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ABSTRACT

Off-policy evaluation (OPE) is a fundamental task in reinforcement learning (RL).
In the classic setting of linear OPE, finite-sample guarantees often take the form

Evaluation error ≤ poly(Cπ, d, 1/n, log(1/δ)),

where d is the dimension of the features and Cπ is a feature coverage parameter
that characterizes the degree to which the visited features lie in the span of the
data distribution. Though such guarantees are well-understood for several popular
algorithms under the Bellman-completeness assumption, this form of guarantee
has not yet been achieved in the minimal setting where it is only assumed that the
target value function is linearly realizable in the features. Despite recent interest in
tight characterizations for this setting, the right notion of coverage remains unclear,
and candidate definitions from prior analyses have undesirable properties and are
starkly disconnected from more standard quantities in the literature.
In this paper, we provide a novel finite-sample analysis of a canonical algorithm for
this setting, LSTDQ. Inspired by an instrumental-variable (IV) view, we develop
error bounds that depend on a novel coverage parameter, the feature-dynamics
coverage, which can be interpreted as feature coverage in an induced feature-
compressed MDP. With further assumptions—such as Bellman-completeness—
our definition successfully recovers the coverage parameters specialized to those
settings, finally yielding a unified understanding for coverage in linear OPE.

1 INTRODUCTION

Coverage is a foundational concept in reinforcement learning (RL) theory. In off-policy evaluation
(OPE), the task of evaluating a target policy based on data collected from a different behavior policy,
coverage characterizes the degree to which the data distribution contains relevant information about
the target policy. The relevance of coverage extends beyond OPE, and the concept plays important
roles in offline policy learning (Jin et al., 2021; Xie et al., 2021), online RL (Xie et al., 2023; Amortila
et al., 2024a;b), or even statistical-computational trade-off in LLMs (Foster et al., 2025), as it provides
a mathematical characterization of distribution shift which is a central challenge in RL.

Mathematically, coverage is manifested as coverage parameters in finite-sample guarantees: for
example, standard OPE guarantees often take the form

Evaluation error ≤ poly(Cπ, d, 1/n, log(1/δ)), (1)

where n is sample size, δ is the failure probability, d is the statistical dimension of the function class,
δ is the failure probability, and Cπ is the coverage parameter. The definition of Cπ can take many
different forms depending on the algorithm and the assumptions, as well as how the proof handles
error propagation through the dynamics of the MDP (Farahmand et al., 2010). The most naïve
definition is ∥µπ/µD∥∞, the boundedness of density ratio between the target policy’s discounted
occupancy µπ and the data distribution µD. More refined definitions often take advantage of the
structure of the underlying MDP or the function approximation scheme. Comparisons between
these definitions offer connections and unified understanding across different learning settings, such
as offline vs. online (Xie et al., 2023), tabular vs. function approximation (Yin & Wang, 2021),
Markovian vs. partially observed (Zhang & Jiang, 2024), and single-agent vs. multi-agent RL (Cui &
Du, 2022; Zhang et al., 2023).
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While a unified understanding of RL through the lens of coverage is emerging, one of the most
fundamental settings—where the target value function is linearly realizable in a given feature map—
eludes such understanding and remains starkly disconnected from the rest of the literature. The most
natural algorithm for this setting is arguably LSTD(Q) (Boyan, 1999; Lagoudakis & Parr, 2003).
Despite recent statistical results for this method (Duan et al., 2021; Mou et al., 2022a; Perdomo et al.,
2023), the error bounds often come with obscure conditions and are hard to interpret, with little or
no understanding of which quantities play the role of coverage and how they connect to coverage
parameters in related settings and algorithms.

On the other hand, simpler analyses do provide more interpretable candidates, such as 1/σmin(A) with
A = EµD [ϕ(s, a)(ϕ(s, a)⊤ − γϕ(s′, π)⊤)] being the key matrix estimated in LSTDQ (Section 2.1).
Given that LSTDQ approximates Qπ ≈ ϕ⊤θ by solving a linear equation in the form of Aθ = b,
1/σmin(A) is a very natural candidate as it determines the invertibility of A and the solution’s
numerical stability. While bounds in the form of Eq.(1) can be established with Cπ = 1/σmin(A),
the quantity 1/σmin(A) is unsatisfactory in many aspects as a coverage parameter:

1. Lacking scale invariance. The value of σmin(A) can change arbitrarily if we simply redefine the
features as ϕnew = cϕ.1 While seemingly unrelated, this issue is mathematically tied to the fact
that σmin(A) as a coverage parameter has no concern over the initial state distribution of the MDP
which should play an important role in the definition of coverage.

2. Lacking off-policy characterization. Coverage parameters provide important understanding for
when data contains relevant information about the target policy. For 1/σmin(A), however, the
only thing we know is its boundedness in a strict on-policy case, and it is hard to interpret for
general off-policy distributions.

3. Lacking unification with other analyses. State abstractions are a special case of linear function
approximation, under which LSTDQ coincides with the model-based solution. Prior works
have established aggregated concentrability (Jia et al., 2024) as the coverage parameter for
this setting, which cannot be recovered by specializing 1/σmin(A). Moreover, both concepts
differ significantly from standard definitions of coverage in linear OPE when analyzed under
the Bellman-completeness assumption: standard definitions measure coverage by analyzing how
errors propagate under the groundtruth dynamics, whereas aggregated concentrability does so
under the compressed dynamics determined by the abstraction scheme.

In this paper, we provide a novel finite-sample analysis of LSTDQ inspired by an instrument-
variable (IV) view, which comes with a new coverage parameter that we call feature-dynamics
coverage, Cπϕ . Feature-dynamics coverage replaces 1/σmin(A) and elegantly addresses the above
problems. Furthermore, it corresponds to feature coverage in a linear dynamical system induced
by the features (first studied by Parr et al. (2008)). The system is the transition dynamics of
the true MDP compressed through the given features, and naturally subsumes the χ2 version of
aggregated concentrability as a special case. Furthermore, given Bellman-completeness as an
additional assumption, feature-dynamics coverage recovers the standard notion of linear coverage,
successfully unifying the previously fragmented understanding.

2 PRELIMINARIES

Markov Decision Process (MDP). We consider the groundtruth environment modeled as an
infinite-horizon discounted MDP (S,A, P,R, γ, µ0), where S is the state space, A is the action
space, P : S ×A → ∆(S) is the transition dynamics (∆(·) is the probability simplex), R : S ×A →
∆([0, Rmax]) is the reward function, γ ∈ [0, 1) is the discount factor, and µ0 ∈ ∆(S) is the initial
state distribution. We assume S, A are finite, but their cardinalities can be prohibitively large
and thus should not appear in sample-complexity guarantees. A policy π : S → ∆(A) induces
a distribution over random trajectories, generated as s0 ∼ µ0, at ∼ π(·|st) (or simply at ∼ π),
rt = R(st, at), st+1 ∼ P (·|st, at). Let Pπ[·] and Eπ[·] denote the probability and expectation under
such a distribution. The expected return of a policy is J(π) := Eπ[

∑∞
t=0 γ

trt], which falls in the
range of [0, Vmax] with Vmax := Rmax/(1− γ). The discounted occupancy of π is defined as

µπ(s, a) = (1− γ)
∑
t≥0 γ

tµπt (s, a) := (1− γ)
∑
t≥0 γ

tPπ[st = s, at = a]. (2)
1Perdomo et al. (2023) provide a bound that depends on a term related to our coverage parameter, which is

scale invariant. We will compare and connect to their results in Section 4.
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Value Function and Bellman Operator. The Q-function Qπ ∈ RS×A is the fixed point of
Bellman operator T π : RS×A → RS×A, i.e., Qπ = T πQπ, where ∀f ∈ RS×A, (T πf)(s, a) :=
R(s, a) + γEs∼P (·|s,a)[f(s

′, π)]. Here f(s′, π) is a shorthand for Ea′∼π(·|s′)[f(s′, a′)]. Given any
f ∈ RS×A as an approximation of Qπ , we can induce an estimate of J(π) as:

Jf (π) := Es0∼µ0,a0∼π[f(s0, a0)], (3)

since J(π) = JQπ (π).

Linear Off-policy Evaluation (OPE). OPE is the task of estimating the performance of a given
target policy π based on an offline dataset D sampled from a behavior policy πb. As a standard
simplification, We assume that D consists of n i.i.d. tuples (s, a, r, s′, a′) generated as

(s, a) ∼ µD, r ∼ R(s, a), s′ ∼ P ⋆(·|s, a), a′ ∼ π(· | s′).

We use EµD [·] to denote the expectation of functions of (s, a, r, s′, a′) under the data distribution,
and ED[·] denotes the empirical approximation from D. For most of the paper we are concerned
with return estimation via linear function approximation, i.e., estimating the scalar J(π) as JQ̂π (π)

where Q̂π(s, a) = ϕ(s, a)⊤θ̂ for some given feature map ϕ : S ×A → Rd. We make the following
standard assumptions throughout the paper:

Assumption 1 (Feature boundedness and realizability). We assume that there exists θ⋆ ∈ Rd such
that Qπ(s, a) = ϕ(s, a)⊤θ⋆. Furthermore, assume that ∥ϕ(s, a)∥2 ≤ Bϕ,∀s, a.

Mathematical Notation. We use σmin(·) and λmin(·) to denote the smallest singular value of
an asymmetric matrix and the smallest eigenvalue of a symmetric matrix, respectively. Let ρ(·)
denote the spectral radius of a matrix. For functions over S × A such as Qπ and dπ, we also view
them interchangeably as vectors in R|S×A| whenever convenient. We use a ≲ b as a shorthand
for a = O(b). Given two square and possibly asymmetric matrices Σ and Σ′, Σ ⪯ Σ′ means
v⊤(Σ− Σ′)v ≤ 0 for all v. We let ∥v∥Σ =

√
v⊤Σv denote the Mahalanobis norm.

2.1 LSTDQ

The LSTDQ algorithm estimates the following moments from data:

Σ = EµD

[
ϕ(s, a)ϕ(s, a)⊤

]
, Σcr = EµD

[
ϕ(s, a)ϕ(s′, a′)⊤

]
,

A = Σ− γΣcr, b = EµD [ϕ(s, a)r].

Throughout the paper, we assume:

Assumption 2 (Invertibility). Σ and A are invertible.

These moments satisfy

Aθ⋆ − b = EµD [ϕ(s, a)(ϕ(s, a)⊤θ⋆ − r − ϕ(s′, π)⊤θ⋆)]

= EµD [ϕ(s, a)(Qπ(s, a)− (T πQπ)(s, a)] = 0,

which implies θ⋆ = A−1b if A is invertible, and LSTDQ is simply the plug-in estimate of this inverse:
let Σ̂, Σ̂cr, Â, b̂ be the empirical estimates from D, and

θ̂lstd = Â−1b̂, Q̂lstd(s, a) = ϕ(s, a)⊤θ̂lstd. (4)

We do not explicitly assume the empirical matrices Σ̂ and Â are invertible, with the understanding
that algorithms based on these quantities have degenerate behaviors when they are singular, and our
guarantees hold under such convention.2

2That is, either the high-probability event guarantees that the empirical matrix is invertible, or such matrices
appears in the bound and makes the guarantee vacuous (as in e.g., Eq. (10)).
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3 RELATED WORKS

Coverage Parameters in Offline RL. Early research in offline RL identifies the boundedness of
density ratios, such as ∥µπ/µD∥∞, as the coverage parameter (Munos, 2007; Munos & Szepesvári,
2008; Antos et al., 2008). Later works point out that they can be tightened by leveraging the structure
of the function class F used to approximate the value function, such as supf∈F

(Eµπ [f−T πf ])2

EµD [(f−T πf)2] . In

our setting, the linear feature ϕ induces a linear Fϕ = {ϕ⊤θ : θ ∈ Rd}, and these parameters often
have simplified forms. Among them, the tightest known coverage parameter for off-policy return
estimation is (Zanette et al., 2021; Yin et al., 2022; Gabbianelli et al., 2024; Jiang & Xie, 2024):

Cπlin = (ϕπ)⊤Σ−1ϕπ, where ϕπ := E(s,a)∼µπ [ϕ(s, a)]. (5)

Cπlin only requires the mean feature under π, ϕπ , to lie in the span of data features, whereas alternatives
such as Eµπ [∥ϕ∥Σ−1 ] require coverage of the distribution ϕ(s, a), (s, a) ∼ µπ in a point-wise manner;
see Jiang & Xie (2024) for further discussions. The majority of the study on coverage, however,
crucially relies on the following assumption on F which is substantially stronger than realizability
(Qπ ∈ F), and we do not assume it in our main results.
Assumption 3 (Bellman-completeness). Let F ⊂ (S×A → R) be a function class for approximating
Qπ . We say that it is Bellman-complete if

T πf ∈ F ,∀f ∈ F .

Indeed, a major potential of LSTDQ is that it is one of the few algorithms who enjoy theoretical
guarantees under only realizability Qπ ∈ F , which enables its important role in the challenging
problem of offline model selection (Xie & Jiang, 2020a; Liu et al., 2025). Unfortunately, coverage in
the absence of Bellman-completeness is poorly understood even in the linear setting, as discussed in
Section 1, which we address in this paper.

LSTD(Q) Analyses. LSTD methods are initially derived as the fixed point solution of TD methods
(Sutton & Barto, 2018), and its closed-form nature separates it from typical dynamical-programming-
style RL algorithms that often suffer from divergence. While we focus on LSTDQ, our result naturally
extend to other variants such as LSTD (which uses state-feature to approximate V π) or off-policy
LSTD (up to handling importance sampling via concentration inequalities) (Nedić & Bertsekas, 2003;
Bertsekas & Yu, 2009; Dann et al., 2014).

Early finite-sample analyses of LSTD are mostly in the on-policy setting and depend on quantities like
σmin(A) (Bertsekas, 2007; Lazaric et al., 2010; 2012). There is a recent surge of interest in providing
tight statistical characterizations of LSTD, including in the off-policy setting, with results suggesting
the necessity of 1/σmin(A) for this setting (Amortila et al., 2020; Mou et al., 2022b; Amortila et al.,
2023; Perdomo et al., 2023). These results, however, offer very little discussion on coverage, and
sometimes require additional regularity assumptions. Perdomo et al. (2023) recently provides a sharp
analysis that largely subsumes the earlier results, which we will compare to in Section 5.1.

4 FINITE-SAMPLE ANALYSIS OF LSTDQ

In this section we will present the finite-sample analysis of LSTDQ, which depends on our proposed
coverage parameter.

Special case of γ = 0. It is instructive to start with the special case of γ = 0 where tight guarantees
and the definition of coverage are well understood. Recall that Aθ⋆ = b can be rewritten as:

E[ZX⊤]θ⋆ = E[ZY ], (6)

where Z = ϕ(s, a) ∈ Rd, X = ϕ(s, a) − γϕ(s′, a′) ∈ Rd, Y = r ∈ R, and the expectation E[·]
is under µD. Below we will go back and forth between the linear regression (LR) notation system
(X,Y,E[XX⊤], . . .) and the RL notation system (ϕ, r,Σ, . . .), where we obtain concentration bounds
from the LR literature and meaningful guarantees for OPE in the RL setting, respectively.

When γ = 0, we essentially face a contextual bandit problem with linear reward, and Eq. (6) becomes

E[XX⊤]θ⋆ = E[XY ], (7)

4
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which is a classic linear regression problem, with A = Σ = E[XX⊤]. In this special case, LSTDQ
simply performs LR to fit the parameter θ⋆. While parameter identification guarantees in LR (i.e.,
error bounds on ∥θ̂ − θ⋆∥) inevitably have to depend on σmin(A) = λmin(E[XX⊤]), the key is in
how we use θ̂lstd to form the final estimation in OPE:

JQ̂lstd
(π) = Es0∼µ0,a0∼π[ϕ(s0, a0)

⊤θ̂lstd] = ϕ⊤0 θ̂lstd,

where

ϕ0 := Es0∼µ0,a0∼π[ϕ(s0, a0)]. (8)

That is, for the purpose of estimating J(π), we only need θ̂lstd to be accurate in the direction of
ϕ0, and a high-probability bound can be established if ϕ0 is well covered by the distribution of
X = ϕ(s, a) where (s, a) ∼ µD (Abbasi-Yadkori et al., 2011; Jin et al., 2020): informally, with
probability at least 1− δ,3

|JQ̂lstd
(π)− J(π)| = |ϕ⊤0 (θ̂lstd − θ⋆)| ≲ ∥ϕ0∥Σ̂−1

√
d log(1/δ)

n
Vmax. (9)

Here ∥ϕ0∥Σ̂−1 plays the role of coverage, characterizing how well the expected feature under the
target policy π is covered by the random features observed in the data (which determines Σ). Similar
bounds with the population version of coverage ∥ϕ0∥Σ−1 also hold under additional regularity
assumptions (Hsu et al., 2011). The quantity is also consistent with the standard notion of linear
coverage in MDPs (Eq. (5)) under the Bellman-completeness assumption (Assumption 3), which is
equivalent to realizability in the bandit setting (γ = 0).

Extending to γ > 0 with Instrumental-Variable inspiration. Given that the γ = 0 case is
well-understood and does not suffer the issues mentioned in the introduction, we therefore seek to
extend the above framework to γ > 0. When γ > 0, however, we have Z ̸= X , and Eq. (6) is a form
of Instrumental Variable (IV) problem induced by “error-in-the-variable” issues: it is known that

R(s, a) = ϕtd(s, a)
⊤θ⋆, with ϕtd(s, a) := ϕ(s, a)− γ EµD [ϕ(s′, a′)|s, a],

that is, the expected temporal-difference feature, ϕtd, can linearly predict reward, which LSTDQ
leverages to recover θ⋆. However, in the data we do not observe the expected TD feature but its
random realization, X = ϕ(s, a) − γϕ(s′, a′), and X − ϕtd(s, a) is zero-mean (conditioned on
(s, a)) noise. Given such “error in the variable”, E[XX⊤]θ⋆ ̸= E[XY ], so a straightforward linear
regression from X to Y does not work. LSTDQ solves this problem by introducing Z = ϕ(s, a) as
an instrumental variable, which is independent of the noise X − ϕtd(s, a) given (s, a) and thus helps
marginalizes out the said noise. Based on this view, we extend the LR analysis of γ = 0 to the γ > 0
case by consulting the IV literature (e.g., Della Vecchia & Basu, 2025), which leads to our main
finite-sample error bounds (see Appendix A for the proof):
Theorem 1 (Main Theorem). Under Assumptions 1 and 2, with probability at least 1− δ,∣∣∣JQ̂lstd

(π)− J(π)
∣∣∣ ≲ Vmax

1− γ
·

√
Ĉπϕ · d log(1/δ)

n
(10)

where

Ĉπϕ := (1− γ)2ϕ⊤0 Â
−1Σ̂Â−⊤ϕ0. (11)

Here we take the convention that Ĉπϕ = +∞ if Â or Σ̂ is not invertible.

Corollary 1. There exists n0 such that when n ≥ n0, w.p. ≥ 1− δ,∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ ≲ Vmax

1− γ

√
Cπϕ · d log(1/δ)

n
+ o(

√
1/n), (12)

where

Cπϕ := (1− γ)2ϕ⊤0 A
−1ΣA−⊤ϕ0 (13)

and n0 and the o(
√
1/n) term may additionally depend on 1/σmin(A).

3Most analyses require ridge regression (i.e., adding λI to Σ̂), and our analysis shows that this guarantee
holds even without ridge.
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Coverage Parameter and Tightness. Our main results consist of two guarantees where Ĉπϕ and
Cπϕ play the role of the coverage parameters. The (1− γ)2 are normalization constants, whose roles
will become clear in Section 5. Eq. (10) gives a clean bound which exactly recovers that of linear
regression in Eq. (9): when γ = 0, we have Â = Σ̂, and therefore Ĉπϕ = ϕ⊤0 Σ̂

−1ϕ0 = ∥ϕ0∥2Σ̂−1
.

Since Eq. (9) is the well-established bound for linear regression, this demonstrates the tightness of
our bound on its dependence on Ĉπϕ , d, and n.

That said, a caveat of Eq. (10) is that Ĉπϕ is a random variable. While such a situation is fairly common
in offline RL theory (Jin et al., 2021), ideally we would like to have its population version Cπϕ (Eq.
(13)), which does not depend on data randomness and is more interpretable; our interpretation in
Section 5 will also focus onCπϕ . This is exactly what we offer in Corollary 1, where the asymptotically
dominating termO(1/

√
n) is identical to Eq. (10) with Ĉπϕ replaced byCπϕ , but the spectral properties

of Σ and A may enter the burn-in term (n0) and the fast-rate term (o(
√

1/n)). The fact that Eq. (12)
is less clean and requires additional assumptions than Eq. (10) is somewhat expected, as this is also
the case for linear regression, where a bound that depends on ∥ϕ0∥Σ−1 (instead of ∥ϕ0∥Σ̂−1) also
requires additional assumptions (Hsu et al., 2011; Oliveira, 2016; Mourtada, 2022). In Appendix D,
we provide another result that eliminates the dependence on 1/σmin(A) in the Cπϕ bound, in exchange
for a 1/λmin(Σ) dependence, which we expect can be further sharpened to leverage-score-type
conditions (Hsu et al., 2011; Perdomo et al., 2023). Finally, as we will see in Section 5.3, our bound
is also tight when comparing to existing OPE guarantees analyzed under Bellman completeness.

5 UNDERSTANDING THE COVERAGE PARAMETER

In this section we provide interpretations of Cπϕ as a coverage parameter and discuss how it addresses
the issues mentioned in Section 1. First, it is clear that Cπϕ is invariant to feature rescaling, thanks
to the introduction of ϕ0. That said, the expression Cπϕ = (1− γ)2ϕ⊤0 A

−1ΣA−⊤ϕ0 does not lend
itself to easy intuition, let alone how it connects to and unifies existing results.

Warm-up: the tabular case. We start with the tabular setting and show thatCπϕ becomes something
familiar, offering some basic intuitions as well as assurance that Cπϕ , a quantity that falls out of the
IV concentration analyses, holds meaningful interpretations in RL. The key is to rewrite Cπϕ as

ϕ⊤0 A
−1ΣA−⊤ϕ0 = ϕ⊤0 (I − γBπ)−1Σ−1(I − γBπ)−⊤ϕ0, where Bπ := Σ−1Σcr. (14)

The tabular setting can be viewed as a special case of linear function approximation with d = |S ×A|,
and ϕ(s, a) = es,a is the unit vector with the (s, a)-th coordinate being 1 and all other coordinates
being 0. In this case, ϕ0 is simply the vector representation of the initial state-action distribution
µπ0 , where (s0, a0) ∼ µπ0 ⇔ s0 ∼ µ0, a0 ∼ π; Bπ is an |S × A| × |S × A| matrix with
[Bπ](s,a),(s′,a′) = Pπ(s′, a′|s, a) = P (s′|s, a)π(a′|s′), i.e., the transition kernel of the Markov
chain over S ×A induced by policy π. Put together, we have the textbook identity

(1− γ)ϕ⊤0 (I − γBπ)−1 = (µπ)⊤,

where we recall the definition of the discounted occupancy µπ from Eq. (2). Plugging it into Cπϕ ,

Cπϕ = (µπ)⊤Σ−1µπ =
∑
s,a µ

π(s, a)2/µD(s, a) = EµD [(µπ/µD)2],

which is the χ2-divergence between µπ and µD up to a constant shift and has appeared as a tight
coverage parameter (especially when compared to ∥µπ/µD∥∞ (Xie & Jiang, 2020b)) when coverage
is measured based on density ratios.

5.1 GENERAL INTERPRETATION

We now offer the interpretation for the general setting. Note thatBπ can be viewed as the multi-variate
linear-regression solution of the regression problem ϕ(s, a) 7→ ϕ(s′, π), thus

Es′∼P (·|s,a)[ϕ(s
′, π)] ≈ Bπϕ(s, a). (15)

In general, the above relationship is only approximate (in Section 5.3 we will see that it becomes
exact under an additional assumption), although Bπ is the best linear predictor. This leads to the
following interpretation of Cπϕ (see Appendix B.1 for the proof):
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Proposition 1. Define a deterministic linear dynamical system {xt}t≥0, with x0 := ϕ0, and ∀t ≥ 0,

xt+1 = (Bπ)⊤xt.

When ρ(Bπ) < 1/γ, define the feature occupancy in Bπ as µπϕ := (1− γ)
∑
t≥0 γ

txt, then

Cπϕ = (µπϕ)
⊤Σ−1µπϕ.

The proposition rewrites Cπϕ in a form that closely resembles the standard notion of linear coverage in
the literature, where we see the expected feature occupancy under the target policy (µπϕ here) measured
under the data-covariance norm Σ−1; see Section 5.3. Accordingly, we call Cπϕ the feature-dynamics
coverage. The difference is that here the feature occupancy is defined in a deterministic dynamical
system Bπ instead of the true MDP. Furthermore, while the latter, ϕπ := E(s,a)∼µπ [ϕ(s, a)], is
always bounded, µπϕ, on the other hand, may not be bounded in general and {xt}t≥0 may actually
diverge. The connection between LSTD and the linear dynamical system Bπ was first identified by
Parr et al. (2008) (see also Duan & Wang (2020)), though they focused on the algebraic equivalence
between LSTD and the model-based solution in Bπ, and did not perform finite-sample analyses or
connect this to the notion of coverage.

When is feature-dynamics coverage well-behaved? Our bound sharpens and generalizes existing
understanding of when linear OPE using only realizability is possible. We provide a comparison
to Perdomo et al., whose analysis was shown to be sharp and subsume many prior conditions
known in the literature. They establish that, under some regularity assumptions, ∥Σ1/2(θ⋆ − θ̂)∥2 ≲

1
σmin(I−γΣ−1/2ΣcrΣ−1/2)

· εstat, for some εstat which is polynomial in d, 1/n, log(1/δ), and spectral
properties of Σ. While they only show function-estimation guarantee on µD (c.f. Appendix C), this
intermediate result immediately implies a return-estimation guarantee comparable to ours:∣∣∣JQ̂lstd

(π)− J(π)
∣∣∣ ≤ ∥ϕ0∥Σ−1

σmin(I − γΣ−1/2ΣcrΣ−1/2)
· εstat.

As we have already shown that our statistical rate is tight, it suffices to compare our Cπϕ to their
multiplicative factor in front of εstat. In particular, we establish the following relationship (see
Appendix B.2 for the proof).
Proposition 2.√
Cπϕ = (1− γ)∥(I − γΣ−1/2ΣcrΣ

−1/2)−TΣ−1/2ϕ0∥2 ≤ (1− γ)
∥ϕ0∥Σ−1

σmin(I − γΣ−1/2ΣcrΣ−1/2)
.

This demonstrates that our coverage parameter provides a tighter return-estimation guarantee com-
pared to the approach of Perdomo et al. (2023). As an immediate consequence, we also subsume
other known conditions for this setting that were captured by Perdomo et al., including on-policy
sampling (Tsitsiklis & Van Roy, 1997), Bellman completeness, low distribution shift (Wang et al.,
2021), symmetric stability (Mou et al., 2022a), and contractivity (Kolter, 2011) (see the discussion in
Perdomo et al. for formal definitions). Furthermore, we consider the 1/σmin-type bound to provide
little intuition about necessary coverage conditions for this fundamental task, and the unification of
Cπϕ with existing concepts in the literature to be a major contribution.

5.2 RECOVERING AGGREGATED CONCENTRABILITY

State abstractions are a special case of linear function approximation, where each state s is mapped
to one of the K abstract states, ψ(s) ∈ {1, . . . ,K}, effectively treating states with the same ψ(s) as
aggregated and equivalent to reduce the size of the state space. Under the abstraction scheme, the
natural model-based solution coincides with LSTDQ with ϕ(s, a) = ek,a. When we only assume
realizability (Assumption 1), this has been analyzed by Xie & Jiang (2020a); Zhang & Jiang (2021);
Jia et al. (2024) with the following notion of aggregated concentrability as its coverage parameter.
Definition 1 (Aggregated concentrability). Given ψ : S → {1, . . . ,K}, define the abstract MDP
Mϕ = (Sϕ,A, Pϕ, Rϕ, γ, µ0) where4 Sϕ = {1, . . . ,K}, and

Pϕ(k
′|k, a) =

µD(s, a) ·
∑
s:ψ(s)=k

(∑
s′:ψ(s′)=k′ P (s

′|s, a)
)

∑
s:ψ(s)=k µ

D(s, a)
.

4The definition of Rϕ is irrelevant for our purpose and thus omitted.
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Figure 1: Illustration of the evolution of occupancies under the true dynamics Pπ (top row) and that
of features under the compressed dynamics Bπ (bottom row). Under Bellman completeness, the
dashed blue arrows hold and two routes (→ . . .→ ↓ vs. ↓→ . . .→) yield the same expected feature
vectors, but they are generally different without such an assumption.

For any π that only depends on s through ψ(s), aggregated concentrability refers to measures of
µπMϕ

/µDϕ , either in ∥ · ∥∞ or χ2 form, where µπMϕ
is discounted occupancy in MDP Mϕ, and

µDϕ (k, a) =
∑
s:ψ(s)=k µ

D(s, a).

In this definition, Pϕ is the dynamics over the abstract state space, and it is easy to see that the
transition kernel of abstract-state pairs under π is Pπϕ = Bπ, and Σ = diag(µDϕ ). As a result, Cπϕ
recovers the χ2 version of aggregated concentrability (see Appendix B.3 for the proof):

Proposition 3. When ϕ is induced by a state abstraction ψ and π depends on s only through ψ(s),

Cπϕ = E(k,a)∼µD
ϕ
[(µπMϕ

/µDϕ )
2].

5.3 RECOVERING STANDARD LINEAR COVERAGE UNDER BELLMAN-COMPLETENESS

Prior results on abstractions leave an intriguing question open: they measure coverage by analyzing
error propagation in Mϕ, which a lower-dimensional and approximate model compressed from M
by ϕ, as evidenced by µπMϕ

in the definition of aggregated concentrability; this is also consistent
with our results in Section 5.1 where occupancy is measured in the compressed linear dynamical
system Bπ . On the other hand, the mainstream notion of coverage in linear OPE, obtained under the
Bellman-completeness, is Cπlin = (ϕπ)⊤Σ−1ϕπ (Eq. (5)), which is concerned with error propagation
in the true dynamics M since ϕπ is defined w.r.t. the occupancy µπ in M . This begs the question:

Is error-propagation in compressed models,
as in (Qπ-irrelevant) abstractions, an exception and outlier?

While anecdotally this has been the general perception from the community, our results below suggest
otherwise, and the results that are seemingly disconnected with each other can be elegantly unified
through the following proposition (see Appendix B.4 for the proof):

Proposition 4. Let Fϕ := {ϕ⊤θ : θ ∈ Rd} be the space of functions linear in ϕ. Assume Fϕ satisfies
Bellman-completeness (Assumption 3). Then, (1) Bπ becomes an exact model for next-feature
prediction, i.e., Es′∼P (·|s,a)[ϕ(s

′, π)] = (Bπ)⊤ϕ(s, a), (2) µπϕ = ϕπ , (3) ρ(Bπ) ≤ 1, and (4)

Cπϕ = Cπlin = (ϕπ)⊤Σ−1ϕπ.

The essence of the proposition is illustrated in Figure 1, showing that the expected features produced
by the groundtruth dynamics (ϕπ) and the compressed dynamics (µπϕ = (1− γ)

∑
t γ

txt) coincide
under Bellman-completeness, thus demonstrating that error propagation through true dynamics is
a special case of and thus unified with that through compressed dynamics.

Connection to Bellman Residual Minimization (BRM). Many (if not most) algorithms for
learning Qπ with general function approximation coincide with LSTDQ under linear function
approximation (Antos et al., 2008; Xie et al., 2021; Uehara et al., 2020), and this fact allows us to
compare our bound to the more general analyses in the literature. Among those algorithms, BRM
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is a well-investigated example, which approximates Qπ by solving the following minimax problem
(Antos et al., 2008):

f̂π = argmin
f∈F

sup
f ′∈F

(
ED[(f(s, a)− r − f(s′, π)2]− ED[(f

′(s, a)− r − f(s′, π)2]
)
, (16)

whose finite-sample guarantee can be established under Bellman completeness (Assumption 3). Antos
et al. (2008); Xie et al. (2021) show that when F is linear, the solution coincides with LSTDQ, so we
can compare the guarantee of BRM under linear F with our Theorem 1. Jiang & Xie (2024) show
that BRM’s error bound is (see their Eq. (18))∣∣∣Jf̂π (π)− J(π)

∣∣∣ ≲ Vmax

1− γ
·
√
Cπ log(|F|/δ)

n
.

In the linear setting, their Cπ is Cπlin (see their Eq. (22)), and log |F| ≈ d based on a standard

covering-number argument. Under such translation, the main O(n−
1
2 ) term in our Eq. (12) match

the guarantee of BRM, not only in coverage, but also in horizon and d dependence.

5.4 UNIFICATION WITH MARGINALIZED IMPORTANCE SAMPLING

In Section 5.3 we mentioned that many algorithms designed for general function approximation
reduce to LSTDQ when linear classes are used. Another example is Minimax Weight Learning
(MWL; Uehara et al., 2020), a representative method for marginalized importance sampling, whose
key idea is illustrated by the following inequality: given F such that Qπ ∈ F , ∀w : S ×A → R,∣∣∣∣ 1

1− γ
EµD [w(s, a)r]− J(π)

∣∣∣∣ ≤ sup
f∈F

∣∣∣Jf (π) + 1
1−γ EµD [w(s, a) · (γf(s′, π)− f(s, a))]

∣∣∣, (17)

so learning w from some W class that minimizes (the empirical estimate of) the RHS to ≈ 0 ensures
that 1

1−γ EµD [w(s, a)r] is a good estimation of J(π). Theoretically, if some w⋆ ∈ W sets the RHS
of Eq. (17) to 0, finite-sample guarantees can be established, where coverage is reflected by the
magnitude of w⋆. As an example, w⋆(s, a) = µπ(s, a)/µD(s, a) always sets the RHS to 0, and we
pay the size of w⋆ as the coverage parameter (e.g., ∥µπ/µD∥∞) through concentration inequalities;
see Xie & Jiang (2020b, Section 6.2) for further discussions on this.

When both W and F are linear, Uehara et al. (2020) show that the MWL algorithm is equivalent to
LSTDQ. We now show that their coverage parameters and guarantees, when improved with insights
from follow-up works, coincide with our analyses in the linear setting. In particular, Zhang & Jiang
(2024) point out that the w⋆ that minimizes the population objective Eq. (17) takes a different form
in the linear case: w⋆(s, a) = (1− γ)ϕ⊤0 A

−1ϕ(s, a). An immediate implication is that

EµD [w⋆(s, a)2] = Cπϕ .

That is, the second moment of w⋆ on data is precisely our coverage parameter. While Uehara et al.
(2020) measures the size of w⋆ by ∥w⋆∥∞ due to the use of Hoeffding’s inequality, replacing it with
Bernstein’s will improve ∥w⋆∥∞ to EµD [w⋆(s, a)2] in the main O(n−1/2) term, which matches our
bound in Eq.(12).

6 CONCLUSION AND DISCUSSION

We tackled the fundamental problem of linear off-policy evaluation under the minimal assumption
of realizability. We re-analyzed a canonical algorithm for this setting, LSTDQ, and developed error
bounds that introduced the feature-dynamics coverage, a new notion of coverage that tightens and
sharpens our understanding of this setting. This parameter admits a natural interpretation as coverage
in a feature-induced dynamical system, while simultaneously generalizing special cases such as
aggregated concentrability with state abstraction features and linear coverage with Bellman-complete
features. Altogether, our results serve as clearer and more unified foundation for the theory of linear
OPE.
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DISCLOSURE OF LLM USAGE

In the initial phase of the project, the authors had a vague conjecture and rough road-map of the
main results in the paper, and used an LLM to execute the plan further to verify the feasibility of
the project. We also subsequently used LLMs to help with literature review and proofs with some
elementary linear-algebraic lemmas.
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A PROOFS OF SECTION 4

A.1 PROOF OF THEOREM 1

Theorem 1 (Main Theorem). Under Assumptions 1 and 2, with probability at least 1− δ,

∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ ≲ Vmax

1− γ
·

√
Ĉπϕ · d log(1/δ)

n
(10)

where

Ĉπϕ := (1− γ)2ϕ⊤0 Â
−1Σ̂Â−⊤ϕ0. (11)

Here we take the convention that Ĉπϕ = +∞ if Â or Σ̂ is not invertible.

Proof of Theorem 1. We start by writing:∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ = ∣∣∣Es0∼µ0,a0∼π

[
Qπ(s0, a0)− Q̂lstd(s0, a0)

]∣∣∣
=
∣∣∣Es0∼µ0,a0∼π

[
ϕ(s0, a0)

⊤
(
θ⋆ − θ̂lstd

)]∣∣∣,
where in the second line we have used realizability (Assumption 1) and the definition of Q̂lstd. We
can continue with simple algebra to find that:∣∣∣Es0∼µ0,a0∼π

[
ϕ(s0, a0)

⊤
(
θ⋆ − θ̂lstd

)]∣∣∣ = ∣∣∣ϕ⊤0 (θ⋆ − θ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 Â−1

(
Âθ⋆ − Âθ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 Â−1Σ̂1/2Σ̂−1/2

(
Âθ⋆ − Âθ̂lstd

)∣∣∣
≤
∥∥∥Σ̂1/2Â−⊤ϕ0

∥∥∥
2

∥∥∥Σ̂−1/2
(
Âθ⋆ − Âθ̂lstd

)∥∥∥
2
,

where in the last line we have used Cauchy-Schwartz. To proceed, we note that, when Â is invertible,
we have Âθ̂lstd − b̂ = Â

(
Â−1b̂

)
− b̂ = 0, and thus,

∥∥∥Σ̂−1/2
(
Âθ̂lstd − b

)∥∥∥
2
= 0 whenever Σ̂ is

invertible. Thus,∥∥∥Σ̂−1/2
(
Âθ⋆ − Âθ̂lstd

)∥∥∥
2
≤
(∥∥∥Σ̂−1/2

(
Âθ⋆ − b̂

)∥∥∥
2
+
∥∥∥Σ̂−1/2

(
Âθ̂lstd − b̂

)∥∥∥
2

)
≤
∥∥∥Σ̂−1/2

(
Âθ⋆ − b̂

)∥∥∥
2
.

We then note that ∥∥∥Σ̂1/2Â−⊤ϕ0

∥∥∥
2
=

√
ϕ⊤0 Â

−1Σ̂Â−Tϕ0 =
1

1− γ

√
Ĉπϕ ,

which yields that ∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ ≤ 1

1− γ

√
Ĉπϕ

∥∥∥Σ̂−1/2
(
Âθ⋆ − b̂

)∥∥∥
2
.

The proof will be concluded by establishing the following concentration lemma.

Lemma 1. With probability 1− δ over the randomness of the rewards and sampled transitions, we
have:

∥Σ̂−1/2(Âθ⋆ − b̂)∥2 ≤ O

(
Vmax

√
d log(1/δ)

n

)
.
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Proof of Lemma 1. We firstly note that

Âθ⋆ − b̂ =
1

n

n∑
i=1

ϕ(si, ai)
(
ϕ(si, ai)

⊤θ⋆ − γϕ(s′i, a
′
i)

⊤θ⋆ − ri
)

=
1

n

n∑
i=1

ϕ(si, ai)
(
Qπ(si, ai)− ri − γQπ(s′i, a

′
i)︸ ︷︷ ︸

:=εi

)
.

Thus, Âθ⋆ − b̂ is a random variable that is conditionally zero-mean, when taking conditional expec-
tations over the ri ∼ R(si, ai), s′i ∼ P (si, ai), and a′i ∼ π(· | s′i) (keeping the design over si, ai
fixed). Note that |εi| ≤ 2Vmax.

We apply a vector martingale Bernstein inequality (Lemma 10) on the random variables Zi =

Σ̂−1/2ϕ(si, ai)εi. For i ∈ [n], we let Hi = {s1, a1, . . . , sn, an} ∪ {r1, s′1, a′1, . . . , ri, s′i, a′i} denote
the histories including the entire design over si, ai but only the first i samples from ri, s

′
i, a

′
i. Note

that Zi is adapted to the filtration generated by Hi, and is a martingale difference sequence, since

Ei−1[Σ̂
−1/2ϕ(si, ai)εi] = Ei−1[εi]∥ϕ(si, ai)∥Σ̂−1 = 0.

In the sequel we establish the following simple technical lemma.

Lemma 2. Let x1, . . . , xn ∈ Rd, and assume Σ̂ = 1
n

∑n
i=1 xix

⊤
i is invertible. Then for all i ∈ [n]

we have:
x⊤i Σ̂

−1xi ≤ n

Using, Lemma 2, we then have that

∥Σ̂−1/2ϕ(si, ai)εi∥2 ≤ 2Vmax∥ϕ(si, ai)∥Σ̂−1 ≤ 2Vmax

√
n,

which establishes the norm bound. Lastly, for the variance term, we have:

n∑
i=1

Ei−1[∥Xi∥2] =
n∑
i=1

Ei−1[ε
2
i ∥ϕi∥2Σ̂−1 ] ≤ 4V 2

max

n∑
i=1

∥ϕi∥2Σ̂−1 .

Note that the summation is equivalent to:

n∑
i=1

ϕ⊤i Σ̂
−1ϕi =

n∑
i=1

tr(Σ̂−1ϕiϕ
⊤
i ) = ntr(Σ̂−1 1

n

n∑
i=1

ϕiϕ
⊤
i ) = nd,

since the trace of the identity matrix is d. Plugging these observations into Lemma 10 gives that∥∥∥Σ̂−1/2(Âθ⋆ − b̂)
∥∥∥
2
=

1

n

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
2

≤ 1

n

(
Vmax

√
8nd log(2/δ) +

2

3
Vmax

√
n log(2/δ)

)

= O

(
Vmax

√
d log(1/δ)

n

)
,

as desired.

Proof of Lemma 2. Consider the un-normalized empirical covariance matrix Σ̂un =
∑n
i=1 xix

⊤
i .

Let v = x⊤i Σ
−1
un xi. For each i, let Σ = Si + xix

⊤
i . Note that Si =

∑
j ̸=i xjx

⊤
j is a PSD matrix, as

is Σ̂−1
un SiΣ̂

−1
un . Then, we have

0 ≤ x⊤i Σ̂
−1
un SiΣ̂

−1
un xi = x⊤i Σ

−1
un xi − (x⊤i Σ

−1
un xi)

2.

This implies that v(1− v) ≥ 0, thus 0 ≤ v ≤ 1.

14
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A.2 PROOF OF COROLLARY 1

Corollary 1. There exists n0 such that when n ≥ n0, w.p. ≥ 1− δ,

∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ ≲ Vmax

1− γ

√
Cπϕ · d log(1/δ)

n
+ o(

√
1/n), (12)

where

Cπϕ := (1− γ)2ϕ⊤0 A
−1ΣA−⊤ϕ0 (13)

and n0 and the o(
√
1/n) term may additionally depend on 1/σmin(A).

Proof of Corollary 1. We begin by noting that it is sufficient to provide a high-probability bound on∣∣∣Cπϕ − Ĉπϕ

∣∣∣ ≤ εn for some εn = o(1), since by Theorem 1 and the inequality
√
a+ b ≤

√
a+

√
b

we will then obtain

∣∣∣JQ̂lstd
(π)− J(π)

∣∣∣ ≲ Vmax

1− γ
·

√√√√(Cπϕ + εn

)
· d log(1/δ)

n

≤ Vmax

1− γ
·

√
Cπϕ · d log(1/δ)

n
+
Vmax

1− γ
·
√
εn · d log(1/δ)

n

=
Vmax

1− γ
·

√
Cπϕ · d log(1/δ)

n
+ o(

√
1/n).

We now proceed to bound
∣∣∣Cπϕ − Ĉπϕ

∣∣∣ with high probability. Towards this, we note that:∣∣∣Cπϕ − Ĉπϕ

∣∣∣ = (1− γ)
2
∣∣∣∥Σ1/2A−⊤ϕ0∥2 − ∥Σ̂1/2Â−⊤ϕ0∥2

∣∣∣
≤ (1− γ)

2
∥∥∥Σ1/2A−⊤ϕ0 − Σ̂1/2Â−⊤ϕ0

∥∥∥
2

≤ (1− γ)
2
(∥∥∥Σ̂1/2

(
A−⊤ − Â−⊤

)
ϕ0

∥∥∥
2
+
∥∥∥(Σ̂1/2 − Σ1/2

)
A−⊤ϕ0

∥∥∥
2

)
≤ (1− γ)

2
Bϕ

(∥∥∥Σ̂1/2
∥∥∥
2
∥A−1 − Â−1∥2 +

∥∥∥Σ̂1/2 − Σ1/2
∥∥∥
2
∥A−1∥2

)
,

via applications of the triangle inequality and operator norm bounds. Let ε(Σ1/2) = ∥Σ1/2 − Σ̂1/2∥2
and ε(A−1) = ∥A−1 − Â−1∥2. Note that the above inequalities imply∣∣∣Cπϕ − Ĉπϕ

∣∣∣ ≤ (1− γ)2Bϕ

((
λmax(Σ

1/2) + ε(Σ1/2)
)
ε(A−1) + ε(Σ1/2)

1

σmin(A)

)
. (18)

We conclude by bounding ε(Σ1/2) and ε(A−1). We first establish a concentration lemma for
∥Σ− Σ̂∥2 and ∥A− Â∥2, and then show how this can be converted to bounds for ∥Σ1/2 − Σ̂1/2∥2
and ∥A−1 − Â−1∥2. The following concentration lemma will be proved in the sequel.

Lemma 3. With probability at least 1− δ, we have:

∥Σ− Σ̂∥2 ≤ O

√λmax(Σ)(B2
ϕ + λmax(Σ)) log(d/δ)

n

 := ϵ(Σ).

and

∥A− Â∥2 ≤ O

((
B2
ϕ + σmax(A)

)√ log(d/δ)

n

)
:= ϵ(A).
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We use the above bound on ∥Σ − Σ̂∥2 in combination with the inequality ∥Σ1/2 − Σ̂1/2∥2 ≤√
∥Σ− Σ̂∥2 (van Hemmen & Ando, 1980)5, to obtain:

∥Σ1/2 − Σ̂1/2∥2 ≤
√
∥Σ− Σ̂∥2 ≤

√
ϵ(Σ) = O

(λmax(Σ)(B
2
ϕ + λmax(Σ)) log(d/δ)

n

)1/4


Then, to bound ∥A− Â−1∥2, we note the following lemma.

Lemma 4 ((Stewart & Sun, 1990)). Let A ∈ Rm×n, with m ≥ n and let Ã = A+ E. Then,

ϵ(A−1) ≤ 1 +
√
5

2
max

{
∥A−1∥2, ∥Ã−1∥2

}
∥E∥2.

Furthermore, if ∥E∥2 ≤ σmin(A)/2, then

∥Ã−1 −A−1∥2 ≲ ∥A−1∥22∥E∥2.

This immediately implies that, for ∥A− Â∥2 ≤ σmin(A)/2, we have

∥Ã−1 −A−1∥2 ≤ 1

σmin(A)2
∥A− Â∥2 = O

(
B2
ϕ + σmax(A)

σmin(A)2

√
log(d/δ)

n

)
This latter condition is equivalent to

(
B2
ϕ + σmax(A)

)√ log(d/δ)

n
≲
σmin(A)

2
=⇒ n ≳

(
B2
ϕ + σmax(A)

σmin(A)

)2

log(d/δ)︸ ︷︷ ︸
:=n0

.

We set this latter quantity as our burn-in time n0. Returning to Eq. (18) and combining everything,
we have:∣∣∣Cπϕ − Ĉπϕ

∣∣∣ ≤ (1− γ)2Bϕ

(
B2
ϕ + σmax(A)

)
σmin(A)2

√
log(d/δ)

n

((λmax(Σ)(B
2
ϕ + λmax(Σ)) log(d/δ)

n

)1/4
+
√
λmax(Σ)

)
+

(1− γ)2Bϕ
σmin(A)

(λmax(Σ)(B
2
ϕ + λmax(Σ)) log(d/δ)

n

)1/4
= o(1)

Proof of Lemma 3. We firstly establish that the bound on ∥Σ̂ − Σ∥2. To do this, we use Matrix
Bernstein (Lemma 8). Abbreviate Xi := ϕ(si, ai), and let Zi = XiX

⊤
i −Σ be the centered matrices.

For the almost sure bound, we have

∥Zi∥2 ≤ ∥XiX
⊤
i ∥2 + ∥Σ∥2 ≤ ∥Xi∥22 + λmax(Σ) ≤ B2

ϕ + λmax(Σ).

For the variance term, we have:∥∥E[(XiX
⊤
i − Σ)2

]∥∥
2
=
∥∥E[(XiX

⊤
i )

2
]
− Σ2

∥∥
2

≤
∥∥B2

ϕ E
[
XiX

⊤
i

]
− Σ2

∥∥
2

≤ B2
ϕλmax(Σ) + λmax(Σ)

2.

This yields

∥Σ̂− Σ∥2 ≤

√
2λmax(Σ)(B2

ϕ + λmax(Σ)) log(2d/δ)

n
+

2(B2
ϕ + λmax(Σ)) log(2d/δ)

3n

= O

√λmax(Σ)(B2
ϕ + λmax(Σ)) log(d/δ)

n

.
5See also this answer by user “jlewk” on Math StackExchange: https://math.stackexchange.com/a/

3968174
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We now establish the bound on ∥Â−A∥2 again via Matrix Bernstein (Lemma 8). Define the notation
Xi = ϕ(si, ai) andX ′

i = ϕ(si, ai)−γϕ(s′i, a′i). Then we let Zi = Xi(X
′
i)

⊤−A denote the centered
matrices. For the almost sure norm bound, we have

∥Zi∥2 ≤ ∥Xi∥2∥X ′
i∥2 + ∥A∥2 ≤ B2

ϕ(1 + γ) + σmax(A) ≤ 2B2
ϕ + σmax(A).

For the variance terms, we have:∥∥∥E[(Xi(X
′
i)

⊤ −A
)(
Xi(X

′
i)

⊤ −A
)⊤]∥∥∥

2
=
∥∥E[Xi(X

′
i)

⊤X ′
iX

⊤
i −AX ′

iX
⊤
i −X ′

iX
⊤
i A+AA⊤]∥∥

2

≤ 4B2
ϕ

∥∥E[XiX
⊤
i

]∥∥
2
+
∥∥AA⊤∥∥

2

= 4B2
ϕλmax(Σ) + σmax(A)

2,

as well as∥∥∥E[(Xi(X
′
i)

⊤ −A
)⊤(

Xi(X
′
i)

⊤ −A
)]∥∥∥

2
=
∥∥E[X ′

i(Xi)
⊤Xi(X

′
i)

⊤ −A⊤Xi(X
′
i)

⊤ −X ′
iX

⊤
i A+A⊤A

]∥∥
2

≤ 4B4
ϕ +

∥∥AA⊤∥∥
2

= 4B4
ϕ + σmax(A)

2.

With the latter, the variance term and the norm bound are of the same order, which gives

∥Â−A∥2 ≤ O

((
B2
ϕ + σmax(A)

)√ log(d/δ)

n

)
.

B PROOFS OF SECTION 5

B.1 PROOF OF PROPOSITION 1

Proposition 1. Define a deterministic linear dynamical system {xt}t≥0, with x0 := ϕ0, and ∀t ≥ 0,

xt+1 = (Bπ)⊤xt.

When ρ(Bπ) < 1/γ, define the feature occupancy in Bπ as µπϕ := (1− γ)
∑
t≥0 γ

txt, then

Cπϕ = (µπϕ)
⊤Σ−1µπϕ.

Proof of Proposition 1. Recall that we defined Bπ = Σ−1Σcr. We note that

A = Σ− γΣcr = Σ(I − γBπ).

Substituting this into Cπϕ , we arrive at the expression:

Cπϕ = (1− γ)2ϕ⊤0 A
−1ΣA−Tϕ0 = (1− γ)2ϕ⊤0 (I − γBπ)−1Σ−1(I − γBπ)−Tϕ0. (19)

Note that when ρ(Bπ) < 1/γ, the matrix (I − γBπ)−⊤ has the series expansion:

(I − γBπ)−⊤ =

∞∑
t=0

γt((Bπ)⊤)t.

Thus, we notice that

(I − γBπ)−⊤ϕ0 =

∞∑
t=0

γt((Bπ)⊤)tϕ0 =

∞∑
t=0

γtxt =
1

1− γ
µπϕ.

Substituting this into Eq. (19) gives the result.

17
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B.2 PROOF OF PROPOSITION 2

Proposition 2.

√
Cπϕ = (1− γ)∥(I − γΣ−1/2ΣcrΣ

−1/2)−TΣ−1/2ϕ0∥2 ≤ (1− γ)
∥ϕ0∥Σ−1

σmin(I − γΣ−1/2ΣcrΣ−1/2)
.

Proof of Proposition 2. The derivation is as follows:

ϕ⊤0 A
−1ΣA−Tϕ0 = ϕ0(Σ− γΣcr)

−1
Σ(Σ− γΣcr)

−T
ϕ0

= ϕ⊤0

(
Σ1/2(I − γΣ−1/2ΣcrΣ

−1/2)Σ1/2
)−1

Σ
(
Σ1/2(I − γΣ−1/2ΣcrΣ

−1/2)Σ1/2
)−T

ϕ0

= ϕ⊤0 Σ
−1/2(I − γΣ−1/2ΣcrΣ

−1/2)−1(I − γΣ−1/2ΣcrΣ
−1/2)−TΣ−1/2ϕ0

= ∥(I − γΣ−1/2ΣcrΣ
−1/2)−TΣ−1/2ϕ0∥22.

B.3 PROOF OF PROPOSITION 3

Proposition 3. When ϕ is induced by a state abstraction ψ and π depends on s only through ψ(s),

Cπϕ = E(k,a)∼µD
ϕ
[(µπMϕ

/µDϕ )
2].

Proof of Proposition 3. Let ϕ(s, a) = eψ(s),a, where ψ is the state abstraction function. We
compute the A matrix. Below, we define Pπ(s′, a′ | s, a) = P (s′ | s, a)π(a′ | s′), P (k′ | s, a) =∑
s′:ψ(s′)=k P (s

′ | s, a), and

Pπ(k′, a′ | s, a) = P (k′ | s, a)π(a′ | k′),

which is valid since π is consistent with the state abstraction. To start, the covariance matrix Σ
becomes

Σ = Es,a∼µD

[
ϕ(s, a)ϕ(s, a)⊤

]
=

∑
k∈[K],a∈[A]

∑
s∈S:ψ(s)=k

µD(s, a)ek,ae
⊤
k,a

=
∑

k∈[K],a∈[A]

ek,ae
⊤
k,a

 ∑
s∈S:ψ(s)=k

µD(s, a)


=

∑
k∈[K],a∈[A]

ek,ae
⊤
k,aµ

D
ϕ (k, a) := D̄data ∈ R[K]·[A]×[K]·[A],
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where we recalled the definition of µDϕ (k, a) =
∑
s∈S:ψ(s)=k µ

D(s, a), and introduced the diagonal
matrix D̄data with elements µDϕ (k, a) along the diagonal. Let’s examine the cross-covariance Σcr.

Σcr = Es,a∼µD

[
ϕ(s, a)ϕ(s′, a′)⊤

]
=

∑
s∈S,a∈A

µD(s, a)ϕ(s, a)
∑

s′∈S,a′∈A
Pπ(s′, a′ | s, a)ϕ(s′, a′)⊤

=
∑

k∈[K],a∈[A]

ek,a
∑

s∈S:ψ(s)=k

µD(s, a)

 ∑
k′∈[K],a′∈[A]

∑
s′∈S:ψ(s′)=k′

Pπ(s′, a′ | s, a)e⊤k′,a′


=

∑
k∈[K],a∈[A]

ek,a
∑

s∈S:ψ(s)=k

µD(s, a)

 ∑
k′∈[K],a′∈[A]

e⊤k′,a′P
π(k′, a′ | s, a)


=

∑
k∈[K],a∈[A]

ek,a
∑

k′∈[K],a′∈[A]

e⊤k′,a′
∑

s∈S:ψ(s)=k

µD(s, a)Pπ(k′, a′ | s, a)

=
∑

k∈[K],a∈[A]

ek,a
∑

k′∈[K],a′∈[A]

e⊤k′,a′µ
D
ϕ (k, a)

(∑
s∈S:ψ(s)=k µ

D(s, a)Pπ(k′, a′ | s, a)
µDϕ (k, a)

)
:=

∑
k∈[K],a∈[A]

ek,a
∑

k′∈[K],a′∈[A]

e⊤k′,a′µ
D
ϕ (k, a)P

π
ϕ (k

′, a′ | k, a)

= D̄dataP
π
ϕ ,

where we recall the definition of the aggregated transition matrix Pπϕ with elements

Pπϕ (k
′, a′ | k, a) =

∑
s:ψ(s)=k µ

D(s, a)Pπ(k′, a′ | s, a)
µDϕ (k, a)

.

Putting our expressions for Σ and Σcr together, we conclude that

A = D̄data(I − γPπϕ ).

Note that Pπϕ is the π-dependent transition kernel of the MDP Mϕ over the state space [K] with
action space [A]. We assign the MDP an initial state-action distribution µ0,ϕ in the canonical way:

µπ0,ϕ(k, a) =
∑

s:ψ(s)=k

µ0(s)π(a | s) = µ0(k)π(a | k),

again using the fact that π is consistent with the abstraction ψ. Note that in the state abstraction
setting, we have

ϕ0 = Es0∼µ0,a∼π[ϕ(s, a)] =
∑
k,a

ek,a
∑

s:ψ(s)=k

µ0(s)π(a | s) = µπ0,ϕ,

Finally, our coverage coefficient becomes

Cπϕ = (1− γ)2ϕ0A
−1ΣA−Tϕ0 = (1− γ)2µπ0,ϕ(I − γPπϕ )

−1D̄−1
data(I − γPπϕ )

−Tµπ0,ϕ.

Since Pπϕ is a stochastic kernel with spectral radius less than 1, we have

(I − γPπϕ )
−Tµ0,ϕ =

∑
t≥0

γt((Pπϕ )
t))⊤µ0,ϕ =

1

1− γ
µπMϕ

,

i.e. this is precisely the discounted occupancy of policy π in the abstract MDP Mϕ. Thus,

Cπϕ = (µπMϕ
)⊤D̄−1

data(µ
π
Mϕ

) = Ek,a∼µD
ϕ

[
(µπMϕ

/µDϕ )
2
]
,

as desired.
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B.4 PROOF OF PROPOSITION 4

Proposition 4. Let Fϕ := {ϕ⊤θ : θ ∈ Rd} be the space of functions linear in ϕ. Assume Fϕ satisfies
Bellman-completeness (Assumption 3). Then, (1) Bπ becomes an exact model for next-feature
prediction, i.e., Es′∼P (·|s,a)[ϕ(s

′, π)] = (Bπ)⊤ϕ(s, a), (2) µπϕ = ϕπ , (3) ρ(Bπ) ≤ 1, and (4)

Cπϕ = Cπlin = (ϕπ)⊤Σ−1ϕπ.

Proof of Proposition 4.

(1) Bπ is an exact next-feature predictor: Es′∼P (·|s,a)[ϕ(s, a)] = Bπϕ(s, a) for all (s, a). First,
we show that under Bellman completeness Fϕ is also closed under the transition operator Pπ :=
T π −R, that is, Pπf ∈ Fϕ for all f ∈ Fϕ.

The linearity of Fϕ together with Bellman completeness immediately imply that the reward function
is linear, or R ∈ Fϕ. Define f0 ∈ Fϕ to be the function corresponding to the parameter θ = 0d, so
that f0(s, a) = 0 for all (s, a); we have T πf0 = R ∈ Fϕ.

Next, fix any f ∈ Fϕ and observe that T πf is also linear, since T πf ∈ Fϕ under Bellman
completeness. It follows that T πf −R = Pπf ∈ Fϕ because the difference of two functions linear
in the same features is also linear in those features, which proves that Fϕ is closed under Pπ. This
closure implies that for any f ∈ Fϕ, there exists some θf ∈ Rd such that

ϕ(s, a)⊤θf = (Pπf)(s, a) = Es′∼P (·|s,a)[f(s
′, π)].

To prove the stated claim we will utilize choice instantations of such functions and their corresponding
parameters. For i ∈ [d], define the function fi := ⟨ϕ, ei⟩ ∈ Fϕ, and let θi ∈ Rd be such that

ϕ(s, a)⊤θi = Es′∼P (·|s,a)[fi(s
′, π)], ∀(s, a).

Then for all (s, a),

Es′∼P (·|s,a)[ϕ(s
′, π)] =


Es′∼P (·|s,a)[f1(s

′, π)]

Es′∼P (·|s,a)[f2(s
′, π)]

...

Es′∼P (·|s,a)[fd(s
′, π)]

 =


θ⊤1

θ⊤2
...

θ⊤d


︸ ︷︷ ︸

(∗)

ϕ(s, a).

Lastly, we will show that the above system of equations is satisfied by setting

(∗) = Σ−⊤
cr Σ−1 = (Bπ)

⊤
.

Right-multiplying both sides by ϕ(s, a)⊤ then taking the expectation over (s, a) ∼ µD, we obtain

E(s,a,s′,a′)∼µD×P×π
[
ϕ(s′, a′)ϕ(s, a)⊤

]
= (Bπ)

⊤ E(s,a)∼µD

[
ϕ(s, a)ϕ(s, a)⊤

]
.

Solving for (Bπ)⊤ and rearranging gives

(Bπ)
⊤
=
(
E(s,a,s′,a′)∼µD×P×π

[
ϕ(s, a)ϕ(s′, a′)⊤

])⊤
Σ−1

= Σ⊤
crΣ

−1,

which confirms that Bπ = Σ−1Σcr satisfies for all (s, a) the equivalence

Es′∼P (·|s,a)[ϕ(s
′, π)] = (Bπ)

⊤
ϕ(s, a).
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(2) Showing µπϕ = ϕπ . Recall that ϕπ = E(s,a)∼µπ [ϕ(s, a)]. Using the Bellman flow equations for
µπ , we obtain a recursive system of equations for the dynamics of ϕπ:

ϕπ =
∑
s,a

ϕ(s, a)µπ(s, a)

=
∑
s,a

ϕ(s, a)

(1− γ)µπ0 (s, a) + γ
∑
s′,a′

Pπ(s, a | s′, a′)µπ(s′, a′)


= (1− γ)ϕ0 + γ E(s,a)∼µπ

[
Es′∼P (·|s,a)[ϕ(s

′, π)]
]

= (1− γ)ϕ0 + γ E(s,a)∼µπ

[
(Bπ)

⊤
ϕ(s, a)

]
= (1− γ)ϕ0 + γ(Bπ)

⊤
ϕπ,

where we invoke the result from (1) in the second-to-last line. Repeatedly expanding the RHS of the
equation with the recursion,

ϕπ = (1− γ)ϕ0 + γ(Bπ)
⊤
ϕπ,

= (1− γ)ϕ0 + γ(Bπ)
⊤
(
(1− γ)ϕ0 + γ(Bπ)

⊤
ϕπ
)

= (1− γ)

(
ϕ0 + γ(Bπ)

⊤
ϕ0 + γ2

(
(Bπ)

⊤
)2
ϕπ
)

. . .

= (1− γ)

∞∑
t=0

γt
(
(Bπ)

⊤
)t
ϕ0,

which is exactly the definition of µπϕ from Proposition 1.

(3) Showing ρ(Bπ) ≤ 1. The proof of (2) implies that for any (s0, a0) ∈ S × A,
((Bπ)⊤)tϕ(s0, a0) = E(s,a)∼µπ,s0,a0

t
[ϕ(s, a)], where µπ,s0,a0t is the t-th step state-action distri-

bution under π when the initial state-action pair is the given (s0, a0). Given ∥ϕ(s, a)∥ ≤ Bϕ,∀(s, a),
we have

((Bπ)⊤)tϕ(s0, a0) ≤ Bϕ,∀t.

Given that Σ is full-rank, we can always find {(s(i)0 , a
(i)
0 )}di=1 such that {ui := ϕ(s

(i)
0 , a

(i)
0 )}di=1

forms a basis of Rd. Then we have ∥((Bπ)⊤)tui∥ ≤ Bϕ,∀t.

Now we show that ∥((Bπ)⊤)t∥op, where ∥ · ∥op is the operator norm, also has a finite bound that
is independent of t. Recall that operator norm is the largest singular value; let the corresponding
singular vector be u, and we express u =

∑d
i=1 αiui. We have

∥((Bπ)⊤)t∥op = ∥((Bπ)⊤)tu∥ = ∥
d∑
i=1

αi((B
π)⊤)tui∥ ≤

d∑
i=1

|αi|Bϕ =: v.

The key here is that the upper bound v <∞ is independent of t. Plugging into the Gelfand’s formula,
we have

ρ(Bπ) = ρ((Bπ)⊤) = lim
t→∞

∥((Bπ)⊤)t∥1/top ≤ lim
t→∞

v1/t = 1.

(4) Proving equivalence Cπϕ = Cπlin. Recalling Eq. (14) and the definition of µπϕ, following the
proof of Proposition 1, when σmax(B

π) < 1/γ we may write

Cπϕ = (1− γ)2ϕ⊤0 A
−1ΣA−⊤ϕ0

= (1− γ)2ϕ⊤0 (I − γBπ)
−1

Σ−1(I − γBπ)
−⊤
ϕ0.

=
(
µπϕ
)⊤

Σ−1µπϕ.
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Substituting the previously derived identity that µπϕ = ϕπ in the last line,(
µπϕ
)⊤

Σ−1µπϕ = (ϕπ)
⊤
Σ−1ϕπ = Cπlin.

C FUNCTION ESTIMATION GUARANTEES

For most of the paper we have focused on providing return estimation guarantees, i.e., error bounds for
estimating J(π). In some scenarios, it is desirable to obtain stronger function estimation guarantees
(Huang & Jiang, 2022; Perdomo et al., 2023), that Q̂lstd and Qπ are close as functions, typically
measured by weighted 2-norm. Indeed, our proof of Theorem 1 can be easily adapted to provide the
following guarantee:

Theorem 2 (Function Estimation). Under the same assumptions as Theorem 1, w.p. ≥ 1− δ, for any
ν ∈ ∆(S ×A),

√
E(s,a)∼ν [(Qπ(s, a)− Q̂lstd(s, a))2] ≲

Vmax

1− γ

√
Ĉπfn · d log(1/δ)

n
,

where Ĉπfn := (1− γ)2 E(s0,a0)∼ν

[
∥Σ̂1/2Â−⊤ϕ(s0, a0)∥22

]
.

When ν = µ0 ◦ π is a point-mass, the LHS of Theorem 2 coincides with that of Theorem 1, and the
guarantees on the RHS are identical, too. Also recall that the naïve analysis based on 1/σmin(A)

(Section 1) provides parameter identification (i.e., bounded ∥θ̂lstd−θ⋆∥), which immediately provides
ℓ∞ function-estimation guarantee. This result is directly implied by our Theorem 2, where the
coverage parameter can be bounded as a function of σmin(A) and Bϕ.

Remark on Cπfn. Similar to Corollary 1 we can induce a corollary that depends on the population
version of Ĉπfn, which we denote as Cπfn. It is interesting to compare it to standard coverage parameters
that enable function-estimation guarantees under completeness (Section 3). Note that the term inside
Cπfn = E(s0,a0)∼ν [·] is simply Cπϕ but for a deterministic initial state-action pair (s0, a0). Applying
Proposition 4, we have

Cπfn = E(s0,a0)∼ν
[
(ϕπs0,a0)

⊤Σ−1ϕπs0,a0
]
,

where ϕπs0,a0 = E(s,a)∼µπ
s0,a0

[ϕ(s, a)] is the expected feature under the occupancy induced from
deterministic s0, a0 as the initial state-action pair. In comparison, the standard coverage in the
literature is

Cπlin,fn = E(s,a)∼µπ [ϕ(s, a)⊤Σ−1ϕ(s, a)].

As can be seen, our Cπfn is in between Cπϕ and Cπlin,fn, since we partially marginalize out the portion of
µπ that can be attribute to each initial state-action pair, instead of measuring every single (s, a) ∼ µπ

under Σ−1 in a completely point-wise manner.

Proof of Theorem 2. We repeat a similar derivation to Eq. (21), noting that the proof holds when
the initial state-action distribution s0 ∼ µ0, a0 ∼ π changes to an arbitrary distribution ν.

E(s0,a0)∼ν

[(
Qπ(s0, a0)− Q̂lstd(s0, a0)

)2]
= E(s0,a0)∼ν

[(
ϕ(s0, a0)

⊤
(
θ⋆ − θ̂lstd

))2]
= E(s0,a0)∼ν

[(
ϕ(s0, a0)

⊤Â−1Σ̂1/2Σ̂−1/2Â
(
θ⋆ − θ̂lstd

))2]
≤ E(s0,a0)∼ν

[∥∥∥Σ̂1/2Â−Tϕ(s0, a0)
∥∥∥2
2

∥∥∥Σ̂−1/2Â
(
θ⋆ − θ̂lstd

)∥∥∥2
2

]
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As in the proof of Theorem 1, we note that∥∥∥Σ̂−1/2Â
(
θ⋆ − θ̂lstd

)∥∥∥
2
≤
∥∥∥Σ̂−1/2(Âθ⋆ − b̂)

∥∥∥
2
+
∥∥∥Σ̂−1/2(Âθ̂lstd − b̂)

∥∥∥
2

≤
∥∥∥Σ̂−1/2(Âθ⋆ − b̂)

∥∥∥
2
,

since Âθ̂lstd − b̂ = 0 and Σ̂ is invertible. To conclude, we recall that the concentration bound from
Lemma 1, which implies that

∥Σ̂−1/2(Âθ⋆ − b̂)∥22 = O
(
V 2
max

d log(1/δ)

n

)
.

Plugging this in yields the proof.

D LOSS MINIMIZATION ALGORITHM

Here we provide an alternative analysis to Corollary 1, where we are able to eliminate the dependence
on 1/σmin(A), but the rates still depend on 1/σmin(Σ). The analysis also requires a slight change of
the LSTDQ algorithm to a loss-minimization form (Liu et al., 2025):

θ̂lstd = argmin
θ∈Θ

∥Σ̂−1/2(Âθ − b̂)∥2. (20)

In practice, when Â is near-singular, the inverse solution Â−1b̂ may have a very large norm which
is clearly problematic, demanding some regularization to control the norm of the solution. The
loss-minimization formulation of Eq. (20) is a natural abstraction of this process, where we search
for θ̂ in a pre-defined parameter space with bounded norm. If Â−1b̂ ∈ Θ, it is easy to see that the
loss-minimization solution coincides with the inverse solution; when Â−1b̂ /∈ Θ, Eq. (20) still outputs
a bounded solution to ensure generalization and good statistical properties.

We will need the following boundedness assumption on Θ.

Assumption 4 (Boundedness of Θ). Assume ∥θ∥2 ≤ BΘ, ∀ θ ∈ Θ.

Additional linear algebraic notation. For symmetric Σ, let κ(Σ) = λmax(Σ)
λmin(Σ) be the condition

number, where λmax(·) is the largest eigenvalue. Let tr(A) be the trace of a matrix A.

Theorem 3. Assume that n ≳ log(d/δ)κ(Σ)B
2
ϕ/λmin(Σ). Let ϕ0 = Es0∼µ0,a0∼π[ϕ(s0, a0)] denote

the initial feature. Under Assumptions 1, 2 and 4, the estimator in Eq. (20) satisfies that

∣∣∣J(π)− JQ̂lstd
(π)
∣∣∣ ≲

√
Cπϕ

1− γ
max{BϕBΘ, Rmax}2κ(Σ)

√
d log(BΘnδ−1)

λmin(Σ)n

with probability at least 1− δ.

Proof of Theorem 3. Let ℓ̂(θ) and ℓ(θ) denote the empirical and population vectors:

ℓ̂(θ) = Âθ − b̂ and ℓ(θ) = Aθ − b.

Recall that Aθ⋆ = b and thus ℓ(θ⋆) = 0. We establish in the sequel the following concentration
lemma.

Lemma 5. With probability at least 1− δ, we have that for all θ ∈ Θ:∣∣∣∥Σ−1/2ℓ(θ)∥2 − ∥Σ−1/2ℓ̂(θ)∥2
∣∣∣ ≤ max{BϕBΘ, Rmax}2

√
288d log(864BΘnδ−1)

λmin(Σ)n
:= εstat.

We also note the following simple technical lemma.
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Lemma 6. For all v ∈ Rd, we have

v⊤Σ−1v ≤ λmax(Σ
−1)

λmin(Σ̂−1)
v⊤Σ̂−1v, and v⊤Σ̂−1v ≤ λmax(Σ̂

−1)

λmin(Σ−1)
v⊤Σ−1v.

Recall that θ̂ satisfies argminθ∈Θ∥Σ̂−1/2ℓ̂(θ)∥2. We now show that Lemma 5 and Lemma 6 imply
that ∥Σ−1/2ℓ(θ̂)∥2 is small. This follows since:

∥Σ−1/2ℓ(θ̂)∥2 ≤ ∥Σ−1/2ℓ̂(θ̂)∥2 + εstat

≤

√
λmax(Σ−1)

λmin(Σ̂−1)
∥Σ̂−1/2ℓ̂(θ̂)∥2 + εstat

≤

√
λmax(Σ−1)

λmin(Σ̂−1)
∥Σ̂−1/2ℓ̂(θ⋆)∥2 + εstat

≤

√
λmax(Σ−1)

λmin(Σ̂−1)
· λmax(Σ̂−1)

λmin(Σ−1)
∥Σ−1/2ℓ̂(θ⋆)∥2 + εstat

≤

√
λmax(Σ−1)

λmin(Σ̂−1)
· λmax(Σ̂−1)

λmin(Σ−1)
∥Σ−1/2ℓ(θ⋆)∥2 +

(
1 +

√
λmax(Σ−1)

λmin(Σ̂−1)
· λmax(Σ̂−1)

λmin(Σ−1)

)
εstat

=

(
1 +

√
κ(Σ)κ(Σ̂)

)
εstat

≤ 2

√
κ(Σ)κ(Σ̂)εstat.

In the sequel, we also show concentration for the condition number of Σ̂ to Σ.
Lemma 7. Let n ≥ 32 log(6d/δ)κ(Σ)

(
B2

ϕ/λmin(Σ) + κ(Σ)
)
. Then, with probability at least 1 − δ,

we have:
κ(Σ̂) ≤ 3κ(Σ)

This implies that, under the condition on sample size, we have
∥∥∥Σ−1/2ℓ(θ̂)

∥∥∥
2
≤

√
12κ(Σ)εstat with

high-probability. We can now conclude the proof. Under the conditions and events stated above, we
have:∣∣∣Es0∼µ0,a0∼π

[
Qπ(s0, a0)− Q̂lstd(s0, a0)

]∣∣∣ = ∣∣∣Es0∼µ0,a0∼π

[
ϕ(s0, a0)

⊤
(
θ⋆ − θ̂lstd

)]∣∣∣ (21)

=
∣∣∣ϕ⊤0 (θ⋆ − θ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 (A−1b− θ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 A−1

(
b−Aθ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 A−1Σ1/2Σ−1/2

(
b−Aθ̂lstd

)∣∣∣
=
∣∣∣ϕ⊤0 A−1Σ1/2Σ−1/2

(
b−Aθ̂lstd

)∣∣∣
≤
∥∥∥Σ1/2A−Tϕ0

∥∥∥
2

∥∥∥Σ−1/2
(
Aθ̂lstd − b

)∥∥∥
2

=
∥∥∥Σ1/2A−Tϕ0

∥∥∥
2

∥∥∥Σ−1/2
(
Aθ̂lstd − b

)∥∥∥
2

=
√
ϕ⊤0 A

−1ΣA−Tϕ0∥Σ−1/2ℓ(θ̂)∥2

≤ 1

1− γ

√
Cπϕ

√
12κ(Σ)εstat, (22)

as desired. We now establish Lemmas 5 to 7.
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Proof of Lemma 5. Let θ be fixed for now, and ∆(θ) = ℓ̂(θ) − ℓ(θ). Note that by the reverse
triangle inequality,∣∣∣∥Σ−1/2ℓ(θ)∥2 − ∥Σ−1/2ℓ̂(θ)∥2

∣∣∣ ≤ ∥∥∥Σ−1/2∆(θ)
∥∥∥
2
=
∥∥∥Σ−1/2(Â−A)θ − Σ−1/2(b̂− b)

∥∥∥
2
.

We use Vector Bernstein (Lemma 9) to show that this is small. Let Xi = ϕ(si, ai), Yi = ϕ(si, ai)−
γϕ(s′i, a

′
i), and ∆i(θ) = Xi(Y

⊤
i θ − ri)− (Aθ − b) denote the centered vectors. Note that

∥Σ−1/2∆i(θ)∥2 ≤ 1√
λmin(Σ)

2max
{
∥Xi(Y

⊤
i θ − ri)∥2, ∥Aθ − b∥2

}
.

We have the following bound:

∥Aθ − b∥2 =
∥∥∥E[ϕ(s, a)((ϕ(s, a)− γϕ(s′, a′))

⊤
θ − r(s, a)

)]∥∥∥
2

≤
∥∥E[ϕ(s, a)ϕ(s, a)⊤θ]∥∥

2
+ γ
∥∥E[ϕ(s, a)ϕ(s′, a′)⊤θ]∥∥

2
+ ∥E[ϕ(s, a)r(s, a)]∥2

≤ (1 + γ)max
s,a

∥ϕ(s, a)∥22∥θ∥2 +max
s,a

∥ϕ(s, a)∥2Rmax

≤ 3Bϕmax{BϕBΘ, Rmax}. (23)

We remark that with a similar derivation, this bound applies just as well to ∥Xi(Y
⊤
i θ − ri)∥2, so in

fact we have
∥Σ−1/2∆i(θ)∥2 ≤ 6√

λmin(Σ)
Bϕmax{BϕBΘ, Rmax}.

For the variance bound, we simply use that

E
[
∥Σ−1/2∆i(θ)∥22

]
≤

(
6√

λmin(Σ)
Bϕmax{BϕBΘ, Rmax}

)2

.

Then, we conclude via Lemma 9 that

∥Σ−1/2∆(θ)∥2 ≤ Bϕmax{BϕBΘ, Rmax}

√
32 log(288δ−1)

λmin(Σ)n
.

We now apply a covering argument over θ ∈ Θ. Let Θ0 ⊆ Θ be an L2-covering of Θ of size N (ε),
satisfying for for each θ ∈ Θ there exists a covering member ρ(θ) ∈ Θ0 satisfying ∥θ − ρ(θ)∥2 ≤ ε.
Via a simple triangle inequality:∥∥∥Σ−1/2∆(θ)

∥∥∥
2
≤
∥∥∥Σ−1/2∆(ρ(θ))

∥∥∥
2
+
∥∥∥Σ−1/2(∆(θ)−∆(ρ(θ)))

∥∥∥
2
.

We bound the latter term as a function of ε.∥∥∥Σ−1/2(∆(θ)−∆(ρ(θ)))
∥∥∥
2
=
∥∥∥Σ−1/2

(
A− Â

)
(θ − ρ(θ))

∥∥∥
2

≤ 1√
λmin(Σ)

2max
{
σmax(A), σmax(Â)

}
ε.

We notice that max
{
σmax(A), σmax(Â)

}
≤ 2B2

ϕ via a similar reasoning to Eq. (23). This leaves us
with: ∥∥∥Σ−1/2∆(θ)

∥∥∥
2
≤ Bϕmax{BϕBΘ, Rmax}

√
32 log(288|Θ0|δ−1)

λmin(Σ)n
+

2B2
ϕ√

λmin(Σ)
ε,

≤ Bϕmax{BϕBΘ, Rmax}

√
32d log(864δ−1/ε)

λmin(Σ)n
+

2B2
ϕ√

λmin(Σ)
ε,
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where we have applied a union bound over the set Θ0, which is of size at most (3BΘ/ε)
d for ε ∈ (0, 1]

by standard covering number bounds (Vershynin, 2018), since Θ ⊂
{
θ ∈ Rd : ∥θ∥2 ≤ BΘ

}
. Picking

ε = 1/
√
n lets us conclude that, with probability at least 1− δ, for all θ ∈ Θ,∥∥∥Σ−1/2∆(θ)

∥∥∥
2
≤ Bϕmax{BϕBΘ, Rmax}

√
288d log(864BΘnδ−1)

λmin(Σ)n
,

as desired.

Proof of Lemma 6. Follows from the fact that for any positive semi-definite matrix M ∈ Rd×d and
for any v ∈ Rd, we have the inequalities

λmin(M)v⊤v ≤ v⊤Mv ≤ λmax(M)v⊤v.

Proof of Lemma 7. We firstly establish that

∥Σ̂− Σ∥2 ≤

√
8λmax(Σ)(B2

ϕ + λmax(Σ)) log(6d/δ)

n
=: εop. (24)

To do this, we use Matrix Bernstein (Lemma 8). AbbreviateXi := ϕ(si, ai), and let Zi = XiX
⊤
i −Σ

be the centered matrices. Note that ∥Zi∥2 ≤ ∥XiX
⊤
i ∥2 + ∥Σ∥2 ≤ ∥Xi∥22 + λmax(Σ) ≤ B2

ϕ +

λmax(Σ). For the variance term, we have:∥∥E[(XiX
⊤
i − Σ)2

]∥∥
2
=
∥∥E[(XiX

⊤
i )

2
]
− Σ2

∥∥
2

≤
∥∥B2

ϕ E
[
XiX

⊤
i

]
− Σ2

∥∥
2

≤ B2
ϕλmax(Σ) + λmax(Σ)

2.

This yields

∥Σ̂− Σ∥2 ≤

√
2λmax(Σ)(B2

ϕ + λmax(Σ)) log(2d/δ)

n
+

2(B2
ϕ + λmax(Σ)) log(2d/δ)

3n

The slow term dominates when n is large enough:

n ≥
2(B2

ϕ + λmax(Σ)) log(2d/δ)

λmax(Σ)
= 2 log(2d/δ)

(
B2
ϕ

λmax(Σ)
+ 1

)
. (25)

Note that this is implied by our assumption on n, since λmax(Σ) ≥ λmin(Σ) and κ(Σ) ≥ 1. Thus,
under this condition we have

∥Σ̂− Σ∥2 ≤ 2

√
2λmax(Σ)(B2

ϕ + λmax(Σ)) log(2d/δ)

n
= εop,

as desired. Now, by Weyl’s theorem (Horn & Johnson, 2012, Theorem 4.3.1), we have

|λmin(Σ̂)− λmin(Σ)| ≤ ∥Σ̂− Σ∥2 ≤ εop,

which implies that

λmin(Σ̂) ≥
λmin(Σ)

2
(26)

using the condition that εop ≤ λmin(Σ)
2 . This latter condition is equivalent to√

8λmax(Σ)(B2
ϕ + λmax(Σ)) log(2d/δ)

n
≤ λmin(Σ)

2

⇐⇒ n ≥ 32 log(2d/δ)κ(Σ)

(
B2
ϕ

λmin(Σ)
+ κ(Σ)

)
, (27)
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which is precisely our assumption on n. Similarly, an application of the reverse triangle inequality
(or of Weyl’s theorem again) yields,

|λmax(Σ̂)− λmax(Σ)| ≤ ∥Σ̂− Σ∥2 ≤ εop,

which implies that

λmax(Σ̂) ≤ λmax(Σ) + εop ≤ 3

2
λmax(Σ), (28)

using the condition that εop ≤ λmin(Σ)
2 ≤ λmax(Σ)

2 . Combining Eqs. (28) and (26), we have:

κ(Σ̂) =
λmax(Σ̂)

λmin(Σ̂)
≤ 3

2

λmax(Σ)

λmin(Σ̂)
≤ 3

λmax(Σ)

λmin(Σ)
= 3κ(Σ).

E TECHNICAL TOOLS

Lemma 8 (Matrix Bernstein, Tropp (2012)). Let S1, . . . , Sn ∈ Rd1×d2 be random, independent
matrices satisfying E[Sk] = 0, max

{
∥E[SkS⊤

k ]∥op, ∥E[S⊤
k Sk]op∥

}
≤ σ2, and ∥Sk∥op ≤ L almost

surely for all k. Then, with probability at least 1− δ for any δ ∈ (0, 1),∥∥∥∥∥ 1n
n∑
k=1

Sk

∥∥∥∥∥
op

≤
√

2σ2 log((d1 + d2)/δ)

n
+

2L log((d1 + d2)/δ)

3n

Lemma 9 (Vector Bernstein, Minsker (2017)). Let v1, . . . , vn be independent vectors in Rd such
that E[vk] = 0, E[∥vk∥22] ≤ σ2, and ∥vk∥2 ≤ L almost surely for all k. Then, with probability at
least 1− δ for any δ ∈ (0, 1),∥∥∥∥∥ 1n

n∑
i=1

vi

∥∥∥∥∥
2

≤
√

2σ2 log(28/δ)

n
+

2L log(28/δ)

3n
.

Lemma 10 (Vector Martingale Bernstein (Pinelis, 1994; Martinez-Taboada & Ramdas, 2024)).
Let (Xt)t≤T be a martingale sequence of vectors in Rd adapted to a filtration (Ft)t≤T , such that

Et−1[Xt] = 0, and ∥Xt∥2 ≤ B, and
∑T
t=1 Et−1

[
∥Xt∥2

]
≤ σ2. Then, with probability at least

1− δ, we have: ∥∥∥∥∥
T∑
t=1

Xt

∥∥∥∥∥
2

≤
√
2σ2 log(2/δ) +

2

3
B log(2/δ).
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