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Abstract001

It has been frequently observed that human002
speakers align their language use with each003
other during conversations. In this paper, we004
study empirically whether large language mod-005
els (LLMs) exhibit the same behavior of con-006
versational adaptation. We construct a corpus007
of conversations between LLMs and find that008
two LLM agents end up making more similar009
syntactic choices as conversations go on, con-010
firming that modern LLMs adapt their language011
use to their conversational partners in at least a012
rudimentary way.013

1 Introduction014

It has been documented broadly that when humans015

talk to each other, they adapt their language use to016

their communication partners by coordinating their017

behavior and language. Humans align not only018

their gestures, posture, and speech rate (Holler and019

Wilkin, 2011; Shockley et al., 2009; Jungers and020

Hupp, 2009), but also their linguistic decisions at021

deeper levels, such as semantics and syntax (Bock,022

1986; Garrod and Anderson, 1987). In other words,023

the distribution over syntactic structures of two024

human speakers becomes more similar as a conver-025

sation progresses.026

In this paper, we investigate whether large lan-027

guage models (LLMs) adapt their syntactic choices028

to their conversational partners as well. While it is029

well known that LLMs can be explicitly prompted030

towards embodying different “personas” and chang-031

ing the style of the language they generate (Desh-032

pande et al., 2023; Thillainathan and Koller, 2025),033

it is unclear whether merely being present in a con-034

versation with an interlocutor is sufficient to make035

LLMs adapt their language use to their interlocu-036

tor’s. The ability to adapt to the communication037

partner’s language is associated with increased suc-038

cess in goal-oriented conversations (Reitter and039

Moore, 2014), and it enables a dialogue system to040

meet a user’s language use rather than requiring 041

the user to adapt to the system (Schlangen, 2022). 042

Language models will only serve as effective foun- 043

dations for dialogue systems if they prove capable 044

of implicitly adapting to a user’s language. 045

To this end, we create a new dataset of con- 046

versations between LLMs in which both LLMs 047

are prompted to initially exhibit different lan- 048

guage use. We then measure the dynamics of 049

syntactic language adaptation over the course of 050

the conversations, using a method adapted from 051

the human-human analysis of Reitter and Moore 052

(2014). We find that GPT-4o (Hurst et al., 2024) 053

conversations show statistically significant adapta- 054

tion when comparing syntactic repetitions within 055

conversations against repetitions across conversa- 056

tions, replicating Reitter’s findings for human con- 057

versations. We further show this is a continuous 058

process active throughout conversations and con- 059

clude by discussing whether these findings demon- 060

strate “human-like” alignment in LLMs. 061

2 Background 062

As we mentioned above, humans adapt their lan- 063

guage use to their communication partners across 064

various linguistic levels. In this paper, our focus is 065

on syntactic adaptation: Do the distributions over 066

the syntactic structures that two interlocutors pro- 067

duce become more similar over the course of a 068

conversation? 069

In the psycholinguistics literature on human com- 070

munication, two separate (but not exclusive) mech- 071

anisms have been proposed to explain the mutual 072

adaptation of language use. Rasenberg et al. (2020) 073

contrast two theoretical views that explain the pro- 074

cess through alignment on different cognitive lev- 075

els: on a conscious level, in which cooperative deci- 076

sions establish a situational common ground (Bren- 077

nan and Clark, 1996), and a subconscious level, 078

in which automatic priming leads to aligned rep- 079
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resentational states (Pickering and Garrod, 2004).080

In psycholinguistics, priming refers to a process081

in which encountering a word or construction tem-082

porarily increases the activation of a cognitive rep-083

resentation, thereby increasing the probability for084

the word or construction to be reproduced.085

In this paper, we study the conversational be-086

havior of artificial, LLM-based agents. We will087

primarily focus on the level of outwardly observ-088

able changes to the language use and describe it089

with the theory-neutral word adaptation. We will090

discuss in Section 5 the extent to which concepts091

like alignment and priming can apply to LLMs.092

Related Work. The only study to date examining093

adaptation in LLMs (Cai et al., 2024) focused on094

short-term syntactic adaptation. They showed that095

ChatGPT and Vicuna are more likely to complete a096

sentence with a double object or a prepositional ob-097

ject when primed with a sentence of the respective098

type. We extend this research to long conversa-099

tions with natural sentences rather than carefully100

constructed one-sentence stimuli.101

3 Measuring human-human adaptation102

The phenomenon of long-term syntactic adaptation103

was first measured on corpora of human-human104

dialogues by Reitter and Moore (2014). The basic105

idea is to determine whether the usage frequency106

of a syntactic structure (specifically, a rule in a107

context-free grammar) in the first half of a conver-108

sation has a statistical impact on its frequency in109

the second half.110

We follow Reitter in splitting each conversation111

in a dialogue corpus into two parts. We call the112

first 49% of each conversation PRIME and the last113

49% of each conversation TARGET; the middle 2%114

are discarded to ensure that we measure long-term115

adaptation as opposed to short-term priming. On116

corpora that are not already syntactically annotated,117

we parse each conversation with the Neural Berke-118

ley Parser1 (Kitaev and Klein, 2018; Kitaev et al.,119

2019), to obtain a set of context-free production120

rules for the PRIME and TARGET section of each121

conversation, respectively.122

Adaptation takes place if rule repetitions are123

more likely between the PRIME and TARGET of the124

same conversation (where adaptation is possible),125

compared to a PRIME and TARGET of different con-126

1We used the benepar_en3_large model of the benepar
python package for parsing and spacy’s en_core_web_md
model for tokenization.

versations (where no adaptation could have taken 127

place). To make this comparison, we draw two 128

samples for each rule across the TARGETs of all 129

conversations: one for which we check whether the 130

rule has been uttered by the other speaker in the 131

PRIME of the same conversation, and the other for 132

which we check whether the rule has been uttered 133

by a speaker in a random, unrelated conversation. 134

We encode the presence of a rule in a binary vari- 135

able Prime for each sample, which is 1 if the rule 136

is present. Another binary variable, SameConv, is 137

used to indicate whether we looked for a prime in 138

the same conversation (1) or in a different, random 139

conversation (0). If repetitions are more likely be- 140

tween speakers within conversations, such that we 141

see an effect of SameConv on Prime, we take that 142

as evidence of cross-speaker adaptation. 143

We further include features representing the 144

log-frequency of rules across all conversations 145

(ln(Freq)), as more frequent rules are expected to 146

be more likely to appear in any PRIME, and a vari- 147

able ln(Size). This second variable encodes the 148

amount of different rules that a speaker used in the 149

PRIME of a conversation, i.e. the size of the set 150

of rules that we use to look for a prime; a larger 151

set increases the probability of any rule to occur. 152

We follow Reitter and Moore (2014) in excluding 153

rules that appear only once in the whole dataset and 154

rules that have disproportionately high frequencies 155

(around 0.3% of each dataset), because these rules 156

are never primed or almost always primed. Includ- 157

ing these rules in the analysis does not substantially 158

change the results (see Appendix D). We further 159

remove structures that are lexically identical. 160

Our analysis differs from Reitter’s original 161

method in two aspects. First, we consider only 162

overlaps between rule uses in TARGET with uses 163

in PRIME by the other speaker. This eliminates ef- 164

fects that solely stem from speaker idiosyncrasies 165

or the conditioning of LLM-generated language on 166

its own prior output. Second, our analysis includes 167

the set size of rules used to check for a prime. 168

3.1 Alignment in human conversations 169

We replicate Reitter’s results on human-human con- 170

versations to ensure that we obtain comparable re- 171

sults after our modifications. We use the method 172

described above to analyze the Switchboard corpus 173

(Marcus et al., 1994), which comprises 650 syn- 174

tactically annotated telephone conversations (see 175

Fig. 2 in Appendix B for an overview of its com- 176

position). This is in contrast to Reitter’s work, 177
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which used the HCRC Map Task corpus (Anderson178

et al., 1991), consisting of task-oriented conversa-179

tions. By looking at Switchboard as opposed to180

Map Task, we demonstrate alignment effects on181

non-task-oriented conversations, facilitating com-182

parison with LLM-generated conversations, and183

we make use of hand-annotated rather than auto-184

matically parsed syntactic structures.185

We fit a mixed-effects logistic regression to the186

sampled data using the generalized linear mixed187

models (GLMM) of Python’s pymer4 (v0.8.2)188

package. We included a nested random intercept189

for conversations and speakers and a random slope190

for ln(Freq) and centered fixed effects except Same-191

Conv. We selected the model through a backward192

selection process. Results are shown in Table 1.193

We find that SameConv (β = 0.228, p < 0.001)194

has a significant positive effect, replicating Reit-195

ter’s findings that humans align syntactically to196

their partners over the course of a conversation. A197

thorough analysis of the interactions can be found198

in Appendix E.199

4 Measuring LLM-LLM adaptation200

We follow the same method to analyze syntactic201

adaptation in conversations of GPT-4o.202

Dataset. One challenge towards this goal is the203

availability of a suitable dataset of LLM conver-204

sations. We require a dataset consisting of long205

natural conversations (with no intervening task206

prompts) in which the speakers use varying syn-207

tactic structures to make adaptation possible and208

evenly distributed utterance lengths.209

Existing datasets of conversations with LLMs210

do not satisfy these requirements. UltraChat (Ding211

et al., 2023) is a dataset of LLM-LLM conver-212

sations, but these conversations follow simple213

question-answering between a user and a model214

“persona”. Conversations are too short and there215

is no variability between the language use across216

conversations. By contrast, available datasets217

of human-LLM conversations, such as WildChat218

(Zhao et al., 2024), consist of conversations that219

each have unique instructions by the user. This220

makes conversations incomparable and therefore221

unsuitable for a statistical analysis of adaptation.222

We therefore created our own dataset by letting223

GPT-4o2 converse with itself.3 We created 17 dif-224

ferent conversational agents with identical system225

2We used GPT-4o-2024-08-06 with default parameters.
3We will make this dataset available upon acceptance.

prompts, except for an initial specification of a 226

“language persona” that is unique to each agent. 227

We then generated conversations between pairs of 228

LLM agents by iteratively prompting each of them 229

for the next utterance, including the context of the 230

conversation history. Iterations were stopped, once 231

a conversation surpassed a predefined length thresh- 232

old. All prompts for managing the conversations 233

and defining the language personas can be found in 234

Appendix A. 235

To ensure sufficient variety in the agents’ lan- 236

guage use, we further generated conversations 237

where each agent conversed with itself. We then 238

calculated how often each syntactic rule was used 239

and normalized these frequencies to create a dis- 240

crete probability distribution of syntactic rules for 241

each agent. To compare these distributions, we 242

measured their distances using the Jensen-Shannon 243

divergence (JSD). See Figure 5 in Appendix C for 244

details. The results confirm a high degree of syn- 245

tactic variety, with JSD values of up to 0.69. 246

Adaptation in LLM conversations. We gener- 247

ated 136 conversations by pairing up every con- 248

versational agent with every other conversational 249

agent, all on the topic “What makes a day a good 250

day?” Twelve conversations ended in repeating 251

patterns; we excluded them and used the remain- 252

ing 124 other conversations to form the GPT cor- 253

pus. The distribution of conversation and utterance 254

lengths closely mirrors that of the Switchboard cor- 255

pus (cf. Fig. 3 and Fig. 2 in Appendix B). 256

We ran the analysis described in Section 3.1 on 257

the GPT corpus, taking care not to sample from 258

identical agents in other conversations. Fixed ef- 259

fects, except SameConv, are centered. The model 260

was selected using backward selection. The results 261

are shown in Table 1. 262

SameConv has a significant positive effect on 263

Prime (β = 0.198, p < 0.001), showing that there 264

is syntactic adaptation. Interactions are discussed 265

in more detail in Appendix E. 266

Fine-grained tracking of the adaptation process. 267

To gain a deeper understanding of the adaptation 268

process performed by the LLM, we performed a 269

fine-grained analysis of adaptation over the course 270

of the conversation. As in the approach above, 271

we directly compared the distributions of syntactic 272

structures used by two different agents; however, 273

this time, we focused on comparing the distribu- 274

tions to see how they evolve throughout a conver- 275

sation. To obtain reliable estimates of the distribu- 276
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Switchboard Corpus
β SE z p > |z|

Intercept -2.927 0.018 -158.8 0.000
ln(Freq) 1.174 0.008 143.2 0.000
SameConv 0.228 0.023 9.9 0.000
ln(Size) 1.402 0.033 41.9 0.000
ln(Freq):SameConv -0.101 0.01 -9.8 0.000
ln(Freq):ln(Size) 0.068 0.015 4.7 0.004

GPT Corpus
β SE z p > |z|

-2.031 0.048 -42.5 0.000
1.275 0.028 45.6 0.000
0.198 0.056 3.5 0.000
1.175 0.107 11.0 0.000

-0.146 0.035 -4.2 0.000
0.266 0.062 4.3 0.000

Table 1: The regression models for the Switchboard corpus (left) and the GPT corpus (right).

tions, we created 520 conversations between agents277

5 and 6, a pair of agents with moderate initial JSD278

(cf. Fig. 5), while keeping the topic the same279

(cf. Appendix A). Due to repeating patterns, we280

excluded 14 conversations.281

To observe how the similarity of the two agents’282

distributions evolves, we split the remaining 506283

conversations into sections of 200 words (see Fig. 4284

in Appendix B for an overview of the data), and285

compare the distributions of the two agents for286

each split. As above, distributions are calculated287

by normalizing rule frequencies across all 506 con-288

versations. To estimate the variance of these calcu-289

lations, we perfom them on 100 bootstraps of the290

data. Each bootstrap consisted of 506 randomly se-291

lected conversations, drawn with replacement. We292

report the means and standard deviations of these293

100 JSD values across splits in Fig. 1.294

We find that the mutual adaptation of the two295

LLM agents is a gradual process that persists296

throughout the conversation. The rate of adaptation297

is relatively constant, with the strongest adaptation298

happening in the first split.299

5 Discussion300

Throughout the paper, we have avoided using the301

words “alignment” and “priming” for the LLM’s302

adaptation process to steer clear of any connota-303

tions about human cognitive processes. While we304

have established that the LLM’s syntax becomes305

increasingly similar to its conversational partner’s,306

this does not necessarily mean that this process is307

driven by a similar underlying mechanism.308

An LLM does not maintain an explicit mental309

model of its interlocutor’s language use and does310

not make conscious decisions on coordinating it311

with its interlocutor. Thus it seems inappropriate,312

under the notion of alignment sketched in Section 2,313

to explain the LLM’s adaptive behavior as align-314

ment. At the same time, priming effects in humans315

are usually assumed to impact their language use316

only in the short term. One conceivable explanation317
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Figure 1: Jensen-Shannon divergence scores between
agents 5 and 6 across splits of conversations.

for GPT-4o’s ability to perform long-term adapta- 318

tion is that it conditions the language it produces 319

on the previous conversation (a mechanism that 320

is similar to priming in humans), but has a much 321

larger capacity than humans for remembering the 322

verbatim conversational context. 323

This notion goes in support of our second ex- 324

periment: A gradual adaptation that appears with 325

increased context length underpins the intuition 326

that LLMs can adapt to longer contexts, and that 327

this increases its influence. Different from humans, 328

short-term effects, like those reported in Cai et al. 329

(2024), may therefore be driven by the same prin- 330

ciples as long-term adaptation in LLMs. A more 331

detailed analysis would be an interesting avenue of 332

future research. 333

6 Conclusion 334

We showed that GPT-4o can gradually adapt its 335

language use to its conversational partner, to an 336

extent that is similar to what we observe in human- 337

human conversations. This observation goes be- 338

yond previous findings, which indicated that an 339

LLM’s language use can be controlled through ex- 340

plicit instructions and influenced by priming from 341

the previous utterance. A more detailed compari- 342

son of the mechanisms that humans and LLMs use 343

to achieve such long-term adaptation is an interest- 344

ing avenue of future work. 345
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7 Limitations346

This work focuses on texts generated with GPT-4o.347

We decided to use this model, as it is one of the348

highest performing accessible models. While the349

findings of Cai et al. (2024) suggest that the results350

generalize to other models, e.g. Vicuna, further351

research is needed to confirm this.352

Our study concentrates on syntactic structures353

of the English language. Similar effects may exist354

for other languages and other linguistic features,355

also of different modalities (e.g. intonation, speech356

rate). Furthermore, in this study we controlled for357

topicality by keeping the topic of all conversations358

identical. It is unclear whether topicality has an359

effect on syntactic structures, but there is evidence360

that lexical choices influence the syntax at least to361

some extent (lexical boost, Cai et al., 2024). Fu-362

ture work would have to investigate further how363

the reported effects translate to more diverse con-364

versational settings.365

The analysis that we adapt from Reitter and366

Moore (2014) loses information by encoding the367

presence of syntactic structures in a binary variable.368

We hypothesize that this leads to the interaction be-369

tween ln(Freq):SameConv (see Apeendix E). While370

the analysis is suitable for capturing adaptation in371

general, it lacks the sensitivity to account for the372

occurrence rate of rules in a meaningful way.373

8 Ethical Considerations374

We believe that our work is unlikely to have an375

immediate ethical or societal impact. However,376

there is potential that the reported effects serve as377

a footprint of LLM generated texts – we didn’t378

prompt the model to adapt to the language, but this379

effect appears inherently. This potentially leads to380

patterns that are intrinsic to LLMs, which could be381

leveraged to detect LLM generated texts.382
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A Prompts480

A.1 System Prompt481

The following template was used as the system482

prompt in the data generation process:483

484

You are in a conversation. There are two speakers,485

SpeakerA and SpeakerB.486

You are SpeakerA. The conversation will consists487

of turns in the form:488

[SpeakerA’s utterances]489

[SpeakerB’s utterances]490

[SpeakerA’s utterances]491

. . .492

You need to only give [SpeakerA’s utterances].493

You will be prompted by [Language] that will494

instruct you on the language that you shall use495

as SpeakerA. Further, you will be prompted by496

[Topic], the topic of the conversation. Behave497

as in a normal conversation with SpeakerB to498

discuss the [Topic]. [Language] {That agent’s499

specific persona, see item A.2)}. [Topic] What500

makes a day a good day?501

A.2 Language Personas 502

The following language personas were used to vary 503

the language of each agent. Language personas are 504

inserted into the system prompt at the designated 505

position. 506

1. Your language is precise, and unambiguous. 507

You use clear and simple sentences. 508

2. Your language is gentle and thoughtful. You 509

use concise and not overly complex sen- 510

tences, to convey meaning efficiently. 511

3. Your language is dynamic, and provocative. 512

You often use vivid metaphors. 513

4. Your language is introspective, and deliber- 514

ate. You use contemplative phrasing. 515

5. Your language is smooth and reassuring. You 516

employ gentle pauses and a steady rhythm. 517

6. Your language is analytical and precise. You 518

use complex sentence structures sparingly, 519

preferring clear, well-organized sentences. 520

7. Your language is conversational and warm. 521

You use relaxed, varied sentence structures 522

that mirror casual speech, inviting readers 523

into an open, friendly dialogue. 524

8. Your language is inquisitive and reflective. 525

You frequently use open-ended questions 526

and layered sentences that encourage readers 527

to pause and ponder. 528

9. Your language is poetic and evocative. You 529

lean into complex, image-rich sentences that 530

build vivid scenes and sensations, letting 531

metaphors flow freely. 532

10. Your language is structured and methodical. 533

You rely on orderly, sequential sentences 534

that build upon each other in a clear, logi- 535

cal progression, guiding readers through a 536

well-defined thought process. 537

11. Your language is hesitant and unsure. 538

You use fragmented sentences and trailing 539

thoughts, leaving ideas partially formed, as 540

if questioning each phrase. 541

12. Your language is overly cautious and repet- 542

itive. You tend to rephrase ideas multiple 543

times in a single sentence. 544

13. Your language is anxious and scattered. You 545

jump between ideas mid-sentence, creating a 546

disjointed flow that feels hurried and restless. 547

14. Your language is straightforward, and no- 548

nonsense. You avoid fluff and filler. 549

15. Your language is crisp and engaging. You 550
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use short, impactful sentences to create em-551

phasis.552

16. Your language is bold and unapologetic. You553

rely on direct, declarative sentences that554

avoid qualifiers.555

17. Your language is understated and subtle. You556

use concise sentences that suggest rather557

than state.558

B Dataset Compositions559

Statistics of the Switchboard corpus and the con-560

versations generated with GPT-4o are shown in561

Figures 2 and 3. The composition of the conversa-562

tions between agents 5 and 6 can be seen in Figure563

4. The agents were chosen, as they provide very564

even turn lengths. This allows for similarly good es-565

timations of the distributions of their used syntactic566

rules.567

The cost for generating all conversations using568

OpenAI’s API was around 100$.569

C Base Divergence Values between570

Agents571

In our study, we compared the distributions of rules572

that agents use throughout conversations using the573

Jensen-Shannon divergence as distance measure-574

ment. To place our reported values in context, we575

provide baseline divergence values between each576

agent in this appendix. For each agent, we calcu-577

lated the probability distribution of their uttered578

rules from 10 conversations with themselves. We579

counted the number of occurrences of each rule580

and normalized these frequencies for each agent581

to create a discrete probability distribution. The582

topic of all conversations was kept identical: ”What583

makes a day a good day?” Conversations were cre-584

ated turn by turn and stopped once they surpassed a585

length of 800 words (see section 4). Agents 14-17586

are excluded, as their conversations converged to587

short repeating patterns. The resulting JSD values588

between the distributions of each agent are shown589

in Figure 5.590

D Analysis with all Rules591

In our analysis, we exclude rules that have very592

high frequencies, and those that appear only once.593

To test whether removing these rules affects overall594

conclusions, we ran the analysis again using all595

rules. Results can be found in Table 2 for Switch-596

board and in Table 3 for the GPT corpus.597

The results show that effects still persist with 598

similar effect sizes. The only difference is that 599

significance values are lower. For the GPT cor- 600

pus, for example, the p-values for SameConv, 601

ln(Freq):SameConv, and ln(Freq):ln(Size) are p < 602

0.004, p < 0.002, and p < 0.012 respectively, 603

which are much larger than the above recorded 604

p < 0.000 for all effects. 605

This shows that including the rules only inflates 606

the sample space with samples that have identical 607

values for Prime for both SameConv = 0 and 608

SameConv = 1. 609

E Interaction Effects 610

In our analysis of Switchboard we find the in- 611

teraction between ln(Freq) and SameConv (β = 612

−0.101, p < 0.001), which is similar to the ef- 613

fect size of the same interaction in the GPT corpus 614

(β = −0.146, p < 0.001). The effect could be 615

taken to explain that adaptation appears more for 616

less frequent rules4 compared to more frequent 617

rules. In theory, this sounds like a plausible expla- 618

nation. However, we hypothesize that the effect 619

may primarily come from our binary encoding of 620

Prime: a higher frequent rule reduces the effect that 621

SameConv has on Prime, because it is more likely 622

to appear in other conversations (SameConv = 0). 623

The binary encoding omits information of the rate 624

at which rules appear, making an increased rate of 625

rules in the PRIME and TARGET invisible. There- 626

fore, the analysis cannot capture adaptation if it 627

manifests as an increase in occurrence rate between 628

the PRIME and TARGET of the same conversation, 629

which reduces sensitivity to more frequent rules. 630

The effect size of the interaction between the 631

log rule frequency ln(Freq) and the log number of 632

unique rules in the prime ln(Size) differs between 633

GPT (β = 0.266, p < 0.001) and Switchboard 634

(β = 0.068, p < 0.004). The larger effect in the 635

GPT corpus suggests a more stochastic mechanism. 636

To illustrate this, we can think about the appearance 637

of syntactic rules, as if they were drawn at random 638

(with replacement) from an underlying probability 639

distribution over rules. Adaptation would mean that 640

drawing a rule increases its probability to be drawn 641

again. In this context, we can think of ln(Size) as 642

the logarithmic number of rules that we draw. For 643

a rule with probability p, doubling the Size results 644

in an increase of p by 1− (1− p)2 − p = p(1− p). 645

It holds that: 646

4less than the mean frequency, as the data is centered
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Figure 2: Statistics of the Switchboard Corpus.

β SE z P > |z|
Intercept -3.537 0.022 -159.723 0.000
ln(Freq) 1.202 0.008 149.061 0.000
SameConv 0.263 0.027 9.693 0.000
ln(Size) 1.473 0.039 38.228 0.000
ln(Freq):SameConv -0.103 0.010 -10.147 0.000
ln(Freq):ln(Size) 0.025 0.014 1.821 0.069

Table 2: The regression model for the Switchboard corpus including all rules.

β SE z P > |z|
Intercept -2.255 0.051 -44.013 0.000
ln(Freq) 1.297 0.0260 50.582 0.000
SameConv 0.173 0.061 2.847 0.004
ln(Size) 1.361 0.116 11.724 0.000
ln(Freq):SameConv -0.101 0.033 -3.053 0.002
ln(Freq):ln(Size) 0.140 0.056 2.501 0.012

Table 3: The regression model for the GPT corpus including all rules.
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Figure 3: Statistics of the 136 conversations between agents generated with GPT-4o (GPT Corpus).
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Figure 4: Statistics of the 506 conversations between agents 5 and 6 generated with GPT-4o.
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Figure 5: Jensen-Shannon divergence values between agents. See section A for an overview of their different
language prompts. Agents 14-17 were excluded due to repeating patterns in their conversations.
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p1(1− p1) < p2(1− p2),647

for 0 < p1 < p2 < 0.55. Therefore, the probability648

for high frequency rules increases more with an649

increase of Size. While the inclusions of ln(Freq)650

and ln(Size) already account for this effect, the651

increase in repetition probability also raises the652

likelihood of further increases due to adaptation,653

which is captured by the interaction term. The654

effect therefore highlights the stochasticity in GPT-655

4o’s behavior.656

5The most frequent rule has a probability of 0.087, which
is much lower than 0.5.
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