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ABSTRACT

Latent space matching, which consists of matching distributions of features in latent
space, is a crucial component for tasks such as adversarial attacks and defenses,
domain adaptation, and generative modelling. Metrics for probability measures,
such as Wasserstein and maximum mean discrepancy, are commonly used to
quantify the differences between such distributions. However, these are often costly
to compute, or do not appropriately take the geometric and topological features of
the distributions into consideration. Persistent homology is a tool from topological
data analysis which quantifies the multi-scale topological structure of point clouds,
and has recently been used as a topological regularizer in learning tasks. However,
computation costs preclude larger scale computations, and discontinuities in the
gradient lead to unstable training behavior such as in adversarial tasks. We propose
the use of principal persistence measures, based on computing the persistent
homology of a large number of small subsamples, as a topological regularizer.
We provide a parallelized GPU implementation of this regularizer, and prove
that gradients are continuous for smooth densities. Furthermore, we demonstrate
the efficacy of this regularizer on shape matching, image generation, and semi-
supervised learning tasks, opening the door towards a scalable regularizer for
topological features.

1 INTRODUCTION

Latent space matching is a fundamental task in deep learning. Quantifying differences in latent
representations and optimizing the network accordingly enables applications such as adversarial attack
and defenses (Yu et al., 2021; Madaan et al., 2020; Lin et al., 2020), domain adaptation (Sun et al.,
2016; Sun & Saenko, 2016; Long et al., 2017; Xu et al., 2019) and few-shot learning (Schonfeld et al.,
2019; Xu et al., 2022; Mondal et al., 2023). Unsupervised training frameworks such as Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) are fundamentally built on this concept,
which is the primary framework considered throughout this article.

Topological Features of Latent Representations. The manifold hypothesis states that real-world
high dimensional data sets are often concentrated about lower dimensional submanifolds. Recent
work has empirically verified that image datasets such as CIFAR-10 and ImageNet satisfy a union of
manifolds hypothesis (Brown et al., 2022), where the intrinsic dimension of connected components
may be different. In the context of GANs, correctly learning the geometric and topological properties
of these lower-dimensional structures enable meaningful interpolation in data space by traversing
network latent spaces. Such properties are crucial to generalization ability (Zhou et al., 2020;
Wang et al., 2021b) and generation quality (Zhu et al., 2023; Katsumata et al., 2024). Furthermore,
topological metrics based on persistent homology provide highly effective evaluation metrics for
GANS (Zhou et al., 2021; Khrulkov & Oseledets, 2018; Barannikov et al., 2021; Charlier et al., 2019).

Standard approaches to latent space matching use metrics on probability measures such as the Wasser-
stein distance and maximum mean discrepancy (MMD) metrics, which implicitly take topological
features into consideration. In particular, the measures (and thus all topological properties) become
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equivalent when the distance is trivial. However, GANSs are not guaranteed to reach a global minimum,
and often converge to local saddle points (Berard et al., 2019; Liang & Stokes, 2019). When measures
are a finite distance apart, their topological properties may be distinct. Motivated by the above work,
which demonstrates that topological similarity between real and generated distributions is a critical
component of GAN performance, we propose the use of a topological regularizer which explicitly
measures the difference between topological features at non-equilibrium states.

Persistent Homology. Persistent homology (PH) is a tool which summarizes the multi-scale
topological features of a dataset in an object called a persistence diagram. Such topological summaries
have been applied in machine learning tasks (Hensel et al., 2021), such as image segmentation (Hu
et al., 2019; Clough et al., 2022; Shit et al., 2021; Waibel et al., 2022), and graph learning (Horn et al.,
2021; Ballester & Rieck, 2024). The standard way to quantify the topological differences between
datasets is to compute the Wasserstein distance between their persistence diagrams. However, there
are two difficulties in directly applying persistence-based methods in adversarial deep learning tasks.

1. Scalability. Persistent homology of a large point cloud is prohibitively expensive to com-
pute!. Even worse, the persistent homology algorithm is highly nontrivial to parallelize.
Modern PH packages are either pure CPU implementations (Bauer, 2021; Pérez et al., 2021)
or use a CPU-GPU hybrid algorithm (Zhang et al., 2020).

2. Smoothness. Persistent homology is differentiable almost everywhere, which allows us
to compute backpropagate through PH layers; in fact, stochastic subgradient descent is
provably convergent with respect to persistence-based functions (Carriere et al., 2021).
However, in adversarial tasks, where the loss function is constantly changing, discontinuities
in the gradient leads to highly unstable training dynamics (Wiatrak et al., 2019).

Contributions. We address these two issues by modifying the two central parts of the classical
persistence pipeline: the topological summary itself, as well as the metric used to compare them.

* Topological Summary: Principal Persistence Measures. To reduce the computational cost,
we compute the persistent homology of many small batches of subsamples in parallel. By
choosing a specific number of points depending on the homology dimension, the persistence
computation significantly simplifies, and we obtain an object called the principal persistence
measure (PPM) (Gémez & Mémoli, 2024). We provide a pure GPU implementation of
the PPM, which enables a scalable methodology to incorporate topological features in
larger-scale ML tasks. Moreover, subsampling results in a smoother features (Solomon et al.,
2021), resulting in more stable training behavior.

¢ Topological Metric: Maximum Mean Discrepancy for PPMs. The Wasserstein distance
is the primary metric used to compare PPMs (Gémez & Mémoli, 2024). In practice, one
often uses entropic regularization to lower the computational cost (Cuturi, 2013; Lacombe
et al., 2018). Despite this, it is still computationally expensive, and we use maximum mean
discrepancy (MMD) metrics to compare PPMs. This coincides with the persistence weighted
kernels introduced in (Kusano et al., 2016) for persistence diagrams. Our main theoretical
results deals with establishing this metric in PPM framework.

— Theorem 1 builds characteristic kernels for PPMs from kernels on R2.
— Theorem 2 shows that these MMD metrics induce the same topology as Wasserstein.
— Theorem 3 shows that gradients with respect to this metric are continuous.

Theorem 1 and Theorem 2 adapt results from (Kusano et al., 2016; Divol & Lacombe, 2021)
to the setting of PPMs, while to the authors’ knowledge, Theorem 3 is novel.

These theoretical results imply that we can use PPM-Reg as an alternative to computationally
expensive Wasserstein (or Sinkhorn) metrics, which produces a stable gradient for training deeper
networks. In particular, the proposed methods allow us to incorporate topological features into
large-scale machine learning tasks in a stable manner (Papamarkou et al., 2024, Section 4.2). We

'The worst-case time complexity is O(m?), where m is the number of simplices. Computing dimension

k persistent homology of a point cloud with n points can have up to m = O(nkH) simplices. However, for
practical data sets, the complexity is often much lower; see (Otter et al., 2017) for further discussion.
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demonstrate this empirically in Section 6, where we provide extensive experiments to demonstrate
the efficacy of PPM-Reg in the GAN framework.

Related Work. The application of persistent homology in machine learning has been enabled by
theoretical studies into the differentiability properties of PH (Carriere et al., 2021; Leygonie et al.,
2022), which have also been extended to the multiparameter setting (Scoccola et al., 2024). However,
large-scale computation of PH remains a challenge, though recent work has considered computational
strategies for optimization problems (Nigmetov & Morozov, 2024; Luo & Nelson, 2024). Our MMD
metric for PPMs is also related to work on kernels for persistence diagrams Kusano et al. (2016) and
linear representations of persistence diagrams Divol & Lacombe (2021); Divol & Polonik (2019).

Subsampling methods for PH of metric measure spaces was introduced in (Blumberg et al., 2014),
and used to approximate PH for point clouds (Chazal et al., 2015; Cao & Monod, 2022; Stolz,
2023). Furthermore, distributed approaches for computing the true PH of point clouds have been
proposed in (Yoon & Ghrist, 2020; Torras-Casas, 2023) via spectral sequence methods. More
recently, (Solomon et al., 2021) used subsampling methods for topological function optimization,
motivated by the same issues of computational cost and instability of gradients (Bendich et al., 2020),
and (Solomon et al., 2022) showed that such distributed persistence methods interpolate between
geometric and topological features based on the number of subsamples. The starting point of this
article is (Gémez & Mémoli, 2024), which introduces principal persistence measures.

2 LATENT SPACE MATCHING IN GENERATIVE ADVERSARIAL NETWORKS

Our primary consideration is the latent space matching in generative adversarial networks (GANS).
A GAN is an unsupervised training framework consisting of a generator g, : RY — RM, a
discriminator dg : RM — RE and a value function V : P(R%) x P(RE) — R (Goodfellow et al.,
2014). Consider a set of training data, such as a collection of images, which we view as a probability
measure ;1 on RM | the data space. The generator g,, is parameterized by w € R, and its goal is
to map a given noise measure v on R™ (the noise space) to R™ such that g,,(v) can be interpreted
as novel examples of . The discriminator dg, parametrized by 8 € R”, performs dimensionality
reduction, sending the data space to the latent space R*. Finally, the value function is used to quantify
the difference between the real data 1 and the generated data g, (v) by V(deo (1), dg (9., (v))).

The generator is optimized such that it minimizes the value function, while the goal of the discrimina-
tor is to maximize it. Training algorithms (Goodfellow et al., 2014; Arjovsky et al., 2017; Gulrajani
et al., 2017) have been proposed to find an equilibrium of the minimax problem, given by

maxminV (do(1), dofg (1)) m

In practice, parameters in dg and g, are updated alternatively. Common value functions used
are metrics between probability distributions such as the Wasserstein distance, which has better
theoretical properties in solving the minimax problem with gradient descent (Arjovsky et al., 2017),
and the Cramer distance (Bellemare et al., 2017), which has unbiased gradients with mini-batch
training. However, these metrics do not explicitly take topological features of the distributions into
consideration. This motivates the use of a topological regularizer, which explicitly accounts for
topological features in a non-equilibrium state. In particular, we consider value functions of the form

V="L+\T, 2)

where £ is the main loss function, A > 0 is a hyperparameter, 7 is our proposed topological
regularizer which will be introduced in the following sections.

3 PRINCIPAL PERSISTENCE MEASURES

We provide a streamlined exposition of the notion of principal persistence measures (Gomez &
Mémoli, 2024). As there already exists several excellent references for persistent homology, we
refer the reader to (Edelsbrunner & Harer, 2010; Dey & Wang, 2022; Hensel et al., 2021) for further
background. Furthermore, we highlight the fact that we only consider persistent homology for
simple point clouds, with an explicit definition in Equation (4). For a topological space X', we use
P(X) (resp. P.(X)) to denote the Borel probability measure (resp. with compact support) on X.
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Throughout this article, we consider persistent homology of point clouds with the Vietoris-Rips
filtration.
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Figure 1: An illustration of PH and PPMs. (a) An example point cloud X. (b) Snapshots of the
Vietoris-Rips filtration X of X at various €. Edges are added between x; and x; when d(x;, ;vj) > €
and higher simplices are added when all pairwise distances are greater than €. (c) The dimension 1
persistence diagram of X in birth-lifetime coordinates. The one point with large lifetime represents
the fact that there is a hole in the dataset which persists through multiple scales. (d) An example of a
subsampling (in red) of 4 = 2¢q + 2 points when ¢ = 1. (e) Snapshots of the Vietoris-Rips filtration
of the subsample, where the distances of the bold lines are ¢; and ¢4. (f) The dimension 1 principal
persistence measure of X, where the point given by the example subsample is shown in red.

Persistent Homology. Let X = {z;}},, where x; € R". Persistent homology (Edelsbrunner &
Harer, 2010) of dimension ¢ € N builds a multi-scale topological summary of X in three steps:

1. Construct a sequence of topological spaces X, representing the point cloud at a scale
parameter € > 0, equipped with inclusion maps X, — X for € < € (see Figure 1(b)).

2. Compute the dimension q homology of X to obtain topological properties at each scale.

3. Track the birth, b, and lifetime, ¢, of topological features across scales by using the induced
maps Hy(X.) — Hy(X), and summarize this information as a multi-set PH,(X) =
{(bi, £;)}i_; called a persistence diagram?* (see Figure 1(c)).

The points (b, £) € PH,(X) in a persistence diagram are valued in the quotient of the half plane
Q:={(b,0) €cR?* : £ >0}/{¢ =0}, 3)
as topological features (b, £) € PH,(X) where points with trivial lifetime ¢ = 0 are equivalent to the

feature not existing. We view this as a pointed quotient metric space ({2, d, ), where d is the quotient
of the Euclidean metric on R? and = represents the collapsed point {£ = 0}.

Persistent Homology of Small Point Clouds. It is shown in (Gémez & Mémoli, 2024, Theorem
4.4) that PH, of a point cloud .S with exactly 2¢ + 2 points has at most a single topological feature,
and can be explicitly computed as follows. Given a point z € S, let z(), 2(2) € S denote the points
such that d(z, (")) > d(x, ) > d(x,a) foralla € S — {z(M),2(>)}. Then,

PH,(S) = {(th,ta — 1)}, == maxd(x,2®), ts:=mind(x,2") )

whenever tq > t;, and PH,(S) = {*} otherwise (see Figure 1(e)). As we will exclusively consider
PH, of 2¢ + 2 points, we will consider this as a map PH, : (R")??"2 — Q. We emphasize
that Equation (4) is a significant simplification of the full persistent homology computation (Otter
et al., 2017), and is the key to parallelized computations discussed in Section 6.1.

2Note that birth-lifetime coordinates are a linear transformation of the more standard birth-death coordinates.
We use lifetime coordinates to simplify the kernel expressions in the following section.
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Principal Persistence Measures. Principal persistence measures (PPMs) of dimension g (Gémez
& Mémoli, 2024) contains PH,, of all subsamples .S of a point cloud X with exactly |S| = 2¢ + 2
points. More formally, we will consider the more general setting of probability measures on R™ with
compact support rather than point clouds® on R™. Then, the PPM of dimension q is defined as

PPM, : Po(R") = P(2), PPM,(j1) i= (PH, ). u" 2+ )

where 1@ is the product measure on (R™)24%2 and (PH,). is the pushforward map. In other words,
we take 2¢ + 2 i.i.d. samples from ;1 and compute PH, on each collection to obtain a probability
measure on £ (see Figure 1(f)).

Metrics and Stability. Letp > 1, and let W), denote the p-Wasserstein metric on R™ and 2. A key
property shown in (Gémez & Mémoli, 2024, Theorem 3.8, Theorem 4.11) is that PPMs are stable:

WP(PPMQ(M)’ PPMQ(V)) < Cqu(/L, V)7 for all MV € PC<R") (6)

where C,; > 0 is a constant which depends on ¢. In particular, p-Wasserstein metrics on €2 for PPMs
is the analogue of the partial p-Wasserstein distance for persistence diagrams.

4 MAXIMUM MEAN DISCREPANCY FOR PPMS

In order to further reduce the computational cost and obtain smoothness properties, we will use
maximum mean discrepancy (MMD) metrics to compare PPMs. The kernels defined here adapted
from the persistence weighted kernels of Kusano et al. (2016). We assume basic familiarity with
kernels and refer the reader to Appendix A for background.

Bounded PPMs and Notation. Throughout this section, we work with bounded PPMs valued in
Qr = {(b,0) € [0,T)? : £>0}/{¢{ =0} (7

for some 7" > 0. We continue to denote the collapsed point by *. Note that for u € P.(R™), where
the support of  has diameter T', we have PPMy (1) € P(Q2r). In order to simplify notation, we use
Q = Qr throughout this section. We use the notation z = (b, £) for elements in both [0, 7'} and Q.

Kernels on 2. Following the construction in Kusano et al. (2016), we introduce a procedure to turn
a kernel k on [0, T)? into a kernel on . Suppose k : [0,7]? x [0, T]?> — R is a kernel, where H is
its reproducing kernel Hilbert space (RKHS), and let @ : [0, 7]? — H be the associated feature map
given by ®(z) = k(z, -). We define a feature map ®g, : 2 — H into the same RKHS by

Do(z) =4 -D(z) =L -k(z,-) when £ >0 and Pq(x)=0. (8)
Then, for 21, 22 € Q — {x}, the associated kernel kg, : Q x Q — R, satisfies
ka(z1,22) = (Pa(21), Palze))n = l1 - Lo - k(21, 22) ©)

by the reproducing kernel property of H, and kq(x, z) = kq(z, *) = 0. Note that kq is continuous
on {2 x 2. We denote the RKHS of kq by Hq, where we have an embedding Hq — #H by definition.

Characteristic Kernels on ¢). Recall that a kernel £ : X x X — R (with associated feature
map @ : X — H) is characteristic with respect to probability measures P(X) if the kernel mean
embedding, also denoted by @ : P(X) — H,

(p) = Eonp[@(2)], (10)

is injective. The following result shows that if we start with a characteristic kernel on [0, 72, the
above procedure yields a characteristic kernel on 2. This can be shown using similar methods
as (Kusano et al., 2016, Section 3.1) in the current setting, but we provide an independent proof of a
slightly stronger statement in Theorem 5 of Appendix B.

Theorem 1. Let k : [0, T)? x [0,T]?> — R be a kernel which is universal with respect to C([0,T]?)
(or equivalently, characteristic with respect to P ([0, T)?). Then, kg : Q x Q — R is characteristic
with respect to P ().

3This is a special case of the metric measure spaces used in (Gémez & Mémoli, 2024). Furthermore, we can
associate a point cloud X = {z;};=; C R", with the uniform probability measure px on X.
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MMD for Principal Persistence Measures. A characteristic kernel kg on €2 induces a metric on
P(§2) via the norm, called the maximum mean discrepancy (MMD),

MMDy (11, v2) = || (1) — ®(12)]3,- (11)

Letvy = % (X0 6z, + (N —n)d.) and vo = +; (Z 10y, + (M —m)d,) be discrete measures
in P(Q), with n and m nontrivial points x;, yj €N — { } respectively. The MMD is given by
n m 1 m
MMD? (11, v2) N2 Z ko(zi, ;) NM DD kalwiy) + 35 D kalvi ). (12)
7,0=1 =1 j=1 1,7=1

The normalization is with respect to the total (including %) numbers of points in v; and v», but we
only compute kernels between nontrivial points since kq (*, z) = kq(z, *) = 0. This enables the use
of computable MMD metrics for PPMs. While the stability property in Equation (6) may no longer
hold, MMD metrics yield the same topology on the space of probability measures (see also (Kusano
et al., 2016, Theorem 3.2) in the finite setting). While a related result in a different context is given
in (Divol & Lacombe, 2021, Proposition 5.1), we provide an independent proof in Appendix C.

Theorem 2. Let k be a characteristic kernel on Q. The p-Wasserstein metric Wy, and the MMD
metric MMDy, induce the same topology on P(Q).

Remark 1. By viewing persistence diagrams as measures (Divol & Lacombe, 2021; Giusti & Lee,
2023; Bubenik & Elchesen, 2022), persistence diagrams can be viewed as elements in M;,, (),
defined in Equation (30). This includes persistence diagrams with possibly infinite cardinality (with
finite total persistence). While in Kusano et al. (2016), analogous kernels are defined for finite
persistence diagrams, our results hold for persistence measures in M;, ().

5 TOPOLOGICAL REGULARIZATION WITH PPMS

In this section, we introduce our proposed topological regularizer based on computing the PPM of
probability measures and comparing the PPMs using MMD. Let kg, be a characteristic kernel as
defined in the previous section. Returning to the notation of Section 2, we define our dimension ¢
topological regularizer, PPM-Reg, on the latent space RE by T, : P.(RE) x P, (RL) — R by

Ta(p, v) == MMDy,, (PPM, (1), PPM, (1)) = || @0 (PPM (1)) — P (PPM,(v (13)

N
When we apply this in the GAN setting, we consider T, (dg (1), do (9w (1)), where v € P.(RY) is
the noise measure, and 1 € P.(RM) is the data measure. Let T, : R® x RP — R be

Tq(w, 0) =Ty (do (1), do (9w (v))) - (14)

Our main result of this section is to show that ‘¥, is smooth with respect to w and € given sufficient
smoothness conditions on the underlying measures and the discriminator and generator. Recall that a
function f : R — R™ is a C'* function if all first derivatives of f are continuous. The following is
our main theoretical result, proved in Appendix D.

Theorem 3. Let kq be a characteristic kernel. Suppose ji € P.(RM) and v € P.(RN) have C*
densities. Suppose the joint functions G : R® x RN — RM defined by G(w,z) = g.(z) and
D : RP x RM — RE defined by D(0,y) = dg(y) be C* functions. Then, T, is a C* function
wherever the PPM is not the trivial measure at the origin.

6 EXPERIMENTS AND RESULTS

We provide empirical experiments which demonstrates the efficacy of PPM-Reg as a topological
regularizer. First, in Section 6.2, we provide an expository shape matching experiment to illustrate
the behavior of PPM-Reg, and provide computational comparisons. Next, in Section 6.3, we apply
PPM-Reg to a GAN-based generative modelling problem, consistently improving the generative
quality of GANS. Finally, in Section 6.4, we consider a GAN-based semi-supervised learning problem,
which demonstrates the effectiveness of PPM-Reg in improving the discriminative ability of GANs.
Due to space limitations, we have placed implementation details and additional experiments for each
of the three settings in Appendix E, Appendix F, and Appendix G.*

4Code & supp.: https://github.com/htwong-ai/ScalableTopologicalRegularizers.
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6.1 COMPUTATIONAL SETUP AND IMPLEMENTATION OVERVIEW

Cramer Distance. The Wasserstein and Cramer distance are both probability metrics that are
sensitive to the geometry of the change in distribution (Bellemare et al., 2017). Moreover, the Cramer
distance does not depend on hyperparameters which simplifies our comparison. We primarily use the
Cramer metric as our main loss function £. Following the definition of (Bellemare et al., 2017), for
w, v € P(R?). The Cramer Distance &y, ) is defined as

g(:uv V) = Emwu [,D(:L‘)} - EyNV [D(y)]’ D(Z) = Ey’~u [”Z - y/Hﬂ - EQJ'NM “'Z - m/HQ]

where x, x’ (resp. y,y’) are independent random variables with law p (resp. v). We do not take the
gradient estimation in (Bellemare et al., 2017, Appendix C.3) as we obtain sufficient samples.

Implementation of PPM. For all experiments, we use s subsamples from p®(24+2) to approximate
the PPM (using the same number of subsamples for dimension 0 and 1). The persistent homology of
each subsample is computed using Equation (4) in parallel on the GPU. Throughout these experiments,
our base kernel is the radial basis function (RBF) kernel krgg(21, 22) = exp (—Hz1 — 29]|?/ 20),
where the width o > 0 is a hyperparameter. Thus, the induced kernel kq, : 2 x 2 — R from Equa-
tion (9) evaluated on z; = (b;, ¢;) € Qs

kQ(Zl,ZQ) = 81 . 62 exp (—”Zl — 22”2/20) . (15)

We use Equation (12) to compute the MMD metric between PPMs. Furthermore, we use a weighted
combination of dimension 0 and 1 PPM in our topological regularizer, such that

T=XTo+ T, (16)
where the weights Ao, A1 > 0 are hyperparameters. We will call this PPM-Reg.

6.2 SHAPE MATCHING
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Figure 2: Visual example of PPM-Reg in a shape matching experiment using Cramer or MMD as the
main loss function. 1st row: Plots of a reference point cloud (in blue) and the initial condition of a
random point cloud (in orange). 2nd Row: Plots of 2-Wasserstein distance between 1-dimensional
persistent homology between the reference shape and training shape over optimization steps.

Our task is to optimize the individual points of a point cloud to match the “shape” of a reference
point cloud using a loss function of the form £ + 7, which operates directly on the ambient space of
the point clouds. We choose L to either be the Cramer distance (Bellemare et al., 2017) or an MMD
metric using an RBF kernel (with width 0 = 0.1). Our aim in this expository experiment is twofold.

1. Demonstrate the ability of PPM-Reg to regularize fopological features in point clouds by
comparing the true (non-subsampled) persistence diagrams of the trained and reference
shapes. Our focus is on showing that this occurs near the beginning of the optimization, since
in GAN settings, the regularization is important away from global minima (see Introduction).

2. Show the computational efficiency of PPM-Reg, which enables its use in later experiments.
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Shape Matching Experiment. Our main results are summarized in Figure 2. We choose two
reference shapes in R? for visualization purposes: a circle, and the union of two intersecting circles.
In the second row of Figure 2, we plot the 2-Wasserstein distance between the 1-dimensional full
(non-subsampled) persistence diagrams between the fixed reference and the trained point cloud, as a
function of optimization steps. In each case, we see that adding PPM-Reg significantly reduces the
topological distance. An interesting feature of each of these plots is that there is an initial spike in the
PD distance when using PPM-Reg. Empirically, this is due to the fact that the point cloud must first
move through a regime with trivial topological structure before PPM-Reg can faithfully match the
topology of the reference. The training behavior is best understood by observing the dynamics of the
optimization, and we provide animations of these experiments in the supplementary material.

Computational Comparisons. The efficiency of the PPM-Reg is derived from two major compo-
nents: the parallelizable PPM and the iterative-free MMD. Table 1 empirically shows the compu-
tational benefit of each component as the size of the point cloud and the number of subsamples s
are varied. We use Cramer as the main loss, and consider the computational cost of using PPM-Reg,
W-PPM-Reg and PD-Reg. PD-Reg computes the 2-Wasserstein distance between dimension 0 and
1 full persistent homology with Vietoris-Rips filtration. W-PPM-Reg computes the 2-Wasserstein
distance between PPMs of dimension 0 and 1. We use the torch-topological package (Lab)
to compute persistent homology and Wasserstein distances.

Our aim is to compare the real-world usage of these methods using the circle experiment. Thus,
PPM-Reg computations are performed on a GPU, while PD-Reg and W-PPM-Reg uses hybrid
CPU-GPU methods. The computational cost of PD-Reg grows exponentially with respect to the size
of the point cloud. While the computational cost of W-PPM-Reg is sublinear with respect to the size
of the point cloud, the cost is exponential with respect to the number of subsamples s. Remarkably,
due to parallelization, PPM-Reg is sublinear with respect to the number of subsamples s and is
nearly constant as the size of the point cloud increases. In the following experiments, we find that
s = 1024 and s = 2048 performs well in practice. In summary, using MMD mediates the drawback
of the increased number of features extracted by PPM, resulting in our significantly faster PPM-Reg.
With parallelization, our pure PyTorch implementation of PPM-Reg outperforms highly optimized
low-level CPU implementations used in torch-topological.

Cramer + PPM-Reg Cramer + W-PPM-Reg

Cramer + PD-Reg
No. points s=512 s=1024 s =2048 s=512 s=1024 s =2048

128 0.55 £ 0.005 0.61 £+ 0.007 0.98 £ 0.004 3.06 £ 0.033 13.28 £0.198 73.00 £ 3.323  1.99 £ 0.048
256 0.56 £ 0.008 0.61 4 0.005 0.99 £ 0.005 3.25 £ 0.083 14.04 £ 0.187 80.11 £2.545 10.43 £0.075
512 0.56 £0.010 0.61 +0.014 0.98 £ 0.006 3.43 £0.111 16.43 £ 0.458 91.29 £+ 3.081 107.11 + 2.837
1024 0.57 £0.005 0.61 4+ 0.005 1.00 £ 0.007 3.90 £ 0.092 19.45 £ 0.468 121.76 + 3.424 655.58 £ 11.823

Table 1: Running time of 100 gradient steps (in seconds) in matching circle form randomly initialize
gaussian in R? with GPU computation enable. The averages are computed over 10 runs.

Imperfect Convergence. In Appendix E.2, we observe the same trends in additional modified
experiments, which prevent the centroid of the trained shape from converging to the centroid of the
reference. This is done to mimic the GAN setting where training algorithms often converge to saddle
points rather than global minima (Berard et al., 2019; Liang & Stokes, 2019).

6.3 UNCONDITIONAL IMAGE GENERATION

Next, we consider the use of PPM-Reg in an unconditional image generation task, which is the
standard benchmark to evaluate GANs (Goodfellow et al., 2014; Arjovsky et al., 2017).

Network Architecture and Implementation Details. We use a ResNet based CNN as the generator
g, Which takes a 128-dimensional noise vector as input. We use a CNN as the discriminator dg and
the output of the network is a 128-dimensional latent vector. We compare the Cramer value function
VY = L, with the use of PPM-Reg V = £ + 7. As our network differs from (Bellemare et al., 2017),
we retrain both regularized and unregularized networks for a fair comparison.
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Dataset and Evaluation Metrics. We consider the CelebA (Liu et al., 2015) and Anime-
Face (Churchill & Chao, 2019) datasets. Images are centered and resized to 32 x 32. While
the Frechét Inception Distance (FID) (Heusel et al., 2017) is a popular metric to evaluate the distance
between generated and real images, recent empirical work has thoroughly investigated several draw-
backs of FID (Horak et al., 2021; Stein et al., 2024; Jayasumana et al., 2024). Instead, we adopt three
metrics:

1. CMMD (Jayasumana et al., 2024): MMD of CLIP embeddings (Radford et al., 2021),
2. FDpinov2 (Stein et al., 2024): Frechét Distance of Dinov2 (Oquab et al., 2024) embeddings
3. WDjaeent: 2-Wasserstein distance of CLIP embeddings (Radford et al., 2021)

In Table 2, these are computed by sampling / generating 10K images from the data set / network. We
report CMMD, FDp;,0v2 and WD, using the epoch with the smallest CMMD.

AnimeFace CelebA
CMMD FDDinov2 WDlatem CMMD FDDinc»vZ WDlatem

Cramer (Bellemare et al., 2017) 0.73 95399 0.6294 0.72  722.86 0.6795
Cramer + PPM-Reg 0.56  780.68 0.6080 0.58  700.73 0.6666

Table 2: Quantitative evaluation on 32 x 32 image generation, values are reported at the epoch with
the smallest CMMD.
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Figure 3: CMMD (a,d), FDpinov2 (b,€) and WDy,en (c,f) versus training epochs for the AnimeFace
(a-c) and CelebA (d-f) dataset. 10K samples are randomly generated to compute distances; moving
averages with a window of 5 are used to smooth the values. Distances recorded every 160 epochs.

Results. Figure 3 tracks these three metrics during training. Figure 3 (a,b,d,e) shows that using PPM-
Reg improves image generation quality for both AnimeFace and CelebA. The Wasserstein distance
can better detect geometric information in embedding space. Tracking WD, in Figure 3 (c,f)
shows that adding PPM-Reg provides more information and helps discover geometric structures in
the latent space in an unsupervised way. This reinforces work that shows that persistence-based
methods are able to effectively measure image generation quality (Zhou et al., 2021; Khrulkov &
Oseledets, 2018; Barannikov et al., 2021; Charlier et al., 2019). As training progresses, improved
Cramer loss does not always lead to improved evaluation metrics (Figure 3 (a,c)). Our reported results
use CMMD as an early stopping criterion which is prohibitively expensive to compute in practice. In
contrast, the evaluation metrics consistently decrease with respect to training time, and this implies
that may not need to compute additional metrics for early stopping. In Appendix F.2, we consider
larger (64 x 64) image generation experiments with the CelebA and LSUN Kitchen datasets, and
find similarly improved results, demonstrating the efficacy of PPM-Reg in larger-scale experiments.
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6.4 SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) methods use unlabeled data alongside a small amount of labeled data
to train a classification network (Yang et al., 2022). SSL often assumes that classification problems
are supported on low-dimensional manifolds, which allows a network to learn the classification
problem with limited labels (Niyogi, 2013). In practice, knowledge of the low-dimensional manifold
can be learned by encoding the unlabeled data to latent representations. With few labeled data points,
a simple classifier is trained using those latent representations (Wang et al., 2021a; Decourt & Duong,
2020; Truong et al., 2019; Das et al., 2021). Here, we demonstrate PPM-Reg can help encode more
informative latent representations, and significantly reduce classification error in SSL.

Network Architecture and Implementation Details. We use a deconvolutional network as g,
which takes a 64 dimension noise vector as input. We use a CNN as dg and the output of the network
is a 64 dimension latent vector. We use an MLP as a classifier parameterized by -, termed c.,. We
first learn the latent representations using a Cramer GAN (Bellemare et al., 2017) framework with
all available data, and compare it against the addition of PPM-Reg. After training the GAN, the
discriminator dg is frozen and its output is used as the features to train the classifier ¢, with the
subset of training samples. For a comparison without latent representations learning, we consider a
“Baseline”, where dg and c, are trained together as a classifier (without the generative part).

Dataset and Evaluation Metrics. We compare the SSL performance with Fashion-MNIST (Xiao,
2017), Kuzushiji-MNIST (Clanuwat et al., 2018) and MNIST. In these experiments, 200 and 400
labels are randomly sampled from the data set. Due to the inherent randomness in sampling few
labels, experiments are repeated ten times and the statistics of the best test-set accuracy are reported.

Fashion-MNIST Kuzushiji-MNIST MNIST
Number of labels 200 400 200 400 200 400
Baseline 67.18 £ 0.95 71.00 £ 0.83 48.40 £ 1.79 55.10 &= 1.55 80.52 +1.49 86.39 + 1.14
Cramer 62.70 + 1.25 68.58 £ 1.08 47.77 £ 1.40 56.06 + 1.88 71.10 +1.52 78.26 + 1.30

Cramer + PPM-Reg 76.84 = 1.23 80.59 +0.69 75.78 +1.99 79.33 £1.69 96.62 = 0.39 97.33  0.21

Table 3: Test-set classification accuracy (%) on Fashion-MNIST, Kuzushiji-MNIST and MNIST.
with 200 and 400 labeled examples. The average and the error bar are computed over 10 runs.

Result. Table 3 shows the test classification accuracy, where we use only 0.33% (200) and 0.66%
(400) of the total number of labels. Compared with Baseline, only using Cramer does not significantly
improve the classification accuracy in SSL. Note that while the Cramer GAN (without PPM-Reg)
has reasonable generative ability, shown in Figure 7, this does not imply strong discriminator
performance in SSL. Remarkably, using PPM-Reg significantly improves the classification accuracy.
For example, compared with the Baseline, Kuzushiji-MNIST has gain 27.38% improvement with 200
labels. Notably, with the latent representations learned with PPM-Reg, we can get a good accuracy
using only 0.66% of the labels. This section demonstrates that discovering topological structures
in latent space is not only useful in generative tasks, but can be leveraged to massively improve
classification accuracy when very few labels are available. In Appendix G.2, we observe similar
performance gains in additional experiments on the SVHN dataset.

7 CONCLUSION

In this article, we propose a novel method for stable and scalable topological regularization based on
the subsampling principle of PPMs, opening up the possibility of detecting topological information
in larger-scale machine learning problems. We introduced a theoretical framework for using kernel
methods and MMD metrics for PPMs, and demonstrated the efficacy of this methodology in a
variety of experimental settings. This work suggests several directions for future study. From the
theoretical and computational perspective, can we develop parallelizable approximate computations
in more general settings? From an applied perspective, how can we leverage approximate topological
summaries in further machine learning tasks such as classification or regression?
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A BACKGROUND ON KERNELS AND MMD

In this section, we provide a brief overview of kernel methods, leading towards the maximum mean
discrepancy. For further background, we refer the reader to (Muandet et al., 2017).

Kernels and Feature Maps Suppose X is a topological space on which we wish to study either
functions f : X — R or measures p € P(X). A kcommon way to consider such objects is by using
a feature map

DX —H 7)

into some Hilbert space H. Heuristically, we can consider

» functions on X via linear functionals (¢, ®(-))3; : X — R where ¢ € H, and

* measures on X by considering the kernel mean embedding (which we also denote by ®),
defined by

O:PX)—>H, D)= /X O (x)dp(x). (18)

Given this feature map, we can define a positive-definite kernel k : X x X — R defined by

Reproducing Kernel Hilbert Spaces. In fact, we can also go in the other direction and start with a
continuous positive definite kernel k£ : X x X — R, and obtain a feature map from X into a Hilbert
space of functions. In particular, we define H to be the completion of the linear span of functions
{k(z,-): X - R : x € X}, equipped with the inner product

<k(m,),k(y,)) = k‘(x,y) (20

By the Moore-Aronszajn theorem (Aronszajn, 1950), H is a Hilbert space with the reproducing
kernel property: for any f € H and x € X, we have

{fk(z,-)) = f(x). 21
Thus, H is a reproducing kernel Hilbert space (RKHS). Note that this is a Hilbert space of functions,
H C C(X,R). Then, we can define a feature map ¢ : X — H by

O(x) = k(zx,-). (22)

Universality and Characteristicness We wish to consider feature maps (or kernels) which satisfy
additional properties such that they can approximate functions and characterize measures. Let
F C C(X,R) be a topological vector space, and suppose M is a space of measures on X. A feature
map ¢ : X — H (with associated kernel k : X x X — R), where H C F is (Simon-Gabriel &
Scholkopf, 2018)

* universal with respect to F if H is dense in F (we can approximate functions in F using
functions in H); and

* characteristic with respect to M if the kernel mean embedding in Equation (18) is injective.

Maximum Mean Discrepancy Given a feature map ¢ : X — 7 (with kernel k) characteristic to
the space of probability measures P(X'), we can use the Hilbert space norm to define a metric on this
space of measures. In fact, this is equivalent to the notion of maximum mean discrepancy (MMD)
from statistics. In particular, given a function class F C C(X,R), we define the MMD with respect
to F by

MMD (1, v) = sup (Eonplf(@)] = Eyn [f(9)]) - (23)

Now, by (Gretton et al., 2012, Lemma 4), if we choose F to be the unit ball of the RKHS # (with
respect to a characteristic kernel k), the MMD with respect to F is exactly the Hilbert space norm,

MMDr(p,v) = || () — ®(v)[l3, = MMDy(p, v), (24)
where the right hand side is how we define MMDy, in Equation (11).
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B CHARACTERISTIC KERNELS ON ().

In this appendix, we provide a detailed discussion of the proof of Theorem 1.
We begin by characterizing some of the elements in the RKHS Hq,.
Lemma 1. The RKHS Hq, satisfies

HoD{g: Q=R : gbt)=1L-f(bl), feH}. (25)

Proof. By Moore-Aronszajn (Aronszajn, 1950), an element of g € H, is defined by a convergent
series

g(b,0) cika((bi, 4;), (b, 0)) = EZci&k((bi,Ei), (b,0)) =12 f(b,0), (26)

1 i=1

)

K2

cilik((b;, ¢;), (b, 0)). Note that if the coefficient series for f given by
£;)) is convergent, then the coefficient series for g given by

where f(b,f) = Z
2oz leil€ik (b, €), (b

An8

D leilka (i ), (bi, ) Zm\ﬁ ((biy £a), (biy €2)) < T lesllak((bs, £3), (b, £3))  27)

i=1
is also convergent, since ¢; < T O
Universality and Characteristicness. Our first main result concerns the transfer of universal

and characteristic properties from k to kq. First, we define the space of linear-growth continuous
Sfunctions on Q1 by

Ciin(Qr) = {€- f(b,€) € C(Qr) : f(b,0) € O([0,T]*)}, (28)

where we equip it with the norm defined on g = £ - f by
gllin = [floo- (29)
Note that for all ¢ € C},(Q2) have the property that g(x) = 0, and (Ciin(Q7), || - |lin) and

(C([0,T)?),] - |oo) are isometric Banach spaces.

Theorem 4. Let k : [0,T]? x [0,T)> — R be a kernel on [0,T)? universal to C([0,T)?). Then,
q : Q0 x Q — R is universal with respect to Cy,,(21).

Proof. Let g € Ciin(Qr) and suppose g = ¢ - f for some f € C([0,7]?). Because k is universal,
there exists f,, € H such that | f,, — f|cc — 0. Then, by Lemma 1, g,, = ¢- f,, € Hgq, and furthermore,
by the definition of || - ||;i, in Equation (29), we have ||g,, — g|in — 0. Thus, kq is universal with
respect to Ciin (7). O

The main result we wish to obtain is characteristicness with respect to measures on {). We begin by
applying the duality theorem of (Simon-Gabriel & Scholkopf, 2018, Theorem 6) which immediately
implies characteristicness with respect to the topological dual of Cj;, (£2), which we equip with the
weak-* topology with respect to Ch;, (Q2).

Corollary 1. Let k : [0,T)? x [0,T)?> — R be a kernel on [0, T)? universal to C([0,T)?). Then, kq
is characteristic with respect to Cy;, (Q)*.

Our next task is to show that our desired measures are contained in this dual space.

Theorem 5. Let q : [0,T]? — 2 denote the quotient map, and let s : [0, T)?> — [0, 00) be defined by
s(b,€) = £ for £ > 0 and s(b,0) = 0. Define
/ 2
[0,7]?

Miin(2) = {q*u € M(Q) : pe M([0,T]%), p({t =0}) =0,

< oo} (30)
then M;in(Q2) C Ciin(S2)*.
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Proof. Let .yt € Myjn(R2). Then, for g = £ - f € Cyin(2), we have

/ 0 F(b.0du
[0,T]2

where we use u({¢ = 0}) = 0 in the first equality. Thus, ¢.p is a bounded (hence continuous) linear
functional. O

< 119ll1in ) 3D

/ £ f(b,0)gq.dv
Q

/ am
[0,7]2

s

As we wish to use this kernel to study PPMs, we are interested in probability measures on 2. However,
the elements in the dual only contain measures which are trivial on * € €2 (whereas PPMs may have
nontrivial mass on ), and thus we first define a different representation of probability measures. In
particular, we define

Pin(2) ={v € Min(Q) : [v| <1} ={re M(Q) : v({x}) =0, |v| <1} C M;n(Q). (32)

Note that the equality holds since the moment condition in Equation (30) is immediately satisfied
since the measures are finite with bounded support. With the following two lemmas, we show that
this coincides with P(£2).

Lemma 2. The space Cy;,(Q2) is dense in Co(S2) equipped with the uniform topology.

Proof. Let g € Cy(2), and since g is uniformly continuous (since {2 is compact) and g(*) = 0, for
every € > 0, there exists some £, such that g(b, ¢) < € whenever ¢ < £.. Now, define f,, € C([0,7]?)
by

fulb,t) = 90

for £>4y), and f,(b, ¢ for £ <ty/p. (33)

Then, define g, (b,£) = £ - f(b, £), where g,, (b, £) = g(b, £) whenever £ > £y ,,,. When £ < {; ,,, we
have
2

S0 g, converges uniformly to g. O

(34)

Lemma 3. There exists a homeomorphism

Y P(Q) = Pun(Q) (35)
where P(S)) is equipped with the weak-* topology with respect to C(Q)) and Py, (2) is equipped with
the weak-* topology with respect to Cl;, (2).

Proof. We define 1 and its inverse by
B(u) = p— p(x)d. and ¥ () = v+ (1 - v(Q))5., (36)

where 0, denotes the Dirac measure on * € {. By definition of P;;,(€2) in Equation (32), this map is
a bijection. It remains to show that y,, — p in P(Q) if and only if ¢ () — (1) in Piin ().

Note that for any f € C(Q) and p € P(2), we can decompose the integral as
wif) = [ gau= | pdns s, a7
Q Q—{x}

Then, for f € Cjin(2), we have

= dy = d 38
pin= [ gdu= [ sa 39)

since f(x) = 0 and p = ¥(p) on Q — {*}. Thus, if p, — p in P(Q) then Y (p,) — ¥(p) in
Pin ().
Next, suppose that v, — v in P;,(€2). Now, we note that Pj;,(Q2) C M(Q), and thus are also

continuous functionals on C'(2) with respect to the uniform topology. By Lemma 2, we have
vn(f) = v(f) for all f € Cy(©2). However, this also implies it holds for all f € C(Q), since
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we obtain functions in C(2) by adding a constant to a function in Cy(€2) and v({*}) = 0 for all
v € Pyin(Q). This implies that

/ Faib () = () (39)
Q—{+} O—{+}

since v = ¢~} (v) on Q — {x} for all v € Py (£2). Furthermore, this implies that v,,(2) — v(£2),
and thus by definition of ¢»~! in Equation (36), we have v~ !(v,,) — ¢~ () in P(Q). O

This result allows us to work wtih P(€2) and Py, (2) interchangeably. In particular, note that
D (x) = 0 € Hg. This implies that for any p € P (), we have

o (p) = Pa((p)). (40)

Proof of Theorem 1. By Corollary 1, kq is characteristic with respect to M, (Q2), and Pyn(Q) C
Miin(Q) by Theorem 5. Next, by Lemma 3, we can apply the identity Equation (40) to conclude that
kq is characteristic with respect to P (). O

C METRIZING WEAK TOPOLOGY
In this appendix, we provide a detailed discussion of the proof of Theorem 2.

Maximum Mean Discrepancy (MMD). Because kq, is a characteristic kernel on 2, the kernel
mean embedding, defined (by an abuse of notation) on v = q.pu € My, () by
Do Miin(Q) —» Ha, D) =E.w[Pa(z)], 41)

is injective. This induces a metric on My, (2), called the maximum mean discrepancy (MMD),

MMDk(l/l, Vg) = ||(I)(V1) — (I)(I/Q)”HQ. (42)

Our next result shows that the MMD metrizes the weak-* topology on Py, (£2), where we can directly
apply (Sriperumbudur, 2016, Theorem 3.2). See also (Simon-Gabriel et al., 2023) for related results.

Theorem 6. The MMD metric metrizes the weak topology on P (). In other words, given measures
Un, v € P(Q), we have MMDy,(vy,,v) — 0 if and only if

‘Vn(g) - V<g)| —0 (43)
forall g € C(Q).
Proof. This follows from (Sriperumbudur, 2016, Theorem 3.2) as €2 is a compact Polish space and
kq is a continuous bounded kernel. O
Corollary 2. The p-Wasserstein metric W, and the MMD metric MMDy, induce the same topology
on P(Q).

Proof. This is a direct consequence of the above, since the p-Wasserstein distance also metrizes the
weak topology on P(Q) (Villani, 2009, Theorem 6.9). O

D PPM REGULARIZER HAS CONTINUOUS GRADIENTS

We say that a function f : R® — R™ is a C'! function if all first derivatives of f are continuous. We
will begin with a more general statement which will immediately imply Theorem 3. Fix u € P.(RY)
to be a measure, and let hg : RY — R” be a mapping from R¥ to the latent space R”. Suppose that
the mapping hy is parametrized by § € R”, and define H : R” x RN — R by H (6, x) = hy(z).
We aim to show that § : R — Hq, defined by

H(0) = P (PPMy(ho (1)) (44)
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is a smooth function. In particular, the pipeline for computing this feature map is

_\®(2k+2)
PRN) e p (rEy ST p (RE)2RH2) PR by 2y gy (45)

Let F : RP — P((R1)2#+2) be the map from the parameter space to the product measure in latent
space. We assume that the resulting product measure has a C'! density, which is true if H is C'!, and
1 has a C! density. Then, F has the form

F(0) = f(0,z)dx (46)
where f : RP x (RL)26+2 — Ris a O™ function.

Theorem 7. Let i € P(RY) be a probability measure with a C' density, suppose H : RY x RN —
RY is a C' function. Then $ : RY — Hq is a C' function (where derivatives are Fréchet
derivatives).

Proof. Expanding out the definition of §j, we have

Ba(PPM, (o (1)) = | Bal2)d(PHL.F(0)(2) @7)
_ / e, o PH (2)dF(6)(2) (48)

(RL)2k+2
= / (I)Q o PHk (m)f(@, .’li)d.fﬂ, (49)

(RL)2k+2

where we use the definition of the pushforward in the second line, and the definition of the density of
F in Equation (46). Now, this integral is a Bochner integral since it is valued in a Hilbert space, and
we can still differentiate under the integral (by Hille’s theorem; see (Dieudonne, 1969, Paragraph
8.11.2)). Then, we have

0 of(0,x
—dq (PPMq(hg (,u))) = / $ o PH,, (x)Lda:, (50)
aez (RL)2k+2 691
which is continuous since f is C*. O
Proof of Theorem 3. By direct application of Theorem 7, both
01— &g oPPM,0dg(pr) and (0,w)+— PgoPPM, 0dg o g (V) (51

are C'! functions. Then, since the norm is continuously differentiable away from the origin, we obtain
the desired result. O

E SHAPE MATCHING

E.1 IMPLEMENTATION DETAILS FOR SHAPE MATCHING

Shape Matching Experiment. The task is to match the "shape" of two point clouds by optimizing
a loss function of the form £ + 7 in ambient space. Throughout the experiment, we use gradient
descent with momentum as the optimization algorithm. The value of the momentum parameter is 0.9
and the step size is 0.05. Two simple reference shapes in R? are chosen for visualization purposes.
They are a unit circle (left), and the union of two intersecting unit circles (right), shown in Figure 2.
A noisy point cloud with 512 points is first initialized with a normally distributed at the origin with a
standard deviation of 0.3, we call training shape. The reference shapes are also sampled as a point
cloud wiht 512 points. The reference shape is fixed and the training shape changes towards the
reference, guided by some loss function. We test for the effectiveness of four loss function, they are
Cramer, MMD, Cramer + PPM-Reg and MMD + PPM-Reg. The MMD metric using an RBF kernel
(with width o = 0.1). Throughout the experiment, the hyperparameter of PPM-Reg is fixed as A = 1,
Ao =1, A\ = 6000, 0 = 0.1 and s = 2000. For Cramer + PPM-Reg, the weight of the cramer loss
is 1.6. For MMD + PPM-Reg, the weight of the MMD loss is 5. In Figure 4, we show the the shapes
after 16000 training steps. Even at this stage, we observe that there are several “leftover” points. This
is partially due to the choice of the underlying loss functions, and we observe that in (b), (d) and (h),
the trained shapes using PPM-Reg largely capture the topological features of the reference shape.
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Figure 4: Plots of the shape matching experiment at convergence after 16000 steps. (a) and (e) use
only the Cramer loss. (b) and (f) use Cramer + PPM-Reg. (c) and (g) use only the MMD loss. (d) and
(h) use MMD + PPM-Reg.
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Figure 5: Illustrative example of the PPM-Reg in shape matching using MMD with increasing
handicap contain. Plotting 2-Wasserstein distance upto 1-dimensional persistent homology between
the reference shape and training shape (PDg;s:) over optimization steps. The reference shape of
(a) unit circle and (b) union of two intersecting unit circles. cs indicate the strength of the handicap
(detail provided in Appendix E.2). Showing that the ability to matching topological features as the
handicap contains increase.

Computational Comparison. Results are computed on Nvidia Geforce RTX 3060 with Intel Core
i7-10700.

E.2 IMPERFECT CONVERGENCE
This section demonstrates the efficacy of PPM-Reg when the primary loss function £ is optimized
imperfectly. As discussed in Section 1, most GAN training algorithms converge to a local saddle

point. In simpler latent-space matching tasks, £ is often optimized alongside with other tasks. To
summarize, converging to an imperfect £ value is a common occurrence in machine learning.
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To restrict the solution of the shape matching problem, we impose a penalty term that prevents the
centroid of the reference shapes and the training shape from being smaller than a user-defined value
cs. The penalty term f,, is given by

A
fp _ ﬁpln(l + eB(CS—HCtrain_crefHZ))’ (52)

where ¢¢qin, and ¢,y refers to the centroid of the training shape and reference shapes respectively.
The term )\, is the penalty strength, 3 is a tuning parameter. For the MMD case, V = £ + f,. For
the MMD + PPM-Reg case, V = L + AT + fp.

Implementation Details. We largely follow the setup on Section 6.2 and Appendix E.1, but make
a few minor changes. We reduced the step size to 0.01 and performed 16,000 gradient steps. The
hyperparameter of PPM-Reg is fixed as A = 1, Ay = 0.3, A\; = 6000, 0 = 0.1 and s = 2000. For the
penalty function f,, we set 8 = 80. The ), value remains the same when we vary cs and compare
against adding PPM-Reg. The A, value is determined such that ||¢irqin — Crefl|2 converges to c;
when c¢s = 0.04.

Evaluation Metrics. We consider the case where ¢5 € {0,0.04,0.12}. For reference shape
normalized to [—1, 1], having a ¢ = 0.12 is very small. We compare the main loss with the addition
of PPM-Reg and track the 2-Wasserstein distance up-to the 1-dimensional persistence diagrams along
gradient step.

Result. Figure 5 shows the change in PD distance as c;s increases with the circle Figure 5(a) and
union of two circles Figure 5(b). Compared with only using MMD as main loss, adding PPM-Reg
consistently converges to a smaller PD distance regardless of the cs value. In contrast, when only
using MMD, the PD distance increases as cs value increases. Figure 5 illustrates the benefit of
explicitly comparing the difference between topological features with PPM-Reg compared with
implicitly considering topological features with only MMD when the optimization problem may not
converge to near zero.

F UNCONDITIONAL IMAGE GENERATION

F.1 IMPLEMENTATION DETAILS FOR UNCONDITIONAL IMAGE GENERATION

This section fills in the details of the unconditional image generation experiment in Section 6.3.

o = 0.05 o=0.5 o=1.0
A CMMD F])Dinovz WDlalenl CMMD FDDinovZ WDlatenl CMMD FDDinov2 WDlalem

1.0 0.74 945.27 0.6330  0.68 846.33  0.6228 0.56 780.68  0.6080
5.0 0.73 928.60 0.6310  0.72 884.40 0.6282 0.74 894.77  0.6308
10.0 0.74 880.68  0.6332 0.77 922.58  0.6379 0.71 923.50 0.6274

Table 4: Ablation study on AnimeFace dataset.

o =0.05 o =05 c=10
A CMMD FDDim)VZ WDlalem CMMD FDDimva WDlatem CMMD FDDinovZ WDlmem

1.0 0.87 737.09  0.6945 0.65 704.74  0.6744  0.81 745.39  0.6886
5.0 0.72 733.66  0.6815 0.58 700.73  0.6666 0.68 695.36  0.6768
10.0  0.61 690.01  0.6691 0.69 683.35 0.6781 0.71 719.39  0.6795

Table 5: Ablation study on CelebA dataset.
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Implementation Details. The network architectures used in the unconditional image generation
in Section 6.3 are shown in Figure 8. As illustrated in Figure 8, g, is a ResNet based CNN that takes
128-dimensional noise vector as input. dg is a CNN that outputs a 128-dimensional latent vector.

We compare the basic Cramer (Bellemare et al., 2017) value function V = L, with the use of PPM-
Reg V = L + 7. For the addition of PPM-Reg case, we fix Ao = 0.001, A\; = 0.6, and s = 1024.
A ={1.0,5.0,10.0} and o = {0.05,0.1, 0.5} are the tuning parameter. In both cases, the standard
Adam optimizer with learning rate 1 x 10~% is used to train the network. For g, 31 = 0.0 and
B2 = 99. For dg, /1 = 0.5 and 33 = 0.99. The batch size is 192. For the CelebA dataset, the GAN
training run for 5440 epochs. For AnimeFace data set, the GAN training run for 7000 epochs.

During training, we compute CMMD for every 160 epochs. We report the CMMD (Jayasumana
et al., 2024) and WDten: and FDp;,v2 (Stein et al., 2024) with the smallest CMMD value across
training epochs. Those quantitative metrics are computed by sampling 10K images from the data set
and generating 10k images from the network.

Ablation Study. There are two primary parameters in our topological regularizer. The parameter A
controls the strength of the regularizer, while o controls the width of the RBF kernel in defining the
MMD for PPMs. We provide an ablation study to show how the evaluation metrics change as we
vary these parameters in Table 5 for AnimeFace and Table 4 for CelebA.

F.2 FURTHER UNCONDITIONAL IMAGE GENERATION EXPERIMENT

This section introduces supplementary unconditional image generation experiments with an in-
crease in image resolution as well as additional datasets in conjunction with appropriate network
architectures.

CelebA LSUN Kitchen
CMMD FDDinovZ WD]atent CMMD l::DDinnv2 WDlalent

Cramer (Bellemare et al., 2017) 052 902.09 0.7335 1.56 1592.06 0.7690
Cramer + PPM-Reg 046  826.04 0.7296  1.31 1381.22 0.7502

Table 6: Quantitative evaluation on 64 x 64 image generation, values are reported at the epoch with
the smallest CMMD.

Implementation Details. Similar to Section 6.3, g, is a ResNet based CNN that takes 128-
dimensional noise vector as input. dg is a CNN that outputs a 128-dimensional latent vector. The
major difference is instead of just generating 32 x 32 images as in Section 6.3, we test our PPM-Reg
with higher resolution. Specifically, we consider the 64 x 64 image generation task. To accommodate
the increase in modeling complexity, we introduce a new network architecture shown in Figure 9.

To avoid confusion, we will write out our implementation details. We are comparing Cramer (Belle-
mare et al., 2017) and the addition of PPM-Reg. For the addition of PPM-Reg case, we only fix
Ao = 0.001 and s = 1024. The value of \; changes as the training epoch runs. Specifically, we adapt
cosine annealing (Loshchilov & Hutter, 2016) on A1, the \; value at epoch ¢ term \! is given by
A= {W” + SOP = AP (14 cos(m)), it < ten

, 53
AR if > tena, 53)

where )\1’”'", AT and t.p,q are user-defined variable. )\{”m and AT"** are the range of the A1, tcpq is
the ending epoch for the cosine annealing. We fix A\7*" = 0.1, ¢ = 0.5 for both dataset. For CelebA,
A =1 A" =1and tepqg = 1920. For LSUN Kitchen, A = 10, A7*** = 0.8, and t.,,q = 260. The
standard Adam optimizer with learning rate 1 x 10~* is used to train the network. For g,,, 31 = 0.0
and B2 = 99. For dg, 51 = 0.5 and By = 0.99. The batch size is 192. For the CelebA dataset, the
GAN training is run for 2560 epochs, while for the LSUN Kitchen data set, the GAN training is run
for 300 epochs.

Dataset and Evaluation Metrics. We add a new dataset LSUN Kitchen (Yu et al., 2015) and also
use CelebA (Liu et al., 2015) at a higher resolution. Images are centered and resized to 64 x 64.
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Figure 6: CMMD (a,e), FDpjpov2 (b,f) and WD)yen; (c,g) versus training epochs for the CelebA
(a-c) and LSUN Kitchen (d-f) dataset for the 64 x 64 image generation. 10K samples are randomly
generated to compute the distances, and moving averages with a window of 5 are used to smooth
the values. For CelebA, distances are recorded every 160 epochs. For LSUN Kitchen, distances are
recorded every 20 epochs.

During training, we compute CMMD for every 160 epochs for CelebA and 20 epochs for LSUN
Kitchen. We report the CMMD (Jayasumana et al., 2024) and WD)y and FDpjyoy2 (Stein et al.,
2024) with the smallest CMMD value across training epochs. For justification for using the chosen
quantitative evaluation metrics, readers can refer to Section 6.3. Those quantitative metrics are
computed by sampling 10K images from the data set and generating 10k images from the network.

Result. Figure 6 tracks the three quantitative metrics during training and Table 6 reports the three
metrics with the smallest CMMD. While the FDpj,v» metric has comparable values in Figure 6(b),
at the point of the smallest CMMD, Cramer + PPM-Reg has a smaller FDpj;pov2 for CelebA, shown
in Table 6. Our quantitative results in Table 6 reinforce the fact that using PPM-Reg improves the
generative ability of GANs. Compared to CelebA dataset, using PPM-Reg in the LSUN Kitchen
dataset results in a more significant improvement. We conjecture that since LSUN Kitchen is a
much larger dataset (2,212,277 training samples) that contains diverse images (i.e. different color
tones, layouts), its underlying lower dimensional submanifold has more complex topological features
compared with CelebA. The significant improvement gives evidence that PPM-Reg is useful in
discovering more complex topological structures in latent space.

G SEMI-SUPERVISED LEARNING

G.1 IMPLEMENTATION DETAILS FOR SEMI-SUPERVISED LEARNING

This section fills in the details of the semi-supervised learning experiment in Section 6.4.

Network Architecture and Implementation Details. The network architectures used in the semi-
supervised learning experiment in Section 6.4 are shown in Figure 10. The input noise vector of g,,
has dimension of 64. We set the dimension of the output latent vector of dg as 64.

Specifically, g., and dg are trained with the GAN framework for 4,000 epochs using the standard
Adam optimizer with learning rate 1 x 10~%. For g,,, we set 8; = 0.0 and 3, = 99; for dg, we set
B1 = 0.5 and B3 = 0.99. The batch size is 192. For Cramer + PPM-Reg, we fix A\g = 1, Ay = 90
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Figure 7: Generated images from SSL experiment from trained g,, for MNIST using (a) Cramer
Distance and (b) PPM-Reg.

and s = 1024. A = {0.025,0.05,0.1} and o = {0.05,0.1,0.5} are the tuning parameter. After the
GAN framework completes the training of g, and dg, the weights of dg are frozen. Using dg as
feature extraction, the output of dg is fed into the classifier. The classifier c, is train with the standard
Adam optimizer with learning rate 1 x 10~* where 3; = 0.1 and B2 = 0.99 for 1000 epochs.

"Baseline" connects dg and ¢, and trains as a classifier without first pertaining dg with GANs. The
standard Adam optimizer with learning rate 1 x 10~% where 3; = 0.1 and 5 = 0.99 are use to train
the "Baseline" network for 4,000 epochs.

Fashion-MNIST (200 labels) Fashion-MNIST (400 labels)
A o = 0.05 o=0.1 =05 o = 0.05 c=0.1 =05

0.1 7539£1.12 74.96+0.96 7524+£1.20 75.39+1.12 74.96+0.96 75.24+£1.20
0.06 76.35+1.09 76.25£1.30 76.81£0.88 76.35+1.09 76.25+1.30 76.81 +0.88
0.025 76.42+£0.85 76.77£1.29 76.84+1.23 76.42+0.85 76.77+1.29 76.84 £1.23

Table 7: Ablation study on Fashion-MNIST dataset with 200/400 labels. Test-set classification
accuracy (%) is shown averaged over 10 runs.

Kuzushiji-MNIST (200 labels) Kuzushiji-MNIST (400 labels)
A o = 0.05 o=0.1 =05 o = 0.05 c=0.1 oc=0.5

0.1 73.70+£2.58 70.84+2.56 70.16+1.96 78.35+1.81 76.18 £1.87 76.67£1.31
0.056 74.35+£245 73.65£1.70 73.97+£1.24 78.99+1.41 79.92+1.88 7877+ 1.48
0.025 74.47£1.65 75.78+£1.99 7541+2.83 79.40+1.65 79.33£1.69 80.04 £1.37

Table 8: Ablation study on Kuzushiji-MNIST with 200/400 labels. Test-set classification accuracy
(%) is shown averaged over 10 runs.

Ablation Study. We show how the classification accuracy varies with respect to the topological
regularization strength A and the RBF width ¢ in Table 7 for Fashion-MNIST, Table 8 for Kuzushiji-
MNIST, and Table 9 for MNIST.

G.2 FURTHER SEMI-SUPERVISED LEARNING EXPERIMENT

This section introduces supplementary semi-supervised learning experiments with additional datasets
in conjunction with appropriate network architectures.

Network Architecture and Implementation Details. Similar to the setup in Section 6.4, g, is a
deconvolutional network with 64 dimension noise vector as input. dg is a CNN with a 64 dimension
latent vector as output. The additional SVHM dataset is more intricate than the MNIST variants
evaluated in Section 6.4, as it is a color image dataset with higher resolution. To tackle the increase in
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MNIST (200 labels) MNIST (400 labels)
A o =0.05 o=0.1 o=0.5 o =0.05 oc=0.1 oc=20.5

0.1 96.34+£0.29 96.32+0.20 96.18 £0.19 97.19 £0.28 97.06 £0.28 97.07 £ 0.26
0.05 96.61 £0.37 96.62+£0.39 96.224+0.59 97.29+£0.20 97.33£0.21 97.16 £0.25
0.025 96.13£0.42 95.97+£0.37 95.91+£0.55 97.04 £0.27 96.92+0.20 97.24+0.25

Table 9: Ablation study on MNIST with 200/400 labels. Test-set classification accuracy (%) is shown
averaged over 10 runs.

input dimension and the complexity of modeling the dataset, we introduce a new network architecture
shown in Figure 11.

The training setup largely follows the previous experiment; the major difference is the number of
training epochs. Specifically, g, and dg are trained with the GAN framework for 1,200 epochs. The
standard Adam optimizer with learning rate 1 x 10~ is used to train the network. For g,,, 1 = 0.0
and B = 99. For dg, /1 = 0.5 and 83 = 0.99. The batch size is 192. For Cramer + PPM-Reg, we
fix \o =1, \y = 90 and s = 1024. A = {0.025,0.05,0.1} and o = {0.05,0.1,0.5} are the tuning
parameter. After the GAN framework completes the training of g., and dg, the weights of dg are
frozen. Using dg as feature extraction, the output of dg is fed into the classifier. The classifier c,, is
trained with the standard Adam optimizer with learning rate 1 x 10~ where 3; = 0.1 and 5 = 0.99
for 1000 epochs. The standard Adam optimizer with learning rate 1 x 10~* where 3; = 0.1 and
B2 = 0.99 are use to train the "Baseline" network for 4,000 epochs.

Dataset and Evaluation Metrics. We compare the SSL performance with the dataset SVHN. In
this experiment, 400 and 600 labels are randomly sampled from the data set. Because of the random
nature involved in selecting a few labels, we conducted the experiments ten times and provided the
statistics of the highest test-set accuracy achieved.

SVHN
Number of labels 400 600
Baseline 44.68 £+ 2.44 53.68 £4.15
Cramer 38.12+1.75 43.23+1.14

Cramer + PPM-Reg 57.20 + 1.51 61.39 + 0.66

Table 10: Test-set classification accuracy (%) on SVHN with 400 and 600 labeled examples. The
average and the error bar are computed over 10 runs.

SVHN (400 labels) SVHN (600 labels)
A o =0.05 oc=0.1 oc=0.5 o =0.05 oc=0.1 oc=20.5

0.1 55.66+1.78 57.20+1.51 54.84+£1.21 59.48 £1.26 61.39£0.66 59.13£0.95
0.05 47.56+1.67 56.24 £1.25 52.41+1.49 50.73+£1.06 60.08+0.84 60.91+1.19
0.025 55.96 £1.03 56.96£1.92 55.35+1.06 59.13+0.95 56.45+1.41 58.97 £+ 1.00

Table 11: Ablation study on SVHN with 400/600 labels. Test-set classification accuracy (%) is shown
averaged over 10 runs.

Result. Table 10 shows the test classification accuracy. An ablation study is provided in Table 11.
SVHN contains 72,657 training samples and 400 and 600 labels constitute only 0.55% and 0.82%
of the original datasets, respectively. The results follow the same characteristic in Section 6.4, only
using Cramer does not improve the classification accuracy in SSL. In contrast, the use of PPM-Reg
results in a notable improvement in classification accuracy. Specifically, using PPM-Reg with 400
labels yields a 12.52% increase in accuracy compared to the Baseline. The consistent outcome with
more complex datasets and network architecture reinforces our claim that PPM-Reg can help learn a
more informative latent encoding thereby improving SSL performance.
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Figure 10: Network architecture of generator (a), discriminator (b) and classifiacter (c) for semi-
supervised learning for MNIST variants.
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Figure 11: Network architecture of generator (a), discriminator (b) and classifiacter (c) for semi-
supervised learning for SVHN dataset.
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