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Abstract

The design of image and video quality assessment (QA) algorithms is extremely important
to benchmark and calibrate user experience in modern visual systems. A major drawback of
the state-of-the-art QA methods is their limited ability to generalize across diverse image and
video data with reasonable distribution shifts. In this work, we leverage the denoising process
of diffusion models for generalized image QA (IQA) and video QA (VQA) by understanding
the degree of alignment between learnable quality-aware text prompts and images or video
frames. In particular, we learn cross-attention maps from intermediate layers of the denoiser
of latent diffusion models (LDMs) to capture quality-aware representations of images or
video frames. Since applying text-to-image LDMs for every video frame is computationally
expensive for videos, we only estimate the quality of a frame-rate sub-sampled version of
the original video. To compensate for the loss in motion information due to frame-rate sub-
sampling, we propose a novel temporal quality modulator. Our extensive cross-database
experiments across various user-generated, synthetic, low-light, frame-rate variation, ultra
high definition, and streaming content-based databases show that our model can achieve
superior generalization in both IQA and VQA.

1 Introduction

The proliferation of mobile devices with image and video capturing capabilities has led to an explosion in
the number of images and videos captured, stored and shared on various platforms. This has necessitated
no reference (NR) image quality assessment (IQA) and video quality assessment (VQA). Several classical
NR algorithms for IQA (Mittal et al., 2012) and VQA (Saad et al., 2014), suffer in their ability to model a
wide range of distortions. The emergence of deep neural networks (DNN) gave rise to a variety of NR-IQA
(Ke et al., 2021; Su et al., 2020) and NR-VQA (Li et al., 2019a; 2021) methods. The DNN based methods
suffer from a lack of generalization capability. Such models trained on a large dataset fail to predict image
or video quality on other datasets accurately. For example, models trained on a large dataset with camera
captured videos fail to generalize to varying evaluation scenarios such as diverse camera captures, varying
frame rates, gaming videos, ultra high-definition and so on.

Multi-modal vision-language models were recently shown to be promising for their generalizability for NR-
IQA and NR-VQA. In particular, CLIP-IQA (Wang et al., 2023a) and BUONA-VISTA (Wu et al., 2023a)
show the capacity of vision-language models to predict image and video quality respectively even in a zero-
shot setting. Such models can achieve promising generalizability on par with IQA and VQA specific models
through a cost-effective prompt tuning method. These observations motivate the study of how to leverage
existing large pretrained models to achieve generalizable NR quality assessment (QA).

Recently, several pieces of work find that text-to-image (T2I) diffusion models show superior out of dis-
tribution generalization performance compared to vision language models on a variety of image retrieval,
recognition, and reasoning tasks (He et al., 2023; Li et al., 2023a; Kawar et al., 2023; Ma et al., 2023). This
makes them an interesting choice for achieving generalizable NR-QA. The reason for such generalization has
been attributed to the inductive bias in the denoising architecture (Kadkhodaie et al., 2024). However, it is
non-trivial to extend such large diffusion models to the perceptual task of QA. In this work, we present Gen-
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eralized IQA (GenzIQA) and Generalized VQA (GenzVQA) to explore the potential of prompt-guided
T2I latent diffusion models (LDMs) for achieving generalizability in both NR-IQA and NR-VQA respectively.

We show that a combination of learning cross-attention between image and quality relevant text features,
and prompt tuning can achieve far superior generalization than any existing NR-IQA model on a variety of
datasets. Applying such a T2I model to every video frame for VQA is computationally expensive. In this
regard, we estimate the quality of the video at a lower frame-rate but compensate for the loss in motion
information in the sub-sampled video. In particular, we propose a temporal quality modulator (TQM) that
adjusts the predicted video quality by accounting for the loss of motion information.

Our main contributions are summarized below:

• We design a unified framework for NR-IQA and NR-VQA to achieve the best generalizable perfor-
mance among all existing methods across a variety of IQA and VQA datasets.

• We show that quality-aware tuning of cross-attention maps, extracted from the intermediate layers of
the denoiser in the reverse diffusion process, in conjunction with quality-aware learning of contextual
text prompts are necessary to render diffusion models effective for IQA and VQA.

• We propose a novel temporal quality modulator by computing the cross-attention between the sub-
sampled video features of the LDM and the video motion features at original and sub-sampled frame
rates. This allows the LDM to estimate video quality at reasonable compute times.

• We conduct a detailed analysis of the role of noise added to the latent variable during denoising and
find that there exists a delicate relationship between the noise level and the ability of the denoiser
for effective QA.

• We perform extensive experiments across 11 VQA and 6 IQA databases covering user-generated,
restoration, variable frame-rate, Ultra-HD, and streaming video scenarios to establish the superior
generalizability of our model with respect to existing models.

2 Related Work

2.1 Image Quality Assessment

Hand-crafted feature-based methods such as BRISQUE (Mittal et al., 2012), DIIVINE (Moorthy & Bovik,
2011) and BLIINDS (Saad et al., 2012), exploit the natural scene statistics while CORNIA (Ye et al., 2012)
and HOSA (Xu et al., 2016) design codebook learning-based methods. With the emergence of DNN, various
end-to-end learning methods (Zhang et al., 2018c; Kim & Lee, 2016), or methods regressing pretrained
convolutional neural network features (Zhang et al., 2018b; Zeng et al., 2017) against quality have been
designed. Transformer-based models such as MUSIQ (Ke et al., 2021) and TReS (Golestaneh et al., 2022)
also show promising performance on both synthetic and in-the-wild IQA tasks. MetaIQA (Zhu et al.,
2020) proposes meta-learning for complex real-world distortions while HyperIQA (Su et al., 2020) proposes
a hyper network to capture various distortion and semantic attributes in images. Recently, a few works
employ diffusion models (Fu et al., 2024; Li et al., 2024b), but they involve training the entire diffusion
model, thus increasing the computational complexity.

One approach to deal with generalization in IQA is by designing self-supervised quality representations
through models such as CONTRIQUE (Madhusudana et al., 2022b), Re-IQA (Saha et al., 2023), and QPT
(Zhao et al., 2023). CLIP-IQA (Wang et al., 2023a) is a vision-language model that shows very good zero-shot
generalization for the IQA task. DEIQT (Qin et al., 2023) designs an attention-panel decoder learning with
limited data samples. LIQE (Zhang et al., 2023a) trains a CLIP-based vision language model on six different
databases, showing good performance in cross-database settings. TTA-IQA (Roy et al., 2023) uses the test-
time adaptation technique to generalize a pretrained IQA model for different kinds of databases. Recently,
GRepQ (Srinath et al., 2024) presents a self-supervised learning method that can lead to generalized quality
representations. QCN (Shin et al., 2024) proposes a geometric order learning to achieve good cross-database
performance in IQA. LoDa (Xu et al., 2024) adapts vision-transformers for IQA using another pre-trained
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CNN, while DSMix (Shi et al., 2024) proposes distortion-induced pre-training to enhance performance for
existing IQA models. Recently, DiffV2IQA (Wang et al., 2025) proposed a dual branch model consisting of
vision-transformer and ResNet50 to illustrate the correlation between diffusion model’s ability to reconstruct
an image and its quality. Also, PFD-IQA (Li et al., 2025) proposes IQA method by leveraging the denoising
ability of a diffusion model to remove noise from quality-aware features. Despite these efforts, there is a need
to consistently achieve better generalization across diverse and complex distortion types.

2.2 Video Quality Assessment

Classical approaches such as VBLIINDS (Saad et al., 2014) and VCORNIA (Xu et al., 2014) learn natural
scene statistics of videos by modelling the discrete cosine transform. TLVQM (Korhonen, 2019) shows robust
VQA performance by modelling temporal low complexity features with spatial high complexity features.
VIDEVAL (Tu et al., 2021a) is an ensemble of various handcrafted features designed to capture diverse
quality attributes in a video. Among DNN approaches, while VSFA (Li et al., 2019a) and MDTVSFA (Li
et al., 2021) learn a gated recurrent unit on top of pretrained ResNet50 features (He et al., 2016), PVQ (Ying
et al., 2021) learns an ensemble of ResNet50 trained on IQA and a 3D ResNet18 trained on action recognition
tasks. CSVT-BVQA (Li et al., 2022) also transfers spatial knowledge from a pretrained IQA model and
temporal knowledge from a pretrained action recognition model. Among transformer based models, FAST-
VQA (Wu et al., 2022) learns an end-to-end model by spatially fragmenting the video clips which is extended
to DOVER (Wu et al., 2023b) by incorporating aesthetics. SSL-VQA (Mitra & Soundararajan, 2024) learns
a similar end-to-end model with limited labelled videos. KSVQE (Lu et al., 2024) employs CLIP (Radford
et al., 2021) in its design while ModularVQA (Wen et al., 2024) also uses a CLIP model along with a spatial
and temporal quality rectifier. However all these methods do not generalize well across diverse distortions.

To address generalizability, VISION (Mitra & Soundararajan, 2022), and CONVIQT (Madhusudana et al.,
2022a) present self-supervised learning based quality-aware feature extractors. VQA methods such as STEM
(Kancharla & Channappayya, 2022), VIQE (Zheng et al., 2022), VISION (Mitra & Soundararajan, 2022),
and TPQI (Liao et al., 2022) do not require any human labelled videos in their design and give reasonable
quality estimates for user-generated content (UGC) videos. Nevertheless, their performance with respect to
the methods trained with human opinion scores is sub-par.

3 Quality Assessment using Latent Diffusion Models

We first discuss the preliminaries of latent diffusion models, followed by the procedure on how to adapt such
models for IQA and VQA.

3.1 Preliminaries of Latent Diffusion Models

Latent diffusion models (LDMs) (Rombach et al., 2022) are a class of diffusion models that encode a real
image x onto a low-dimensional latent space z and learn a distribution in the latent space conditioned
on a text input y. In particular, the forward process starts at an image latent variable z0 progressively
corrupted by Gaussian noise, and a learned reverse process generates samples from the latent distribution
using a denoising model conditioned on y. In LDMs, the image x is encoded as z0 = ε(x), where ε(·) is a
vector quantized variational autoencoder (VQ-VAE). The generated latent samples are then passed through
a decoder for image generation. Given any timestep t, the forward process distorts the latent representation
z0 to a noisy latent zt as

zt =
√

ᾱtz0 +
√

(1 − ᾱt)ϵ, (1)

where ϵ ∼ N (0, I), ᾱt =
∏t

s=1 αs, αt = 1 − βt and {β}T
t=1 are the noise variances at every timestep

t ∈ {1, 2, · · · , T} in the forward process. In the reverse process, the denoising autoencoder ϵθ(·) takes in
the noisy latent zt, timestep variable t and the conditional variable y to estimate the additive noise in the
forward process.

Given a text prompt y, let the CLIP text encoder output be τθ(y) ∈ RM×dτ , where M is the number of
text tokens and dτ is the feature dimension. For a noisy latent zt, let φp(zt) ∈ RNp×dp

ϵ be the intermediate
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Figure 1: Given an input image x or video frame ui, VQ-VAE processes it to the latent z0. The noisy
latent output zt of the forward diffusion is fed to the denoising UNet (Ronneberger et al., 2015) ϵθ(·). At
every cross-attention block in ϵθ(·), the intermediate visual representation is aligned with learnable text
representations {τθ(y+), τθ(y−)}. After that, the attention maps are pooled for each cross-attention block p
to predict block quality qp(x) or qp(ui).

(flattened) visual representation at block p, p ∈ {1, 2, · · · , L}, in the denoiser UNet ϵθ(·), where Np is the
number of visual tokens. The intermediate cross-attention block of UNet maps the text representation onto
the image representation for feature generation through the operation

Attention(Q(p), K(p), V (p)) = softmax
(

Q(p)K(p)T

√
d

)
V (p),

where Q(p) = W
(p)
Q ·φp(zt), K(p) = W

(p)
K ·τθ(y) and V (p) = W

(p)
V ·τθ(y) are the query, key and value matrices

with W
(p)
Q ∈ Rd×dp

ϵ , W
(p)
K ∈ Rd×dτ and W

(p)
V ∈ Rd×dτ being the respective projection matrices. d is a

hyper-parameter corresponding to the number of channels in each head of the multi-head cross-attention.
Note that, the dot operation shown above in the expression for Q(p), K(p), and V (p) is a linear operation
and can be expanded as Q(p) = W

(p)
Q · φp(zt) = φp(zt)(W (p)

Q )T and similarly for K(p) and V (p).

3.2 Image Quality Assessment using LDM

Our GenzIQA model exploits the generalization capabilities of the LDMs (Rombach et al., 2022) for IQA
by learning cross-attention maps between the image and text features in the reverse diffusion process in
conjunction with quality-aware prompts to match the visual concepts. In particular, we tap into the reverse
diffusion process, where the UNet denoises noisy features as shown in Fig. 1. We train all the cross-attention
modules in the denoising UNet of the LDM to output quality estimates at different scales. We use the LDM
to obtain quality q(x) for image x. Given the visual representation of image x at block p as φp(zt) and
textual representation as τθ(y), we compute the attention map at every block p of the UNet encoder and
decoder as

A(p) = softmax
(

Q(p)K(p)T

√
d

)
, (2)

where A(p) ∈ RNp×M measures the similarity between the visual query at the pth block of the UNet and the
textual embedding of the text encoder. In our framework, we only learn the cross-attention weights.

4



Under review as submission to TMLR

We estimate the image quality by applying a log-sum-exponential (LSE) pooling of the attention map at every
scale leveraging upon its robustness benefits (He et al., 2023). The predicted quality of x at cross-attention
block p is given as

qp(x) = 1
M

M∑
m=1

1
λ

log
(

Np∑
n=1

exp(λA(p)
n,m)

)
, (3)

where A
(p)
n,m is the attention score at location (n, m). λ is a temperature co-efficient used to amplify the

similarity measure between the image and text features. The overall quality of image x is estimated as

q(x) = 1
L

L∑
p=1

qp(x). (4)

We obtain q(x) through a single-step denoising of zt. The noise added to the latent features z0, specified
through t, can have a significant impact on the ability of the LDM to predict image quality. There is a
delicate relationship between the denoising ability of the UNet and the amount of additive noise, which
could alter the semantic information and image quality information in the latent image representation. We
investigate this relationship in our experiments later.

Contextual Prompt Tuning: We further enhance the ability of the cross-attention maps to model qual-
ity through prompt-tuning. Prompt-tuning not only saves computational resources but also preserves the
generalization capability of the text encoder. Similar to CLIP-IQA+, we design a pair of context prompts
with ‘Good Photo’ and ‘Bad Photo’ as the initial positive and negative attributes to obtain

y+ = [Context] + Positive Attribute and
y− = [Context] + Negative Attribute, (5)

where the [Context] is a sequence of 16 tokens learned using CoOp (Zhou et al., 2022). Thus the text
input y chosen for the IQA task is given by the pair {y+, y−}. We take the average of the two quality
predictions corresponding to {y+, y−}, to estimate the final quality of the given image as we view the two
quality predictions as estimates from two diverse quality-aware text prompts.

We jointly optimize the projection matrices of ϵθ and the prompt embedding layer of τθ using a mean squared
error (MSE) loss between the ground-truth scores and q(x).

3.3 Video Quality Assessment using LDM

Applying GenzIQA (using Stable Diffusion Model v2) on every video frame can take several minutes to
process a 10-second long 1080p video clip on a NVIDIA RTX 3090 GPU. To alleviate the long inference
time with respect to video duration, we estimate the video quality at 1 frame per second (fps) and then
compensate for this subsampling.

Learning Sparse Video Quality: Consider a video clip v = {ūj}To
j=1, where ūj ∈ RH×W ×3 is the jth

frame of the video v and To is the total number of frames. We sub-sample the video v at one fps to get a
sparse video clip vs = {ui}Ts

i=1, where Ts is the number of frames of the sub-sampled video vs and ui is the
ith sub-sampled frame. Given the visual representation of frame ui at block p as φp(zi

t), we compute the

attention map at every block p similar to GenzIQA as A
(p)
i = softmax

(
Q

(p)
i

K
(p)T

i√
d

)
. The predicted quality

of vs at cross-attention block p is given as qp(vs) = 1
Ts

∑Ts

i=1 qp(ui), where

qp(ui) = 1
M

M∑
m=1

1
λ

log
(

Np∑
n=1

exp(λA
(p)
i,n,m)

)
, (6)

and A
(p)
i,n,m is the attention value at location (n, m) for the frame ui. The overall quality of the sub-sampled

video vs is estimated as q(vs) = 1
L

∑L
p=1 qp(vs).
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Figure 2: Framework of Temporal Quality Modulator.

Temporal Quality Modulator (TQM): Sub-sampling the video at one fps can lead to inaccurate esti-
mation of the video quality (Wen et al., 2024). The temporal distortions pertaining to video motion cannot
be accurately measured through a sparse sampling of the frames. Hence, we propose a TQM that fixes the
quality estimate as shown in Fig. 2. Several recent works (Li et al., 2022; Sun et al., 2022; Wen et al., 2024)
use the pre-trained SlowFast (Feichtenhofer et al., 2019) network to estimate motion-based quality in videos.
The SlowFast network is a dual-stream model with a Slow pathway, operating at a low frame rate, and a Fast
pathway, operating at a high frame rate. In our work, we utilize the slow and the fast pathways to estimate
the video quality features at one fps and the actual frame rate, respectively. The SlowFast network is much
smaller than the diffusion model and does not add much computational time.

For TQM, we measure the similarity of the visual query across all frames of vs with the Slow and Fast pathway
video features, respectively. Let hs(·) and hf (·) be the feature encoders for slow and fast pathway respectively.
Then, the features corresponding to the sub-sampled and original videos are given as hs(vs) ∈ RTs×256 and
hf (v) ∈ RTo×2048. Let the query and key matrices at block p corresponding to the Slow pathway be Q

(p)
s

and K
(p)
s . Further, let W

(p)
sQ and W

(p)
sK be the corresponding weight matrices. Also, define frame-level quality

R
(p)
i = W

(p)
sQ · φp(zi

t) for i ∈ {1, 2, · · · , Ts}. Thus, R
(p)
i ∈ RNp×d. We spatially average pool the frame-level

queries along the visual-token dimension to obtain Q
(p)
s as

Q(p)
s (i, m) = 1

Np

Np∑
n=1

R
(p)
i,n,m, (7)

where m ∈ {1, 2, · · · , d}. Therefore, Q
(p)
s ∈ RTs×d. Note that K

(p)
s = W

(p)
sK · hs(vs) and hence K

(p)
s ∈ RTs×d.

Similarly, we get the query and key matrices at block p corresponding to the Fast features as Q
(p)
f ∈ RTs×d

and K
(p)
f ∈ RTo×d with weight matrices W

(p)
fQ and W

(p)
fK .
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We get the attention maps between the denoising UNet and the SlowFast network features as A
(p)
s =

softmax
(

Q(p)
s K(p)T

s√
d

)
and A

(p)
f = softmax

(
Q

(p)
f

K
(p)T

f√
d

)
, where A

(p)
s ∈ RTs×Ts and A

(p)
f ∈ RTs×To are the

cross-attention maps with respect to the Slow and Fast pathway features respectively. We average pool
the attention maps across spatial dimensions for all the cross-attention blocks p ∈ {1, 2, . . . , L} to get the
cross-attention scores between the UNet feature and the SlowFast features as Sp and F p. We concatenate
the scores Sp and F p and pass them through a single-layer network ϕp to get a temporal quality correction
factor as γp = ϕp(Sp, F p). We estimate the quality of the original video as

q(v) = 1
L

L∑
p=1

γpqp(vs). (8)

We optimize the projection matrices of ϵθ, the prompt embedding layer of τθ, TQM’s cross-attention matrix
weights (W (p)

sQ , W
(p)
sK , W

(p)
fQ , W

(p)
fK) and ϕp for all p using MSE loss between the ground-truth scores and q(v).

4 Experiments

4.1 Training Details:

We choose Stable Diffusion v2 (Rombach et al., 2022) model (SDM) pretrained on LAION-5B (Schuhmann
et al., 2022) dataset with 1.45 billion parameters as our default LDM. We choose the model where the
VQ-VAE (Razavi et al., 2019) takes in 512 × 512 image resolution. Thus, we resize the images and videos
to 512 × 512 and process the images through the LDM. We freeze all parameters except the weight matrices
of all the 16 cross-attention blocks in SDM-v2 as our goal is to adapt the cross-attention for the QA task.
We train GenzIQA with MSE loss for 10 epochs with a batch size of 16 and Adam (Kingma & Ba, 2014)
optimizer. We choose the timestep t in the range (0−100], and λ = 0.14 as default based on 7K images of the
official validation set of FLIVE (Ying et al., 2020b). Note that we refer to the noise variance in Eq. 1 through
timestep t, implicitly referring to βt. We train GenzVQA for 6 epochs using similar training parameters as
GenzIQA. Since SDM is a T2I model, keeping the query weight frozen while learning GenzIQA is beneficial
while for GenzVQA we train query weights along with key and value weights. (Analysis is given in Appendix
A.2.)

During training and testing, we randomly choose a single timestep value in the (0−100] range for quality
estimation. We evaluate both the models using the Spearman’s Rank Order Correlation Co-efficient (SRCC)
and the Pearson’s Linear Correlation Co-efficient (PLCC) between the predicted quality and ground-truth
human opinion scores. All experiments were conducted on a 24 GB NVIDIA RTX 3090 GPU with Pytorch
1.13.

4.2 Cross Database IQA Generalization

To study the generalizability of GenzIQA, we train it with the largest user generated content (UGC) dataset,
specifically the official FLIVE (Ying et al., 2020a) train database comprising of 30,253 images, and test on
diverse categories of distortions. In particular, we evaluate GenzIQA on various categories of test datasets
such as camera-captured images (KonIQ-10K (Hosu et al., 2020), CLIVE (Ghadiyaram & Bovik, 2015)),
GAN-restored images (PIPAL (Gu et al., 2020)), night-time images (NNID (Hu et al., 2021)), and
synthetically distorted images (CSIQ (Larson & Chandler, 2010) and LIVE-IQA (Sheikh et al., 2006)).
We compare with popular state-of-the-art NR-IQA methods in literature such as TReS (Golestaneh et al.,
2022), HyperIQA (Su et al., 2020), MetaIQA (Zhu et al., 2020), MUSIQ (Ke et al., 2021), CLIP-IQA+

(Wang et al., 2023a), ARNIQA (Agnolucci et al., 2024), GRepQ (Srinath et al., 2024), Re-IQA (Saha et al.,
2023), QCN (Shin et al., 2024), DP-IQA (Fu et al., 2024), and PFD-IQA Li et al. (2025). We note that
all these methods are also trained on the official FLIVE train set for a fair comparison. CLIP-IQA+ is an
interesting comparison to GenzIQA as it is a vision-language model where learnable prompts are used to
estimate quality from the visual and text features. Since LIQE (Zhang et al., 2023a), Q-Align (Wu et al.,
2023d) requires detailed annotations of image-text context, we are not able to benchmark them due to the
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Table 1: Cross-database performance analysis of GenzIQA with other NR-IQA methods. All the methods
are trained on official FLIVE train set and tested across various IQA databases. ∗ method does not have
publicly available training code to benchmark on all databases. Bold and underlined numbers denote the
best and second-best performance, respectively.

KonIQ-10K CLIVE PIPAL NNID CSIQ LIVE-IQA AverageMethods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
TReS 0.669 0.710 0.729 0.714 0.362 0.359 0.805 0.794 0.587 0.517 0.543 0.445 0.612 0.589

HyperIQA 0.589 0.635 0.636 0.660 0.304 0.327 0.658 0.651 0.497 0.428 0.514 0.438 0.519 0.523
MetaIQA 0.578 0.489 0.448 0.410 0.340 0.312 0.452 0.429 0.562 0.536 0.732 0.673 0.486 0.479
MUSIQ 0.648 0.692 0.662 0.687 0.341 0.331 0.776 0.778 0.484 0.583 0.259 0.335 0.582 0.567

CLIP-IQA+ 0.724 0.756 0.657 0.673 0.271 0.293 0.694 0.702 0.591 0.617 0.611 0.617 0.592 0.609
Re-IQA 0.764 0.787 0.699 0.711 0.245 0.266 0.838 0.828 0.324 0.381 0.304 0.338 0.542 0.552

ARNIQA 0.766 0.768 0.707 0.729 0.362 0.373 0.782 0.762 0.482 0.508 0.498 0.485 0.601 0.604
GRepQ 0.781 0.786 0.736 0.753 0.303 0.318 0.843 0.832 0.579 0.587 0.666 0.568 0.638 0.641
QCN 0.732 0.783 0.724 0.767 0.370 0.382 0.814 0.808 0.599 0.671 0.806 0.779 0. 652 0.698

DP-IQA∗ 0.771 - 0.770 - - - - - - - - - - -
PFD-IQA∗ 0.775 - 0.783 - - - - - - - - - - -
GenzIQA 0.779 0.823 0.799 0.829 0.473 0.496 0.897 0.878 0.636 0.677 0.789 0.712 0.710 0.736

Table 2: Cross-database performance analysis of GenzVQA with other NR-VQA methods on high frame-
rate, Ultra-HD, gaming, and streaming videos. All methods are trained on official LSVQ train set. Bold
and underline denote best and second best.

Methods
LIVE-

YT-HFR
Waterloo-
IVC-4K

LIVE-
YT-Gaming CGVDS CSIQ-

VQD MD-VQA

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
VSFA 0.461 0.528 0.465 0.487 0.658 0.721 0.718 0.734 0.497 0.502 0.589 0.651

CSVT-BVQA 0.351 0.422 0.365 0.407 0.631 0.673 0.791 0.811 0.580 0.581 0.626 0.652
SimpleVQA 0.378 0.409 0.382 0.414 0.666 0.724 0.804 0.801 0.599 0.572 0.654 0.678
CONVIQT 0.321 0.403 0.358 0.385 0.572 0.618 0.791 0.811 0.580 0.581 0.633 0.665

DOVER 0.355 0.465 0.369 0.419 0.651 0.730 0.694 0.744 0.594 0.598 0.708 0.690
ModularVQA 0.350 0.427 0.404 0.456 0.685 0.740 0.722 0.775 0.520 0.524 0.588 0.617
GenzVQA 0.644 0.662 0.493 0.562 0.616 0.692 0.822 0.839 0.694 0.707 0.724 0.721

absence of such annotations on the FLIVE (Ying et al., 2020b) dataset. In Tab. 1, we compare with popular
state-of-the-art NR-IQA methods in literature and observe that GenzIQA consistently outperforms other
methods across various databases. Further, the performance on most databases is acceptable for IQA.

4.3 Cross Database VQA Generalization

We train GenzVQA with the largest UGC dataset, specifically, the official LSVQ (Ying et al., 2021) train
database comprising 28,056 videos to evaluate its generalizabilty. In Tab. 2, we evaluate our model against
domain-specific videos such as frame-rate variation (LIVE-YT-HFR (Madhusudana et al., 2021)), Ultra-

Table 3: Cross-database performance analysis of GenzVQA with other NR-VQA methods on camera-
captured and UGC videos. All methods are trained on official LSVQ train set. Average corresponds to
the mean performance across all datasets in Tab. 2 and 3. Bold and underlined denote best and second
best, respectively.

Methods LIVE-VQC KoNViD-1K Youtube-UGC LIVE-Qualcomm Maxwell Average
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

VSFA 0.753 0.795 0.810 0.811 0.718 0.721 0.438 0.434 0.649 0.654 0.614 0.639
CSVT-BVQA 0.793 0.811 0.843 0.835 0.802 0.792 0.520 0.568 0.594 0.588 0.627 0.649
SimpleVQA 0.749 0.789 0.826 0.820 0.802 0.806 0.570 0.617 0.697 0.704 0.647 0.667
CONVIQT 0.706 0.737 0.775 0.782 0.715 0.704 0.534 0.613 0.645 0.652 0.603 0.632

DOVER 0.832 0.855 0.884 0.883 0.777 0.792 0.668 0.704 0.728 0.730 0.660 0.691
ModularVQA 0.806 0.844 0.878 0.884 0.788 0.804 0.573 0.597 0.730 0.737 0.640 0.673
GenzVQA 0.826 0.840 0.885 0.888 0.824 0.829 0.707 0.719 0.745 0.757 0.725 0.747
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HD (Waterloo-IVC-4K (Li et al., 2019b)), gaming (LIVE-YT-Gaming (Yu et al., 2022) and CGVDS (Zad-
tootaghaj et al., 2020)), and streaming (CSIQ-VQD (Vu & Chandler, 2014) and MD-VQA (Zhang et al.,
2023c)) videos. In Tab. 3, we validate against popular VQA databases having camera-captured and UGC
videos such as KoNViD-1K (Hosu et al., 2017), LIVE-VQC (Sinno & Bovik, 2019), Youtube-UGC (Wang
et al., 2019), Maxwell (Wu et al., 2023c), and LIVE-Qualcomm (Ghadiyaram et al., 2018). We compare
GenzVQA with state-of-the-art VQA methods and see that our model achieves a consistently superior per-
formance across various video content and distortions. In particular, our gains are substantial for high-frame
rate VQA, showing the generalizability of GenzVQA.

We compare GenzVQA with only learning-based methods due to their superior performance with respect to
the classical methods as noted in literature (Wu et al., 2023b; Lu et al., 2024). Due to the computational
complexity of learning end-to-end VQA methods, earlier works such as VSFA (Li et al., 2019a), CSVT-
BVQA (Li et al., 2022), SimpleVQA (Sun et al., 2022), and CONVIQT (Madhusudana et al., 2022a) only
learn a regressor with pre-trained video representations. On the other hand, DOVER (Wu et al., 2023b) is an
end-to-end VQA method. Since DOVER is an improved version of FAST-VQA (Wu et al., 2022), we do not
compare with FAST-VQA. We also include a recent vision-language based VQA model viz. ModularVQA.
We note that GenzVQA achieves a consistently superior performance against existing VQA methods across
various video content and distortions. This experiment establishes the generalizability of GenzVQA against
existing methods.

4.4 Ablation Studies and Detailed Experiments

4.4.1 Role of Noise in Latent Diffusion Model for Quality Estimation

The noise added to the latent features z0 can have a significant impact on the ability of the latent diffusion
model (LDM) to predict image or video frames’ quality. Recall that the denoising UNet of LDM estimates
the Gaussian noise incorporated in the forward process. We hypothesize that there is a delicate relationship
between the denoising ability of the UNet and the amount of additive noise, which could alter the semantic
information and quality information in the latent representation. We investigate this by gradually distorting
the original image latent z0 for a fixed length Markov chain. In particular, we generate the images using
the pretrained Stable Diffusion v2 (Rombach et al., 2022) model as our default LDM (as mentioned in
implementation details of main paper) with various noise steps in forward diffusion process.

In Fig. 3, we generate images from clean, low noise (t = 95) and high noise (t = 950) versions of the original
image features. The generated image from the clean latent z0 in Fig. 3b, is blurry as can be seen from the
textureless outfield. This effect maybe attributed to the fact that denoising UNet removes bandpass texture
information.

In Fig. 3d, we see that the addition of high Gaussian noise distorts the semantic information in the latent
space and thus the UNet generates a content different from the original image. Finally, in Fig. 3c, the image
generated preserves both the semantic and texture information as evident visually and from the respective
LPIPS (Zhang et al., 2018a) scores. In our study, addition of the correct range of noise is extremely important
as we wish to capture the perceptual and semantic information at all intermediate stages of the UNet.

4.4.2 Impact of Noise Level Variation

The level of noise added to the image latent space has a direct impact on the ability of the denoiser to
preserve perceptual information. Thus, we train GenzIQA on the CLIVE database with varying levels of
noise added to the input. Specifically, we train on CLIVE and test on various dataset for a single-timestep
sampled in the range {0, (0 − 100], (100 − 200], (200 − 300], (400 − 500], (600 − 700], (900 − 1000]}. As evident
from Fig. 4, the performance across various test datasets is fairly consistent in the range (0 − 300], while
it starts to drastically degrade for noisy timesteps beyond 400. We conclude that corrupting the image
latent with high noise distorts the semantic information, thus hindering the extraction of quality relevant
information from the cross-attention map. Further, extremely low noise levels cause blur during denoising,
leading to poorer quality prediction performance. We see that sampling a single-timestep from the (0, 100]
range offers a reasonable performance across all datasets.
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(a) Reference Image (b) LPIPS:0.1537 (c) LPIPS:0.1023 (d) LPIPS:0.5287

Figure 3: Generated images from zero shot SDM. In Fig. 3b image is generated without noise infused to the
image latent, Fig. 3c and Fig. 3d are generated images with noise fed at the timestep t = 95 (low noise),
and t = 950 (high noise) respectively and subsequently denoised. Lower LPIPS scores correspond to better
perceptual quality.

Figure 4: SRCC performance variation of GenzIQA trained on CLIVE and tested across four databases at
different timesteps.

4.4.3 Impact of major components of GenzIQA

We evaluate the need of cross-attention finetuning between images and textual prompts, learning quality-
aware prompts, and LSE pooling (versus average pooling). In Tab. 4, we train GenzIQA on CLIVE and
test on KonIQtest, FLIVEtest, NNID, and LIVE-IQA. The zero-shot performance reported in the first row
indicates that all components of GenzIQA are necessary to adapt LDM for IQA. Learning the cross-attention
map has the maximum impact on performance. However, prompt tuning and LSE pooling also lead to
consistent improvements across databases.

Table 4: Impact of various components of GenzIQA trained on CLIVE and tested on four datasets. We
report the SRCC performance.

Prompt
Tuning

Vision
-Text
Cross-
Attn.

LSE
Pool

Test Data

KonIQ
test

FLIVE
test NNID LIVE-

IQA
× × × 0.184 0.010 0.032 0.124
✓ × ✓ 0.455 0.284 0.517 0.636
× ✓ ✓ 0.696 0.331 0.677 0.706
✓ ✓ × 0.735 0.438 0.721 0.773
✓ ✓ ✓ 0.750 0.454 0.738 0.782
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Table 5: Impact of various components of GenzVQA evaluated on four datasets. We report the SRCC
performance.

Train
Data

SlowFast
Feature

Vision-
Motion
Cross-
Attn.

Test Data

YT-
UGC

LIVE-
VQC

YT-
HFR

CSIQ-
VQD

FLIVE × × 0.495 0.673 0.358 0.394
LSVQ × × 0.806 0.768 0.494 0.583
LSVQ ✓ × 0.809 0.775 0.538 0.666
LSVQ ✓ ✓ 0.824 0.826 0.644 0.694

(a) Blur (b) Noise (c) Compression

Figure 5: 2D tSNE visualization of cross-attention features of GenzIQA trained on FLIVE and tested on (a)
Gaussian blur, (b) White noise, and (c) JPEG compressed images from LIVE-IQA.

4.4.4 Impact of major components of GenzVQA

We perform experiments in Tab. 5 with respect to GenzVQA. We first observe that training the baseline
diffusion model on a VQA dataset such as LSVQ gives a significant improvement over training it on an IQA
dataset such as FLIVE.

a) Impact of SlowFast features: One of GenzVQA’s main components is the temporal quality modulator.
Recent works such as CSVT-BVQA, SimpleVQA, and ModularVQA use pre-trained SlowFast features and
regress directly against quality. Thus, we replace our TQM with a two-layer neural network that regresses
SlowFast features directly to get the temporal quality correction factor. We notice a gain in performance
while using the SlowFast features along with the baseline diffusion model.

b) Impact of Vision-Motion Cross-Attention module: A significant gain in performance is observed
with the inclusion of the cross-attention module in TQM with respect to the baseline model across all
datasets. In particular, cross-attention between the SlowFast motion features and the UNet visual features
is advantageous over merely using SlowFast features. This experiment establishes the importance of learning
shared information between the UNet and SlowFast networks for TQM.

4.4.5 Impact of VAE on Distortions

Our GenzIQA’s backbone viz. SDM applies a diffusion model on the latent space of VQ-VAE. In this
experiment, we analyze the impact of both image resizing and VQ-VAE on the image/ video frame distortions.
In particular, we show the 2D tSNE (Tu et al., 2021b) visualization of the cross-attention representations
averaged across all blocks of the UNET model. In Figure 5, we show the features for (a) JPEG compression,
(b) white noise, and (c) Gaussian blur images from LIVE-IQA belonging to high MOS (> 70) and low
MOS(< 40). We infer that for all distortion types, the diffusion features can segregate images based on their
distortion levels. Thus, we observe the distortion information is reasonably preserved despite the resizing
and use of VQ-VAE for effective quality assessment.
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Table 6: Performance comparison of GenzVQA with and without Fast and Slow cross-attention blocks.
Video 1 and 2 are selected from LIVE-VQC (Sinno & Bovik, 2019) dataset.

Video 1 Video 2

MOS 85.207 18.616
Baseline 56.894 52.153

Mean Fast Score 1.22 0.9136
Mean Slow Score 0.9312 1.3798

GenzVQA 75.225 36.9243

Table 7: Performance comparison of GenzIQA with other NR-IQA methods on Intra-database setting. All
results are obtained from from their respective publications.

Methods FLIVE KonIQ-10K CLIVE LIVE-IQA SPAQ CSIQ
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

TReS 0.554 0.625 0.915 0.928 0.846 0.877 0.969 0.968 - - 0.922 0.942
HyperIQA 0.535 0.623 0.906 0.917 0.859 0.882 0.962 0.966 0.916 0.919 0.923 0.942
DB-CNN 0.554 0.652 0.875 0.884 0.851 0.869 0.968 0.971 0.911 0.915 0.946 0.959

CONTRIQUE 0.580 0.651 0.894 0.904 0.845 0.857 0.960 0.961 0.914 0.919 0.942 0.955
Re-IQA 0.645 0.733 0.914 0.923 0.840 0.854 0.970 0.971 0.918 0.925 0.947 0.960
LIQE - - 0.918 0.908 0.889 0.879 0.958 0.942 - - 0.923 0.918

ARNIQA 0.595 0.671 - - - - 0.966 0.970 0.905 0.910 0.962 0.973
GRepQ 0.531 0.582 0.908 0.916 0.859 0.867 0.945 0.943 0.874 0.877 0.948 0.955
QPT 0.645 0.733 0.927 0.941 0.895 0.914 - - 0.925 0.928 - -
QCN 0.644 0.741 0.934 0.945 0.875 0.893 - - 0.923 0.928 - -
LoDA 0.578 0.679 0.932 0.944 0.876 0.899 0.975 0.979 0.925 0.928 - -
DSMix 0.646 0.735 0.915 0.925 0.873 0.883 0.974 0.974 - - 0.957 0.962

GenzIQA 0.627 0.728 0.936 0.950 0.879 0.897 0.966 0.968 0.929 0.935 0.968 0.972

4.4.6 Impact of Slow and Fast Attention Module

In Table 6, we compare the prediction accuracy given by GenzVQA for two videos. For Video 1, the baseline
prediction without any fast and slow cross-attention is much lesser than the actual ground-truth. The
baseline prediction gets amplified by the ratio of fast to slow cross-attention score to GenzVQA’s prediction.
Note that we compute fast and slow cross-attention at every scale of Stable diffusion’s UNet and get the
GenzVQA prediction as an average over all scales as given in Equation 8 in main paper. But for ease of
understanding here, we provide the average of fast and slow cross-attention scores across all scales. Similarly,
for Video 2, the baseline prediction is much higher than ground-truth. Thus, the baseline gets dampened by
the ratio of fast and slow cross-attentions scores.

4.4.7 Intra-database Performance

a) Intra-database Performance of GenzIQA: We now validate the performance of our model in intra-
database train-test settings. Specifically, we train GenzIQA with either the official train set or 80% of
image samples from various databases and test on the official test set or remaining 20%, respectively. In
Tab. 7, in case of FLIVE and KonIQ-10K, we train-test on the official split provided, while for other
datasets, we randomly split the data 10 times in the ratio 80 : 20 and report the median performance.
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Table 8: Finetune performance comparison of GenzVQA with other NR-VQA methods on various
databases. KSVQE results are from (Lu et al., 2024) and all other methods numbers are taken from Modu-
larVQA.

Methods LSVQ-test LSVQ-1080p LIVE-VQC KoNViD-1K Youtube-
UGC

LIVE-
Qualcomm

LIVE-
YT-Gaming

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
VSFA 0.801 0.796 0.675 0.704 0.718 0.771 0.794 0.799 0.787 0.789 0.708 0.774 0.784 0.819

CSVT-BVQA 0.852 0.854 0.772 0.788 0.841 0.839 0.839 0.830 0.825 0.818 0.833 0.837 0.852 0.868
SimpleVQA 0.866 0.863 0.750 0.793 0.740 0.775 0.792 0.798 0.819 0.817 0.722 0.774 0.814 0.836
FastVQA 0.876 0.877 0.779 0.814 0.853 0.873 0.893 0.887 0.863 0.859 0.807 0.814 0.869 0.880
DOVER 0.888 0.889 0.795 0.830 0.853 0.872 0.892 0.900 0.875 0.874 0.736 0.789 0.882 0.906

ModularVQA 0.895 0.895 0.809 0.844 0.860 0.880 0.901 0.905 0.876 0.877 0.832 0.842 0.867 0.902
KSVQE 0.886 0.888 0.790 0.823 0.861 0.883 0.922 0.921 0.900 0.912 - - - -

GenzVQA 0.898 0.899 0.797 0.835 0.871 0.882 0.909 0.918 0.910 0.913 0.851 0.856 0.878 0.907

We compare GenzIQA with other NR-IQA methods in the same setting. We also benchmark LIQE (Zhang
et al., 2023a) by training it on individual datasets (wherever detailed text annotation was provided). We infer
that our method gives competitive performance with recent state-of-the-art methods across all databases.
We conclude from Tab. 7 that GenzIQA not only outperforms recent benchmarks in practical cross/inter
database generalization scenarios but also does remarkably well on intra-database test scenarios.

b) Transfer Learning GenzVQA on Smaller Datasets: Similar to other works such as FAST-VQA
(Wu et al., 2022), DOVER (Wu et al., 2023b), and ModularVQA (Wen et al., 2024), we finetune GenzVQA
on individual evaluation datasets viz. LIVE-VQC (Sinno & Bovik, 2019), KoNViD-1K (Hosu et al., 2017),
and Youtube-UGC (Wang et al., 2019), LIVE-Qualcomm (Ghadiyaram et al., 2018) and LIVE-YT-Gaming
(Yu et al., 2022) in 80 : 20 train-test ratio for 10 splits and report the median performance. In case of
LSVQ (Ying et al., 2021), we train on the official train split and report the performances on the official test
and 1080p splits. We compare GenzVQA with other popular NR-VQA in Tab. 8. We infer that GenzVQA
outperforms the state-of-the art methods on most databases.

4.4.8 Analyzing Cross-Attention Map Representation

We visualize the cross-attention representation of GenzIQA trained on FLIVE to understand why it leads
to superior generalization. For this, we subsample good and bad quality images from three different test
datasets with MOS less than 30 and greater than 70, respectively. In Fig. 6, we show the 2D tSNE (Tu et al.,
2021b) visualization of the cross-attention map in Eq. (2) averaged across all blocks, timestep samples and
the number of image tokens. In particular, we chose a perplexity of 40 and iterated the optimization over
1000 steps while generating the tSNE plot. We conclude that the learned attention representation clearly
separates high and low-quality images as evident from Fig. 6. Under similar settings, we also visualize the
representation of CLIP-IQA+ visual encoder conditioned on the same prompt pair attributes. In particular,
the visual feature similarity with ensemble text representation gives a 2-dimensional representation for each
image. We see that the CLIP-IQA+ model’s separability is somewhat inferior to what we see with the
cross-attention features of GenzIQA.

4.4.9 Analysis of Contextual Prompt Learning

a) Study on Learnable Prompt vs Fixed Prompt:

GenzIQA and GenzVQA by default are trained with learnable antonym prompts using CoOp (Zhou et al.,
2022) similar to CLIP-IQA+. We study the need for diverse prompts pairs as well as the need for learnable
context vectors vs fixed prompts in case of GenzIQA. In Tab. 9, we choose [‘Good Photo.’, ‘Bad Photo.’] as
the initial antonym prompt pair while for the single prompt case, we only choose [‘Good Photo.’]. We make
two observations from this study. Firstly, antonym prompt pairs give a better performance than a single
prompt in both the learnable prompt and fixed prompt training across all test datasets. Secondly, learnable
prompts consistently yield superior results with respect to the fixed prompt case. Both these phenomena are
expected as multiple studies show the benefit of prompt learning (Yao et al., 2023; Guo et al., 2023; Wang
et al., 2023a).

13



Under review as submission to TMLR

(a) KonIQ (b) CLIVE
GenzIQA

(c) LIVE-IQA

(d) KonIQ (e) CLIVE
CLIP-IQA+

(f) LIVE-IQA

Figure 6: 2D tSNE visualization of cross-attention features of GenzIQA trained on FLIVE and tested
on images from KonIQ, CLIVE, and LIVE-IQA. CLIP-IQA+ similarity features conditioned on antonym
prompts are also shown.

Table 9: SRCC performance variation of GenzIQA on the choice of prompts being fed as input to the CLIP
text encoder. All the variations have been trained on FLIVE official train set and cross-tested on these
datasets. Good Photo / Bad Photo as initial attributes.

Test
database

Trainable
single

prompt

Trainable
antonym
prompts

Fixed
single

prompt

Fixed
antonym
prompts

CLIVE 0.791 0.799 0.784 0.789
NNID 0.880 0.897 0.871 0.874
CSIQ 0.622 0.636 0.568 0.611

LIVE-IQA 0.783 0.789 0.731 0.759

b) Analysis on Choice of Prompts: In our experimental studies, we choose [‘Good Photo.’, ‘Bad Photo.’]
as our initial learnable antonym prompt attributes. As shown in CLIP-IQA+ (Wang et al., 2023a), this
prompt pair gives the best estimate of quality. Here, we train GenzIQA with the official FLIVE training set

Table 10: SRCC performance variation of GenzIQA trained on FLIVE with High Quality / Low Quality
as initial prompts.

Test
database

Trainable
single

prompt

Trainable
antonym
prompts

Fixed
single

prompt

Fixed
antonym
prompts

CLIVE 0.776 0.795 0.758 0.761
NNID 0.883 0.889 0.870 0.872
CSIQ 0.616 0.623 0.546 0.576

LIVE-IQA 0.782 0.812 0.734 0.742
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Table 11: SRCC performance variation of GenzIQA trained on FLIVE with High Definition / Low
Definition as initial prompts.

Test
database

Trainable
single

prompt

Trainable
antonym
prompts

Trainable
antonym
prompts

Trainable
antonym
prompts

CLIVE 0.768 0.791 0.752 0.755
NNID 0.880 0.892 0.869 0.871
CSIQ 0.612 0.620 0.548 0.564

LIVE-IQA 0.780 0.800 0.728 0.738

for initial prompts [‘High Quality.’, ‘Low Quality.’] in Tab. 10, and [‘High Definition.’, ‘Low Definition.’] in
Tab. 11 under different settings. We see that there is minimal variation in performance with respect to the
exact choice of these popular quality relevant antonym prompt attributes.

4.5 Run Time:

The average test-time required by GenzIQA to estimate quality for a single 512 × 512 resized image for
one timestep on a 24 GB NVIDIA RTX 3090 is 0.035 seconds. While for a 8-second long 30 fps video,
GenzVQA takes 0.357 seconds to estimate quality. Similar to FastVQA (Wu et al., 2022) and ModularVQA
(Wen et al., 2024), we infer GenzVQA for 8 second long 30 fps 1080p videos on an NVIDIA RTX 3090
GPU. We compare the inference time of GenzVQA with other NR-VQA methods in Tab. 12. We note that
inference time of GenzVQA (0.357 secs) is much lesser than actual duration (8 secs) of the video.

Table 12: Inference time comparison of GenzVQA with other NR-VQA methods for 8 second long 30 fps
1080p videos.

Method Inference Time(sec)
VSFA 11.109

CSVT-BVQA 27.632
SimpleVQA 0.714
FastVQA 0.045
DOVER 0.047

ModularVQA 0.159
GenzVQA 0.357

5 Conclusion

In this work, we presented GenzIQA and GenzVQA by leveraging the benefits of LDM. Our work is perhaps
one of the earliest attempts at understanding whether and how such models can be used for generalized
NR-IQA and NR-VQA. In this context, it is important to finetune the cross-attention module and learn
quality-aware input context vectors to enable the diffusion models be effective for QA. Also, we introduce a
cost-effective way to estimate video quality by introducing our TQM. Although our method can be readily
deployed on servers or on the cloud, the complexity of a large vision language model can limit its deployment
on edge devices. It would be interesting to explore knowledge distillation (Meng et al., 2023) and inference-
time acceleration techniques Salimans & Ho (2022) for edge-deployment of GenzIQA and GenzVQA. On
the other hand, while GenzIQA achieves very good performance on most datasets, there is still scope for
improvement on PIPAL, which requires a more fine-grained approach to IQA. Nevertheless, we believe that
GenzIQA and GenzVQA will encourage further studies on the use of generative models for superior and
practical QA.
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A Appendix

A.1 Impact of Denoising Steps on Quality Estimation

In Fig.3 of the main paper, we showed that a moderate noise variance is effective while extracting quality
features during a single denoising step of reverse diffusion. We now address the complementary question
of whether increasing the number of denoising steps and using the latent features from the output after
more denoising steps can yield richer features. To understand this, we conduct an experiment where we let
t ∈ (0, 100] and increase the number of denoising steps from 1 to 5 by reducing t by 20 in each successive step.
This reduction of t aligns with how LDM suggests what noise needs to be added in successive denoising steps.
We train the GenzIQA model on the CLIVE dataset and test on multiple datasets for this experiment. In
Tab. 13, we observe that the multi-step denoising performance is always inferior to the single-step denoising
performance, and the performance degrades as we tap features from successive denoisers. We believe that
since the cross-attention matrices are tuned for quality estimation, this can impact the ability of the denoiser
to remove noise for its effective use in successive steps of multi-step denoising. We conclude that it is best
to use a single step denoiser to extract quality-aware features from diffusion models.

Table 13: SRCC performance variation of GenzIQA in several steps of a multistep denoising process.

Test database
1st

denoising
step

3rd
denoising

step

5th
denoising

step
KonIQtest 0.747 0.631 0.562
LIVE-IQA 0.782 0.638 0.476

NNID 0.737 0.557 0.417
CSIQ 0.661 0.496 0.415

A.2 Impact of Vision-Language Cross-Attention Components

In implementation details, we kept the weight matrix W
(p)
Q of the query for all cross-attention blocks p ∈

{1, 2, · · · , L} frozen for GenzIQA as we want to preserve the robust visual information captured by the
pre-trained text-to image (T2I) Stable diffusion model (SDM). The key and value weights are obtained based
on the text prompt, the context of which is also learnt. Thus, we update the key and value weights. In
this section, we analyze the impact of freezing query, key and value weights on quality estimation. In Tab.
14, we evaluate GenzIQA trained on CLIVE against four different IQA databases viz. the official test set
of KonIQ-10K (Hosu et al., 2020), FLIVE (Ying et al., 2020a) and entire NNID (Hu et al., 2021), and
LIVE-IQA (Sheikh et al., 2006). We infer from the last row that making query weights trainable has an
adverse impact on performance. Similarly, freezing the key and value weights also affects the performance.

In case of GenzVQA, since SDM is a T2I model, we find that learning the query weights (in addition to
key and value weights like GenzIQA) is beneficial, as seen in Tab. 15. We infer that learning the query
weights is important in capturing spatial attributes in the video which are absent in image representations
of the pre-trained T2I model.

A.3 Choice of Sampling Timesteps

In the implementation details of the main paper, we chose a single sampling timesteps during testing for both
GenzIQA and GenzVQA. In Fig. 7, we evaluate GenzIQA trained on the official FLIVE (Ying et al., 2020b)
training set on KonIQ (Hosu et al., 2020), CLIVE (Ghadiyaram & Bovik, 2015), NNID (Hu et al., 2021), and
LIVE-IQA (Sheikh et al., 2006) with respect to the number of sampling steps. We see that as the number
of sampling steps during evaluation increases, the performance also marginally increases and saturates at
around 4 on all datasets. Thus, we chose a single sampling timestep for faster test-time evaluations.
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Table 14: SRCC performance analysis on the impact of various components of Cross-Attention block in
GenzIQA trained on CLIVE and tested on four datasets.

Query
Weights

Key
Weights

Value
Weights KonIQtest FLIVEtest NNID LIVE-IQA

× × × 0.455 0.284 0.517 0.636
✓ × × 0.715 0.410 0.713 0.657
× ✓ ✓ 0.750 0.454 0.738 0.782
✓ ✓ ✓ 0.750 0.426 0.718 0.752

Table 15: SRCC performance analysis on the impact of learning query in GenzVQA trained on the official
LSVQ training set and evaluated on seven datasets. Key and value are trainable in both the instances.

Query
Weights LIVE-VQC KoNVid-1K YT-UGC LIVE-QCOMM Waterloo-4K YT-Gaming CSIQ-VQD

× 0.810 0.874 0.814 0.680 0.453 0.598 0.678
✓ 0.826 0.885 0.824 0.707 0.493 0.616 0.694

A.4 Comparison of GenzIQA and LIQE

LIQE (Zhang et al., 2023a) extends CLIP-IQA+ and has shown very promising performance. However it
requires detailed text annotations in the form of quality, distortion and scene information for training. Since
FLIVE (Ying et al., 2020a) does not have such detailed annotations, we were unable to benchmark it in Tab.
1. Thus, for a fair comparison with LIQE (Zhang et al., 2023a), we train GenzIQA solely on the combination
of KADID-10K (Lin et al., 2019) and KonIQ-10K (similar to Table 2 of LIQE). We evaluate GenzIQA and
LIQE on various IQA datasets such as TID (Ponomarenko et al., 2015), SPAQ (Fang et al., 2020), PIPAL
(Gu et al., 2020), CLIVE (Ghadiyaram & Bovik, 2015), LIVE-IQA (Sheikh et al., 2006) (denoted as LIVE)
and NNID (Hu et al., 2021) in a cross-dataset generalized setting and present the SRCC performance in
Tab. 16. We note that GenzIQA does better than LIQE in most datasets despite not requiring any detailed
text annotations.

A.5 Cross-Database Generalization on AI Generated Images

In this section, we investigate the effectiveness of our approach in cross-database generalization on the AI-
Generated Image (AIGI) databases. To explore this, we choose the largest AIGI database currently available,
AIGIQA-20K (Li et al., 2024a) and train GenzIQA on it. The official train split is available for the AIGIQA-

Figure 7: Performance analysis of GenzIQA with varying number of sampling timesteps during evaluation
across four test databases.
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Table 16: SRCC performance comparison of GenzIQA with LIQE trained on KADID-10K and KonIQ-10K
and evaluated across multiple datasets.

Method TID SPAQ PIPAL CLIVE LIVE NNID
LIQE 0.811 0.881 0.478 0.830 0.868 0.785

GenzIQA 0.820 0.892 0.486 0.860 0.847 0.797

Table 17: SRCC performance comparison of GenzIQA with other state-of-the-art NR-IQA methods in a
cross-database scenario on AI-generated image databases. All models are trained on AIGIQA-20K (Li et al.,
2024a), the cross-database evaluation is done for other 3 databases.

Methods AGIQA-3K AGIQA-1K AIGCIQA2023
SRCC PLCC SRCC PLCC SRCC PLCC

CLIP-IQA+ 0.498 0.486 0.268 0.266 0.475 0.459
CONTRIQUE 0.629 0.648 0.451 0.544 0.591 0.598

Re-IQA 0.648 0.656 0.176 0.257 0.540 0.524
GRepQ 0.721 0.742 0.440 0.542 0.631 0.610
IPCE 0.816 0.831 0.459 0.548 0.731 0.713

GenzIQA 0.793 0.806 0.653 0.757 0.661 0.641

20K database. For cross-database evaluation, we choose rest of the AIGI databases viz. AGIQA-3K (Li et al.,
2023b), AGIQA-1K (Zhang et al., 2023b) and AIGCIQA2023 (Wang et al., 2023b). We benchmark GenzIQA
against other state-of-the-art quality representation learning methods such as CONTRIQUE (Madhusudana
et al., 2022b), Re-IQA (Saha et al., 2023), GRepQ (Srinath et al., 2024), IPCE (Peng et al., 2024) and report
the analysis in Tab. 17. We observe that our method performs consistently well across multiple generative
IQA databases.

A.6 Different Variants of Stable Diffusion

As argued in the implementation details, we choose the input images and video frames resolution to the
VQ-VAE as 512 × 512. Here, we analyze the impact of our choice in resolution on quality estimation. In
Tab. 18, we study the impact on downscaling by comparing the performance at 512 × 512 with 256 × 256.
We train GenzIQA on two different datasets viz. KonIQ-10K (official test-split) and CLIVE and test in
a cross-database setting. While training and inference become 4× faster at 256 × 256, the performance
drastically deteriorates over all the train-test settings. We conclude that the higher resolution model is a
better choice for significant performance gains even though the inference time is slower. Again choosing a
variant with higher resolution than 512 × 512 will require more compute than a 24 GB commercial GPU.

A.7 Details of Datasets

A.7.1 Image Quality Assessment Datasets

To validate the generalizable capability of GenzIQA and other NR-IQA methods, we consider various datasets
for training and evaluation purpose. These datasets are chosen to cover camera-captured, GAN restorted
images, night-time captured and synthetically distorted image databases. In Tab. 19 we have given a
comprehensive description of these databases.

A.7.2 Video Quality Assessment Datasets

To train and evaluate GenzVQA and other NR-VQA methods, we perform various experiments on publicly
available VQA databases. These databases cover diverse categories of videos, such as user-generated content
(UGC), including camera-captured videos, streaming content, high frame rate, ultra-HD, and gaming. Table
20 gives a comprehensive analysis of these databases.
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Table 18: SRCC performance comparison of GenzIQA for different Stable Diffusion variants. Stable Diffusion
v2 with two VQ-VAE variants feeding 256 × 256 and 512 × 512 sized images are considered.

Resolutions Train on CLIVE
KonIQtest NNID CSIQ LIVE-IQA FLIVEtest

256 × 256 0.653 0.725 0.567 0.629 0.362
512 × 512 0.750 0.738 0.664 0.782 0.454

Resolutions Train on KonIQ
CLIVE NNID CSIQ LIVE-IQA FLIVEtest

256 × 256 0.700 0.776 0.533 0.592 0.445
512 × 512 0.793 0.782 0.658 0.788 0.489

Table 19: Summary of publicly available IQA datasets for GenzIQA analysis.

Dataset # Images Resolution Image Category
FLIVE (Ying et al., 2020a) 39810 160p-700p Camera-captured

KonIQ-10K (Hosu et al., 2020) 10073 768p Camera-captured
CLIVE (Ghadiyaram & Bovik, 2015) 1162 500p-640p Camera-captured

SPAQ (Fang et al., 2020) 11125 1080p-4368p Camera-captured
PIPAL (Gu et al., 2020) 23200 288p GAN-restored
NNID (Hu et al., 2021) 1340 512p Night-time captured

CSIQ (Larson & Chandler, 2010) 866 512p Synthetically
distorted

LIVE-IQA (Sheikh et al., 2006) 779 480p-512p Synthetically
distorted

TID (Ponomarenko et al., 2015) 3000 384p Synthetically
distorted

Table 20: Summary of publicly available VQA datasets for GenzVQA analysis.

Dataset # Videos Duration
(secs)

Spatial
Resolution

Frame
Rate

Video
Category

LSVQ (Ying et al., 2021) 38,811 5-12 ≤ 4K 60 UGC
KoNVid-1K (Hosu et al., 2017) 1200 8 540p 24,25,30 UGC
LIVE-VQC (Sinno & Bovik, 2019) 585 10 1080p 30 UGC
Youtube-UGC (Wang et al., 2019) 1200 20 360p-4K 30 UGC

MaxVQA (Wu et al., 2023c) 4543 4-5 240p-
1080p ≤ 60 UGC

Live-
Qualcomm (Ghadiyaram et al., 2018) 208 15 1080p 30 UGC

Waterloo-IVC
-4K (Li et al., 2019b) 1200 9-10 540p,

1080p, 4K 24,25,30 Ultra-HD

LIVE
YT-HFR (Madhusudana et al., 2021) 480 6-10 1080p 24,30,60,

82,90,120
Frame-rate
Variation

LIVE
YT-Gaming (Yu et al., 2022) 600 8-9 360p-

1080p 30,60 Gaming

CGVDS (Zadtootaghaj et al., 2020) 367 30 480p,720p,
1080p 20,30,60 Gaming

CSIQ-VQD (Vu & Chandler, 2014) 180 10 480p ≤ 60 Streaming

MD-VQA (Zhang et al., 2023c) 3762 8 720p,
1080p ≤ 60 Streaming
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