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ABSTRACT

Off-policy evaluation (OPE) is a fundamental task in reinforcement learning (RL).
In the classic setting of linear OPE, finite-sample guarantees often take the form

Evaluation error < poly(C™, d,1/n,log(1/4)),

where d is the dimension of the features and C'™ is a feature coverage parameter
that characterizes the degree to which the visited features lie in the span of the
data distribution. Though such guarantees are well-understood for several popular
algorithms under the Bellman-completeness assumption, this form of guarantee
has not yet been achieved in the minimal setting where it is only assumed that the
target value function is linearly realizable in the features. Despite recent interest in
tight characterizations for this setting, the right notion of coverage remains unclear,
and candidate definitions from prior analyses have undesirable properties and are
starkly disconnected from more standard quantities in the literature.

In this paper, we provide a novel finite-sample analysis of a canonical algorithm for
this setting, LSTDQ. Inspired by an instrumental-variable (IV) view, we develop
error bounds that depend on a novel coverage parameter, the feature-dynamics
coverage, which can be interpreted as feature coverage in an induced feature-
compressed MDP. With further assumptions—such as Bellman-completeness—
our definition successfully recovers the coverage parameters specialized to those
settings, finally yielding a unified understanding for coverage in linear OPE.

1 INTRODUCTION

Coverage is a foundational concept in reinforcement learning (RL) theory. In off-policy evaluation
(OPE), the task of evaluating a target policy based on data collected from a different behavior policy,
coverage characterizes the degree to which the data distribution contains relevant information about
the target policy. The relevance of coverage extends beyond OPE, and the concept plays important
roles in offline policy learning (Jin et al.| 2021} Xie et al.| [2021]), online RL (Xie et al., 2023} /Amortila
et al.| |2024alb), or even statistical-computational trade-off in LLMs (Foster et al.,|2025), as it provides
a mathematical characterization of distribution shift which is a central challenge in RL.

Mathematically, coverage is manifested as coverage parameters in finite-sample guarantees: for
example, standard OPE guarantees often take the form

Evaluation error < poly(C™,d,1/n,log(1/4)), (1)

where n is sample size, J is the failure probability, d is the statistical dimension of the function class,
d is the failure probability, and C™ is the coverage parameter. The definition of C™ can take many
different forms depending on the algorithm and the assumptions, as well as how the proof handles
error propagation through the dynamics of the MDP (Farahmand et al., 2010). The most naive
definition is ||™ /1P| o, the boundedness of density ratio between the target policy’s discounted
occupancy 4™ and the data distribution ;. More refined definitions often take advantage of the
structure of the underlying MDP or the function approximation scheme. Comparisons between
these definitions offer connections and unified understanding across different learning settings, such
as offline vs. online (Xie et al., [2023)), tabular vs. function approximation (Yin & Wang| 2021)),
Markovian vs. partially observed (Zhang & Jiang| |2024), and single-agent vs. multi-agent RL (Cui &
Du, 2022} [Zhang et al., [2023)).
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While a unified understanding of RL through the lens of coverage is emerging, one of the most
fundamental settings—where the target value function is linearly realizable in a given feature map—
eludes such understanding and remains starkly disconnected from the rest of the literature. The most
natural algorithm for this setting is arguably LSTD(Q) (Boyan, [1999; [Lagoudakis & Parr| [2003).
Despite recent statistical results for this method (Duan et al.,|2021;|Mou et al.,[2022a; Perdomo et al.}
2023)), the error bounds often come with obscure conditions and are hard to interpret, with little or
no understanding of which quantities play the role of coverage and how they connect to coverage
parameters in related settings and algorithms.

On the other hand, simpler analyses do provide more interpretable candidates, such as 1 /oy, (A) with
A=E,o[¢(s,a)(¢(s,a)T —~v¢(s',m)")] being the key matrix estimated in LSTDQ .
Given that LSTDQ approximates Q™ =~ ¢ ' 6 by solving a linear equation in the form of Af = b,
1/0min(A) is a very natural candidate as it determines the invertibility of A and the solution’s
numerical stability. While bounds in the form of Eq can be established with C™ = 1/0yin(A),
the quantity 1/omin (A) is unsatisfactory in many aspects as a coverage parameter:

1. Lacking scale invariance. The value of o.,;, (A) can change arbitrarily if we simply redefine the
features as Ppew = C(;S While seemingly unrelated, this issue is mathematically tied to the fact
that omin (A) as a coverage parameter has no concern over the initial state distribution of the MDP
which should play an important role in the definition of coverage.

2. Lacking off-policy characterization. Coverage parameters provide important understanding for
when data contains relevant information about the target policy. For 1/0y,in(A), however, the
only thing we know is its boundedness in a strict on-policy case, and it is hard to interpret for
general off-policy distributions.

3. Lacking unification with other analyses. State abstractions are a special case of linear function
approximation, under which LSTDQ coincides with the model-based solution. Prior works
have established aggregated concentrability (Jia et al.l 2024) as the coverage parameter for
this setting, which cannot be recovered by specializing 1/0min(A). Moreover, both concepts
differ significantly from standard definitions of coverage in linear OPE when analyzed under
the Bellman-completeness assumption: standard definitions measure coverage by analyzing how
errors propagate under the groundtruth dynamics, whereas aggregated concentrability does so
under the compressed dynamics determined by the abstraction scheme.

In this paper, we provide a novel finite-sample analysis of LSTDQ inspired by an instrument-
variable (IV) view, which comes with a new coverage parameter that we call feature-dynamics
coverage, C7. Feature-dynamics coverage replaces 1 /omin(A) and elegantly addresses the above
problems. Furthermore, it corresponds to feature coverage in a linear dynamical system induced
by the features (first studied by |Parr et al. (2008)). The system is the transition dynamics of
the true MDP compressed through the given features, and naturally subsumes the y? version of
aggregated concentrability as a special case. Furthermore, given Bellman-completeness as an
additional assumption, feature-dynamics coverage recovers the standard notion of linear coverage,
successfully unifying the previously fragmented understanding.

2 PRELIMINARIES

Markov Decision Process (MDP). We consider the groundtruth environment modeled as an
infinite-horizon discounted MDP (S, A, P, R, ~, o), where S is the state space, A is the action
space, P : § x A — A(S) is the transition dynamics (A(+) is the probability simplex), R : S x A —
A([0, Ryax]) is the reward function, v € [0, 1) is the discount factor, and py € A(S) is the initial
state distribution. We assume S, A are finite, but their cardinalities can be prohibitively large
and thus should not appear in sample-complexity guarantees. A policy 7w : S — A(A) induces
a distribution over random trajectories, generated as so ~ pg, a; ~ 7(:|s;) (or simply a; ~ ),
re = R(8t,at), sg11 ~ P(-|st, at). Let P[] and E[-] denote the probability and expectation under
such a distribution. The expected return of a policy is J(7) := Er[>_ ;2 v'r¢], which falls in the
range of [0, Vinax] With Viax := Rmax/(1 — 7). The discounted occupancy of  is defined as

p(s,a) = (1—7) tho Y uf(s,a) = (1 —7) tho V' Prls: = s,a; = al. @

Perdomo et al.[(2023) provide a bound that depends on a term related to our coverage parameter, which is
scale invariant. We will compare and connect to their results in[Section 4}
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Value Function and Bellman Operator. The Q-function Q™ € RS> is the fixed point of
Bellman operator 7™ : RS*A — RSXA je, Q™ = T7Q™, where Vf € RS*A, (T f)(s,a) :=
R(s,a) +YEsp(.|s,a)[f(s',7)]. Here f(s', ) is a shorthand for Eq/ (.5 [f (s, a’)]. Given any
f € RS*4 ag an approximation of Q™, we can induce an estimate of .J () as:

Jf(7T> = E80~M07a0~7r[f(507 ao)l, 3)

since J () = Jg= (7).

Linear Off-policy Evaluation (OPE). OPE is the task of estimating the performance of a given
target policy 7 based on an offline dataset D sampled from a behavior policy m,. As a standard
simplification, We assume that D consists of n i.i.d. tuples (s, a,r, s’,a’) generated as

(S,Cl) ~ p“Dar ~ R(S,&),Sl ~ P*('|S,CL),CL/ ~ ﬂ-(' | S/)'

We use E,,p[-] to denote the expectation of functions of (s, a,r,s’,a’) under the data distribution,
and Ep[-] denotes the empirical approximation from D. For most of the paper we are concerned
with refurn estimation via linear function approximation, i.c., estimating the scalar J(7) as Jg, ()

where @”(s7 a) = ¢(s, a)Tgfor some given feature map ¢ : S x A — RZ. We make the following
standard assumptions throughout the paper:

Assumption 1 (Feature boundedness and realizability). We assume that there exists 0* € R? such
that Q™ (s, a) = ¢(s,a) " 0*. Furthermore, assume that ||$(s,a)||2 < By, Vs, a.

Mathematical Notation. We use opin(-) and Apin(-) to denote the smallest singular value of
an asymmetric matrix and the smallest eigenvalue of a symmetric matrix, respectively. Let p(-)
denote the spectral radius of a matrix. For functions over S x A such as Q™ and d™, we also view
them interchangeably as vectors in RS>l whenever convenient. We use a < b as a shorthand
for a = O(b). Given two square and possibly asymmetric matrices > and ¥/, ¥ < ¥’ means

v (X — X < 0forall v. We let ||v]|xs = Vv T Xv denote the Mahalanobis norm.

2.1 LSTDQ

The LSTDQ algorithm estimates the following moments from data:
S =K, [¢(s,a)d(s, a)T], Ser = B0 [¢(s,a)p(s', a')T},
A=3¥- Yer, b= E;AD [¢(87 a)’l“].
Throughout the paper, we assume:

Assumption 2 (Invertibility). 3 and A are invertible.

These moments satisfy
AP —b=E,p[p(s,a)(o(s, a) 0* —r— o(s', 7T)T9*)]
= Eun¢(s,a)(Q"(s,a) — (T"Q7)(s,a)] = 0,

which implies 8* = A~1bif A is invertible, and LSTDQ is simply the plug-in estimate of this inverse:
let 32, X, A, b be the empirical estimates from D, and

Oista = A7'D,  Qista(s,a) = 6(s,a)  Oieta- “)
We do not explicitly assume the empirical matrices S and A are invertible, with the understanding

that algorithms based on these quantities have degenerate behaviors when they are singular, and our
guarantees hold under such conventionE]

’That is, either the high-probability event guarantees that the empirical matrix is invertible, or such matrices
appears in the bound and makes the guarantee vacuous (as in e.g.,[Eq. (T0)).
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3 RELATED WORKS

Coverage Parameters in Offline RL. Early research in offline RL identifies the boundedness of
density ratios, such as ||™ /11", as the coverage parameter (Munos, 2007; Munos & Szepesvari,
2008} |Antos et al.,2008)). Later works point out that they can be tightened by leveraging the structure
(Euﬂ' [f_Tﬂ-f])2 I
E pl(f=T7 P
our setting, the linear feature ¢ induces a linear F, = {¢ "0 : 0 € R?}, and these parameters often
have simplified forms. Among them, the tightest known coverage parameter for off-policy return
estimation is (Zanette et al.,|2021; |Yin et al.,[2022; |Gabbianelli et al.| [2024; Jiang & Xiel 2024):

Cr, = ((b’r)TE_l(b”, where ¢" 1= E(, o) [0(s, a)]. 5)
CT, only requires the mean feature under 7, ¢™, to lie in the span of data features, whereas alternatives
such as ;= [||¢||s.—1] require coverage of the distribution ¢(s, a), (s, a) ~ ™ in a point-wise manner;
see Jiang & Xie| (2024) for further discussions. The majority of the study on coverage, however,
crucially relies on the following assumption on F which is substantially stronger than realizability
(Q™ € F), and we do not assume it in our main results.

of the function class JF used to approximate the value function, such as sup ¢ » n

Assumption 3 (Bellman-completeness). Let F C (Sx.A — R) be a function class for approximating
Q™. We say that it is Bellman-complete if

T fe FVfeF.

Indeed, a major potential of LSTDQ is that it is one of the few algorithms who enjoy theoretical
guarantees under only realizability Q7 € F, which enables its important role in the challenging
problem of offline model selection (Xie & Jiang, 2020a; |Liu et al.l 2025)). Unfortunately, coverage in
the absence of Bellman-completeness is poorly understood even in the linear setting, as discussed in

which we address in this paper.

LSTD(Q) Analyses. LSTD methods are initially derived as the fixed point solution of TD methods
(Sutton & Bartol [2018)), and its closed-form nature separates it from typical dynamical-programming-
style RL algorithms that often suffer from divergence. While we focus on LSTDQ, our result naturally
extend to other variants such as LSTD (which uses state-feature to approximate V™) or off-policy
LSTD (up to handling importance sampling via concentration inequalities) (Nedi¢ & Bertsekas| [2003}
Bertsekas & Yu, [2009; [Dann et al., 2014).

Early finite-sample analyses of LSTD are mostly in the on-policy setting and depend on quantities like
omin (A4) (Bertsekas, 2007} [Lazaric et al.,[2010;|2012). There is a recent surge of interest in providing
tight statistical characterizations of LSTD, including in the off-policy setting, with results suggesting
the necessity of 1/, (A) for this setting (Amortila et al., 2020; [Mou et al., 2022b; |Amortila et al.,
2023; |Perdomo et al.,|2023)). These results, however, offer very little discussion on coverage, and
sometimes require additional regularity assumptions. |[Perdomo et al.|(2023) recently provides a sharp
analysis that largely subsumes the earlier results, which we will compare to in

4  FINITE-SAMPLE ANALYSIS OF LSTDQ

In this section we will present the finite-sample analysis of LSTDQ, which depends on our proposed
coverage parameter.

Special case of v = 0. It is instructive to start with the special case of v = 0 where tight guarantees
and the definition of coverage are well understood. Recall that A6* = b can be rewritten as:

E[ZX")0* = E[ZY], (6)
where Z = ¢(s,a) € R%, X = ¢(s,a) — y¢(s',a’) € RL, Y = r € R, and the expectation E[/]
is under 1. Below we will go back and forth between the linear regression (LR) notation system

(X,Y,E[XXT],...)and the RL notation system (¢, r, X, . . .), where we obtain concentration bounds
from the LR literature and meaningful guarantees for OPE in the RL setting, respectively.

When v = 0, we essentially face a contextual bandit problem with linear reward, and[Eq. (6)]becomes
E[XX "]0* = E[XY], (7)
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which is a classic linear regression problem, with A = ¥ = E[X X T]. In this special case, LSTDQ
simply performs LR to fit the parameter 6*. While parameter identification guarantees in LR (i.e.,
error bounds on H§ — 0*||) inevitably have to depend on o pin(A) = Amin (E[X X T]), the key is in
how we use tz)\lstd to form the final estimation in OPE:

J@lstd (7T> = Eso"’ﬂu,uoNﬂ[d)(SO? aO)Té\lStd} = (ngé\lstda
where
¢0 = Eso’\‘#o,ao~7r[¢(507 ao)]. (8)

That is, for the purpose of estimating J(7), we only need 6i5tq to be accurate in the direction of
@0, and a high-probability bound can be established if ¢ is well covered by the distribution of
X = ¢(s,a) where (s,a) ~ u” (Abbasi-Yadkori et al., 2011; Jin et al., 2020): informally, with
probability at least 1 — &

~ dlog(1/6

g0 () = )] = 163 Bsa — )] S 60lls 1) LB Dy ©
Here ||¢o[s—: plays the role of coverage, characterizing how well the expected feature under the
target policy 7 is covered by the random features observed in the data (which determines ). Similar
bounds with the population version of coverage ||@g||s-: also hold under additional regularity
assumptions (Hsu et al.l 2011). The quantity is also consistent with the standard notion of linear
coverage in MDPs (Eq. (5)) under the Bellman-completeness assumption (Assumption 3)), which is

equivalent to realizability in the bandit setting (y = 0).

Extending to v > 0 with Instrumental-Variable inspiration. Given that the v = 0 case is
well-understood and does not suffer the issues mentioned in the introduction, we therefore seek to
extend the above framework to y > 0. When v > 0, however, we have Z # X, and [Eq. (6)|is a form
of Instrumental Variable (IV) problem induced by “error-in-the-variable” issues: it is known that

R(s,a) = ¢u(s,a) 0%, with ¢u(s,a) == d(s,a) — YE,o[d(s',a’)|s,a],
that is, the expected temporal-difference feature, ¢4, can linearly predict reward, which LSTDQ
leverages to recover §*. However, in the data we do not observe the expected TD feature but its
random realization, X = ¢(s,a) — y¢(s’,a’), and X — ¢(s,a) is zero-mean (conditioned on
(s,a)) noise. Given such “error in the variable”, E[X X "]6* £ E[X Y], so a straightforward linear
regression from X to Y does not work. LSTDQ solves this problem by introducing Z = ¢(s, a) as
an instrumental variable, which is independent of the noise X — ¢4(s, @) given (s, a) and thus helps
marginalizes out the said noise. Based on this view, we extend the LR analysis of v = 0 to the v > 0
case by consulting the IV literature (e.g., Della Vecchia & Basul [2025)), which leads to our main

finite-sample error bounds (see for the proof):
Theorem 1 (Main Theorem). Under[Assumptions 1|and[2} with probability at least 1 — §,

Viax | CJ - dlog(1/8)
1—7 . n

[T, (m) = J(m)| 5 (10)

where

CF = (1=)*¢g A'EA™ Tgy. (11)
Here we take the convention that ég =+o0if A or S is not invertible.
Corollary 1. There exists ng such that whenn > ng, w.p. > 1 — 9,

v CT - dlog(1/6)
R _ < Ymax )
() = T()| S 122 .

+o(y/1/n), (12)

where
Ch = (1—-7)%¢g A"'SA™ Ty (13)
and ng and the o(+/1/n) term may additionally depend on 1/ min(A).

3Most analyses require ridge regression (i.e., adding AI to f]), and our analysis shows that this guarantee
holds even without ridge.
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Coverage Parameter and Tightness. Our main results consist of two guarantees where 6;; and

C7 play the role of the coverage parameters. The (1 — v)? are normalization constants, whose roles
w111 become clear in[Section 3] [Eq. (10) glves a clean bound which exactly recovers that of linear

regression in[Eq. (9)F when y = 0, we have A = ¥, and therefore CT = ¢/ S~ 1¢y = ||¢0||E L
Since 1s the well-established bound for linear regression, this demonstrates the tightness of

our bound on its dependence on 6“, d, and n.

That said, a caveat of _Eq. (10)|[is that ég is arandom variable. While such a situation is fairly common
in offline RL theory (Jin et al., 2021)), ideally we would like to have its population version C;;
(T3)), which does not depend on data randomness and is more interpretable; our interpretation in

Section § will also focus on C'7. This is exactly what we i)ffer inCorollary 1} where the asymptotically
dominating term O(1/+/n) is identical to[Eq. (10)|with C7 replaced by C7, but the spectral properties

of ¥ and A may enter the burn-in term (n) and the fast-rate term (o(y/1/n)). The fact that
is less clean and requires additional assumptions than [Eq. (10)|is somewhat expected, as this is also
the case for linear regression, where a bound that depends on ||¢g||ss-1 (instead of ||¢g||«_,) also
requires additional assumptions (Hsu et al, 2011}, [Oliveiral, 2016; Mourtada), 2022). In
we provide another result that eliminates the dependence on 1/0min (A) in the C7 bound, in exchange
for a 1/Amin(X) dependence, which we expect can be further sharpened to leverage-score-type
conditions (Hsu et al.l 2011} [Perdomo et al., [2023). Finally, as we will see in[Section 5.3] our bound
is also tight when comparing to existing OPE guarantees analyzed under Bellman completeness.

5 UNDERSTANDING THE COVERAGE PARAMETER

In this section we provide interpretations of C7 as a coverage parameter and discuss how it addresses
the issues mentioned in First, it is clear that C;f is invariant to feature rescaling, thanks

to the introduction of ¢q. That said, the expression CT = (1 — v)2¢J A'S A~ T ¢y does not lend
itself to easy intuition, let alone how it connects to and unifies existing results.

Warm-up: the tabular case. We start with the tabular setting and show that C'j becomes something
familiar, offering some basic intuitions as well as assurance that C7, a quantity that falls out of the
IV concentration analyses, holds meaningful interpretations in RL. The key is to rewrite C7 as

GATISA T pg = @) (I —yB™) 'S 1 (I —yB™)" "¢y, where B™ := %7 '%,. (14
The tabular setting can be viewed as a special case of linear function approximation with d =
and ¢(s, a) = e 4 is the unit vector with the (s, a)-th coordinate being 1 and all other coordinates
being 0. In this case, ¢g is simply the vector representation of the initial state-action distribution
uf, where (sg,a0) ~ u§ < so ~ po,ap ~ 7 BT is an |S x A| x |S x A| matrix with
[B7](s,a),(s,ar) = P7(s',d'|s,a) = P(s'|s,a)w(a’|s), i.e., the transition kernel of the Markov
chain over S x A induced by policy 7. Put together, we have the textbook identity

(1=)ég (I =vB™) " = (u")",
where we recall the definition of the discounted occupancy p™ from Plugging it into C7,
Cy=m)'S ™ =3, 1w (s,0)% /P (s,a) = Bo (™ /uP)?],
which is the x2-divergence between u™ and p” up to a constant shift and has appeared as a tight

coverage parameter (especially when compared to || u™ /11" (Xie & Jiang} 2020b)) when coverage
is measured based on density ratios.

5.1 GENERAL INTERPRETATION

We now offer the interpretation for the general setting. Note that B™ can be viewed as the multi-variate
linear-regression solution of the regression problem ¢(s, a) — ¢(s’, 7), thus

Es’wP(~|s,a)[¢<s/aﬂ-ﬂ ~ BW¢(S,CI,). (]5)
In general, the above relationship is only approximate (in we will see that it becomes
exact under an additional assumption), although B7 is the best linear predictor. This leads to the

following interpretation of C (see|Appendix B.1|for the proof):
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Proposition 1. Define a deterministic linear dynamical system {x }1>0, with xo := ¢o, and ¥t > 0,
Ty = (B™) 'z
When p(B™) < 1/, define the feature occupancy in B™ as pjj = (1 =) 3,50 ~txy, then

Cq = (ug) 27" g

The proposition rewrites C’g in a form that closely resembles the standard notion of linear coverage in
the literature, where we see the expected feature occupancy under the target policy (7 here) measured

under the data-covariance norm ¥~ ; see Accordingly, we call C7 the feature-dynamics
coverage. The difference is that here the Teafure occupancy is defined in a deterministic dynamical
system BT instead of the true MDP. Furthermore, while the latter, ¢™ := E(; o), [¢(s, a)], is
always bounded, p, on the other hand, may not be bounded in general and {2t }+>0 may actually
diverge. The connection between LSTD and the linear dynamical system B™ was first identified by
Parr et al.|(2008) (see also|Duan & Wang| (2020)), though they focused on the algebraic equivalence
between LSTD and the model-based solution in B™, and did not perform finite-sample analyses or
connect this to the notion of coverage.

When is feature-dynamics coverage well-behaved? Our bound sharpens and generalizes existing
understanding of when linear OPE using only realizability is possible. We provide a comparison
to [Perdomo et al., whose analysis was shown to be sharp and subsume many prior conditions
known in the hterature They establish that, under some regularity assumptions, | Z/2(6* — )]s <

- Estat, fOT SOME Eg¢ay Which is polynomial in d, 1 / n,log(1/4), and spectral

Omin(I—75— 1/22 L 5-172)
properties of Y. While they only show function-estimation guarantee on 1 (c.f.|Appendix C} , this
intermediate result immediately implies a return-estimation guarantee comparable to ours:

l[¢olls-2
— <
‘J (m) = J(m)| < Omin(l — 72125, 5-1/2)
As we have already shown that our statistical rate is tight, it suffices to compare our Cg to their
multiplicative factor in front of e55¢. In particular, we establish the following relationship (see

for the proof)

Proposition 2.

VCF = (1=l = 4= 1252712 T2 126, < (1 - )

lstd * Estat -

l[¢oll-»
Umin(I - szl/chrZ—l/Q) .

This demonstrates that our coverage parameter provides a tighter return-estimation guarantee com-
pared to the approach of |Perdomo et al.| (2023)). As an immediate consequence, we also subsume
other known conditions for this setting that were captured by [Perdomo et al., including on-policy
sampling (Tsitsiklis & Van Royl [1997), Bellman completeness, low distribution shift (Wang et al.,
2021)), symmetric stability (Mou et al.| [2022a)), and contractivity (Kolter, [2011)) (see the discussion in
Perdomo et al.| for formal definitions). Furthermore, we consider the 1/0,;,-type bound to provide
little intuition about necessary coverage conditions for this fundamental task, and the unification of
C7 with existing concepts in the literature to be a major contribution.

5.2 RECOVERING AGGREGATED CONCENTRABILITY

State abstractions are a special case of linear function approximation, where each state s is mapped
to one of the K abstract states, ¢(s) € {1,..., K}, effectively treating states with the same v(s) as
aggregated and equivalent to reduce the size of the state space. Under the abstraction scheme, the
natural model-based solution coincides with LSTDQ with ¢(s, a) = ey ,. When we only assume
realizability (Assumption 1)), this has been analyzed by Xie & Jiang| (2020a); Zhang & Jiang| (2021);
Jia et al.| (2024)) with the followmg notion of aggregated concentrability as its coverage parameter.
Definition 1 (Aggregated concentrability). Given vy : S — {1,..., K}, define the abstract MDP
My = (S4, A, Py, Rs, 7, ho) where{ﬂ5¢ ={1,...,K}, and

12 (5,0) - Episron (Sovriorrons P15, )
Zs:z/)(s):k /”LD(SVQ) .

*The definition of R, is irrelevant for our purpose and thus omitted.

Py(K'|k,a) =
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t=0 t=1 t=2 t=3
State distribution T T ™ T
space A(S x A) Ho pr 'u:l pr 'u:2 - /{3 pr
Eq[e] ' '

Feat tati B" v BT . B B
eature expectation . P P
o I €Z9 T3

space R?

Figure 1: Illustration of the evolution of occupancies under the true dynamics P™ (top row) and that
of features under the compressed dynamics B” (bottom row). Under Bellman completeness, the
dashed blue arrows hold and two routes (— ... — | vs. |— ... —) yield the same expected feature
vectors, but they are generally different without such an assumption.

For any 7 that only depends on s through 1)(s), aggregated concentrability refers to measures of
W,/ uf, either in || - ||oo or X* form, where Wy, is discounted occupancy in MDP Mg, and

Mg(k, a’) = Zs:q/)(s):k ILLD(S7 a’)'

In this definition, Py is the dynamics over the abstract state space, and it is easy to see that the
transition kernel of abstract-state pairs under 7 is P = B™, and ¥ = diag(ué’ ). As aresult, cy

recovers the x? version of aggregated concentrability (see|Appendix B.3|for the proof):
Proposition 3. When ¢ is induced by a state abstraction v and 7 depends on s only through 1)(s),

C;Sr = E(k,a)w,ug [(/L}de) /Nf)Q]

5.3 RECOVERING STANDARD LINEAR COVERAGE UNDER BELLMAN-COMPLETENESS

Prior results on abstractions leave an intriguing question open: they measure coverage by analyzing
error propagation in My, which a lower-dimensional and approximate model compressed from M
by ¢, as evidenced by p7, in the definition of aggregated concentrability; this is also consistent
with our results in where occupancy is measured in the compressed linear dynamical
system B™. On the other hand, the mainstream notion of coverage in linear OPE, obtained under the
Bellman-completeness, is CfT = (¢™) T 1¢™ , which is concerned with error propagation
in the true dynamics M since ¢™ is defined w.r.t. the occupancy p™ in M. This begs the question:

Is error-propagation in compressed models,
as in (Q™ -irrelevant) abstractions, an exception and outlier?

While anecdotally this has been the general perception from the community, our results below suggest
otherwise, and the results that are seemingly disconnected with each other can be elegantly unified

through the following proposition (see [Appendix B.4|for the proof):

Proposition 4. Let Fy := {676 : 6 € RYY} be the space of functions linear in ¢. Assume Fo satisfies
Bellman-completeness (Assumption 3). Then, (1) B™ becomes an exact model for next-feature
prediction, Le., IEs’NP(-\s,a) [(,ZS(S/, W)] = (Bﬂ)qu(Sa a)v (2) ,ug = QSW’ (3) p(Bﬂ) <1 and(4)

CF =Chy = (") 579",

The essence of the proposition is illustrated in [Figure T} showing that the expected features produced
by the groundtruth dynamics (¢™) and the compressed dynamics (ug = (1—7) >, 7" coincide
under Bellman-completeness, thus demonstrating that error propagation through true dynamics is
a special case of and thus unified with that through compressed dynamics.

Connection to Bellman Residual Minimization (BRM). Many (if not most) algorithms for
learning Q™ with general function approximation coincide with LSTDQ under linear function
approximation (Antos et al., 2008} | Xie et al.| 2021} [Uehara et al.,[2020), and this fact allows us to
compare our bound to the more general analyses in the literature. Among those algorithms, BRM
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is a well-investigated example, which approximates Q™ by solving the following minimax problem
(Antos et al.,[2008)):

o~

f = argmin sup (Ep[(f(s,a) —r — f(s',m)*] = Ep[(f'(s,a) =7 — f(s',7)°]) ., (16)
feF feF

whose finite-sample guarantee can be established under Bellman completeness (Assumption 3)). [Antos

et al.| (2008)); Xie et al.|(2021)) show that when F is linear, the solution coincides with LSTDQ, so we

can compare the guarantee of BRM under linear F with our Theorem|[I] Jiang & Xie| (2024) show

that BRM’s error bound is (see their Eq. (18))

I

(ﬂ') —J(Tr)‘ < ‘/Inax . cm lOg(“/—"V(S)

~1l—y n
In the linear setting, their C™ is C]}, (see their Eq. (22)), and log |F| ~ d based on a standard

1 .
covering-number argument. Under such translation, the main O(n™ 2) term in our [Eq. (12){match
the guarantee of BRM, not only in coverage, but also in horizon and d dependence.

5.4 UNIFICATION WITH MARGINALIZED IMPORTANCE SAMPLING

In we mentioned that many algorithms designed for general function approximation
reduce to LSTDQ when linear classes are used. Another example is Minimax Weight Learning
(MWL,; |Uehara et al.,2020), a representative method for marginalized importance sampling, whose
key idea is illustrated by the following inequality: given F such that Q™ € F,Vw : S x A — R,

< sup Jf(ﬂ—) + ﬁ ﬂD[w(87a) (v f(s ) = f(s,a))]], (A7)

‘ED (s,a)r) = J(m)| < sup

so learning w from some WV class that minimizes (the empirical estimate of) the RHS to ~ 0 ensures
that 1~ E o [w(s, a)r] is a good estimation of .J (). Theoretically, if some w* € W sets the RHS
of to 0, finite-sample guarantees can be established, where coverage is reflected by the
magnitude of w*. As an example, w*(s,a) = u™(s,a)/u (s, a) always sets the RHS to 0, and we
pay the size of w* as the coverage parameter (e.g., || " /1P || ) through concentration inequalities;
see Xie & Jiang|(2020b} Section 6.2) for further discussions on this.

When both W and F are linear, Uehara et al.|(2020)) show that the MWL algorithm is equivalent to
LSTDQ. We now show that their coverage parameters and guarantees, when improved with insights
from follow-up works, coincide with our analyses in the linear setting. In particular, [Zhang & Jiang
(2024) point out that the w* that minimizes the population objective [Eq. (17)|takes a different form
in the linear case: w*(s,a) = (1 — v)¢J A~1¢(s,a). An immediate implication is that

E,o[w*(s,a)’] = cy.

That is, the second moment of w* on data is precisely our coverage parameter. While [Uehara et al.
(2020) measures the size of w* by |w* ||~ due to the use of Hoeffding’s inequality, replacing it with
Bernstein’s will improve ||w* ||« to E,,o [w*(s, @)?] in the main O(n~'/2) term, which matches our

bound in Eq[(T2)]

6 CONCLUSION AND DISCUSSION

We tackled the fundamental problem of linear off-policy evaluation under the minimal assumption
of realizability. We re-analyzed a canonical algorithm for this setting, LSTDQ, and developed error
bounds that introduced the feature-dynamics coverage, a new notion of coverage that tightens and
sharpens our understanding of this setting. This parameter admits a natural interpretation as coverage
in a feature-induced dynamical system, while simultaneously generalizing special cases such as
aggregated concentrability with state abstraction features and linear coverage with Bellman-complete
features. Altogether, our results serve as clearer and more unified foundation for the theory of linear
OPE.
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DISCLOSURE OF LLM USAGE

In the initial phase of the project, the authors had a vague conjecture and rough road-map of the
main results in the paper, and used an LLM to execute the plan further to verify the feasibility of
the project. We also subsequently used LLMs to help with literature review and proofs with some
elementary linear-algebraic lemmas.
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A PROOFS OF [SECTION 4]

A.1 PROOF OF[THEOREM 1]
Theorem 1 (Main Theorem). Under[Assumptions 1|and[2} with probability at least 1 — 4,

Vinax | O - dlog(1/5)

6,0 () = 77| £ 5 — " (10)
where
C5 = (1—7)%p A'SA T gy (11

Here we take the convention that é;f =+o0if A or S is not invertible.
Proof of We start by writing:
I510a () — J(W)‘ = |Esgmpio,a0~m {QW(Sm a0) — Qista (o, ao)} ‘

Eso~po,agmm [Qb(SO» aO)T (9* - é\lstd)}

b

where in the second line we have used realizability 1) and the definition of @md. We
can continue with simple algebra to find that:

Boupo aar [9(50,a0) (8" = Biaa) ]| = | (0" = Bia )|
= |og A~ (46" - Aﬁlstd)‘

= [og A71825112 (40" — )|

IN

)

2

224 [ 2 (Ao~ )

where in the last line we have used Cauchy-Schwartz. To proceed, we note that, when A is invertible,

we have Afq — b = A(A’ll;) — b =0, and thus, ||>~1/2 (flglstd — b) H = 0 whenever 3. is
2

invertible. Thus,

=), < (5 )+ 5 a-5))

<[5 aer -3)],

‘We then note that

S N =

which yields that

R ey

The proof will be concluded by establishing the following concentration lemma.

(i)

Lemma 1. With probability 1 — § over the randomness of the rewards and sampled transitions, we

have:
“271/2(140* _i))”Q S O(‘/Inax leg(1/5)>

n

13
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Proof of We firstly note that

1219* _i): *Z(ﬁ 3170'1 Szaaz)Te _7¢(81’GZ)T9* _ri)

== Zgb swaz Q" (si,ai) —ri — Q" (s}, z))

=c;

Thus, A6* — b is a random variable that is conditionally zero-mean, when taking conditional expec-
tations over the 7; ~ R(s;,a;), si ~ P(s;,a;), and a; ~ 7(- | s}) (keeping the design over s;, a;
fixed). Note that |e;| < 2Vipax-

We apply a vector martingale Bernstein inequality (Lemma 10) on the random variables Z; =
Y12¢(s;,a;)e;. Fori € [n], we let H; = {s1,a1,...,5n,an} U {7“1, sh,al, ... ri, 85,a z} denote

the histories including the entire design over s;, a; but only the first ¢ samples from i, Sk, a}. Note

that Z; is adapted to the filtration generated by H;, and is a martingale difference sequence, since

E171[§_1/2¢(5i7 ai)ei] = Ei_1ed]||o(si, a:)|g—1 = 0.
In the sequel we establish the following simple technical lemma.

Lemma 2. Let xq,...,z, € RY and assume S=1 ZZ 1 x;x; is invertible. Then for all i € [n]
we have:
x;rE_lsci <n

Using, we then have that

1572 2(si, ai)eilla < 2Vimaxl 651, i) 51 < 2Vimax v/,

which establishes the norm bound. Lastly, for the variance term, we have:

n n
D EallIXalP) =Y Eicalellldalldo.] < 4Vipa ZH@II
i=1 i=1

Note that the summation is equivalent to:

znjasZ S —Ztr “16ig) ) = ntr(S ZMT
1=1

since the trace of the identity matrix is d. Plugging these observations into[Cemma 10]gives that

Hi*l/Q(Ag* — l;) < 1 <Vmax 8nd10g(2/5) + ;Vmax\/ﬁlog(2/6)>
n
o (V W) |
n
as desired. =

Proof of Lemma 2l Consider the un- normalized empirical covariance matrix X, = Z?:l xix;r .

Letv = x; X z;. Foreachi,letY = S; + z;z, . Note that S; = D i :ijjT is a PSD matrix, as
is £716;51. Then, we have

un

0<z, S18S e =2 5] Tula

—(z )?
un un un un °

This implies that v(1 —v) > 0, thus 0 < v < 1. O

14
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A.2  PROOF OF[COROLLARY Il

Corollary 1. There exists ng such that whenn > ng, w.p. > 1 — 9,

v CT - dlog(1/6)
N B < max )
Tguam) = I0)| £ 722 -

+o(1/1/n), (12)

where
Ch = (1-7)%¢g A"'SA™ "¢y (13)
and ng and the o(\/1/n) term may additionally depend on 1/cmin(A).

Proof of |(Corollary 1, We begin by noting that it is sufficient to provide a high-probability bound on
‘C’g - ég < ¢, for some ¢,, = o(1), since by [Theorem 1|and the inequality va + b < \/a + /b
we will then obtain

v (c;; + sn) - dlog(1/9)

T = Im)| £ 722
< Vinax | [CF - dlog(1/0) o Vinax  [en - dlog(1/0)
3

. C7 -dlog(1/6
- = L) s o).

‘We now proceed to bound ‘Cfg - ég with high probability. Towards this, we note that:

ez - &3

= (1= [IZ2A T goll> — [SH/24 T go

IN

1o - 104 Tl
GO WS [CERSEY RN

< 0 52 - a0 - 2 ),

via applications of the triangle inequality and operator norm bounds. Let £(£1/2) = || /2 — £1/2|,
ande(A~1) = ||A=t — A71|5. Note that the above inequalities imply

ez - &3

< (1-9)*By ((Amax(21/2) + 5(21/2))5(/1*1) +e(21?) (18)

We conclude by bounding £(X'/2) and £(A~"). We first establish a concentration lemma for
IS — 5l and |4 A
and ||A=1 — A=1]||,. The following concentration lemma will be proved in the sequel. O

5, and then show how this can be converted to bounds for || S1/2 — $31/2]|,

Lemma 3. With probability at least 1 — 9, we have:

25 <0 \/Amax@)(Bi + Amax(2)) log(d/9)

n

= e(X).

and

”A - A”Q <0 ((B; + O'max(A)) IOg(d/(S)> = €(A)

n
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We use the above bound on || — $||5 in combination with the inequality [|©1/2 — $1/2||, <

\/||1= = |2 (van Hemmen & Ando, 1980 to obtain:
1/4
- = Amax(2) (B2 4+ Amax (X)) log(d /6
||21/2—21/2||2§ /||Z—E||2§\/@:O ( (E)( é (%)) log(d/ ))

n

Then, to bound |4 — A~!
Lemma 4 ((Stewart & Sun,|[1990)). Let A € R™*"™, with m > n and let A=A + E. Then,

1+V5
2
Furthermore, if |E|l2 < omin(A)/2, then

A=Y — A7Y|o S 1A BIE 2.

2, we note the following lemma.

€A™ < max{ A~ o, [ A2 } ]l

This immediately implies that, for || A — AHQ < omin(A)/2, we have

1 Bi + Umax<A) 10g(d/5)>

Omin (A) 2
This latter condition is equivalent to

2 2
(B3 + omax(A)) tog(d/0) < Tminld) _, 4, Z (W) log(d/5) .

n 2
=no

A — A7y <

14— Al :o< — ) ‘

We set this latter quantity as our burn-in time ng. Returning to Eq. [(T8)]and combining everything,
we have:

‘CQ - (3| < P < -
(1 — 7)2By [ Amax(X) (B3 + Amax (X)) log(d/8)\ 1/4
N o—min(A) : ( : n )

=o(1

)
Proof of ‘ We firstly establish that the bound on ||f] — ||s. To do this, we use Matrix
Bernstein (Lemma 8). Abbreviate X; := ¢(s;, a;), and let Z; = X; X,' — ¥ be the centered matrices.

For the almost sure bound, we have
1Zillz < XX |2 + 2]z < 1X6]13 + Anax(E) < B + Amax(%)-

For the variance term, we have:
(XX %))

= |[E[(X: X)) - 22|
< |BEE[X:X] - ¥,
< B2 Amax(2) + Amax (D).

I

This yields

15 -2 < \/ 2hunnx()(B3 + () 108(20/8) 2053 + M) Iog(24)

n 3n

n

o \/ Ama(2) (B2 + Amax (%)) log(d/)

5See also this answer by user “jlewk” on Math StackExchange: https://math.stackexchange.com/a/
3968174
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We now establish the bound on || A — A||5 again via Matrix Bernstein (Lemma 8). Define the notation
Xi = ¢(si,a;) and X| = ¢(s;,a;) —y¢(s;,a}). Thenwe let Z; = X;(X]) " — A denote the centered
matrices. For the almost sure norm bound, we have

1Zill2 < I Xall2ll XNz + [|All2 < BZ(1+9) + 0max(A) < 2B + omax(A).

For the variance terms, we have:

[ ||2

H]E[(Xi(xm —A)(X(x)T - A)T] HQ = |[E[X: (X)) T XX, — AXX] — X/X[ A+ AAT]
<ABF|E[XX |, + [|AAT,
= 4B¢23>\max(2) + GIIlaX(A)27
as well as
[E[(aexnT = 4)T (xaxnT = )] | = IB[XG) T Xa(XDT = ATX(X)T — X[XT A+ AT A]

[ ||2

camp+ aaT],
= 4B$ + UmaX(A)Q'

With the latter, the variance term and the norm bound are of the same order, which gives

n

1A — Al < o((B; + Omax(4)) bg(d/f”)

B PROOFS OF[SECTION 3|
B.1 PROOF OF[PROPOSITION 1]

Proposition 1. Define a deterministic linear dynamical system {x, }1>0, with xo = ¢o, and ¥Vt > 0,
Ti4+1 = (BTF)T.’E
When p(B™) < 1/, define the feature occupancy in B™ as pj; := (1—7) tho ytay, then
Cq = (ug) =7 g,
Proof of Recall that we defined B™ = ¥~ '%.,. We note that
A=Y —~%, =3I —~B").

Substituting this into C7;, we arrive at the expression:

CF=(1-7)2dg AT'8A T = (1 =7)2¢g (I —vB") 'S (I =B") g, (19)

Note that when p(B™) < 1/, the matrix (I —~yB™)~ " has the series expansion:

(I—=vB™)"T =) 4((B
=0
Thus, we notice that
(I —~B")" Z’Y Bﬂ ZV Ty = 77/%
Substituting this into Eq. [(T9)] gives the result. O
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B.2  PROOF OF[PROPOSITION 2]

Proposition 2.

CT =(1— I — 271/22 r271/2 7T271/2 <(1-— ||¢0||2*1 )
\/7 (1= =~ o ) ¢oll2 < ( V)amin(l—vx—l/ZECrZ—lﬂ)

Proof of The derivation is as follows:

dg ATTRAT gy = ¢o(Z — YZer) T IB(E — 8a) T o
_ %T (21/2(_, B 7271/22“271/2)21/2) —12(21/2(1 - 7271/QEcr271/2)21/2) —Tgi)0
_ ¢JZ_1/2(I _ 72—1/220’2—1/2)—1(] _ 72—1/2202—1/2)—TE—1/2¢0
= (I =4S 28, 27 12)"TE 120 |I3.

B.3 PROOF OF[PROPOSITION 3|

Proposition 3. When ¢ is induced by a state abstraction 1) and 7 depends on s only through 1)(s),

Cg = E(k,a)wuf [(M?\'@b/uq?)ﬂ

Proof of [Proposition 3. Let ¢(s,a) = ey(s) 4, Where ¢ is the state abstraction function. We

compute the A matrix. Below, we define P™(s',a’ | s,a) = P(s' | s,a)w(a’ | §'), P(K' | s,a) =
ZS’:’L/)(S’):]C P(Sl | S, a/), and

Pk d" | s,a) = P(K' | s,a)m(a" | k'),

which is valid since 7 is consistent with the state abstraction. To start, the covariance matrix >
becomes

X= Es,aw,uD [(ZS(Sa a)d)(sa a)—q = Z Z .uD(Sv a)ek,ae;r,a

k€[K],a€[A] s€S:(s)=k

Z ekyae;a Z uP (s, a)

ke[K],a€[A] sESY(s)=k
- Z ek,aeg,aug(ka Cl) = Ddata € R[K]‘[A]X[K}.[A]a
ke[K],a€[A]

18
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where we recalled the definition of ,ug (k,a) = X sesp(s)=k uP (s, a), and introduced the diagonal
matrix Dqa, With elements ,ug (k, a) along the diagonal. Let’s examine the cross-covariance e, .

Yo = Es,aNp,D [¢(87 a)¢(8/’ a/)T]
= Z uP (s,a)¢(s,a) Z P™(s',d | s,a)p(s',a’)"

se€S,acA s'€S,a’eA
= Z €k.a Z 1P (s, a) Z Z P(s',d | s,a)el o
ke[K],a€[A] seS:Y(s)=k k'€[K],a’€[A] s’€S:p(s’ )=k’
= Z €k.a Z uP (s, a) Z ep P (K d' | s,a)
ke[K],a€[A] seS:Y(s)=k k'€[K],a’ €[A]
= Z €k.a Z en o Z uP (s,a)P™ (K ,d’ | 5,0)
ke[K],a€[A] k'€[K],a’ €[A] SESY(s)=k
Zs S:p(s)=k #D(S7Q)Pﬂ(l€/’a/ | S’a)
D I S e
kelKTacld]  ke[K].a'elA] He \F>
= Z €k,a Z ep iy (k,a)PT(K d' | k,a)
k€E[K],a€[A] k'€[K],a’ €[A]
= Ddatapga

where we recall the definition of the aggregated transition matrix PJ with elements
Zszw(s):k IU‘D(S? a)PTr(k/? a ‘ S, a)

ul (k. a)
Putting our expressions for 3 and 3., together, we conclude that

PI(K',d | k,a) =

Note that PJ is the m-dependent transition kernel of the MDP M, over the state space [K] with
action space [A]. We assign the MDP an initial state-action distribution fi 4 in the canonical way:

poka) = Y po(s)m(als) = po(k)m(al k),
sp(s)=k

again using the fact that 7 is consistent with the abstraction . Note that in the state abstraction
setting, we have

¢0 = Esomug,awﬂ' [(b(S,CL)] = Zek,a Z HO(S)W(Q | S) = M&qﬁ)
k,a s:p(s)=k
Finally, our coverage coefficient becomes
C3 = (1=7)*00A"SA™ g = (1 =7)°ug 4 (I = ¥PF) " Daa (I = ¥ PF) 115 -

Since P is a stochastic kernel with spectral radius less than 1, we have

1
a\—1T _ t T\E\\ T o T
(I =~P5) " poe = §7 (P5)") o = T My

i.e. this is precisely the discounted occupancy of policy 7 in the abstract MDP M. Thus,

C3 = (3s,) DakaW1,) = Br ot |31, /17

as desired.
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B.4 PROOF OF[PROPOSITION 4]

Proposition 4. Let Fy := {670 : 0 € RYY} be the space of functions linear in ¢. Assume Fo satisfies
Bellman-completeness (Assumption 3). Then, (1) B™ becomes an exact model for next-feature
prediction, i.e., By p(.|s,0)[0(s,m)] = (B™) T ¢(s,a), (2) pgy =", (3) p(B™) < 1, and (4)

Cp=Ch,=(¢") 79"
Proof of Proposition 4

(1) B™ is an exact next-feature predictor: E,/ . p(.|5,0)[¢(s,a)] = B"¢(s,a) for all (s,a). First,
we show that under Bellman completeness F, is also closed under the transition operator P7 :=
T™ — R, thatis, P™ f € Fy forall f € Fy.

The linearity of F together with Bellman completeness immediately imply that the reward function
is linear, or R € Fy. Define f, € Fg to be the function corresponding to the parameter § = 04, so
that fo(s,a) = 0 forall (s,a); we have 7™ fy = R € Fy.

Next, fix any f € F4 and observe that 77 f is also linear, since 7™ f € F, under Bellman
completeness. It follows that 77 f — R = P™ f € F, because the difference of two functions linear
in the same features is also linear in those features, which proves that F is closed under P™. This

closure implies that for any f € F,, there exists some §; € R such that
¢’(5, a)Tef = (,Pﬂf)(sv a) = ES’NP(-\s,a) [f(8/7 7T')]

To prove the stated claim we will utilize choice instantations of such functions and their corresponding
parameters. For i € [d], define the function f; := (¢, e;) € F,, and let §; € R? be such that

P(s,a)T0; = Eyp(is,alfi(s’, )], V(s,a).

Then for all (s, a),

Es’~P(-|sﬁa) [fl(‘s,?ﬂ')] - 01T -
By p(s,a) [fa(s', )] _ 6; o
Esnp(js,a)o(s’,m)] = : = : $(s,a).
IEs’NP(~|s,a) [fd(s/’ﬂ—)] - 0; e
N—

Lastly, we will show that the above system of equations is satisfied by setting
() =252 =(B")".
Right-multiplying both sides by ¢(s,a)" then taking the expectation over (s, a) ~ u”, we obtain
E(sasrayoupx pxx (005, a)8(s,0) ] = (BT) " Eqoaymur [0(s,0)0(s,0) 7]
Solving for (B’T)—r and rearranging gives
(B)T = (B sty cpce [0, @)(s' @) T]) T8
=3, o

which confirms that B™ = ¥ ~13, satisfies for all (s, a) the equivalence

Eqnp(fs,m (05, m)] = (BT) (s, a).
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(2) Showing 11 = ¢™. Recall that ¢™ = E(, 4)~ = [¢(s, a)]. Using the Bellman flow equations for
©™, we obtain a recursive system of equations for the dynamics of ¢™:

= Z Cb(sv a),u”(s, a’)

=Y d(s,a) | L =g(s,a0) +v Y P(s,a|s,a)u" (s, a')

s',a’

= (1 - 7)¢0 + FY]E(s,a)Nu’r DES’NPHS,a) [¢(5/7 Tr)]]
= (1=%)60 + 1 E(s,0)er | (BT)  6(5,0)]
= (1—7)¢o +(B™) o7,

where we invoke the result from (1) in the second-to-last line. Repeatedly expanding the RHS of the
equation with the recursion,

6" = (1 =7)¢o +7(B") " ¢"
(L =)0 +(B") ((1=7)d0 +7(B™) ' ¢7)

I RN (M

Z v ( ) Po,
which is exactly the definition of ;1] from

(3) Showing p(B™) < 1. The proof of (2) implies that for any (sg,ap) € S x A,
((B™) ") ¢(s0,a0) = E(g gympreoeo[¢(s,a)], where puf**" is the t-th step state-action distri-
bution under  when the initial state-action pair is the given (sg, ag). Given ||¢(s, a)|| < By, V(s,a),
we have

((B™)")'é(s0,a0) < By, Vt.

Given that 3 is full-rank, we can always find {(séi s )) ", such that {u; := (b(sé ), aé )) )
forms a basis of R?. Then we have ||((B™) ")tu;|| < B¢,Vt

Now we show that ||((B™)T)¢|lop, where || - [|op is the operator norm, also has a finite bound that
is independent of ¢. Recall that operator norm is the largest singular value; let the corresponding

. d
singular vector be u, and we express u = »._; o;u;. We have

(BT lop = (BT ull—llzaz Bm)" uz||<Z|az|B¢— v,

The key here is that the upper bound v < oo is independent of ¢. Plugging into the Gelfand’s formula,
we have
p(B™) = p((B™)T) = lim [|(B™)T)'lgg" < lim v'/* =1.
—00

t—o00

(4) Proving equlvalence Cr = C’lm Recalling and the definition of 41, following the
proof of [Proposition 1| when Omax(BT) < 1/ we may write
Ch=(1—7)°¢g A7'SA "oy
= (1=7)%0g (I =yB™) "' 2" (I =9B™) " 6o,
= (u3) 27w,
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Substituting the previously derived identity that 17 = ¢™ in the last line,

(up) = s = (67) ST = O,

C FUNCTION ESTIMATION GUARANTEES

For most of the paper we have focused on providing return estimation guarantees, i.e., error bounds for
estimating J (7). In some scenarios, it is desirable to obtain stronger function estimation guarantees
(Huang & Jiang, 2022; [Perdomo et al., |2023), that @thd and Q™ are close as functions, typically
measured by weighted 2-norm. Indeed, our proof of Theorem|I]can be easily adapted to provide the
following guarantee:

Theorem 2 (Function Estimation). Under the same assumptions as w.p. > 1 — 6, for any
veAS x A,

A Vmax 671- N dl ]. 5
VB l(Q(5:0) — Quaalo )] £ [ Sl Lo8LLD)

where 6;; = (1= )% E(sp,00)~v [||§1/2E_T¢(307 a0)||§]

When v = g o 7 is a point-mass, the LHS of coincides with that of and the

guarantees on the RHS are identical, too. Also recall that the naive analysis based on 1/0min(A)

[Section 1)) provides parameter identification (i.e., bounded ||§1std —6*||), which immediately provides
~ function-estimation guarantee. This result is directly implied by our [Theorem 2| where the
coverage parameter can be bounded as a function of oy, (A4) and By,

Remark on Cf. Similar to we can induce a corollary that depends on the population

version of Cf , which we denote as CT, . It is interesting to compare it to standard coverage parameters
that enable function-estimation guarantees under completeness (Section 3)). Note that the term inside

Cf, = E(sg.a9)~v['] is simply C7 but for a deterministic initial state-action pair (so, ag). Applying
we have
I T Ty —1 7
Cfn = E(SO,GO)NV [( so,ao) E ¢S(},ag}7

where ¢7 . = E(s.q)~ My o [¢(s, a)] is the expected feature under the occupancy induced from

deterministic sg, ag as the initial state-action pair. In comparison, the standard coverage in the
literature is

C(l7irn,fn = E(S,a)~u" [¢(3’ a)TZ_lqﬁ(s, a)}-

As can be seen, our C'y, is in between C7 and Cyf, ¢, since we partially marginalize out the portion of

u™ that can be attribute to each initial state-action pair, instead of measuring every single (s, a) ~ u™
under X! in a completely point-wise manner.

Proof of We repeat a similar derivation to Eq. [21)] noting that the proof holds when
the initial state-action distribution sg ~ pg, ag ~ 7 changes to an arbitrary distribution v.

X 2
E (s0,00)~v [(QW(SO#IO) - letd(507a0)) }
= E(sg,a0)~r _(¢(80, ao) " (9* - é\lstd))z}

= E(ay.a0) v -(¢(SO’ao)TA—1§1/2§—1/2A(9* _ é\lstd))z}

: S1/2 4-T Hla—1/2 4 o 2
< Eso,00)~v HZ 24~ ¢(50760)H2HE_ / A<9* _elstd>H2:|
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As in the proof of we note that
i ) =[5 5

2

< Hi—lﬂ(zw* —b)

b

2

since A@Std — b =0and ¥ is invertible. To conclude, we recall that the concentration bound from
Lemma 1} which implies that

Hi—l/Q(Ae* _ i))”% _ O(V,idxdlog,lil/é))

Plugging this in yields the proof. O

D Loss MINIMIZATION ALGORITHM

Here we provide an alternative analysis to[Corollary T| where we are able to eliminate the dependence
on 1/0min(A), but the rates still depend on 1/0min (X). The analysis also requires a slight change of
the LSTDQ algorithm to a loss-minimization form (Liu et al.l 2025):

Oisea = arg min|| S~ (A0 — D). (20)
0co

In practice, when Ais near-singular, the inverse solution A% may have a very large norm which
is clearly problematic, demanding some regularization to control the norm of the solution. The
loss-minimization formulation of [Eq. (20)|is a natural abstraction of this process, where we search
for 0 in a pre-defined parameter space with bounded norm. If A=1h € ©, it is easy to see that the
loss-minimization solution coincides with the inverse solution; when A-1p ¢ 0, still outputs
a bounded solution to ensure generalization and good statistical properties.

We will need the following boundedness assumption on ©.
Assumption 4 (Boundedness of ©). Assume ||0]|2 < Beg, V60 € ©.

)\max(

Additional linear algebraic notation. For symmetric X, let k() = )\7@2)) be the condition

number, where Apax(+) is the largest eigenvalue. Let tr(A) be the trace of a matrix A.
Theorem 3. Assume that n 2 log(d/8)k(3)Be/Amim(%). Let ¢g = Egy i a0~ (S0, a0)] denote

the initial feature. Under[Assumptions 1} [2|and ] the estimator in Eq. [(20)| satisfies that

dlog(Bend—1)

Cﬂ'
¢
0] L s et T

1—

)

with probability at least 1 — 0.

Proof of Let £(6) and £(0) denote the empirical and population vectors:
0(0) = A0 —b and £(F) = Af —b.

Recall that A9* = b and thus £(0*) = 0. We establish in the sequel the following concentration
lemma.

Lemma 5. With probability at least 1 — 6, we have that for all § € O:

288d1og(864Bgnd—1)
)\min (E)’I’L

= Estat-

[57/200) s — |57 /20(0)s| < max{ B, B, Rmax}ﬁ
We also note the following simple technical lemma.
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Lemma 6. For all v € R%, we have

Amax(271)
Arnin(iil)

< - Amax (571
UTEflv, and UTEAUSMUTEAU.

Ty —1
% <
Y Y Amin(zil)

Recall that 6 satisfies arg mingcg |571/20(6)||5. We now show that ILemma 5|and ILemma 6| imply
that ||X~1/2¢(6)||2 is small. This follows since:

I==Y20(8) 12 < [Z7Y20(8) |12 + estar

Amax -1 ol PN
< 2D 172 +
)‘min(z_l)
Amax(z_l) $—1/2)p*x
< m”z 002 + estar
)\max(zil) )\max(/\fl) _1/2;
< — . by /2€ 0* ta
_\//\min(gl) )\min(z—l)” (07)ll2 + estat
Amax(E1) Amax(E71) oy (1) (51
< max/\ _ Z\max N /26 0* 1 max,\  Amax "
%min@l) (@) O TS ET) Ra®) )
= (14 VD) e

VR(E)A(E)estat.

In the sequel, we also show concentration for the condition number of Sto Y.

Lemma 7. Let n > 3210g(6d/6)k(X) (Bi/Amin(S) + £(X)). Then, with probability at least 1 — 6,
we have:

IA
)

K(Z) < 35(%)

This implies that, under the condition on sample size, we have H %-1/24(f) H < V126(%)egtat With
2

high-probability. We can now conclude the proof. Under the conditions and events stated above, we
have:

Esompio.aon | @7 (50, a0) — letd(307a0):| ‘ = |Esompo,a0~r {(b(soa ag) " (9* - glstdﬂ ‘ (21)
= |og (0 Biaa) |

— |ég (476 = Ba)|

a7 o )

= |pg A Ix1/2x-1/2 (b - Aé}std)‘

= |pg ATInV/2p71/2 (b - Aﬁlstd)\

< a2 )|
2 2

= =724 o] |72 (481 - 0)
dg A~ISA=T o ||~ 1/20(8) |2

IN

CIV126(5)estat, (22)

as desired. We now establish [Lemmas 3|to[7]
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O

Proof of Let 6 be fixed for now, and A(f) = /(6) — ¢(6). Note that by the reverse
triangle inequality,

I=77200) 12 = 172000 | < ||=7/220) | = ||=7/2(A- )0 - =726 - ).

We use Vector Bernstein (Lemma 9)) to show that this is small. Let X; = ¢(s;, a;), Vi = ¢(si,a;) —
vo(sh,al), and A;(0) = X;(Y;' 0 — r;) — (A6 — b) denote the centered vectors. Note that

1
IZ7120(0) |2 < )\7_(2)2 max{[|X;(Y;"0 —r;)|2, |40 — b|2}.

We have the following bound:
146 = bll2 = |[E[6(s, ) ((¢(5.0) = v0(s', @) 'O = r(s,0) ] |

< |[E[é(s, a)g(s,a) 0] ||, +V||E[¢(s,a)é(s",a") 0] ||, + IE[6(s, a)r(s, a)]|2
<(1+79) rggXl\qﬁ(S,a)llgl\@llz + max|¢(s; )2 Rimax

< 3B, max{ByBe, Rmax}- (23)

We remark that with a similar derivation, this bound applies just as well to || X;(Y;" 0 — r;)||2, so in
fact we have 6
IS712A(0)]]2 < ——== By max{ByBe, Ruax}-

min

For the variance bound, we simply use that

2
B¢ maX{B¢B@, Rmax}) .

12 A (V12 6
E[|® Axe)nz}s( S

Then, we conclude via that

321og(2885-1)

»o12A <B ByB ,
I (0)[l2 < By max{ByBe, Rmax} Nenin (2)71

We now apply a covering argument over § € ©. Let ©y C O be an Ly-covering of © of size N (),
satisfying for for each § € © there exists a covering member p(0) € O satisfying || — p(0)||, < e
Via a simple triangle inequality:

s, < st « 5 is - a0

‘We bound the latter term as a function of .

|22 - awE))|, = [57/2(a- A) 6 - 6],

< )\mlin(z)2 max{amax(A),Umax(ﬁ)}s.

We notice that max{crmax(A), crmax(fl)} < 232 via a similar reasoning to Eq. |(23)l This leaves us
with:

3210g(288|00|6-1) 2B
1270 H < B, max{ByBe, Rumax e,
| (0)], < Bomax{ By Bo, Ruas}y | =5 i —t=
32dlog (86451 /¢) 2B;
< Bymax{BsBeo, Rmax g,
o max{ByBo }\/ Amin ()10 i (%)
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where we have applied a union bound over the set O, which is of size at most (3 Bg /)¢ for e € (0, 1]
by standard covering number bounds (Vershynin||[2018), since © C {6 € R? : ||| < Bg }. Picking
e = 1/4/n lets us conclude that, with probability at least 1 — §, for all § € ©,

288d10g(864Bond—1)
)\min (E)n ’

Hz—l/QA(g) H2 < By max{ByBe, Rmax}\/

as desired. O

Proof of Follows from the fact that for any positive semi-definite matrix M/ € R?*? and
for any v € R®, we have the inequalities

)\min(M)vTv <v'Mv< )\max(M)vTv.

Proof of We firstly establish that

g, < \/sxmaX@)(B; + Amax (%)) log(6d/9)

= Eop- (24)

To do this, we use Matrix Bernstein (Lemma 8). Abbreviate X; = ¢(s;,a;), andlet Z; = X; X, — %
be the centered matrices. Note that [|Z;[la < [ X; X" [l2 + [Z]l2 < [ X:ll3 4+ Amax(E) < B3 +
Amax(2). For the variance term, we have:
B[ =), = B[] - 22,
2 T 2
< || BSE[X:X ] - 27,

< B2 max(D) + Amax ()2,

I

This yields

B sl < \/ 2o (5)(B3 + () 108(20/6) 2083 + Ma(2)) og(24/)

n 3n

The slow term dominates when n is large enough:
2(B3 + Amax(X)) log(2d/9) B
n > =2log(2d/d)| ———=< +1]. (25)
Ao () BRI S5

Note that this is implied by our assumption on 7, since Apax(X) > Amin(X) and x(3) > 1. Thus,
under this condition we have

5], <2 \/zxmx@)(f;g, + Amax (%)) log(2d/3)

= Eop>
as desired. Now, by Weyl’s theorem (Horn & Johnson, 2012, Theorem 4.3.1), we have

I)‘min(i) —Anin(X) < |1E -2 < €op>
which implies that

S >\min D)
Ain(E) > 2 () (26)
using the condition that £, < )"T(E) This latter condition is equivalent to
8>‘maX(E)(B§ + Amax (X)) log(2d/4) < Amin (2)
n - 2
B2
— n > 32log(2d/5)K(3) ()\QZZ) + Mz)), 27)

26



Under review as a conference paper at ICLR 2026

which is precisely our assumption on n. Similarly, an application of the reverse triangle inequality
(or of Weyl’s theorem again) yields,

|)‘maX(i) — Amax(X)] < ”i -3z < €op>

which implies that

S 3
)\max(z) < /\max(z) + Eop < EAmax(E)v (28)
using the condition that &,;, < )‘“‘i;(z) < /\ma;(z). Combining Egs. and , we have:
<« )\max i )\max b >\max b))
w($) = 2max() o B Amex(B) g hmaxB) g
)\min(z) 2 )\min(z) )‘min(z)

E TECHNICAL TOOLS

Lemma 8 (Matrix Bernstein, Tropp| (2012)). Let Si,...,S, € R4*% be random, independent
matrices satisfying E[S] = 0, max{||[E[SkS} ]|lop [E[S} Sklopll} < 02, and ||Sklop < L almost
surely for all k. Then, with probability at least 1 — ¢ for any § € (0, 1),

%zn: Sl < \/202 log((d1 +d2)/0) L2 log((dy + d3)/0)
k=1

n 3n
Lemma 9 (Vector Bernstein, [Minsker| (2017)). Let vy, ..., v, be independent vectors in R? such
that E[vg] = 0, E[|vx||3] < 02, and |Jv||2 < L almost surely for all k. Then, with probability at

least 1 — & for any 6 € (0, 1),
2
< [2021og(28/4) N 2L10g(28/6)'
) - n 3n

1n

75”1’

n-
i=1

Lemma 10 (Vector Martingale Bernstein (Pinelis, [1994; Martinez-Taboada & Ramdas| 2024)).
Let (Xt)i<r be a martingale sequence of vectors in R adapted to a filtration (F;)i<r, such that

E;1[X:] =0, and || X¢||2 < B, and Zz;l E; 1 [HXtHﬂ < o2 Then, with probability at least
1 — 6, we have:

op

< V20 0g(2/5) + 2 Blog(2/9).

2

T
> X
t=1
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