2 (Bandit feedback). For any federated bandit
algorithm π, there exists a graph G = (V, E) with Laplacian
matrixM and a bandit feedback instance L ∈ [0, 1]T×N×K

such that for some v1 ∈ V ,

Rv1

T (π, L) = Ω

(
max

{√
1

1 + dv1

√
KT,

4

√
1 + dmax

λN−1(M)

√
T logK

})
. (4)

The proof is provided in Appendix A.2. The lower
bound contains two parts. The first part, derived from the

information-theoretic argument in (Shamir, 2014), captures
the effect from bandit feedback. The second part is inherited
from Theorem 3.1 by the fact that the regret of an agent in
bandit feedback setting cannot be smaller than its regret in
full-information setting.

4. FEDEXP3: a federated regret-minimization
algorithm

Inspired by the fact that the cumulative regret is related to
the time need to reach consensus about a globally best arm,
we introduce a new federated bandit algorithm based on the
gossip communication mechanism, called FEDEXP3. The
details of FEDEXP3 are described in Algorithm 1. We shall
also show that FEDEXP3 has a sub-linear cumulative regret
upper bound which holds for all agents simultaneously.

The FEDEXP3 algorithm is adapted from the Exp3 al-
gorithm, in which each agent v maintains an estimator
zvt ∈ RK of the cumulative losses for all arms and a ten-
tative action selection distribution xvt ∈ [0, 1]K . At the
beginning of each time step t, each agent follows the action
selection distribution xvt with probability 1−γt, or performs
a uniform random exploration with probability γt. Once
the action avt is sampled, the agent observes the associated
loss ℓvt (a

v
t ) and then computes an importance-weighted loss

estimator gvt ∈ RK using the sampling probability pvt (a
v
t ).

Before gvt is integrated into the cumulative loss estimator
zvt+1, the agent communicates with its neighbors to average
its cumulative loss estimator zvt .

The communication step is characterized by the gossip ma-
trix which is a doubly stochastic matrix W ∈ [0, 1]N×N

satisfying the following constraints∑
v∈V

Wu,v =
∑
u∈V

Wu,v = 1

and Wu,v ≥ 0 where equality holds when (u, v) /∈ E . This
gossip communication step facilitates the agents to reach a
consensus on the estimators of the cumulative losses of all
arms, and hence allows the agents to identify a globally best
arm in hindsight. We present below an upper bound on the
cumulative regret of each agent in FEDEXP3.

Theorem 4.1. Assume that the network runs Algorithm 1
with

γt =
3

√(
CW + 1

2

)
K2 logK

t

and

ηt =
logK

TγT
= 3

√
(logK)2(

CW + 1
2

)
K2T 2

with CW = min{2 log T +logN,
√
N}/(1−σ2(W ))+3.
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Algorithm 1 FEDEXP3
Input: Learning rates {ηt > 0}, Exploration ratios {γt >
0}, and a gossip matrix W ∈ [0, 1]N×N .
Initialize: zv1 (i) = 0, xv1(i) = 1/K for all i ∈ A and
v ∈ V .
for each time step t = 1, 2, . . . , T do

for each agent v ∈ V do
compute the action distribution

pvt (i) = (1− γt)x
v
t (i) + γt/K;

choose the action avt ∼ pvt ;
compute the loss estimators

gvt (i) = ℓvt (i)I {avt = i} /pvt (i);

update the gossip accumulative loss

zvt+1 =
∑

u:(u,v)∈E

Wu,vz
u
t + gvt ;

update the tentative action selection distribution

xvt+1 =
exp{−ηtzvt+1(i)}∑

j∈A exp{−ηtzvt+1(j)}
;

end for
end for

Then, the expected regret of each agent v ∈ V is bounded as

Rv
T = Õ

(
1

3
√
1− σ2(W )

K2/3T 2/3

)

where σ2(W ) is the second largest singular value of W .

Proof sketch Let ℓ̂t and z̄t be the average instant loss
estimator and average cumulative loss estimator,

ft =
1

N

∑
v∈V

gvt and z̄t =
1

N

∑
v∈V

zvt ,

and let yt be action distribution that minimizes the regular-
ized average cumulative loss estimator

yt(i) =
exp{−ηt−1z̄t(i)}∑

j∈A exp{−ηt−1z̄t(j)}
.

The cumulative regret can be bounded by the sum of three
terms

Rv
t ≤ E

[
T∑

t=1

(⟨ft, yvt ⟩ − ft(i
∗))

]
︸ ︷︷ ︸

FTRL

+K

T∑
t=1

ηt−1E∥zvt − z̄t∥∗︸ ︷︷ ︸
CONSENSUS

+

T∑
t=1

γt︸ ︷︷ ︸
EXPLORATION

where i∗ ∈ argmini∈A
∑T

t=1 ℓ̄t(i) is a globally best arm
in hindsight.

The FTRL term is a typical regret term from the classic
analysis for the Follow-The-Regularized-Leader algorithm
(Lattimore & Szepesvári, 2020). The CONSENSUS term
measures the cumulative approximation error generated dur-
ing the consensus reaching process, which can be bounded
using the convergence analysis of distributed averaging al-
gorithm based on doubly stochastic matrices (Duchi et al.,
2011; Hosseini et al., 2013). The last EXPLORATION
term can be bounded by specifying the time-decaying explo-
ration ratio γt. The full proof of Theorem 4.1 is provided in
Appendix A.4.

The FEDEXP3 algorithm is also a valid algorithm for the
multi-agent adversarial bandit problem (Cesa-Bianchi et al.,
2016) which is a special case of the doubly adversarial
federated bandit problem when ℓvt (i) = ℓt(i) for all v ∈ V .
According to the distributed consensus process of FEDEXP3,
each agent v ∈ V only communicates cumulative loss es-
timator values zvt , instead of the actual loss values ℓvt (a

v
t ),

and the selection distribution pvt . FEDEXP3 can guarantee
a sub-linear regret without the exchange of sequences of
selected arm identities or loss sequences of agents, which
resolves an open question raised in (Cesa-Bianchi et al.,
2016).

Choice of the gossip matrix The gossip matrix W can
be constructed using the max-degree trick in (Duchi et al.,
2011), i.e.,

W = I − D −A

2(1 + dmax)

where D = diag(d1, . . . , dN ) and A is the adjacency ma-
trix of G. This construction of W requires that all agents
have knowledge of the maximum degree dmax, which can
indeed be easily computed in a distributed system by nodes
exchanging messages and updating their states using the
maximum reduce operator.

Another choice of W comes from the effort to minimize the
cumulative regret. The leading factor 1/ 3

√
1− σ2(W ) in

the regret upper bound of FEDEXP3 can be minimized by
choosing a gossip matrix W with smallest σ2(W ). Suppose
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that the agents have knowledge of the topology structure
of the communication graph G, then the agents can choose
the gossip matrix to minimize their regret by solving the
following convex optimization problem:

minimize
∥∥W − (1/n)11T

∥∥
2

subject to W ≥ 0,W1 = 1,W =WT ,
Wij = 0, for (i, j) /∈ E

which has an equivalent semi-definite programming formu-
lation as noted in (Boyd et al., 2004).

Gap between upper and lower bounds The regret upper
bound of FEDEXP3 algorithm in Theorem 4.1 grows sublin-
early in the number of arms K and horizon time T . There
is only a small polynomial gap between the regret upper
bound and the lower bound in Theorem 3.2 with respect
to these two parameters. The regret upper bound depends
also on the second largest singular value σ2(W ) of W . The
related term in the lower bound in Theorem 3.2 is the sec-
ond smallest eigenvalue λN−1(M) of the Laplacian matrix
M . To compare these two terms, we point that when the
gossip matrix is constructed using the max-degree method,
as discussed in Corollary 1 in (Duchi et al., 2011),

1
3
√
1− σ2(W )

≤ 3

√
2
dmax + 1

λN−1(M)
.

With respect to 4
√
(dmax + 1)/λN−1(M) in Theorem 3.2,

there is only a small polynomial gap between the regret
upper bound and the lower bound. We note that a similar de-
pendence on σ2(W ) is present in the analysis of distributed
optimization algorithms (Duchi et al., 2011; Hosseini et al.,
2013).

5. Numerical experiments
We present experimental results for the FEDEXP3 algo-
rithm (W constructed by the max-degree method) using
both synthetic and real-world datasets. We aim to validate
our theoretical analysis and demonstrate the effectiveness of
FEDEXP3 on finding a globally best arm in non-stationary
environments. All the experiments are performed with
10 independent runs. The code for producing our exper-
imental results is available online in an anonymous Github
repository: https://github.com/jialinyi94/doubly-stochastic-
federataed-bandit.

5.1. Synthetic datasets

We validate our theoretical analysis of the FEDEXP3 al-
gorithm on synthetic datasets. The objective is two-fold.
First, we demonstrate that the cumulative regret of FED-
EXP3 grows sub-linearly with time. Second, we examine
the dependence of the regret on the second largest singular
value of the gossip matrix.

Figure 1. (Top) The average cumulative regret, i.e.
∑

v∈V Rv
T /N ,

versus T , for FEDEXP3 and Exp3 on the grid graph. (Down) The
average cumulative regret versus (1− σ2(W ))−1/3 for FEDEXP3
on different networks at T = 3000.

A motivation for finding a globally best arm in recom-
mender systems is to provide recommendations for those
users whose feedback is sparse. In this setting, we construct
a federated bandit setting in which a subset of agents will
be activated at each time step and only activated agents may
receive non-zero loss. Specifically, we set T = 3, 000 with
N = 36 and K = 20. At each time step t, a subset Ut of
N/2 agents are selected from V with replacement. For all ac-
tivated agentsUt, the loss for arm i is sampled independently
from Bernoulli distribution with mean µi = (i−1)/(K−1).
All non-activated agents receive a loss of 0 for any arm they
choose at time step t.

We evaluate the performance of FEDEXP3 on different net-
works, i.e. for a complete graph, a

√
N by

√
N grid network,

and random geometric graphs. The random geometric graph
RGG(d) is constructed by uniform random placement of
each node in [0, 1]2 and connecting any two nodes whose
distance is less or equal to d (Penrose, 2003). Random
geometric graphs are commonly used for modeling spatial
networks.

In our experiments, we set d ∈ {0.3, . . . , 0.9}. The results
in Figure 1 confirm that the cumulative regret of the FED-
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EXP3 algorithm grows sub-linearly with respect to time
and suggest that the cumulative regret of FEDEXP3 is pro-
portional to (1− σ2(W ))

−1/3. This is compatible with the
regret upper bound in Theorem 4.1.

5.2. MovieLens dataset: recommending popular movie
genres

We compare FEDEXP3 with a UCB-based federated bandit
algorithm in a movie recommendation scenario using a real-
world dataset. In movie recommendation settings, users’
preferences over different genres of movies can change over
time. In such non-stationary environments, we demonstrate
that a significant performance improvement can be achieved
by FEDEXP3 against the GossipUCB algorithm (we refer to
as GUCB) proposed in (Zhu et al., 2021), which is defined
for stationary settings.

We evaluate the two algorithms using the MovieLens-
Latest-full dataset which contains 58,000 movies, classified
into 20 genres, with 27,000,000 ratings (rating scores in
{0.5, 1, . . . , 5}) from 280,000 users. Among all the users,
there are 3,364 users who rated at least one movie for every
genre. We select these users as our agents, i.e. N = 3, 364,
and the 20 genres as the arms to be recommended, i.e.
K = 20.

We create a federated bandit environment for movie recom-
mendation based on this dataset. Let mv(i) be the number
of ratings that agent v has for genre i. We set the horizon
T = maxv∈N mv(i) = 12, 800. To reflect the changes in
agents’ preferences over genres as time evolves, we sort the
ratings in an increasing order by their Unix timestamps and
construct the loss tensor in the following way. Let rvj (i) be
the j-th rating of agent v on genre i, the loss of recommend-
ing an movie to agent v of genre i at time step t is defined
as

ℓvt (i) =
5.5− rvj (i)

5.5

for t ∈
[
(j − 1)

⌊
T

mv(i)

⌋
, j
⌊

T
mv(i)

⌋)
. The performance of

FEDEXP3 and GUCB is shown in Figure 2. The results
demonstrate that FEDEXP3 can outperform GUCB by a
significant margin for different communication networks.

6. Conclusion and future research
We studied doubly adversarial federated bandits, a new
adversarial (non-stochastic) setting for federated bandits,
which complement prior study on stochastic federated ban-
dits. Firstly, we derived regret lower bounds for any feder-
ated bandit algorithm when the agents have access to full-
information or bandit feedback. These regret lower bounds
relate the hardness of the problem to the algebraic connec-
tivity of the network through which the agents communicate.
Then we proposed the FEDEXP3 algorithm which is a fed-

Figure 2. The average cumulative regret versus horizon time for
FEDEXP3 and GUCB in the movie recommendation setting with
the communication networks: (top) complete graph, (mid) the grid
network, and (down) RGG(0.5).

erated version of the Exp3 algorithm. We showed that there
is only a small polynomial gap between the regret upper
bound of FEDEXP3 and the lower bound. Numerical ex-
periments performed by using both synthetic and real-word
datasets demonstrated that FEDEXP3 can outperform the
state-of-the-art stochastic federated bandit algorithm by a
significant margin in non-stationary environments.

We point out some interesting avenues for future research on
doubly adversarial federated bandits. The first is to close the
gap between the regret upper bound of FEDEXP3 algorithm
and the lower bounds shown in this paper. The second is to
extend the doubly adversarial assumption to federated linear
bandit problems, where the doubly adversarial assumption
could replace the stochastic assumption on the noise in the
linear model.
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A. Appendix
Notation For a vector x, we use x(i) to denote the i-th coordinate of x. We define Ft =

⋃
v∈V Fv

t where Fv
t is the

sequence of agent v’s actions and feedback up to time step t, i.e., Fv
t =

⋃t
s=1{avs , Ivs }.

A.1. Proof of Theorem 3.1

We first define a new class of cluster-based distributed online learning procedure, referred to as cluster-based federated
algorithms, in which the delay only occurs when the communication is between different clusters. The regret lower bound
for federated bandit algorithms will be no less than the regret lower bound for cluster-based federated algorithms, as shown
in Lemma A.2. Then we show in Lemma A.3 that there exists a special graph in which there exist two clusters of agents
A and B with distance d(A,B) = minu∈A,v∈B d(u, v) = Ω

(√
(dmax + 1)/λN−1(M)

)
. Then, we consider an instance

where only agents in cluster A receive non-zero losses. Based on a reduction argument, the cumulative regrets of agents in
cluster B are the same as (up to a constant factor) the cumulative regrets in a single-agent adversarial bandit setting with
feedback delay d(A,B) (see Lemma A.4 in Appendix A.1). Hence, one can show that the cumulative regret of agents in
cluster B is Ω

(√
d(A,B)

√
T logK

)
.

We denote with d(U ,U ′) the smallest distance between any two nodes in U ,U ′ ⊂ V , i.e.

d(U ,U ′) = min
u∈U,u′∈U ′

d(u, u′)

where d(u, v) is the length of a shortest path connecting u and u′.

Definition A.1 (Cluster-based federated algorithms). A cluster-based federated algorithm is a multi-agent learning algorithm
defined by a partition of graph

⋃
r Ur = V where Ur is called cluster. In the cluster-based federated algorithm, at each round

t, the action selection probability pvt of agent v ∈ Ur depends on the history information up to round t− d(Ur,Ur′)− 1 of
all agents u′ ∈ Ur′ .

Note that when all agents are in the same cluster V , the centralized federated algorithm in (Réda et al., 2022) is an instance
of a cluster-based federated algorithm.

Lemma A.2 (Monotonicity). Let Π and Π′ be two sets of all cluster-based federated algorithms with two partitions
⋃

r Ur

and
⋃

s U ′
s, respectively. Suppose for any cluster U ′

s of π′, there exists a cluster Ur of π such that U ′
s ⊂ Ur, then

Π′ ⊂ Π and min
π∈Π

Rv
T (π, L) ≤ min

π′∈Π′
Rv

T (π
′, L)

for any L ∈ [0, 1]T×N×K and any v ∈ V .

Proof. It suffices to show Π′ ⊂ Π. Consider a cluster-based federated algorithm π′ ∈ Π′. For any agent v ∈ V , let U ′
s be

the cluster of v in Π′. By definition of cluster-based procedure, agent v’s action selection distribution probability pvt depends
on the history information up to round t− d(U ′

s,U ′
h)− 1 of all agents u′ ∈ U ′

h.

By the assumption, there exists two subset Ur1 ,Ur2 ⊂ V such that U ′
s ⊂ Ur1 and U ′

h ⊂ Ur2 . Hence d(Ur1 ,Ur2) ≤ d(U ′
s,U ′

h),
from which it follows t− d(U ′

s,U ′
h)− 1 ≤ t− d(Ur1 ,Ur2)− 1. Hence π′ ∈ Π which completes the proof.

Lemma A.3. There exists a graph G = (V, E) with N nodes and a matrix M ∈ MG , together with two subsets of nodes
I0, I1 ⊂ V of size |I0| = |I1| ≥ N/4 and such that

d (I0, I1) ≥ ∆̃,

where d (I0, I1) is the shortest-path distance in G between the two sets and

∆̃ =

√
2

3

√
1 + dmax

λN−1(M)
.
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Proof. From Lemma 24 in (Scaman et al., 2019), there exists exists a graph G = (V, E) with N nodes and a matrix
M ∈ MG , together with two subsets of nodes I0, I1 ⊂ V of size |I0| = |I1| ≥ N/4 and such that

d (I0, I1) ≥
√
2

3

√
λ1(M)

λN−1(M)
.

We show that λ1(M) ≥ 1 + dmax. To see this, note that λ1(M) is the Rayleigh quotient maxx ̸=0
xTMx
xT x

. By the definition
of the Laplacian matrix,

xTMx =
∑

(v,u)∈E

(xv − xu)
2
.

Let v be a vertex whose degree is dmax and

xu :=


√

dmax

1+dmax
if u = v

− 1√
dmax

√
1+dmax

if u ̸= v and vi is adjacent to vj
0 otherwise

then

∑
(v,u)∈E

(xv − xu)
2
= dmax

(√
dmax

1 + dmax
+

1√
dmax

√
1 + dmax

)2

= dmax

(
1√

dmax

√
1 + dmax

)2

(dmax + 1)
2
= 1+dmax

and ∑
u∈V

x2u =
dmax

1 + dmax
+ dmax

1

dmax(1 + dmax)
= 1.

Hence, λ1(M) ≥ 1 + dmax.

Let I0, I1 be two subsets of nodes satisfying

d(I0, I1) ≥ ∆̃ and |I0| = |I1| = N/4.

The number of rounds needed to communicate between any node in I0 and any node I1 is at least ∆̃.

Lemma A.4. Let v0 ∈ I0 and v1 ∈ V\I0. Consider a cluster-based federated algorithm with clusters I0 and V \I0. Then,
any distributed online learning algorithm σ for full information feedback setting has an expected regret

Rv1
T ≥ 1− o(1)

4

√√√√(∆̃ + 1
)

2
T logK

as T → ∞.

Proof. Consider an online learning with expert advice problem with the action set A over B rounds (Cesa-Bianchi et al.,
1997). Let ℓ′1, . . . , ℓ

′
B be an arbitrary sequence of losses and p′b be the action selection distribution at round b. We show that

σ can be used to design an algorithm for this online learning with expert advice problem, adapted from (Cesa-Bianchi et al.,
2016).

Consider the loss sequences {ℓvt }Tt=1 for each v ∈ V with T = (∆̃ + 1)B such that

ℓvt =

{
ℓ′⌈t/(∆̃+1)⌉, v ∈ I0

0 otherwise.

Let pvt be the action select distribution of agent v ∈ V running the algorithm σ. Define the algorithm for the online learning
with expert advice problem as follows:

p′b =
1

∆̃ + 1

∆̃+1∑
s=1

pv1
(∆̃+1)(b−1)+s

11
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where pvt = (1/k, . . . , 1/k) for all t ≤ 1 and v ∈ V .

Note that p′b is defined by pv1
(∆̃+1)(b−1)+1

, . . . , pv1
(∆̃+1)b

. These are in turn defined by ℓv0
1 , . . . , ℓ

v0
(∆̃+1)(b−1)

by the definition

of cluster-based communication protocol. Also note that ⌈t/(∆̃ + 1)⌉ ≤ b− 1 for t ≤ (∆̃ + 1)b, hence p′b is determined by
ℓ′1, . . . , ℓ

′
b−1. Therefore p′1, . . . , p

′
B are generated by a legitimate algorithm for online learning with expert advice problem.

Note that the cumulative regret of agent v1 is

T∑
t=1

⟨pv1t , ℓ̄t⟩ =
1

N

T∑
t=1

∑
v∈I0

⟨pv1t , ℓvt ⟩+
∑
v ̸∈I0

⟨pv1t , ℓvt ⟩


=

1

4

T∑
t=1

⟨pv1t , ℓ′⌈t/(∆̃+1)⌉⟩

=
1

4

B∑
b=1

∆̃+1∑
s=1

⟨pv1
(∆̃+1)(b−1)+s

, ℓ′b⟩

=
∆̃ + 1

4

B∑
b=1

⟨p′b, ℓ′b⟩ (5)

where the second equality comes from the definition of ℓvt and the fourth equality comes from the definition of p′b.

Also note that

min
i∈A

T∑
t=1

ℓ̄t(i) =
1

4
min
i∈A

T∑
t=1

ℓ′⌈t/(∆̃+1)⌉(i)

=
∆̃ + 1

4
min
i∈A

B∑
b=1

ℓ′b(i). (6)

From (5) and (6), it follows that

T∑
t=1

⟨pv1t , ℓ̄t⟩ −min
i∈A

T∑
t=1

ℓ̄t(i) =
∆̃ + 1

4

[
B∑

b=1

⟨p′b, ℓ′b⟩ −min
i∈A

B∑
b=1

ℓ′b(i)

]
.

There exists a sequence of losses ℓ′1, . . . , ℓ
′
B such that for any algorithm for online learning with expert advice problem, the

expected regret satisfies (Cesa-Bianchi & Lugosi, 2006, Theorem 3.7),

B∑
b=1

⟨p′b, ℓ′b⟩ −min
i∈A

B∑
b=1

ℓ′b(i) ≥ (1− o(1))

√
B

2
lnK.

Hence, we have
T∑

t=1

⟨pv1t , ℓ̄t⟩ −min
i∈A

T∑
t=1

ℓ̄t(i) ≥
1− o(1)

4

√
(∆̃ + 1)

T

2
lnK.

A.2. Proof of Theorem 3.2

The lower bound contains two parts. The first part is derived by using information-theoretic arguments in (Shamir, 2014)
and it captures the effect of bandit feedback. The second part is inherited from the full-information feedback lower bound in
Theorem 3.1 by the fact that the regret of an agent in the bandit feedback setting cannot be smaller than the regret in the
full-information setting.

Consider a centralized federated algorithm with all the agents in the same cluster V , denoted as ΠC . Note that by Lemma A.2,
for a federated bandit algorithm ΠG,

ΠG ⊂ ΠC and min
π′∈ΠC

Rv
T (π

′, L) ≤ min
π∈ΠG

Rv
T (π, L)

12
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for any L ∈ [0, 1]T×N×K and any v ∈ V .

For any π′ ∈ ΠC , at each round t, every agent v ∈ V receivesO(|N (v)|) bits since its neighboring agents can choose at most
|N (v)| distinct actions. By Theorem 4 in (Shamir, 2014), there exists some distribution D over [0, 1]K such that loss vectors
ℓ̄t

i.i.d∼ D for all t = 1, 2, . . . , T and mini∈A E
[∑T

t=1 ℓ̄t(at(v))−
∑T

t=1 ℓ̄t(i)
]
= Ω

(
min{T,

√
KT/(1 + |N (v)|)}

)
.

Hence, it follows that

min
L
Rv

T (π, L) ≥ min
L
Rv

T (π
′, L)

≥ Eℓ̄t∼D

[
T∑

t=1

ℓ̄t(at(v))−min
i∈A

T∑
t=1

ℓ̄t(i)

]

≥ max
i∈A

Eℓ̄t∼D

[
T∑

t=1

ℓ̄t(at(v))−
T∑

t=1

ℓ̄t(i)

]

≥ min
i∈A

Eℓ̄t∼D

[
T∑

t=1

ℓ̄t(at(v))−
T∑

t=1

ℓ̄t(i)

]
= Ω

(
min{T,

√
KT/(1 + |N (v)|)}

)
where the third inequality comes from Jensen’s inequality.

Also note that any federated bandit algorithm for bandit feedback setting is also a federated bandit algorithm for full-
information setting, from which it follows

min
L
Rv

T (π, L) ≥ max

{
Ω
(
min{T,

√
KT/(1 + |N (v)|)}

)
,Ω

(
4

√
1 + dmax

λN−1(M)

√
T logK

)}

= Ω

(
min

{
T,max

{√
K/(1 + |N (v)|), 4

√
1 + dmax

λN−1(M)

√
logK

}
√
T

})
.

A.3. Auxiliary lemmas

Here we present some auxiliary lemmas which are used in the proof of Theorem 4.1. Recall that ℓ̂t and z̄t are the average
instant loss estimator and average cumulative loss,

ft =
1

N

∑
v∈V

gvt and z̄t =
1

N

∑
v∈V

zvt

and yt is action distribution to minimize the regularized average cumulative loss

yt(i) =
exp{−ηt−1z̄t(i)}∑

j∈A exp{−ηt−1z̄t(j)}
.

Lemma A.5. For each time step t = 1, . . . , T ,

z̄t+1 = z̄t + ft

and

max{∥gvt ∥∗, ∥ft∥∗} ≤ K

γt
.
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Proof.

z̄t+1 =
1

N

∑
v∈V

zvt+1

=
1

N

∑
v∈V

∑
u:(u,v)∈E

Wu,vz
u
t +

1

N

∑
v∈V

gvt

=
1

N

∑
v∈V

zvt +
1

N

∑
v∈V

gvt

= z̄t + ft

where the second equality comes from Line 7 in Algorithm 1 and the third equality comes from the double-stochasticity of
W .

Noting that pvt (i) ≥ γ/K for all v ∈ V , i ∈ A and t ∈ {1, . . . , T}, it follows that

∥gvt ∥∗ =
ℓvt (a

v
t )

pvt (a
v
t )

≤ K

γt
and ∥ft∥∗ ≤ 1

N

∑
v∈V

∥gvt ∥∗ ≤ K

γt
.

Lemma A.6. For any v ∈ V and t ≥ 1, it holds that

E [gvt | Ft−1] = ℓvt and E [ft | Ft−1] = ℓ̄t

with

E [∥ft∥∗] ≤ K and E
[
∥ft∥2∗

]
≤ K2

γt
.

Proof. Note that pvt is determined by Ft−1, hence

E [gvt (i) | Ft−1] =
ℓvt (i)

pvt (i)
E [I {avt = i} | Ft−1] =

ℓvt (i)

pvt (i)
pvt (i) = ℓvt (i)

and

E [∥gvt ∥∗] = E
[
ℓvt (a

v
t )

pvt (a
v
t )

]
= E

[
E
[
ℓvt (a

v
t )

pvt (a
v
t )

| Ft−1

]]
= E

[∑
i∈A

pvt (i)
ℓvt (i)

pvt (i)

]
=
∑
i∈A

ℓvt (i) ≤ K

where the last inequality comes from ℓvt (i) ≤ 1. Since ft(i) = 1
N

∑
v∈V g

v
t , it follows that

E [ft(i) | Ft−1] =
1

N

∑
v∈V

ℓvt (i) = ℓ̄t(i)

and
E [∥ft∥∗] ≤

1

N

∑
v∈V

E [∥gvt ∥∗] ≤ K

which comes from Jensen’s inequality. Notice that

E
[
∥gvt ∥2∗

]
= E

[
ℓvt (a

v
t )

2

pvt (a
v
t )

2

]
= E

[
E
[
ℓvt (a

v
t )

2

pvt (a
v
t )

2
| Ft−1

]]
= E

[∑
i∈A

pvt (i)
ℓvt (i)

2

pvt (i)
2

]
≤ E

[∑
i∈A

1

pvt (i)

]
≤ K2

γt

where the last inequality comes from pvt (i) ≥ γt/K. Again, from Jensen’s inequality, it follows

E
[
∥ft∥2∗

]
≤ 1

N

∑
v∈V

E
[
∥gvt ∥2∗

]
≤ K2

γt
.
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Before presenting the next lemma, we recall the definition of strongly-convex functions and Fenchel duality. A function ϕ is
said to be α-strongly convex function on a convex set X if

ϕ(x′) ≥ ϕ(x) + ⟨∇ϕ(x), x′ − x⟩+ 1

2
α∥x′ − x∥2

for all x′, x ∈ X , for some α ≥ 0.

Let ϕ∗ denote the Fenchel conjugate of ϕ, i.e.,

ϕ∗(y) = max
x∈X

{⟨x, y⟩ − ϕ(x)}

with the projection,
∇ϕ∗(y) = argmax

x∈X
{⟨x, y⟩ − ϕ(x)}.

Lemma A.7. Let ψ the normalized negative entropy function (Lattimore & Szepesvári, 2020) on PK−1 = {x ∈ [0, 1]K :∑K
i=1 x(i) = 1} ,

ψη(x) =
1

η

k∑
i=1

x(i) (log(x(i))− 1) .

For all t = 1, . . . , T , it holds that

xvt = argmin
x∈PK−1

{⟨x, zvt ⟩+ ψηt(x)} = ∇ψ∗
ηt−1

(−zvt )

with X = PK−1 and
yt = argmin

x∈PK−1

{⟨x, z̄t⟩+ ψηt−1
(x)} = ∇ψ∗

ηt−1
(−z̄t).

Furthermore, it holds
∥xvt − yt∥ ≤ ηt−1∥zvt − z̄t∥∗.

Proof. We prove for yt = argmin
x∈PK−1

{⟨x, z̄t⟩+ ψηt−1(x)} whose argument also applies to xvt .

Notice it suffices to consider the minimization problem

min
x∈PK−1

ηt−1

∑K
k=1 x(i)z̄t(i) +

∑k
i=1 x(i) log(x(i))

subject to
∑K

k=1 x(i) = 1.

It suffices to consider the Lagrangian,

L = −ηt−1

K∑
k=1

x(i)z̄t(i)−
k∑

i=1

x(i) log(x(i))− λ

(
K∑

k=1

x(i)− 1

)
.

Consider the first-order conditions for all i = 1, . . . ,K

∂L
∂x(i)

= −ηt−1z̄t(i)− log(x(i))− 1− λ = 0

which gives x(i) = exp{−ηt−1z̄t(i)}/ exp{1 + λ} for all i = 1, . . . ,K. Plugging into the constraint
∑K

k=1 x(i) = 1
together with the definition of Fenchel duality (Hiriart-Urruty & Lemarechal, 2010) completes the proof for yt.

Note that the normalized negative entropy ψ(x) is 1-strongly convex,

ψ(x′) ≥ ψ(x) + ⟨∇ψ(x), x′ − x⟩+ 1

2
∥x′ − x∥2.

Multiplying 1/ηt−1 both sides of the inequality yields that ψηt−1
(x) is 1/ηt−1-strongly convex. By Theorem 4.2.1 in

(Hiriart-Urruty & Lemarechal, 2010), we have that ∇ψ∗
ηt−1

(z) is ηt−1-Lipschitz.

It follows that
∥pvt − p̄t∥ = ∥∇ψ∗

η(−zvt )−∇ψ∗
η(−z̄t)∥ ≤ ηt−1∥z̄t − zvt ∥∗.
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We state an upper bound on the network disagreement on the cumulative loss estimators from (Duchi et al., 2011) and
(Hosseini et al., 2013).
Lemma A.8. For any v ∈ V and t = 1, 2, . . . , T ,

∥z̄t − zvt ∥∗ ≤ K

γT

(
min{2 log T + log n,

√
n}

1− σ2(W )
+ 3

)
=
K

γT
CW

where σ2(W ) is the second largest singular value of W .

Proof. From Lemma A.5, it follows that ∥gvt ∥∗ ≤ K/γt. Since {γt} is non-increasing, let L = K/γT in Eq. (29) in (Duchi
et al., 2011) and Lemma 6 in (Hosseini et al., 2013) completes the proof.

A.4. Proof of Theorem 4.1

Let i∗ = argmini∈A
∑T

t=1 ℓ̄t(i). Note that pvt is determined by Ft−1 and E [ft | Ft−1] = ℓ̄t from Lemma A.6. It follows
that for each agent v ∈ V

Rv
T = E

[
T∑

t=1

⟨ℓ̄t, pvt ⟩ −
T∑

t=1

ℓ̄t(i
∗)

]

= E

[
T∑

t=1

⟨E [ft | Ft−1] , p
v
t ⟩ −

T∑
t=1

E [ft(i
∗) | Ft−1]

]

= E

[
T∑

t=1

⟨ft, pvt ⟩ −
T∑

t=1

ft(i
∗)

]
.

(7)

By the definition of pvt , it follows

Rv
T = E

[
T∑

t=1

(⟨ft, (1− γ)xvt + γxv1⟩ − ft(i
∗))

]

= E

[
T∑

t=1

(1− γt) (⟨ft, xvt ⟩ − ft(i
∗))

]
+

T∑
t=1

γtE [(⟨ft, xv1⟩ − ft(i
∗))]

= E

[
T∑

t=1

(1− γt) (⟨ft, xvt ⟩ − ft(i
∗))

]
+

T∑
t=1

γt
(
⟨ℓ̄t, xv1⟩ − ℓ̄t(i

∗)
)

≤ E

[
T∑

t=1

(⟨ft, xvt ⟩ − ft(i
∗))

]
+

T∑
t=1

γt

= E

[
T∑

t=1

(⟨ft, yvt ⟩ − ft(i
∗))

]
︸ ︷︷ ︸

(I)

+E

[
T∑

t=1

⟨ft, xvt − yvt ⟩

]
︸ ︷︷ ︸

(II)

+

T∑
t=1

γt

where the first inequality comes from the fact that γt > 0 and the fact that ∥ℓ̄t∥∗ ≤
∑

v∈V 1/N∥ℓ̄vt ∥∗ ≤ 1.

From Lemma A.5, it follows z̄t =
∑t−1

s=1 fs. Hence, it follows from Lemma A.7 that

yt = argmin
x∈PK−1

{
t∑

s=1

⟨fs, x⟩+
1

ηt−1
ψ(x)

}
.

From Lemma 3 in (Duchi et al., 2011) and Corollary 28.8 in (Lattimore & Szepesvári, 2020), we have

(I) ≤ 1

2

T∑
t=1

ηt−1E
[
∥ft∥2∗

]
+

1

ηT
log(K) (8)
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which is because {ηt} is a non-increasing sequence. Note that

∥xvt − yt∥ ≤ ηt−1∥zvt − z̄t∥∗

by Lemma A.7. This yields that

(II) ≤
T∑

t=1

ηt−1E [∥ft∥∗∥zvt − z̄t∥∗] . (9)

Plugging Equations (8) and (9) into (I) yields that

Rv
T ≤ 1

2

T∑
t=1

ηt−1E
[
∥ft∥2∗

]
+

1

ηT
log(K) +

T∑
t=1

ηt−1E [∥ft∥∗∥zvt − z̄t∥∗] +
T∑

t=1

γt

≤ 1

2

T∑
t=1

ηt−1E
[
∥ft∥2∗

]
+
K

γT
CW

T∑
t=1

ηt−1E [∥ft∥∗] +
T∑

t=1

γt +
1

ηT
log(K)

≤ K2

2

T∑
t=1

ηt−1

γt
+
K2

γT
CW

T∑
t=1

ηt−1 +

T∑
t=1

γt +
1

ηT
log(K)

where the second inequality comes from Lemma A.8 and the third inequality comes from Lemma A.6.

Let

γt =
3

√(
CW + 1

2

)
K2 logK

t
and ηt =

logK

TγT
= 3

√
(logK)2(

CW + 1
2

)
K2T 2

.

Then, for every v ∈ V , we have

Rv
T ≤ 3

8
3

√
K2 logK(
CW + 1

2

)2T 2
3 + 3

√
K2 logK

C3
W(

CW + 1
2

)2T 2
3

+
3

2
3

√(
CW +

1

2

)
K2 logKT

2
3 + 3

√(
CW +

1

2

)
K2 logKT

2
3

≤ 3

4
3
√
K2 logKT

2
3 + 3

√
CWK2 logKT

2
3 +

5 3
√
2

2
3
√
CWK2 logKT

2
3

≤ 5 3
√
CWK2 logKT

2
3 .

A.5. Numerical experiments

All the experiments are run on a desktop with AMD Ryzen 5 2600 Six-Core Processor and 16GB memory. Each experiment
took less than 6 hours to finish.

The code is written in Python and uses Numpy package (Harris et al., 2020) and NetworkX package (Hagberg et al., 2008)
for numerical calculation and graph operations. The Numpy package and the NetworkX package are distributed with the
BSD license.

17


