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ABSTRACT

The rise of Large Language Models (LLMs) has accelerated the adoption of soft-
ware development agents, now commonly found as IDE extensions and standalone
applications. These agents enable users with minimal programming experience to
build complete applications in minutes. Typically designed as generalists, they
leverage the broad capabilities of LLMs to perform a wide range of tasks. This
versatility raises a key question: do specialist agents offer meaningful advantages
over generalist ones, particularly given the additional development effort they re-
quire? To explore this question empirically, we focus on business process automa-
tion specifically, the transformation of tasks defined in Business Process Model
and Notation (BPMN) diagrams into executable agentic workflows. We introduce
a specialist workflow tailored for this purpose and evaluate its performance against
generalist solutions. Our findings show that, in this context, the specialist agen-
tic solution produces agents that outperform those generated by generalist agents
such as Roo and Cline by 2.75% in accurate task completion, while reducing the
token cost of agent generation by 96%. Additionally, we identify several limita-
tions in generalist agents, including inconsistent code generation in terms of both
functionality and quality. These inconsistencies hinder their applicability in in-
dustrial settings, where reliability and maintainability are critical for large-scale
adoption.

1 INTRODUCTION

The emergence of LLMs has accelerated the rise of autonomous software agents Ferrag et al. (2025).
These AI-driven agents now appear in many forms including as IDE extensions and stand-alone no-
code assistants. This has made it possible for even non-programmers to build simple applications
within minutes He et al. (2025). They typically function as generalists, leveraging the vast knowl-
edge of foundational LLMs to perform a wide array of tasks. For example, an open-source coding
assistant like Roo Code can plan, write, and debug code across diverse domains directly in a de-
veloper’s editor Sapkota et al. (2025). Similarly, multi-agent frameworks such as FLOW, AFLOW,
AutoGen, or MetaGPT coordinate several LLM agents with predefined roles (manager, coder, etc.)
to tackle complex problems in a general way Niu et al. (2025); Zhang et al. (2025b); Wu et al. (2023);
Hong et al. (2024). The success of these systems highlights the versatility of general-purpose LLM
agents: they have been applied to everything from web browsing and data analysis to game design
and UI creation Fourney et al. (2024). Works thus far have largely considered what we define as
“generalist systems”, a system of agents that are able to complete a wide range of tasks, with ar-
chitectures suited to free exploration of various ideas to complete a task in an unspecified manner
Sapkota et al. (2026). This adaptability has led to significant adoption of these tools including the
popularity of several extensions that offer this feature directly in a user’s Integrated Development
Environment (IDE) such as Roo and Cline Sapkota et al. (2025); Cline (2025) These systems have
proven beneficial as they are able to create a complete system from a single prompt with minimal
user intervention. These capabilities allow users with minimal technical knowledge to create a fully
functioning system from a simple idea Sapkota et al. (2026).

However, these systems have their drawbacks. Their generalist design demands extensive planning
and increases token and cost overhead, which can become significant during rapid or large-scale de-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

velopment. In addition, they often lack awareness of company-specific best practices, such as style
guides or preferred methods. While experienced users can define constraints and refine outputs, this
is an imperfect solution that does not guarantee consistent output over many generations (as dis-
cussed in Section 2). This inconsistent output results in increased technology debt that complicates
future updates and maintenance.

An alternative paradigm to generalist agentic systems is what we define as a “specialist system”.
These systems are characterised by a well-defined and constrained agentic workflow, designed with
a focus on executing a specific type of task. Rather than relying on an LLM to generate solutions
from scratch, specialist systems leverage the expertise of technical subject matter experts to construct
a templated workflow. Within this scaffold, the LLM performs localised reasoning making small,
context-sensitive adjustments to predefined components to complete the task rather than completing
it from scratch.

These specialist systems typically require a greater upfront time investment, as the workflow must
first be manually designed and validated. This makes them less suitable for ephemeral use cases
such as demos or proof-of-concept experiments. However, their value becomes apparent in scenar-
ios involving large-scale deployment. When invoked repeatedly, these systems produce consistent
outputs, reducing technical debt, and simplifying both debugging and integration with external sys-
tems. Moreover, the structured nature of these systems enables more effective context management.
This means that developers can tightly control the information exposed to the LLM, reducing un-
necessary token usage and improving performance at scale.

Recent studies have shown that while LLMs are increasingly equipped with extended context win-
dows, their utilisation of this capacity remains uneven An et al. (2025). Furthermore, empirical
evidence suggests that performance tends to degrade as more of the context window is consumed
Modarressi et al. (2025). To address this, we propose a context management strategy that dynami-
cally restricts the active context to the minimal information required for a given subtask. This strat-
egy presents challenges in generalist systems as it requires customized prompting that is dependent
on knowledge of what information is required for each subtask when constructing the workflow. This
work is also highly specific for certain tasks and does not necessarily translate directly to other tasks,
making it a challenging approach to take in generalist systems. This approach offers other benefits
by reducing redundancy and improving model performance relative to systems that indiscriminately
retain excess context (see Section 3.5 for quantitative comparisons). Given that business processes
can scale well beyond the complexity of our benchmark workflows, effective context management
is a critical component for maintaining performance in large-scale deployments.

Additionally, efficient context management also offers potential cost benefits. This is especially
vital in business environments where standard operating procedures may evolve frequently during
development and post–deployment phases and agentic workflow generation tools are often executed
repeatedly for the same task. Under such conditions, reducing the volume of tokens processed
through improved context management can yield substantial savings. While the cost reduction per
instance may appear marginal, the cumulative impact at scale becomes significant Mei et al. (2025).
As such, there is potential value in introducing specialist workflows that use manually constructed
context management. This approach minimises the information exposed to the LLM in a targeted
way, helping to maintain performance while enabling cost reductions when deploying these systems
at scale.

1.1 BUSINESS PROCESSES

To evaluate the capabilities of our LLM-based agentic systems, we adopt Business Process Model
and Notation (BPMN) as the structural foundation for workflow representation. Given BPMN’s
ubiquity in enterprise modelling and the low barrier to entry for non-technical users to author pro-
cess models in this format, it serves as a practical interface for defining and orchestrating work-
flows (Köpke & Safan, 2024; Nour Eldin et al., 2025; Toxtli & Li, 2025; Berti et al., 2024).

Our approach focuses on transforming BPMN-defined workflows into fully operational agentic
pipelines. This includes generating all necessary wrappers for deployment as FastAPI services
with callable endpoints. Unlike traditional execution engines, our system enables dynamic, context-
sensitive behaviour by integrating LLM-driven decision-making into otherwise static process mod-
els.
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We assess the effectiveness of this transformation by examining the fidelity and adaptability of the
resulting pipelines under runtime variability and partial observability (Di Ciccio et al., 2015).

2 METHODOLOGY

To evaluate the potential efficiency and performance gains achievable through a specialist agent,
we designed one specifically for the task of converting workflows specified in BPMN into ReAcT
agents. We assessed all systems using metrics related both to the agent generation process and to
the individual performance of each generated agent. This dual evaluation enables us to compare the
efficiency of different systems and assess the quality of their outputs.

2.1 WORKFLOW SELECTION

We used two deterministic workflows in our approach. One is a synthetic disengagement workflow
consisting of 12 nodes and 12 edges with several branching paths for evaluation. The second one is
a hypothetical fraud optimisation workflow consisting of 11 nodes and 11 edges. Both workflows
are shown in Figures 2 and 3 in Section A. Each system was tested on a total of 10 successfully
generated agents for each of these workflows, with each workflow being evaluated on a total of 64
test cases producing a total of 1280 test cases to evaluate agents generated by the different systems.

The selection of these relatively simple and deterministic workflows was for two reasons. Firstly,
their simplicity ensures that the entire workflows can be reliably processed by the language model.
This is important for assessing the system’s ability to convert a workflow into an agentic system.
Normally, larger and more complex workflows risk exceeding the model’s context window or rea-
soning capacity, resulting into errors. Secondly, the chosen workflow’s deterministic nature (each
node’s control flow is governed by predefined labels) allows exhaustive testing of all possible exe-
cution paths. We can generate a dataset covering every path the graph can take, yielding thorough
coverage in evaluation. Moreover, because the workflow’s behaviour is fully specified, we can eas-
ily determine ground-truth outcomes for each test case. This enables an objective measure of task
completion and process adherence where we can directly verify whether the agent-produced outputs
match the expected results for each path, rather than relying on LLM-based judgements. Overall,
this carefully chosen workflow provides a clear, objective testbed to validate the core capabilities of
our approach.

2.2 AGENTIC SYSTEM DESIGN

Although the above workflows could be executed with fixed Directed Acyclic Graph (DAG) frame-
works (e.g., LangGraph), we opted to evaluate our system’s ability to construct a ReAct agent-based
solution (Yao et al., 2023b). A ReAct agent plans a sequence of actions and dynamically calls tools
in an interactive loop, rather than following a strictly predefined path like in DAGs . We chose this
agentic approach for several reasons:

1. Generality and Scaling: ReAct agents can generalize and scale to a broader range of
tasks and environments. In practical settings such as customer service chatbots, workflows
often require extracting information from user messages and performing multiple tool-
based actions; these scenarios benefit from the flexibility of an agent that can reason and
act beyond a rigid script Leocádio et al. (2024).

2. Flexible execution: ReAct agents offer greater adaptability during execution. For instance,
a user might correct or update an earlier input or might have already provided some required
information in a previous turn. A ReAct agent is likely to re-plan on the fly and handle
such deviations well compared to a static DAG workflow especially if complex resets are
required.

3. Ease of authoring: The logic of a ReAct agent is described in natural language (as prompt
instructions), making it relatively easier for non-technical subject matter experts to under-
stand and modify the workflow. Minor changes to the workflow’s structure or behaviour can
be made by editing prompt text, rather than altering code or diagrammatic representations.
This property can significantly speed up iteration and development by domain experts.
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2.3 PROPOSED SYSTEM

Figure 1: Proposed System Architecture

Our proposed system as in Figure 1 takes a BPMN-defined workflow and API specifications and
automatically generates a working ReAct-style agent by decomposing the problem into a sequence
of structured steps. In summary, the system performs the following stages:

1. Workflow Parsing: The BPMN workflow diagram is parsed into a sequence of discrete
steps, identifying each task, decision node, and the required tool or API call at that step.
This yields a structured representation of the workflow logic (including branches and con-
ditions) that the language model can reason about.

2. API Service Generation: Based on a provided API specification (services or data sources
the workflow needs to call), the system generates an API client service. This is essentially
boilerplate code wrapping the external API calls, abstracting away low-level details. By
creating a reusable API module, the complexity of tool implementation is reduced, and
code duplication is minimized.

3. Tool/Context Creation and Unit Tests: Using the parsed workflow steps and the API ser-
vice, the system then generates the code for each tool corresponding to a node or function
in the workflow along with unit tests for those tools. The tests are designed to be validators
of the tool’s behaviour by using the deterministic nature of the workflow to assert correct
outputs for given inputs.

4. Iterative Refinement (Agent Self-Verification): The generated tool code is executed
against its unit tests. If any test fails, the system enters a refinement loop. Here, the
language model analyses the failures and refines the tool implementations (and potentially
the tests) to fix bugs or inaccuracies. This code-generation-and-testing loop repeats until
all unit tests pass, ensuring that each component of the workflow behaves as expected in
isolation.

5. Agent Assembly and Deployment: Once all tools are verified, the system constructs the
final agent. It composes a natural language prompt that encapsulates the workflow logic
(the “plan” instructions for the ReAct agent, including how to use the tools) and then gen-
erates a main function that instantiates the agent and connects it to a simple FastAPI web
service. The FastAPI wrapper allows the agent to be queried in a deployed setting (e.g.,
simulating a user query through an API call). At this stage, the agentic system comprising
of prompts, tools, and API endpoints is fully developed and ready for end-to-end testing.

3 EVALUATIONS AND RESULTS

3.1 BASELINE SYSTEMS AND EXPERIMENTAL SETUP

We evaluated the performance of our system against two recently developed automated coding
agents, Roo and Cline, which are provided as Visual Studio Code extensions Microsoft. These
are AI-driven tools that autonomously generate code based on instructions, like our approach. All
systems were given the same BPMN workflow and API specifications. We instructed Roo and Cline
to proceed with their default approach, allowing them to make their own architectural and coding
decisions without additional constraints. Preliminary experiments showed that enforcing additional
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design constraints often degraded output quality; we therefore allowed the baselines to operate un-
constrained.

After each system declared completion with all internal tests passed and an agent produced, we
conducted an end-to-end verification by invoking the agent on a set of sample inputs covering the
workflow’s branches. If a system’s agent failed at this stage (e.g., an exception when running the
full workflow), we fed the error message back into the system multiple times, allowing it to attempt
automatic repairs through successive iterations until the issue was resolved or the system was no
longer able to make progress in debugging. Our system’s agent passed all end-to-end tests on the
first attempt without any manual intervention. In contrast, the Roo and Cline agents each required
one additional refinement cycles with the error feedback to achieve a working state. This difference
underscored the robustness of our approach in generating correct-by-construction agents.

We also explored other automation frameworks, such as Autogen, MetaGPT and FLOW Wu et al.
(2024); Hong et al. (2024); Niu et al. (2025) but these were unable to produce a functional solution
for the given workflow after multiple attempts. Consequently, our comparative evaluation is focused
on the Roo and Cline baselines, which were the only ones besides our own system to successfully
complete the task.

3.2 EVALUATION METRICS

We evaluate each system across two tasks:

1. the agent generation process, and

2. the functional performance of the generated agents.

For each system under comparison, we generated 10 agents that successfully compiled and executed
according to the BPMN-defined specifications. Each of the 10 agents was then evaluated on a dataset
comprising all 64 possible combinations of control-flow flags, yielding 640 test cases per workflow
for a total of 1280 test cases for each generation system. As mentioned in Section 2.1, the first
workflow, is a synthetic disengagement workflow consisting of 12 nodes and 12 edges with several
branching paths. The second one is a hypothetical fraud optimisation workflow consisting of 11
nodes and 11 edges.

3.3 AGENT GENERATION EVALUATION

The agent generation process was assessed using three primary metrics: task completion rate and
efficiency. Efficiency covers repair iterations, and token usage. We also examined the unit test
coverage to determine how well they were developed.

1. Task Completion Rate: This metric quantifies the number of attempts required to produce
10 fully functional agents based off the BPMNs. For Roo and Cline, we allowed the sys-
tems to iteratively refine their outputs by feeding back error traces from failed unit tests and
runtime exceptions. An agent generation attempt was considered failed if the system was
unable to recover from an error or deviated significantly from the intended architecture by
e.g. , hardcoding logic instead of constructing an agentic system.

2. Repair Iterations: We measured the number of refinement loops required to produce a
valid agent. For our system, this corresponds to the number of tool refinement cycles
needed to pass all unit tests. For Roo and Cline, this includes both unit test failures and
errors in the fastAPI service generated to invoke the agent. Notably, our systems templated
approach to developing a fastAPI service to wrap the agent resulted in no errors under
this category. This was reported as the average number of repair iterations necessary to
complete a single successful generation. Any repairs performed in generations where the
task was not successfully completed were not included.

3. Token Usage and Cost: We tracked the total number of tokens consumed from the initial
invocation to the successful generation of a complete agent. Our system’s token usage was
measured using Langfuse tracing, while Roo and Cline reported their own token consump-
tion.
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Task Completion
Rate (%)

(higher is better)

Repair Iterations
(avg num required

per generation)
(lower is better)

Token Usage
(Input, 1000s)

(lower is better)

Token Usage
(Output, 1000s)
(lower is better)

Unit Tests with
inadequate coverage
(avg per workflow)

(lower is better)
Specialist
System 100.00±0.00 0.35±0.15 21.73±1.42 10.11±0.87 1.10±0.35

Roo 74.07±8.59 1.00±0.17 553.26±38.99 15.73±0.56 4.70±0.57
Cline 86.96±7.77 0.70±0.17 597.23±53.30 14.40±0.79 4.95±0.76

Table 1: Results of Agent Generation Evaluation

4. Unit Test Coverage: We examined the unit tests generated for each tool by the system.
Unit tests were evaluated for if they adequately covered all possible cases for a given test.
This metric was reported as the number of tools generated that had inadequate coverage in
some capacity, as opposed to the specific number of edge cases not being covered.

3.4 AGENT RUN EVALUATIONS

During each of the agent runs we evaluated them on the following metrics to determine if they were
able to complete their task. Each agent was run using the GPT 4.1 model to ensure consistency of
results.

Result Correctness: Result correctness was calculated using a set of ground truth results to evaluate
if the agent had successfully followed the workflow and obtained the correct answer. Given the
deterministic nature of our workflows, we were able to generate ground truth results by artificially
generating an input dataset that would explore all branches of the workflows and then used the
workflows themselves to compute the expected outcome for each of these inputs. The tool calls
necessary to complete the task was also determined based on the steps that should be taken to reach
the correct end state for each piece of input data.

Tool Correctness: One behaviour we observed in testing was agents generating a tool that returned
all necessary data, in combination with other tools that only returned a specific piece of informa-
tion. This led to scenarios where despite instructions calling for multiple tools to be run, the agent
obtained all necessary information to complete the task after running a single tool and computed
a final answer. While this is a deviation from the instructions given to the agent, an argument can
be made that the agent used its reasoning ability to determine that enough information had already
been retrieved to complete the task. To report on both behaviours, we chose to adopt two separate
measures to assess the tool correctness of an agent run. The first metric, “tool correctness” measures
which tools they called exactly against those stated in the process. This metric was reported as tools
that were not called that were expected to be called, reported as missed tool calls, as well as tool
calls that were not necessary to complete the workflow, reported as excess tool calls. The second
metric “information correctness” measures assess if the agent called enough tools to collect all the
necessary information before returning a final answer.

By evaluating these agent run metrics we can determine which approach strikes a more appropriate
balance of cost and efficiency with general performance.

3.5 RESULTS

3.5.1 AGENT GENERATION RESULTS

Task Completion Rate: Results in Tables 1 and 3 show that our specialist system achieved full task
completion across both workflows, successfully generating all 20 agents without encountering any
unrecoverable errors. In contrast, the generalist systems Roo and Cline exhibited reduced reliability,
failing to produce valid agents in 7 and 3 cases respectively. These failures were attributed to either
persistent code errors or architectural deviations (e.g., hardcoded logic replacing agentic behaviour).
Error distribution was approximately uniform across the two workflows for both generalist systems,
suggesting that no workflow disproportionately contributed to failure. While these results favour
the specialist system, it is important to acknowledge that performance may vary with more complex
or domain-specific workflows, which could either exacerbate or mitigate error rates in generalist
systems.
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Repair Iterations: As mentioned in Section 3.3, a repair iteration is a single LLM generation cycle
used to update code following a failed test or runtime error. Our specialist system required an aver-
age of 0.35 repair iterations per successful agent generation, indicating high reliability and minimal
need for post-generation correction. Roo and Cline required 1.0 and 0.7 iterations respectively, re-
flecting a greater reliance on refinement loops to achieve functional outputs. These results further
underscore the robustness of the specialist system in producing agents.

Token Usage and Cost: Token consumption was measured from initial invocation to successful
agent generation, capturing both input and output tokens. Our specialist system exhibited signif-
icantly lower token usage, averaging 21.73k input and 10.11k output tokens per agent. In con-
trast, Roo consumed 553.26k input and 15.73k output tokens, while Cline required 597.23k in-
put and 14.40k output tokens. These figures represent a 2446%/55.58% increase for Roo and a
2648%/42.43% increase for Cline relative to the specialist system.

This disparity highlights the efficiency advantages of a specialist approach, particularly in scenarios
requiring large-scale deployment. While generalist systems may be suitable for ad hoc or low-
frequency tasks, their elevated token consumption introduces substantial cost overhead when scaled.
The results suggest that specialist systems offer a more sustainable solution for high-volume agent
generation.

Beyond the specialist–generalist agentic workflow divide, we observe notable differences between
Roo and Cline. Roo demonstrated marginally better token efficiency but suffered from lower task
completion and higher repair iteration counts. Cline, while more costly in terms of input tokens,
achieved higher success rates and required fewer refinements. Interestingly, despite Roo’s greater
need for repair iterations, its overall token usage remained lower suggesting that its base generation
process may be more concise. These findings imply a trade-off between efficiency and reliability
that should be considered when selecting generalist systems for specific use cases.

Unit Test Coverage: None of the evaluated systems achieved complete unit test coverage. On
average, our specialist system produced 1.1 tools per agent with inadequate test coverage, compared
to 4.7 and 4.95 tools for Roo and Cline respectively. While these gaps are non-trivial, poor test
coverage can lead to unpredictable behaviour in deployment. For the specialist system, an LLM-as-
a-judge feedback loop could be integrated to automatically assess and improve test coverage. Roo
and Cline could similarly benefit from either manual review or automated refinement mechanisms.
However, such enhancements would introduce additional cost and complexity, potentially offsetting
the efficiency gains of the underlying systems.

3.5.2 AGENT RUN EVALUATION RESULTS

Disengagement Process: Workflow 1 Fraud Optimisation: Workflow 2

Task
Completion
(higher is

better)

Missed
tool calls
per run
(lower is
better)

Excess
tool calls
per run
(lower is
better)

Information
Correctness

(higher is
better)

Task
Completion
(higher is

better)

Missed
tool calls
per run
(lower is
better)

Excess
tool calls
per run
(lower is
better)

Information
Correctness

(higher is
better)

Specialist
System 98.44±0.49 0.09±0.02 0.09±0.01 100.00±0.02 99.53±0.27 0.92±0.01 0.11±0.01 100.00±0.02

Roo 98.12±0.54 0.98±0.04 0.15±0.02 99.53±0.02 94.38±0.91 2.01±0.03 0.10±0.01 99.53±0.02
Cline 94.53±0.90 0.71±0.04 0.29±0.02 100.00±0.01 97.97±0.56 2.11±0.02 0.16±0.02 99.84±0.04

Table 2: Overall Results of Agent Run Evaluation

All evaluated agents in Table 2 demonstrated high task completion accuracy, with success rates
exceeding 90% across the board. Our specialist system achieved the highest performance, consis-
tently surpassing 98% on both workflows. Notably, the performance gap between the generalist sys-
tems Roo and Cline was not uniform: Roo performed better on Workflow 1, whereas Cline showed
stronger results on Workflow 2. This variation suggests that architectural and design choices inher-
ent to each system may be better suited to specific workflow structures, highlighting the importance
of workflow characteristics when selecting an agentic framework.

Regarding tool correctness, agents in nearly all cases successfully retrieved the information needed
to complete their tasks, indicating minimal reliance on hallucinated or fabricated content across
all the three systems. However, the presence of correct information does not guarantee its correct
utilisation. This distinction is evident in the observed disparity between information correctness
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and overall task completion, suggesting that some agents failed to apply retrieved data appropriately
within the workflow logic.

Further analysis revealed that agents generated by Roo and Cline exhibited a higher tendency to
omit tool calls. These agents were more likely to produce final outputs immediately after acquir-
ing the necessary information, rather than executing the full sequence of prescribed actions. This
behaviour reflects a preference for flexible task execution over strict adherence to workflow in-
structions. Such flexibility is not inherently undesirable and may be appropriate depending on user
expectations and particularly in contexts where the ReAct framework is intended to support adaptive
behaviour. These missed tool calls could likely be mitigated through prompt refinement, which may
improve instruction-following and yield results more consistent with those observed in our special-
ist system. The specialist agents demonstrated a higher likelihood of executing all required steps
faithfully. Across all three systems, we observed minimal instances of redundant tool calls that were
not explicitly required in the instructions.

4 LITERATURE REVIEW

BPMN and Traditional Workflow Execution: Business Process Model and Notation (BPMN) has
long served as the standard for modelling structured business workflows. Its graphical notation is
both human-readable and machine-executable, enabling organisations to define, automate, and mon-
itor processes effectively (White, 2004; Chinosi & Trombetta, 2012; Dumas et al., 2018). Traditional
BPMN engines operate on deterministic, rule-based paradigms involving human tasks, service calls,
and decision gateways (Weske, 2019). While robust for predictable scenarios, these engines lack
the flexibility required for dynamic, context-sensitive decision-making (Van Der Aalst et al., 2020).
Early efforts to enhance BPM systems introduced agent-based automation (Wooldridge & Jennings,
1995), with BPMN providing a consistent modelling language to support this evolution (Rosemann
& vom Brocke, 2014). Extensions to BPMN have been proposed to accommodate more complex
and adaptive workflows (Braun et al., 2014), yet execution remains constrained by static seman-
tics (Mendling et al., 2018). Adaptive workflow systems (Reichert & Weber, 2012), context-aware
frameworks (Rosemann et al., 2008), and decision-centric models (Batoulis et al., 2015) have at-
tempted to address these limitations. Nonetheless, traditional BPMN execution continues to struggle
with unstructured data, runtime variability, and ambiguous decision logic (Marrella, 2019).
LLMs and Agentic Workflows: Recent advances in Large Language Models (LLMs) have shifted
their role from passive predictors to interactive agents capable of reasoning, planning, and execut-
ing tasks from natural language instructions (Wei et al., 2022). Agentic workflows leverage this
capability to interleave reasoning with tool use, enabling autonomous task completion with mini-
mal human oversight (Schick et al., 2023). Architectures such as ReAct (Yao et al., 2023b) and
Tree-of-Thoughts (Yao et al., 2023a) exemplify this shift, combining structured reasoning with ac-
tion execution. For tasks requiring symbolic precision, approaches like PAL externalise reasoning
through program synthesis (Gao et al., 2023). Agentic workflows represent a departure from tra-
ditional automation, enabling systems to dynamically coordinate tasks and make decisions (Yang
et al., 2023). Research has explored agent architectures with external memory, planning modules,
and tool integration (Wu et al., 2024). AFLOW (Zhang et al., 2025b) reformulates workflow op-
timisation as a code search problem, using Monte Carlo Tree Search to refine LLM-driven work-
flows. MaAS (Zhang et al., 2025a) introduces a probabilistic multi-agent framework, sampling
task-specific agent teams from a supernet to adaptively construct workflows across domains. These
developments demonstrate the potential of agentic AI for complex tasks such as retrieval, analysis,
and decision-making (Singhal et al., 2023). However, they also introduce challenges in traceability,
control, and integration with structured systems like BPMN (Mialon et al., 2023; Deng et al., 2023).
BPMN and LLM Integration: Initial work at the intersection of BPMN and LLMs has focused
primarily on modelling rather than execution. Techniques include generating BPMN diagrams from
textual descriptions, conversational refinement of models, and workflow mining (Köpke & Safan,
2024; Nour Eldin et al., 2025; Toxtli & Li, 2025; Berti et al., 2024). These approaches improve
accessibility for non-experts but often treat BPMN as a static artefact.

Recent efforts have shifted towards agentic automation, where LLMs synthesise workflows and ex-
ecute tasks across tools and APIs (Jain et al., 2024; Zeng et al., 2023; Ye et al., 2023). Despite
progress, a key gap remains: bridging BPMN’s formal structure with the flexibility of agentic sys-
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tems. Enabling LLM agents to reliably execute BPMN-defined workflows while preserving seman-
tic rigour and adapting to unstructured inputs remains an open challenge.

5 CONCLUSION

We present a specialist agentic system for transforming BPMN-defined workflows into executable
ReAct agents, demonstrating improved reliability and efficiency over generalist agentic solutions.
Our system achieves higher task completion rates and significantly lower token consumption, under-
scoring the benefits of structured agent generation in business process automation. By decomposing
workflows into modular components and integrating iterative refinement, the system yields robust,
testable agents that generalise across a range of workflow configurations. While our evaluation fo-
cuses on deterministic workflows of moderate complexity, future work will address scalability to
larger, more intricate workflows featuring deeper branching and non-deterministic elements. This
direction aims to broaden the applicability of specialist agentic systems to complex enterprise sce-
narios, where adaptability and performance guarantees are essential.

6 GENAI USAGE DISCLOSURE

In line with our experimental design, LLMs and LLM-powered systems were used to generate and
execute the agentic workflows evaluated in this paper. We also used LLMs to enhance our text
through light editing tasks such as grammar correction, word autocorrection, and sentence restruc-
turing.
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A APPENDIX

Pseudocode 1 outlines the decision logic used to classify as set of users as either “engaged” or
“disengaged”. As indicated in Figure 2, this is based on proprietary eligibility, status, and other
indicators. This workflow was used to label user trajectories and assess agentic system performance
in downstream tasks.

Workflow 1:

Figure 2: Disengagement Process Workflow

Workflow 2 as in Figure 3 focuses on optimising a hypothetical fraud detection ruleset for transac-
tions. The pseudocode in 2 captures the decision-making process for classifying transactions based
on rule evaluations, operational costs, and customer experience considerations. This workflow was
used to label transaction outcomes and evaluate the agentic system performance in handling complex
decision logic.

Workflow 2:

Figure 3: Fraud Optimisation Workflow
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Algorithm 1: User labeling workflow for disengagement detection. For each user: (1) if not eli-
gible, label as “Exclude”; else (2) if funded, check funded date - if within the target period label
“Exclude”, otherwise “Disengaged”; else (3) fetch status - if status is “Closed” and application
is “Dropped”, label “Disengaged”, otherwise “Exclude”.
Input: User list
Output: Each user labelled as “Disengaged” or “Exclude”
for each user do

Get details;
// Step 1: Eligibility check
if user is not eligible then

Label← “Exclude”;
end
else

// Step 2: Funded check
if user is funded then

// Step 2a: Funded date check
if funded within the correct period then

Label← “Exclude”;
end
else

Label← “Disengaged”;
end

end
else

// Step 3: Status check
Get Status;
if status is “Closed” then

// Step 3a: Dropped check
if application is “Dropped” then

Label← “Disengaged”;
end
else

Label← “Exclude”;
end

end
else

Label← “Exclude”;
end

end
end

end
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Algorithm 2: Decision workflow to compute the return value based on fraud status, payment
outcome, and recoverability/refundability. The algorithm first gathers all rules and selects the
highest-ranked ones, then returns: (1) Operational Cost + Customer Experience Penalty if no
fraud flag is set; else (2) No Action if the payment is declined; else (3) Operational Cost if the
case is recoverable; else (4) Operational Cost + Payment Amount if refundable; otherwise (5)
Operational Cost.
Input: Rule list
Output: Return value based on conditions
Get all Rules;
Select the highest ranked Rules;
// Step 1: Fraud flag check
if Fraud flag is NOT set then

Return Operational Cost + Customer Experience Penalty;
end
else

// Step 2: Payment declined check
if Payment is Declined then

Return No Action;
end
else

// Step 3: Recoverable check
if Recoverable then

Return Operational Cost;
end
else

// Step 4: Refundable check
if Refundable then

Return Operational Cost + Payment Amount;
end
else

Return Operational Cost;
end

end
end

end
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Disengagement Process: Workflow 1 Fraud Optimisation: Workflow 2

Task
Comp.
Rate (%)

Input
Tokens
(1000s)

Output
Tokens
(1000s)

Repair
Iterations

Unit Test
Coverage
(tools with
inadequate
coverage
per
generation)

Task
Comp.
Rate (%)

Input
Tokens
(1000s)

Output
Tokens
(1000s)

Repair
Iterations

Unit Test
Coverage
(tools with
inadequate
coverage
per
generation)

Specialist
Sytem 100.00±0.00 23.78±2.43 12.55±1.31 0.70±0.26 0.90±0.18 100.00±0 19.68±1.3 7.67±0.39 0.00±0.00 1.30±0.70

Roo 76.92±12.16 568.59±58.56 13.86±0.78 0.90±0.28 3.40±0.46 71.42±12.53 536.13±53.99 17.60±1.01 1.10±0.23 6.00±1.11
Cline 83.33±11.24 507.10±63.01 12.65±1.13 0.70±0.22 4.90±1.19 90.91±9.09 687.36±82.74 16.14±0.79 0.70±0.26 5.00±0.95

Table 3: Agent Generation Evaluation Metrics Per Workflow
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