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Abstract
Compared to standard learning, adversarially ro-
bust learning is widely recognized to require a
much larger training dataset. Recent works uti-
lize external or synthetically generated unlabeled
data in adversarial training using self-supervised
learning. Despite achieving enhanced robustness,
these methods typically require a considerable
amount of additional data, leading to substantial
memory consumption and convergence time. To
address the space and computational challenges,
we propose a novel Latent Clustering-based Selec-
tion scheme (LCS) to strategically select a small
core subset of unlabeled data critical for obtaining
better robustness. In particular, our method pri-
oritizes selecting unlabeled data that are close to
the model’s decision boundary, while balancing
the ratio between the boundary and the remaining
data points to avoid overfitting. Our experiments
show that when incorporated into self-supervised
adversarial training, our LCS scheme can signifi-
cantly reduce the memory and time complexities
while achieving comparable model robustness.

1. Introduction
Over the past decade, it has been repeatedly confirmed that
deep neural networks (DNNs) are vulnerable to adversarial
perturbations (Szegedy et al., 2013). This has raised serious
concerns about the reliability of DNNs in safety-critical ap-
plications and has driven numerous research into designing
methods to enhance model robustness (Goodfellow et al.,
2014; Papernot et al., 2016; Buckman et al., 2018; Biggio &
Roli, 2018). Among them, adversarial training is regarded
as one of the most effective methods to improve model ro-
bustness (Madry et al., 2017; Wang et al., 2019; Zhang et al.,
2019). However, as stated by Schmidt et al. (2018), learning
a robust model requires a significantly larger amount of data
than that of standard learning. To address this challenge,
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recent studies have explored self-supervised techniques to
greatly expand the training set size of adversarial training
algorithms by leveraging unlabeled external (Carmon et al.,
2019) or generated data (Gowal et al., 2021; Sehwag et al.,
2021; Wang et al., 2023). Despite producing models with
improved robust accuracy, these methods typically utilize
vast amounts of additional data, suggesting the requirement
of much larger hardware to store those data and a much
longer training time for adversarial training to converge.

Witnessing the challenges of additional memory and com-
putational requirements, we investigate whether the signifi-
cantly large amount of utilized additional data is inevitable
for achieving state-of-the-art adversarial robustness. The ul-
timate goal of our work is to maximize the model robustness
achieved by self-supervised adversarial training algorithms
by utilizing additional unlabeled data points as few as possi-
ble. Inspired by Zhang et al. (2020), which highlights the
unequal importance of training examples, we argue that with
limited model capacity, self-supervised adversarial learning
should also focus on optimizing critical data samples near
the model’s decision boundary. Consequently, we propose
Latent Clustering-based Selection (LCS), a novel data selec-
tion strategy that prioritizes unlabeled data points, where the
model exhibits a higher prediction uncertainty. Such a strate-
gic data reduction scheme streamlines the self-supervised
adversarial training process while attaining a comparable
model’s robustness against adversarial perturbations.

Contributions. We propose a Latent Clustering-based Se-
lection (LCS) approach (Algorithm 1), aimed at reducing
the volume of unlabeled data while maintaining model ro-
bustness. By strategically prioritizing boundary points, our
method optimizes both efficiency and effectiveness by re-
fining the model’s decision boundary in the input regions
of high uncertainty (Section 3.1). To avoid overfitting, our
method strikes a balance between incorporating boundary
points and leveraging the remaining points that are away
from the model’s decision boundary (Section 3.2). By fo-
cusing on critical unlabeled data points, our method largely
reduces the computational and time complexities of self-
supervised adversarial training algorithms. Our experiments
on image benchmarks demonstrate that our proposed LCS
scheme significantly reduces the memory consumption and
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the total running time of self-supervised adversarial training
algorithms in diverse scenarios (Section 4), enabling the de-
velopment of more scalable robust learning algorithms, par-
ticularly beneficial for resource-constrained environments.

2. Preliminaries
In this section, we introduce the background on adversarial
robustness and self-supervised adversarial training.

Adversarial Robustness. Adversarial robustness captures
a model’s resilience to adversarial perturbations. Let D be
the underlying distribution, from which labeled data (x, y)
are i.i.d. sampled. Here, x ∈ Rd represents an input in a d-
dimensional feature space and y denotes its class label. We
work with the following definition of adversarial robustness.

Definition 2.1 (Adversarial robustness). Let fθ be a clas-
sifier with parameters θ. Consider ℓp perturbations with
strength ϵ ≥ 0. The adversarial robustness of fθ is given by:

AdvRobϵ(fθ) = E(x,y)∼D
[
∃ x′ ∈ Bϵ(x) s.t. fθ(x′) ̸= y

]
,

where Bϵ(x) is denotes an ℓp-norm ball at x with ϵ radius.

When ϵ = 0, adversarial robustness is equivalent to stan-
dard accuracy, i.e., AdvRob0(fθ) = Acc(fθ). In our exper-
iments, we measure robust and standard accuracies using a
test dataset sampeled from D based on Definition 2.1.

Self-Supervised Adversarial Training (SSAT). The pio-
neering work (Carmon et al., 2019) proposed to leverage
external unlabeled data to enhance the model robustness
using self-supervised learning techniques. In particular,
let Dl = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a labeled
dataset, where each example (xi, yi) is i.i.d. sampled from
D. Let Du = {xn+1,xn+2, . . . ,xn+N} be a set of un-
labeled data. Note that the unlabeled data may follow a
different input distribution from the labeled data. SSAT first
trains a standard classifier fθ̂ using the labeled dataset Dl,
then assigns a pseudo-label to each unlabeled data in Du.
Consequently, a training set that consists of Dl and Du =
{(xn+1, ŷn+1), (xn+2, ŷn+2), . . . , (xn+N , ŷn+N )} is pre-
pared, where ŷn+i = fθ̂(xn+i) for any i = 1, 2, . . . , N .
Then, both Dl and Du are incorporated into the adversar-
ial training framework to train robust models. To be more
specific, the training objective of self-supervised adversarial
training can be cast as the following optimization problem:

min
θ

∑
(x,y)∈Dl

Ladv(θ,x, y) + λ
∑

x∈Du

Ladv

(
θ,x, fθ̂(x)

)
,

where Ladv is the adversarial loss function and λ > 0 de-
notes the hyperparameter that controls the trade-off between
the labeled and unlabeled data distribution.

3. Proposed Data Selection Scheme
In this section, we introduce the proposed selection scheme,
which is designed to improve the efficiency of SSAT by
reducing the effective amount of utilized unlabeled data.

Motivation. We start by explaining the motivation of the
proposed study. Schmidt et al. (2018) highlighted that adver-
sarially robust generalization requires a significantly larger
sample complexity than that required by standard generaliza-
tion. Self-supervised learning, which leverages both labeled
and unlabeled data, has been explored to improve adversar-
ial robustness (Alayrac et al., 2019; Najafi et al., 2019; Zhai
et al., 2019; Gowal et al., 2021; Wang et al., 2023). However,
all of the aforementioned methods require a large amount
of extra data to achieve a satisfactory level of robustness,
suggesting inefficiencies in both memory and computation.
Figure 1 illustrates the learning curves in both training and
testing time for different adversarial training algorithms on
CIFAR-10 with and without additional unlabeled data. For
instance, the utilized unlabeled data from ImageNet are 10
times larger than the original CIFAR-10 labeled dataset,
suggesting a significant increase in memory requirement to
store those extra unlabeled data. In addition, when more
data is utilized in adversarial training, Figure 1 shows that
the best robust accuracy is achieved at a much later epoch,
suggesting a much longer convergence time. We hypothe-
size that not all unlabeled data equally contribute to robust
accuracy. Therefore, we propose to strategically select a
subset of unlabeled data that contributes most to robust-
ness enhancement if utilized in SSAT, aiming to address the
memory and computational challenges while maintaining a
desirable improvement on robust accuracy (see Appendix A
for an illustration of the pipeline of our selection scheme).

3.1. Prioritize Boundary Unlabeled Data

To address these challenges, we aim to selectively choose a
subset of this data while upholding robust accuracy. Zhang
et al. (2020) stated that when faced with limited model ca-
pacity, prioritizing points more susceptible to adversarial
attacks is crucial for enhancing robust accuracy. Our intu-
ition is based on the observation that points near decision
boundaries are particularly vulnerable to adversarial per-
turbations. Selecting unlabeled data points based on their
proximity to decision boundaries can efficiently reduce the
dataset size while maintaining robust accuracy to the best.

Therefore, we propose to identify the vulnerable but valu-
able data points as the unlabeled samples that are close to
decision boundaries. These examples are highly suscepti-
ble to label changes caused by small input perturbations
but are essential for achieving good robust generalization
performance. We hypothesize that optimizing these points
from the unlabeled data can significantly enhance model
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(a) Vanilla Adversarial Training (b) Self-Supervised Adversarial Training

Figure 1. Comparison of learning curves on CIFAR-10 using: (a) vanilla adversarial training (Madry et al., 2017) with 50k labeled data,
and (b) self-supervised adversarial training (Carmon et al., 2019) with 50k labeled data and 500k unlabeled data selected from ImageNet.

Algorithm 1 Latent Clustering based Selection (LCS)
1: Input: Labeled dataset Dl, unlabeled dataset Du, number of

selected data Nc, number of clusters k, parameter β

2: θ̂ ← minimize the standard classification loss on Dl

3: ŷi ← predict pseudo label ŷi = fθ̂(xi) for each xi ∈ Du

4: Data Selection:
5: zi ← compute embeddings zi = hθ̂(xi) for each xi ∈ Du

6: {C1, . . . , Ck} ← apply K-means on {zi} to get k clusters
7: ∆d← compute ∆d = |d1 − d2| for each xi ∈ Du, where

d1 and d2 are the ℓ2 distances to the nearest two centroids
8: Su ← select the top β ·Nc points with the smallest ∆d

9: Su ← Su + (1− β)Nc points randomly from Du \ Su

10: θfinal ← SSAT based on the adversarial loss on Dl and Su

11: Output: selected dataset Su, final model θfinal

robustness, achieving gains comparable to training with the
entire unlabeled dataset. A straightforward approach is to
select data points whose predictions from the model change
the most under adversarial perturbations such as PGD at-
tacks. However, this method is computationally intensive,
negating the envisioned efficiency gains.

To identify vulnerable data points near the model’s deci-
sion boundary without incurring significant computational
overhead, we seek a better alternative to the aforementioned
naive but inefficient method. These methods entail iterative
optimization processes to pinpoint boundary points, making
them less efficient, especially for large datasets. Addition-
ally, while these methods provide valuable insights, their
complexity often limits their scalability and interpretability.
Therefore, we require a strategy that balances computa-
tional efficiency, scalability, and interpretability while effec-
tively identifying boundary points. Thus, we propose Latent

Clustering-based Selection (LCS) which performs K-means
clustering in the latent space with an intermediate model.
The pseudocode of the proposed algorithm is depicted in
Algorithm 1. Initially, we group data points using k-means
clustering and select those farthest from cluster centroids,
assuming they are near decision boundaries. However, this
assumption does not always hold, as distant points may not
be near any decision boundary. To refine our approach,
we select data points based on the minimal difference in
distance between their two closest cluster centroids. This
ensures the selected points are near decision boundaries,
enhancing model robustness effectively and efficiently.

Specifically, our method first generates latent representa-
tions for unlabeled data {z = hθ̂(x) : x ∈ Du}, where
hθ denotes the feature extractor corresponding to the map-
ping from the input layer to the penultimate layer of fθ.
Next, our method partitions the N unlabeled data points
into k clusters {C1, C2, . . . , Ck} by minimizing the within-
cluster sum of squares

∑k
j=1

∑
z∈Cj

∥z − µj∥2, where µj

is the centroid of the j-th cluster. For each data point z, we
calculate the Euclidean distance to each cluster’s centroid
∥z − µj∥. Data points are selected based on the minimal
difference in distance between their two closest cluster cen-
troids ∆d = |d1 − d2|, where d1 and d2 are the ℓ2 distances
to the closest and second closest centroids, respectively. As
a result, the set of unlabeled inputs with the smallest ∆d
values, indicating the closest proximity to the model’s deci-
sion boundaries, are chosen. Finally, the top Nc points from
Du with the smallest ∆d values form the reduced unlabeled
dataset. As will be shown in our experiments, by priori-
tizing such strategically selected unlabeled data points in
optimizing the model’s decision boundaries, self-supervised
adversarial training can achieve comparable robustness with
much-improved memory and computational efficiency.
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Table 1. Comparison results of self-supervised adversarial training methods using varying data selection scheme and set size on SVHN
(73K labeled samples). Here, Std Acc and Rob Acc stand for standard accuracy and robust accuracy evaluated on the testing dataset.

Data source Type of Selection Extra Set Size Std Acc (%) Rob Acc (%) #Epoch Time

External

No selection 531K 97.1 86.0 200 9.48h
Random selection (10%) 53K 96.1 81.9 75 3.95h
LCS (1%) 5.3K 95.2 82.7 75 3.95h
LCS (10%) 53K 96.1 85.8 75 3.95h
LCS (20%) 106K 96.8 82.8 75 3.95h

Generated
No selection 1M 97.4 86.3 400 18.96h
Random selection (10%) 100K 96.3 84.5 75 3.95h
LCS (10%) 100K 96.6 87.0 75 3.95h

3.2. Address Overfitting by Rebalancing

Zhang et al. (2020) emphasized the significance of data dis-
tribution on model performance, noting that an abundance of
data far from the decision boundary can overshadow crucial
boundary points. Their approach prioritizes selecting points
near the decision boundary. However, focusing solely on
these points can lead to overfitting due to excessive bound-
ary points. Our experiments indicate that while including
points near the boundary enhances robustness, an excessive
number can cause imbalance, reducing robust accuracy. To
select a balanced dataset, we refine our selection process:
a proportion of the data is selected based on proximity to
the boundary, while the remaining data is randomly cho-
sen from the unlabeled set. The value of β determines the
proportion of data selected from points near the boundary
versus those farther away. This value depends on the amount
of unlabeled data selected. If the amount of unlabeled data
is small the value of β is closer to 1. Otherwise, the value
of β is set to be lower to avoid overfitting to uncertain data
distributions. Figure 3 in Appendix C shows how the robust
accuracy varies with the value of β. For most of our experi-
ments when selecting 10% or less of the unlabeled data, we
set β to 0.6. When selecting 20% of the unlabeled data, β
is set to 0.4. Line 9 of Algorithm 1 describes this balanc-
ing step, emphasizing the boundary points while reducing
overfitting by incorporating randomly selected data from
the remaining unlabeled distribution.

3.3. Computational Benefits

The efficiency improvement of our scheme in terms of com-
putational aspects comes from the decreased number of total
training epochs. Zhang et al. (2017) and Belkin et al. (2019)
demonstrated that deep learning models typically do not
overfit in standard scenarios, as both testing and training
losses decrease simultaneously. This encourages training
models for extended periods. However, Rice et al. (2020)
identified the robust overfitting phenomenon in adversarial
training, where robust accuracy on the test set deteriorates

after some time despite continued improvement on the train-
ing set. Recently Wang et al. (2023) observed improved
robust accuracy from extended training duration on a vast
amount of generated data. This impact of different dataset
sizes and the number of epochs on robust accuracy is also
studied in Wang et al. (2023). Our experiments also confirm
that smaller datasets require fewer training iterations to learn
the underlying patterns effectively (see Table 1 and Table 2
for detailed comparisons of the effect of the training set size
on the convergence rate and total running time of SSAT).
With our data selection scheme significantly reducing the
training set size, SSAT is thus expected to achieve optimal
robust accuracy in fewer training epochs. Overshooting this
optimal point may result in robust overfitting. We leverage
this insight to decrease the computational complexity of
SSAT by implementing early stopping.

4. Experiments
In this section, we evaluate the performance of our LCS
scheme (Algorithm 1) on SVHN (Netzer et al., 2011) and
CIFAR-10 (Alex, 2009). Our empirical results demonstrate
that selecting a subset of unlabeled data based on their prox-
imity to the decision boundary can yield results comparable
to training with the entire dataset. Initially, we conduct ex-
periments using unlabeled data, following the methodology
outlined in Carmon et al. (2019). We selected varying ratios
of the unlabeled data from {1%, 10%, 20%} and analyzed
their impact on robust accuracy. To further validate the gen-
eralizability of our method, we also conduct experiments
on self-supervised adversarial training methods that lever-
age generated data (Gowal et al., 2021), assessing whether
analogous outcomes could be obtained (see Appendix B for
more details of our experimental settings).

4.1. Results on SVHN

We train the intermediate model fθ̂ using 73K labeled im-
ages from the SVHN dataset. Subsequently, we utilize the
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Table 2. Comparison results of self-supervised adversarial training methods with varying data selection scheme and set size on CIFAR-10
(50K labeled samples). Here, Std Acc and Rob Acc stand for standard accuracy and robust accuracy evaluated on the testing dataset.

Data source Type of Selection Extra Set Size Std Acc (%) Rob Acc (%) #Epoch Time

External

No selection 500K 89.7 62.5 200 24.96h
Random selection (20%) 100K 88.6 57.8 100 13.48h
LCS (1%) 5K 85.6 56.4 100 13.48h
LCS (10%) 50K 87.1 58.0 100 13.48h
LCS (20%) 100K 88.7 60.6 100 13.48h

Generated

No selection 1M 85.7 59.4 400 49.93h
Random selection (20%) 200K 85.4 57.2 100 13.48h
LCS (10%) 100K 86.1 57.9 100 13.48h
LCS (20%) 200K 85.5 58.8 100 13.48h

extra data from the SVHN dataset for data selection. Given
that the additional data originates from the same distribution,
there might not be a necessity to differentiate between the
two when creating each batch. However, our findings indi-
cate that an extra data to original ratio of 0.1 yields optimal
results with quicker convergence. Table 1 presents the re-
sults using various proportions of the SVHN extra data with
its pseudo labels. Notably, the best result is achieved when
10% of the data is selected, yielding an improvement in
robust accuracy comparable to using the entire extra dataset.
For comparison, we also evaluate a baseline scenario where
10% of the data is randomly selected, and the subsequent
gain in robust accuracy is assessed. However, increasing the
proportion of data beyond this point leads to a decline in
robust accuracy, likely due to the overwhelming number of
points near the decision boundary, which causes robust over-
fitting and decreases robust accuracy. Table 3 in Appendix
B displays the results when true labels are used. Consistent
with findings reported (Carmon et al., 2019), the results
indicate minimal differences, confirming that most of the
gains arise from the data itself rather than the labels.

Moreover, we conduct experiments using 1 million gener-
ated data points from the Denoising Diffusion Probabilistic
Model (DDPM) (Gowal et al., 2021). In this case, we use an
original-to-generated ratio of 0.3 for the original experiment
using all 1M data but for experiments using our smaller
datasets, we see that an original-to-generated ratio of 0.3
works better. Due to time and computational constraints,
we limit our experiments to a single scenario of selecting
10% of the data points. Our findings, also shown in Table
1, indicate that using only 10% of the data achieves results
comparable to those obtained with 1M generated data.

4.2. Results on CIFAR-10

We train fθ̂ using the 50K labeled CIFAR-10 training im-
ages. Aligned with prior work (Carmon et al., 2019), we
employ a dataset of 500K unlabeled images from Tiny-

ImageNet for data selection. For each training batch, we
maintain an equal division of labeled and unlabeled data.
Table 2 presents the results using various proportions of the
unlabeled data with its pseudo labels. We observed that the
optimal result was achieved when 20% of the unlabeled data
was selected. For a better illustration of the effectiveness of
our selection scheme, we also evaluated a baseline method
by randomly selecting 20% of the data. Similarly to SVHN
experiments, we conduct experiments using the 1M gen-
erated images from the Denoising Diffusion Probabilistic
Model (DDPM) (Gowal et al., 2021). In the case of train-
ing the model with the entire 1 million generated data, we
used an original-to-generated ratio of 0.3. However, when
selecting a subset of the data using our selection algorithm,
the best results were achieved with an original-to-generated
ratio of 0.7. Our findings, as shown in Table 2, indicate
that using only 20% of the data achieves results comparable
to those obtained with the entire 1 million generated data.
Our results confirm the effectiveness of our latent clustering-
based selection scheme in improving the efficiency of SSAT
algorithms while maintaining the robust accuracy of the
final returned model θfinal.

5. Related Work
In this section, we discuss the most relevant works to ours.

Adversarial Training. Adversarial training methods have
evolved in recent years, with key techniques addressing
the vulnerability of machine learning models to adversarial
examples. Goodfellow et al. (2014) introduced the Fast Gra-
dient Sign Method (FGSM) which offered a computationally
efficient approach by perturbing input data in the direction
of the gradient. Madry et al. (2017) introduced Projected
Gradient Descent (PGD) as a robust training method that
employs iterative optimization to generate adversarial exam-
ples within specified constraints. The Carlini-Wagner attack
by Carlini & Wagner (2017) formulated a potent adversarial

5



Submission and Formatting Instructions for ICML 2024

attack that considered various threat models and constraints,
aiming to find minimal perturbations inducing misclassifica-
tions. Despite their effectiveness in enhancing robustness,
the iterative use of these techniques, especially in the case of
PGD, entails multiple forward and backward passes for each
example, intensifying the computational demands during
the training process. Zhang et al. (2019) argued that there
exists an accuracy-robustness trade-off and then proposed
TRADES to strike a balance between adversarial robust-
ness and standard accuracy. Rice et al. (2020) claimed that
overfitting to the training set significantly degrades test-time
robustness across diverse datasets and perturbation models.
Notably, the performance gains achieved by recent advance-
ments in adversarial training can be effectively matched
through the straightforward application of early stopping.

Robust-Self Training. The Gaussian model introduced
by Schmidt et al. (2018) drew attention to a notable dis-
parity in the requisite number of samples for robust learn-
ing compared to standard learning. They illustrated that
achieving robust learning often demands a substantially
larger sample complexity than conventional learning meth-
ods. This disparity in data requirements poses a challenge,
especially when labeled data is limited or expensive to ob-
tain. To address this challenge, Carmon et al. (2019) first
introduced the concept of robust self-training, also known
as self-supervised adversarial training, as a potential so-
lution. This approach involves training an intermediate
model using available labeled data and then utilizing this
model to predict labels for unlabeled data. The newly la-
beled data, along with the initially labeled data, are then
used to train the final model. Since then, numerous stud-
ies proposed various self-supervised methods to improve
adversarial robustness by leveraging unlabeled external or
synthetically-generated data (Alayrac et al., 2019; Zhai et al.,
2019; Gowal et al., 2021; Sehwag et al., 2021; Wang et al.,
2023). While these methods achieved the state-of-the-art
robustness (Croce et al., 2020), they necessitate the use of a
considerable amount of unlabeled data, which is inefficient
in both memory consumption and computation.

Importance of Boundary Points. Zhang et al. (2020) ar-
gued that treating all data points equally during training is
unwise, primarily due to insufficient model capacity. They
proposed that data points located far from decision bound-
aries are more robust and secure, and should therefore be
given less weight than those closer to decision boundaries.
They contended that if all data points are equally empha-
sized during training, the model may become overwhelmed
by the abundance of adversarial variations in secure data,
leading to undesired robust overfitting. This scenario in-
volves the model excessively specializing in secure data at
the expense of performance on unseen or more vulnerable
data. Hua et al. (2021) advocated for the application of PGD

training exclusively to examples near the decision boundary,
emphasizing that the primary source of robustness gains
stems from these specific instances. This targeted approach
aims to reduce computational complexity without compro-
mising the robustness achieved through standard adversarial
training methods. Nevertheless, obtaining high robust accu-
racy with restricted data remains a difficult task in machine
learning. It involves striking a balance among data point
significance, optimizing the use of labeled and unlabeled
data, and tackling constraints imposed by model capacity.

6. Conclusion and Future Work
We illustrate the importance of data selection to improve the
efficiency of SSAT while keeping robust accuracy. Empha-
sizing boundary data points during selection significantly
enhances the model’s overall robustness. Besides, we ob-
serve notable variations in results based on the source of
unlabeled data, whether from the same distribution or a dif-
ferent one. For SVHN, we find substantial improvement
in robust accuracy by adding true labels to a small set of
data. This suggests manually annotating a few unlabeled
data points close to the boundary can significantly enhance
model robustness. Our work opens new avenues for fur-
ther research, including exploring advanced data selection
schemes, making the selection process more interpretable,
and investigating the trade-offs between model performance,
data selection, and computational costs.

References
Alayrac, J.-B., Uesato, J., Huang, P.-S., Fawzi, A., Stan-

forth, R., and Kohli, P. Are labels required for improving
adversarial robustness? Advances in Neural Information
Processing Systems, 32, 2019.

Alex, K. Learning multiple layers of features from tiny im-
ages. https://www. cs. toronto. edu/kriz/learning-features-
2009-TR. pdf, 2009.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Biggio, B. and Roli, F. Wild patterns: Ten years after the
rise of adversarial machine learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2154–2156, 2018.

Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. Ther-
mometer encoding: One hot way to resist adversarial
examples. In International conference on learning repre-
sentations, 2018.

6



Submission and Formatting Instructions for ICML 2024

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pp. 39–57. Ieee, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
and Liang, P. S. Unlabeled data improves adversarial
robustness. Advances in neural information processing
systems, 32, 2019.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
M. Robustbench: a standardized adversarial robustness
benchmark. arXiv preprint arXiv:2010.09670, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gowal, S., Rebuffi, S.-A., Wiles, O., Stimberg, F., Calian,
D. A., and Mann, T. A. Improving robustness using gen-
erated data. Advances in Neural Information Processing
Systems, 34:4218–4233, 2021.

Hua, W., Zhang, Y., Guo, C., Zhang, Z., and Suh, G. E.
Bullettrain: Accelerating robust neural network training
via boundary example mining. Advances in Neural Infor-
mation Processing Systems, 34:18527–18538, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Najafi, A., Maeda, S.-i., Koyama, M., and Miyato, T. Ro-
bustness to adversarial perturbations in learning from
incomplete data. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 7. Granada, Spain, 2011.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. Distillation as a defense to adversarial perturbations
against deep neural networks. In 2016 IEEE symposium
on security and privacy (SP), pp. 582–597. IEEE, 2016.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversari-
ally robust deep learning. In International Conference on
Machine Learning, pp. 8093–8104. PMLR, 2020.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. Advances in neural information processing
systems, 31, 2018.

Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C.,
Chiang, M., and Mittal, P. Robust learning meets genera-
tive models: Can proxy distributions improve adversarial
robustness? arXiv preprint arXiv:2104.09425, 2021.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Im-
proving adversarial robustness requires revisiting misclas-
sified examples. In International conference on learning
representations, 2019.

Wang, Z., Pang, T., Du, C., Lin, M., Liu, W., and Yan, S.
Better diffusion models further improve adversarial train-
ing. In International Conference on Machine Learning,
pp. 36246–36263. PMLR, 2023.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhai, R., Cai, T., He, D., Dan, C., He, K., Hopcroft, J., and
Wang, L. Adversarially robust generalization just requires
more unlabeled data. arXiv preprint arXiv:1906.00555,
2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization (arxiv: 1611.03530). arxiv, 2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., and
Kankanhalli, M. Geometry-aware instance-reweighted
adversarial training. arXiv preprint arXiv:2010.01736,
2020.

7



Submission and Formatting Instructions for ICML 2024

Figure 2. Overview of our approach. A model is first trained with labeled data and then used to select points from the unlabeled dataset.

A. Illustration of the Overall Pipeline
Figure 2 illustrates the overall pipeline of our data selection scheme. This is based on the robust self-training framework
proposed in Carmon et al. (2019). We first train our intermediate model using the available labeled data and use this
intermediate model to select a subsection of our unlabelled or generated data. The final robust training is performed on all
the labeled data and a strategically selected subset of the unlabelled or generated data.

B. Experimental Details
B.1. SVHN

The SVHN dataset is naturally divided into a core training set comprising approximately 73K images and an extra training set
containing around 531K images. Initially, the model is trained on the core 73K-image dataset. In our selection experiments,
we investigated the effects of various percentages of boundary data, drawn from the larger 531,000-image set, on robust
accuracy. Furthermore, to evaluate the generalizability of our selection algorithm, we applied it to a synthetic dataset.

Model Architecture. For all our SVHN experiments, we use Wide ResNet 16-8 (Zagoruyko & Komodakis, 2016).

Adversarial Training: We generate adversarial examples using PGD attacks exactly as implemented in Zhang et al. (2019),
with step size α = 0.007, 10 PGD attack iterations and ℓ∞ perturbation magnitude ϵ = 0.015.

Optimizer Configuration. Hyperparameters are set the same as in Carmon et al. (2019) except for the number of epochs.
For SVHN, we use a training batch size of 128.

Number of epochs. All of our experiments that utilize all of the extra 531K data are run for 200 epochs and the experiments
with 1M generated data are run for 400 epochs. To prevent overfitting and reduce computational complexity, we run our
experiments with selected data for 75 epochs with early stopping.

Attack Evaluation. For the attack evaluation to calculate the robust accuracy, we keep the parameters similar to that of
Carmon et al. (2019) for better comparison. We use step size α = 0.005, number of attack steps K = 100, and number of
restarts ρ = 10. We evaluate models at ϵ = 0.015, which is the same as the value we used during training.
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Table 3. Comparison results of self-supervised adversarial training with varying data selection scheme on SVHN, where the additional
data are assigned with ground-truth SVHN class labels (instead of pseudo labels).

Type of Selection Extra Set Size Std Acc (%) Rob Acc (%) #Epoch

No selection 531K 97.5 86.4 200
Random selection (10%) 53K 96.3 82.7 75
LCS (1%) 5.3K 95.6 82.9 75
LCS (10%) 53K 96.7 86.3 75
LCS (20%) 106K 96.4 82.8 75

B.2. CIFAR-10

The CIFAR-10 dataset has 50K labeled images. To obtain extra data, we use the 80 Million Tiny Images (80M-TI) dataset,
of which CIFAR-10 is a manually labeled subset. However, most images in 80M-TI do not correspond to CIFAR-10 image
categories. Carmon et al. (2019) used an 11-way classifier to distinguish CIFAR-10 classes and an 11th “non-CIFAR-10”
class using a WideResNet 28-10 model. For each class, they selected an additional 50K images from 80M-TI using the
model’s predicted scores to create a 500K pseudo-labeled dataset which we use in our experiments. We train the intermediate
model with 50K labeled data and use this model to select data from the 500K pseudo-labeled data or a synthetic dataset. We
perform the same experiments as in SVHN except that we do not have the true labels of the additional unlabeled dataset.

Model Architecture. For all our CIFAR-10 experiments, we use Wide ResNet 28-10 (Zagoruyko & Komodakis, 2016).

Adversarial Training. Similar to SVHN experiments, we set step size α = 0.007, PGD attack iterations as 10 and ℓ∞
perturbation magnitude ϵ = 0.031.

Optimizer Configuration. Hyperparameters used are same as in Carmon et al. (2019) except for the number of epochs.
Here, we use a training batch size of 256.

Number of epochs. The experiments using all the 500K pseudo-labeled data are run for 200 epochs and using 1M generated
data are run for 400 epochs. On the other hand for our experiments with limited data, we get the best results at 100 epochs
where we early stop the training process.

Attack Evaluation. The attack evaluation is conducted similar to that of Carmon et al. (2019) for better comparisons. We
use the step size α = 0.01, number of attack steps K = 40, and number of restarts ρ = 5. We evaluate models at ϵ = 0.031,
which is the same as the perturbation magnitude we used during training.

C. Other Experiments
C.1. Ground-Truth Label

We conduct additional experiments to test the performance of our data selection scheme on SVHN with pseudo labels
replaced by ground-truth labels for the extra data. Table 3 shows the comparison results. With ground-truth labels, our LCS
scheme can achieve similar robust accuracy by selecting just 10% extra data compared with no selection result.

C.2. Effect of Hyperparameter β

We study how different ratios of points near and far from the boundary affect the robust and standard accuracy. Figure 3
presents the results of varying β on CIFAR-10 data, with the extra data taken by selecting 20% from the 1 million images
generated by Denoising Diffusion Probabilistic Model (DDPM). The best performance is achieved when β is set as 0.4.
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Figure 3. Variation in Standard and Robust Accuracy with respect to different β values.
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