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ABSTRACT

The Schrödinger bridge problem is a classical entropy-regularized optimal trans-
port problem that seeks to find optimal diffusion trajectories that transform one
probability distribution into another. Although mathematical theory has reached
a mature stage, the ongoing research in algorithmic advancements remains a dy-
namic field, driven by recent innovations in diffusion models. In our research
paper, we introduce stochastic Lagrangian and stochastic action as viable alter-
natives for serving as a direct loss function. We demonstrate the feasibility of
incorporating all the vital physical constraints necessary to solve the problem di-
rectly into the Lagrangian, providing an intuitive grasp of the loss function and
streamlining the training process.

1 INTRODUCTION

A great deal of ideas in the field of machine learning is inspired by physics and nature. Such
transfer of ideas often produces powerful methods that are beautifully simple, intuitive, and theo-
retically grounded, possibly attributed to the ”unreasonable effectiveness of mathematics in natural
sciences” (Wigner (1960)). One such example is the Schrödinger bridge problem (SBP). The prob-
lem dates back to the beginning of the 20th century with the work of Erwin Schrödinger on finding
the most likely diffusion evolution of gas particles that transition from one distribution into another
(Schrodinger (1931); Schrödinger (1932)). Utilizing classical thermodynamic mathematical appara-
tus and techniques (probability theory was still under development at that time) Schrödinger derived
the diffusion laws for such an evolution. The formulation of the problem as a stochastic generaliza-
tion of the optimal transport problem (Monge (1781); Kantorovich (1942)) was quickly realized and
the name was adopted as an entropy-regularized optimal transport formulation (see for the survey
Léonard (2013); Chen et al. (2021b)).

Recently in the field of machine learning, diffusion generative models have emerged as the new state-
of-the-art family of deep generative models (Ho et al. (2020); Song et al. (2020); Sohl-Dickstein et al.
(2015)). This incentivized further development and interest in the Schrödinger bridge formalism as
a generative modeling approach. From the conceptual point of view, both frameworks are rooted
in the diffusion evolution. From the technical point of view, the dynamics of both frameworks is
guided by the quantity called score ∇ log p(x) (Hyvärinen & Dayan (2005)). The success of diffu-
sion models is based on the ability of neural networks to learn slight diffusion perturbations in the
form of scores from the data and invert the diffusion process, converting one probability distribution
into another. While diffusion models learn to convert a data distribution into the tractable proba-
bility distribution (usually Gaussian) back and forth, the Schrödinger bridge models are capable of
transforming intractable data distributions between each other.

Over the last few years, quite a few modern methods for solving the Schrödinger bridge problem
appeared (Chen et al. (2021a); De Bortoli et al. (2021); Shi et al. (2023); Vargas et al. (2021);
Tong et al. (2023)) exploiting recent developments in diffusion models (we call them modern SBP
methods), demonstrating data dimensionality scalability improvements and new theoretical results,
such as likelihood objective for training the Schrödinger bridge model (Chen et al. (2021a)).

The modern numerical solutions of the SBP usually involve two neural networks that build forward
and backward trajectories between marginal probability distributions p0(x) and p1(x) utilizing Itera-
tive Proportional Fitting Procedure (Ruschendorf (1995); Ireland & Kullback (1968)) to find optimal
trajectories.
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Figure 1: Schematic diagram illustrating entropy gap between forward and backward trajectories
and existence for forward and backward Lagrangians taking this gap into account.

As discussed in section (2), SBP is an optimization problem with a constraint on the marginal dis-
tribution and evolution that should satisfy the Fokker-Planck equation. To solve this problem, one
needs to transform it to the Hamilton-Jacobi dynamic equation and further into the system of for-
ward and backward diffusion processes that can be simulated to find a solution. As demonstrated
in (Chen et al. (2021a)) an explicit likelihood loss function exists, but it is not easy to obtain and
interpret.

In our paper, we introduce a stochastic Lagrangian and stochastic action. Based on the principle
of stochastic Hamilton’s least action principle we demonstrate that our Lagrangian can be used to
solve the SBP. We demonstrate that all physical constraints can be directly incorporated into the
Lagrangian and that our stochastic action can be directly used as a loss function. While the least
action principle (one of the most fundamental laws in physics) (Goldstein et al. (2002)) is related to
equilibrium, non-stochastic systems that conserve energy, quite a few attempts were made to gener-
alize it to non-equilibrium and stochastic processes (Yasue (1981); Guerra & Morato (1983); Pavon
(1995)). Our work is based on the attempts to formulate quantum mechanics in terms of stochastic
processes (see an excellent review on the subject (Faris (2014)) originally started by Edward Nelson
(Nelson (1966)). While stochastic mechanics fell short in terms of explaining quantum mechan-
ics fully, it was successful at the derivation of the Schrödinger equation and governing stochastic
equations. Our stochastic Lagrangian is a combination of the stochastic Lagrangians proposed by
Yasue (Yasue (1981)) and Guerra and Morato (Guerra & Morato (1983)) in their quests to derive the
Schrödinger equation based on the least action variational principle.

The paper is organized as follows. In section (2) we review the background on the SBP problem. In
the following section (3) we introduce the stochastic ßaction. We demonstrate that stochastic action
principle leads to meaningful equations of motion and moreover

• Stochastic action minimizes relative entropy between trajectories.
• Stochastic action maximizes Fisher information production.
• Those two conditions are enough to solve the SBP problem
• Stochastic action minimization leads to the Schrödinger equation of motion as a guiding

dynamical equation (one can think of it as diffusion equation in the imaginary time).

In section (5) we demonstrate our approach on several experiments. In section (6) we discuss the
benefits of our strategy and relations to different approaches to SBP solutions.

2 THEORETICAL FOUNDATIONS OF THE DIFFUSION SCHRÖDINGER BRIDGE

The diffusion models in the time continuous scenario can be viewed via the prism of stochastic
differential equations (Song et al. (2020)). The main realization is that for every diffusion process
described by the stochastic differential equation (SDE)

dx = b+(x, t) dt+
√
2β(t) dw (1)
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there exists a diffusion process backward in time described also by the stochastic differential equa-
tion

dx = b−(x, t) dt+
√
2β∗(t) dw (2)

Here b+ and b− are the vector-valued function drift coefficient b+(x, t) : Rd → Rd and b−(x, t) :
Rd → Rd and β(t) and β∗(t) are diffusion coefficients that are x-independent by design for simplic-
ity. Here, dw is the standard Rd Brownian motion, dw assumes zero mean ⟨dw⟩ = 0 and identity
matrix standard deviation ⟨dwi dwj⟩ = δij dt.

Edward Nelson (Nelson (1966)) was the first to establish a relationship between forward and back-
ward diffusion processes, demonstrating that β∗ = β and uncovering the beautiful relationship
between forward drift b+ and backward drift b− coefficients (3) that paved the way to the formation
of the field of stochastic mechanics (Nelson’s stochastic mechanics). In machine learning, it now
plays a fundamental role in diffusion generative models. See appendix (A.7) for the derivation and
discussion.

b− = b+ − 2β∇ log p(x) (3)
The Schrödinger bridge problem in its dynamic form looks to find optimal trajectories dP+ that
transport one probability distribution p0(x) into another p1(x) while minimizing the KL− diver-
gence between the probability measure induced by an SDE and standard Brownian process W β

with a diffusion coefficient β
min dPDKL(dP ||W β)

x0 ∼ p0(x), xN ∼ p1(x)
(4)

The theorem 1 allows to recast the problem in the constrained optimization form (8)
Theorem 1. The KL−divergence between two probability measures dP = ρDx and dQ = qDx
with two probability densities ρ and q defined on a measure space Dx = dx1dx2 . . . dxn induced
by two stochastic differential equations

dx = bdt+
√
2β dw, x(0) ∼ π (5)

dx = γ dt+
√
2β dw, x(0) ∼ p0 (6)

can be decomposed into KL− divergence between marginal distributions and mean squared error
between drift coefficient along the trajectories (Pavon & Wakolbinger (1991))

DKL(dP ||dQ) = DKL(π || p0) + EdP(

∫ 1

0

1

4β
||b− γ||2)dt (7)

Proof. This intuitive result is a direct consequence of disintegration theorem and the Girsanov the-
orem. See appendix (E) for the derivation.

The constrained optimization system (8) has an intuitive interpretation. We seek to minimize the
kinetic energy 1

2b
2
+ such that the dynamics follow a stochastic differential equation with given

marginal probability distributions p0(x) and p1(x).

min
p,b

1

2

∫ ∫
b2+ p(x, t) dtdx

subject to dx = b+ dt+
√
2β(t) dw for 0 < t < 1

x0 ∼ p0(x), xN ∼ p1(x)

(8)

To solve the problem (8), the following system of constraints is reduced to the system of heat
equations and decomposition of the probability density into the product of diffusion functions
p(x, t) = ϕ(x) ϕ̂(x) via a two-step procedure. First, transforming the problem into the Hamilton-
Jacobi equation and then via Hopf-Cole transformation into the system of heat equations (See ap-
pendix (I) for the derivation and discussion){

∂tϕ = −β∆ϕ
∂tϕ̂ = β∆ϕ̂

and ϕ(x, 0) ϕ̂(x, 0) = p0(x), ϕ(x, 1) ϕ̂(x, 1) = p1(x) (9)
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The following system of equations is usually solved using two neural networks that model optimal
policies that build trajectories from probability distribution p0(x) to p1(x) and back, and utilize some
sort of iterative proportional fitting procedure (Ruschendorf (1995); Ireland & Kullback (1968)) to
solve the optimization problem (8).

3 STOCHASTIC ACTION MINIMIZATION

Forward and backward drift coefficients b+ and b− can be thought of as mean forward and backward
velocities. The time evolution of the probability function is governed by the Fokker-Planck equations

∂tp = −∇ · (b+p) + β∆p (10)
∂tp = −∇ · (b−p)− β∆p (11)

One can introduce the drift and osmotic velocities (Nelson (1966)) defined as

v =
b+ + b−

2
(12)

u =
b+ − b−

2
= β∇ log p (13)

The drift velocity v allows to rewrite FPEs equation in the form of the continuity equation

∂tp+∇ · (v p) = 0 (14)

The objective (8) tends to minimize the mean kinetic energy 1
2b

2
+ associated with the forward pro-

cess. However, we have 4 different velocities b+, b−, u, v . Interplay of different kinetic energies
can form different objectives that can provide additional constraints to forward path kinetic energy
minimization. In this section we explore alternative objectives.

3.1 STOCHASTIC ACTION

In classical mechanics the evolution of a physical system with conserved energy corresponds to a
stationary point of action (Goldstein et al. (2002))

A =

∫ 1

0

L(x(t), ẋ(t)) dt (15)

where L is the Lagrangian of the system, x an ẋ are the generalized coordinates and velocity. The
Lagrangian is usually defined as kinetic energy minus potential energy 1

2 |ẋ|
2−V (x). Using Euler’s

fundamental theorem of calculus of variations the Euler-Lagrange equations define equations of
motions for the system

d

dt
(
∂L
∂ẋ

)− ∂L
∂x

= 0 (16)

And from these equations one can recover the Newton’s second law ẍ = −∇V (we assumem = 1).

There were quite a few attempts to introduce a variational approach to stochastic mechanics (Pavon
(1995); Yasue (1981); Guerra & Morato (1983)). In stochastic mechanics the stochastic action can
be defined as

A =

∫
p(x)

∫ 1

0

L(ẋ, x, t)dxdt (17)

where the stochastic action (17) differs from the classical action (15) by averaging over spatial
coordinates.

For the stochastic action (17), Yasue (Yasue (1981) ) introduced the Lagrangian defined as

LY =
u2 + v2

4
=
b2+ + b2−

2
(18)

One can immediately see that the following Lagrangian is associated with average kinetic energy
of the forward and backward velocities b+ and b−. Lagrangian introduced by Guerra and Morato
(Guerra & Morato (1983)) (GM) is defined as

LGM =
v2 − u2

4
= b+b− (19)
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Lemma: GM Lagrangian can be rewritten in terms of the b+ and b− velocities in the alternative
form

L+
GM = b2+ + 2β∇ · b+ (20)

L−
GM = b2− − 2β∇ · b− (21)

Proof:.∫
v2 − u2

4
p(x) dx =

∫
[b2+ − 2β b+ ∇ log p] p(x) dx =

∫
[b2+ + 2β∇ · b+] p(x) dx

Analogously,∫
v2 − u2

4
p(x) dx =

∫
[b2− + 2β b− ∇ log p] p(x) dx =

∫
[b2− − 2β∇ · b−] p(x) dx

We can observe that under the averaging operation of stochastic action Lagrangians (19) and (20)
and (21) are identical or E[LGM] = E[L+

GM] = E[L−
GM].

Below, we provide three theorems that form a foundational block for our approach. We start with
dynamical equations of motion, associated with the above Lagrangians. Surprisingly, minimizing
stochastic actions associated with Yasue and Guerra-Morato Lagrangians lead to the Schödinger
equation.
Theorem 2. The stationary points of Yasue and Guerra-Morato actions satisfy the time-dependent
Schödinger equation, where the wave function ψ =

√
p(x)eiS and phase S is related to the drift

velocity v via a gradient v = ∇S (see appendix (F) for the derivation)

i
∂ψ

∂t
= −β∆ψ , ψ(x)ψ∗(x) = p(x) (22)

The Schödinger equation can be regarded as a heat equation in imaginary time. Here, the Schödinger
wavefunction ψ is complex while the heat equation functions 9 associated with the SBP are real.

Another component that is required for our discussion is the following theorem for the relative
entropy between the forward path probability and backward path probability
Theorem 3. Consider the trajectory x = (x1, . . . , xn) and probability density of the trajectory p(x)
defined on the measure space Dx = dx1dx2 · · · dxn. Using the Markov property, the probability
density can be decomposed as forward and backward paths

p+(x) = p(x1) p(x2|x1) . . . p(xn|xn−1) (23)
p−(x) = p(xn) p(xn−1|xn) . . . p(x1|x2) (24)

Then the relative entropy between forward and backward probability densities is

H(p+||p−) = H1 −H0 +
1

β

∫ 1

0

E[u2]dt = H1 −H0 +

∫ 1

0

E[∇ · (b+ + b−)]dt (25)

H(p−||p+) = H1 −H0 −
1

β

∫ 1

0

E[u2]dt = H0 −H1 −
∫ 1

0

E[∇ · (b+ + b−)]dt (26)

where the H0 and H1 denote entropies of the marginal probability distributions p0 and p1. One can
observe that H(p+||p−) = −H(p−||p+) and due to the non-negative principle of relative entropy
this is only possible when

H(p+ || p−) = 0 (27)
p+(x) = p−(x) (28)∫ 1

0

E[v2] dt =
∫ 1

0

E[∇ · v] dt = H1 −H0 = const. (29)

Proof. See appendix (G) for the derivation. The result of this theorem is that the probability density
for the forward trajectories and backward trajectories are the same (Nelson (2020)).
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Theorem 4. Stochastic action minimization of GM Lagrangian (19) is associated Fisher informa-
tion production (Yang (2021)).

Proof. The new term that appears in GM Lagrangian is ∇·b+ which is positional Fisher information.
Indeed, Fisher information is a way of measuring the amount of information that an observable
random variable x carries and is defined as

IFisher(x) =

∫
p(x)[∇ log p(x)]2dx =

1

β2
E[u2] = − 1

β
E[∇·u] = − 1

β
E[∇·b+]+

1

β
E[∇·v] (30)

Using the fact (29) that
∫ 1

0
E[∇·v] dt = H1−H0 = const, we get the Fisher information production

along the trajectory is

I+ =

∫ 1

0

IFisher(x)dt =
1

β
(H1 −H0)−

1

β

∫ 1

0

E[∇ · b+] dt (31)

I− =

∫ 1

0

IFisher(x)dt =
1

β
(H0 −H1) +

1

β

∫ 1

0

E[∇ · b−] dt (32)

The term ∇ · b+ enters GM Lagrangian (20) and the Fisher information formula (31) with different
signs. Analogously, the term ∇ · b− enters GM Lagrangian (19) and the Fisher information formula
(32) also with different signs. We make a conclusion that minimization of stochastic action with
GM Lagrangians maximizes Fisher information production along respective trajectories. One can
observe that the difference between Fisher Information production directly corresponds to the cross
entropy between forward and backward paths.

I− − I+ =
1

β

∫ 1

0

E[∇ · (b+ + b−)] dt = H(p+||p−) + const (33)

4 EFFECTIVE LAGRANGIAN

Guerra-Morato (20) and (21) Lagrangians take Fisher information production into account. As we
have seen in the previous section the following constraints lead to the Shrödinger equation that
transform one marginal probability distribution p0(x) into another p1(x). Our goal is to construct
policies that predict drift velocities b+(x, t) and b−(x, t) as a function of time and position. As we
initialize neural networks b+ and b−, these policies are not correlated and hence the relationship
between drift velocities (3) is not satisfied and forward and backward probabilities are not equiv-
alent p+(x) ̸= p−(x). To construct a minimization objective, we construct a Lagrangian that is a
combination of Yasue Lagrangian (18), GM Lagrangian (19) and Lagrangian associated with cross
entropy (3).

Leffective = LYasue + LGM + βH(p+||p−) =
b2+ + b2−

2
+ b+b− +

β

2
∇ · (b+ + b−). (34)

As we train the policies, the entropy gap shrinks bringing p+ and p− closer to each other until
they merge satisfying the condition for the cross-entropy H(p+||p−) = 0. During the training, we
utilize the symmetry of the problem. We sample trajectories from one of the networks for b+ or
b− iteratively. We freeze the sampling network. We optimize the effective Lagrangian to fit the
trajectories for the active network. We disregard terms that are frozen during the training to obtain
the following iterative procedure for the effective Lagrangian.

Forward Loss = EdP− [
1

2
b2+ + b+b− +

β

2
∇ · b+] samples from backward trajectory. (35)

Backward Loss = EdP+
[
1

2
b2− + b+b− +

β

2
∇ · b−] samples from forward trajectory. (36)

The following iterative minimization of the forward and backward loss functions correspond to the
iterative proportionate fitting procedure (Ireland & Kullback (1968))
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Figure 2: Illustration of the forward process (top row) for the forward trajectory from spiral to circle
and backward process (bottom row) for transforming circle back into spiral.

5 EXPERIMENTS

5.1 TOY MODEL

We demonstrate the utility of our approach on the toy model dataset in 2D (figure 2). We utilize
two time-parametrized MLP neural networks that learn to transform the noisy circle dataset into
the spiral dataset. Discretization of 100 time datapoints to build a stochastic differential equation
with constant noise β(t) = 0.5. Forward and backward loss functions (35) and (36) were iteratively
minimized until convergence.

6 DISCUSSION AND CONCLUSIONS

In our work, we introduced stochastic Lagrangian suitable and stochastic action. We use stochastic
variational minimization principle to train SB networks. Our approach offers great simplicity since
it does not require transformation into the Euler-Lagrange equations. The stochastic Lagrangian
incorporates all the necessary physical constraints such as Fisher information and cross-entropy and
in our work we demonstrate that this is sufficient to obtain a numerical solution to the SBP. Our
approach is based on the congruence of generative diffusion models and SBP formalism as in the
works of (Chen et al. (2021a); De Bortoli et al. (2021); Shi et al. (2023)). Our approach is the
most similar to the work of (Chen et al. (2021a)) on likelihood training of the SBP. We utilize the
same scheme of forward and backward stochastic differential equations and iterative proportionate
fitting algorithm to train two neural networks that predict forward and backward drift coefficients.
However, the governing dynamical equations are different. In our case, the dynamics follow the
Schödinger equation with imaginary part and traditional - diffusion heat equations. Moreover, one
can derive the loss function of (Chen et al. (2021a)) by interpreting the stochastic Lagrangians (see
appendix (A.4) for the derivation). In conclusion, the stochastic action minimization approach offers
a new flexible and interpretable approach to solve SBP via the lense of stochastic mechanics.
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amsmath

A APPENDIX

The time evolution of probability density is modeled by the Kolmogorov Forward Equation (KFE),
also known as Fokker-Planck equation (FPE) Risken (1996). Two acronyms we use interchangeably.

A.1 KOLMOGOROV BACKWARD EQUATION

To derive the time evolution operator with respect to initial variables x0 and t0 we use the Chapman-
Kolmogorov identity Kallianpur & Sundar (2014)

p(x, t |x0, t0 − dt0) =

∫
p(x, t | z, t0) p(z, t0 |x0, t0 − dt0) dz (37)

Denoting dx0 = z − x0, we decompose p(x, t | z, t0) around x0 using Taylor expansion

p(x, t | z, t0) = p(x, t |x0, t0)+
∂

∂xi0
p (x, t |x0, t0)dxi0+

1

2

∂2

∂xi0 ∂x
j
0

p(x, t|x0, t0) dxi0 dx
j
0+O(dx30) .

Plugging the decomposition into the equation 37 and using equation 42 with an assumption dt2 = 0,
dtdwi = 0 and dwi dwj = δijdt we obtain

p(x, t |x0, t0 − dt0) =

∫
p(x, t |x0, t0) p(z, t0 |x0, t0 − dt0) dz+

bi(x0, t0)
∂

∂xi0
p(x, t |x0, t0) dt0

∫
p(z, t0 |x0, t0 − dt0) dz+

+ βij(x0, t0)
∂2

∂xi0 ∂x
j
0

p(x, t|x0, t0)
∫

p(z, t0 |x0, t0 − dt0) dz + O(dt20)

Since
∫
p(z, t0 |x0, t0 − dt0) dz = 1, the equation takes form

p(x, t |x0, t0 − dt0)− p(x, t |x0, t0) = bi(x0, t0)
∂

∂xi0
p(x, t |x0, t0) dt0 +

+ βij(x0, t0)
∂2

∂xi0 ∂x
j
0

p(x, t|x0, t0)dt0 + O(dt20)

Dividing by dt0 and taking the limit dt0 → 0 we arrive at the Kolmogorov Backward Equation

− ∂

∂t0
[p(x, t |x0, t0)] = bi(x0, t0)

∂

∂xi0
p(x, t |x0, t0) + βij(x0, t0)

∂2

∂xi0 ∂x
j
0

p(x, t|x0, t0) . (38)

10
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A.2 PROBABILITY FLOW ODE FOR THE KOLMOGOROV BACKWARD EQUATION

Kolmogorov Backward equation can be compactly rewritten in the following form

− ∂

∂t0
[p(x, t |x0, t0)] = bi(x0, t0)

∂

∂xi0
p(x, t |x0, t0)+

∂

∂xj0
[βij(x0, t0)

∂

∂xi0
p(x, t |x0, t0)]−

∂p(x, t |x0, t0)
∂xi0

∂βij(x0, t0)

∂xj0
=

[bi(x0, t0)−
∂βij(x0, t0)

∂xj0
]
∂

∂xi0
p(x, t |x0, t0)+

∂

∂xi0
[βij(x0, t0)

∂

∂xj0
log p(x, t |x0, t0)p(x, t |x0, t0)] =

If we introduce backward drift coefficients

biB1
(x0, t0) = bi(x0, t0) − ∂βij(x0, t0)

∂xj0
(39)

and

biB2
(x0, t0) = βij(x0, t0)

∂

∂xj0
log p(x, t |x0, t0) (40)

the KBE can be written as

− ∂

∂t0
[p(x, t |x0, t0)] = biB1

(x0, t0)
∂

∂xi0
p(x, t |x0, t0) +

∂

∂xi0
[biB2

(x0, t0)p(x, t |x0, t0)] (41)

A.3 ITÔ FORMULA

Let’s consider an arbitrary (scalar) function ϕ(x) of the Itô process. The Itô differential of ϕ(x, t)
can be written as Särkkä & Solin (2019):

dϕ = dt ∂tϕ+dxi ∂iϕ+
1

2
∂i∂jϕ(x, t)dx

idxj+O(dx3) = dt ∂tϕ+b
i(x, t)∂iϕ dt+σ

i
k(x, t) dw

k∂iϕ+

+ βij(x, t)∂i∂jϕ(x, t) dt+O(dt2) (42)

Taking the expectation with respect to x and dividing both sides by dt we obtain

dE[ϕ]
dt

= E[∂tϕ] + E[bi(x, t)∂iϕ] + E[βij(x, t)∂i∂jϕ(x, t)] (43)

A.4 APPLICATION OF ITÔ FORMULA

We can apply Itô formula 42 to derive the SDE for Schrödinger terms ϕ and ϕ̂. For the sampling
from the forward trajectory defined by SDE 136

d log ϕ = (∂t log ϕ+ 2β∇i log ϕ∇i log ϕ+ β∆ log ϕ)dt+
√

2β∇ log ϕ dw =

(
1

ϕ
∂tϕ+ 2β|∇ log ϕ|2 + β∇ · ∇ϕ

ϕ
)dt+

√
2β∇ log ϕ dw =

(
1

ϕ
∂tϕ+ 2β|∇ log ϕ|2 + β

∆ϕ

ϕ
− β

|∇ϕ|2

ϕ2
)dt+

√
2β∇ log ϕdw =

(
1

ϕ
[∂tϕ+ β∆ϕ] + 2β|∇ log ϕ|2 − β|∇ log ϕ|2)dt+

√
2β∇ log ϕdw =

β|∇ log ϕ|2dt+
√
2β∇ log ϕdw

11
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Analogously, the evolution for the log ϕ̂ when an SDE is defined by the forward process 136

d log ϕ̂ = (∂t log ϕ̂+ 2β∇i log ϕ∇i log ϕ̂+ β∆ log ϕ̂)dt+
√
2β∇ log ϕ̂ dw =

(
1

ϕ̂
∂tϕ̂+ 2β∇ log ϕ · ∇ log ϕ̂+ β∇ · ∇ϕ̂

ϕ̂
)dt+

√
2β∇ log ϕ̂dw =

(
1

ϕ̂
∂tϕ̂+ 2β∇ log ϕ · ∇ log ϕ̂+ β

∆ϕ̂

ϕ̂
− β

|∇ϕ̂|2

ϕ̂2
)dt+

√
2β∇ log ϕ̂ dw =

(
1

ϕ̂
[β∆ϕ̂+ β∆ϕ̂] + 2β∇ log ϕ · ∇ log ϕ̂− β|∇ log ϕ̂|2)dt+

√
2β∇ log ϕ̂dw =

(2β∇ · ∇ log ϕ̂+ 2β
∇ϕ̂ · ∇ϕ̂
ϕ̂2

+ 2β∇ log ϕ · ∇ log ϕ̂− β|∇ log ϕ̂|2)dt+
√

2β∇ log ϕ̂ dw =

(2β∇ · ∇ log ϕ̂+ β|∇ log ϕ̂|2 + 2β∇ log ϕ · ∇ log ϕ̂)dt+
√
2β∇ log ϕ̂dw

A.5 KOLMOGOROV FORWARD EQUATION

With the help of Itô Formula, we can elegantly derive Kolmogorov forward equation. The expecta-
tion of the ϕ function can be written in terms of the L2 inner product. L2 inner product between two
functions ϕ and p is defined as follows:

E[ϕ(x)] = ⟨ϕ, p⟩ =
∫
ϕ(x) p(x) dx (44)

Time evolution of the ϕ function can be compactly written in the operator form

d

dt
⟨ϕ, p⟩ = ⟨Aϕ, p⟩ (45)

with an operator A defined as
A = bi(x, t)∂i + βij∂i∂j (46)

The conjugate operator A† for the time evolution for probability density p

d

dt
< ϕ, p >=< Aϕ, p >=< ϕ,A†p > (47)

can be obtained by using integration by parts (bi(x, t)∂i)† = −∂i[bi(x, t) (·)] and (βij(x, t)∂i∂j)
† =

∂i∂j{βij(x, t)(·)}.

The conjugate operator A† can be written

A† = −∂i[bi(x, t) (·)] + ∂i∂j{βij(x, t)(·)} (48)

Since the equation 47 holds for all functions ϕ, the conjugate equation for probability density should
also be true

∂

∂t
p(x, t) = A⋆p(x, t) (49)

We can write down the Kolmogorov Forward Equation in the most general form

∂

∂t
[p(x, t)] = −∂i[bi(x, t) p(x, t)] + ∂i∂j{βij(x, t) p(x, t)} . (50)

A.6 PROBABILITY FLOW ODE FOR THE KOLMOGOROV FORWARD EQUATION

Rewriting the KFE equation 50 as

∂

∂t
[p(x, t)] = −∂i[bi(x, t)p(x, t)] + ∂i[p(x, t) ∂jβ

ij(x, t)] + ∂i[β
ij(x, t)∂jp(x, t)]

which can be compactly written as

12
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∂

∂t
[p(x, t)] = −∂i[biF (x, t) p(x, t)] (51)

with the new forward drift coefficient defined as

biF (x, t) = bi(x, t)− ∂jβ
ij(x, t)− βij(x, t)∂j log p(x, t), (52)

which corresponds to a standard ODE

dx = bF (x, t)dt

A.7 REVERSE TIME STOCHASTIC DIFFERENTIAL EQUATION

In this section, for brevity, the probability at x0 is always referred to at time t0 such that p(x0) always
assumes p(x0, t0) and p(x, t) is just abbreviated as p(x). Forward and Backward Kolmogorov
equation describe time evolution of probability distribution corresponding to a SDE forward in time
as a function of time boundary conditions.

In what follows is a derivation of stochastic differential equation that corresponds to time evolution
probability density backward in time or ∂t0p(x0|xt) derived by Brian Anderson (1982). We are
interested in deriving a Fokker-Planck equation for probability density function evolving backward
in time ∂t0p(x|x0).

∂t0p(x0, xt) = p(x0)∂t0 p(x|x0) + p(x|x0) ∂t0p(x0) = p(x0)KBE + p(x|x0)KFE =

First, we perform several algebraic manipulations

p(x0)
∂

∂xi0
p(x|x0) = p(x0)

∂

∂xi0

p(x, x0)

p(x0)
=
p(x0)

∂
∂xi

0
p(x, x0)− p(x, x0)

∂
∂xi

0
p(x0)

p(x0)
=

∂

∂xi0
p(x, x0)− p(x, x0)

∂

∂xi0
log p(x0)

Substituting

= −(biB1
(x0) + biB2

(x0))[
∂

∂xi0
p(x, x0)− p(x, x0)

∂

∂xi0
log p(x0)]−

− p(x, x0)
∂

∂xi0
[biB2

(x0) + biF (x0)]− p(x, x0) b
i
F (x0)

∂

∂xi0
log p(x0) =

− [biB1
(x0) + biB2

(x0)]
∂

∂xi0
p(x, x0) − p(x, x0)

∂

∂xi0
[biB2

(x0) + biF (x0)] +

p(x, x0)[b
i
B1

(x0) + biB2
(x0)− biF (x0)]

∂

∂xi0
log p(x0)

Now, looking at the last term

p(x, x0)[b
i
B1

(x0)+b
i
B2

(x0)−biF (x0)]
∂

∂xi0
log p(x0) = p(x, x0)β

ij(x0)
∂

∂xj0
log p(x, x0)

∂

∂xi0
log p(x0) =

βij(x0)
∂

∂xj0
p(x, x0)

∂

∂xi0
log p(x0) = βij(x0)

∂

∂xi0
p(x, x0)

∂

∂xj0
log p(x0)

Here, we used βij = βji. We get

∂t0p(x0, xt) = −[biB1
(x0) + biB2

(x0)− βij(x0)
∂

∂xj0
log p(x0)]

∂

∂xi0
p(x, x0)−

p(x, x0)
∂

∂xi0
[biB2

(x0) + biF (x0)]

13
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or

∂t0p(x0, xt) = − ∂

∂xi0
[(biB2

(x0) + biF (x0)) p(x0, xt)] (53)

We were able to shape the time evolution of joint probability distribution p(x0, xt) into the proba-
bility flow representation of the Kolmogorov forward equation with the drift coefficient

biB2
(x0) + biF (x0) = biF (x0) + βij

∂

∂xj0
log p(x, x0)− βij

∂

∂xj0
log p(x0) . (54)

The above equation can be converted into the standard Kolmogorov forward equation 50

∂

∂t0
[p(x, x0)] = − ∂

∂xi0
[f i(x0, t) p(x, x0)] +

∂

∂xi0

∂

∂xj0
{βij(x0, t0) p(x, x0)}] . (55)

with the drift coefficient

f i(x0) = bi(x0)−
∂

∂xj0
βij(x0)− 2βij

∂

∂xj0
log p(x0, t). (56)

if the forward diffusion process is x-independent βij(x, t) = βij(t) the reverse drift coefficient
assumes a well-known form

f(x0) = b(x0)− 2β(t)∇ log p(x0, t). (57)

B FOKKER-PLANCK DIFFUSION EQUATION

Below, we only consider the special case of a diagonal and position-independent diffusion tensor by
setting σ(x, t) =

√
2βt Id×d, where Id×d stands for the d− dimensional identity matrix. As a result,

the FPE equation assumes the following form

∂t pt(x) = −∇ · [bt(x) pt(x)] + βt∆ pt(x) . (58)

Note the appearance of the Laplacian in the FPE equation. Assume that bt(x) is a gradient of some
convex function Φt(x), playing the role of some convex function bt(x) = ∇Φt(x) is a potential
energy. Then the corresponding SDE:

dxt = ∇Φt dt+
√

2βt dw (59)

and the FPE
∂tpt = ∇ · (pt∇Φt) + βt∆ pt (60)

By direct substitution, one can verify that ps(t) is a stationary solution of the FPE equation

ps(t) = Z−1 exp(− 2β−1 Φ(x)) , Z =

∫
exp (− 2β−1 Φ(x)) dx . (61)

The Fokker-Planck equation can also be viewed as the gradient flow for the Dirichlet

C SPACE OF PROBABILITY MEASURES

We are considering locally compact, separable, and complete metric spaces and specifically X =
Rd. For simplicity, all measures are Borel measures and the space of probability measures is denoted
P(X). Let’s consider the functional F [ρ] := P(Rd)

F [ρ] =

∫
Rd

(ρ log(ρ) + ρ V ) dx (62)

If we make a substitution η := eV ρ, one can rewrite the functional as the relative entropy with
respect to the measure e−V dx.

F [ρ] =

∫
Rd

η log(η) e−V dx (63)

14
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For a convex function η log η we can apply Jensen’s inequality to show that the functional F is
positive

F [ρ] =

∫
Rd

η log(η) e−V dx ≥ (

∫
Rd

η e−V dx) log(

∫
Rd

η e−V dx) =

= (

∫
Rd

ρdx) log(

∫
Rd

ρdx) = 0 (64)

The functional F reaches its minimum 0 when η = 1 or when ρ = e−V .

D NELSON THEORY

In his work, Edward Nelson Nelson (1966) derives the Schrödinger equation via Brownian motion.
considering a stochastic Brownian motion

dxt = b+(x, t)dt+
√
2βt dwt (65)

Nelson considers the stochastic process evolving backward in time.

dxt = b−(x, t)dt+
√

2β⋆t dwt (66)

In his theory, in 1965 Nelson shows that β⋆t = βt and for the first time established the relationship
between forward b+ and backward b− drift coefficients. In the pursuit of establishing the relation-
ship between drift coefficients b+ and b− he introduces two mathematical constructs: forward and
backward derivatives defined as an evolution in time forward and backward

D+F (t) = lim
dt→0+

Et
F (t+ dt)− F (t)

dt
(67)

D−F (t) = lim
dt→0+

Et
F (t)− F (t− dt)

dt
, (68)

where Et stands for the conditional expectation with respect to the present time t.

EtF (t′) =
∫
F (x′(t′)) p(x′, t′|x, t)dx′ (69)

where the p(x′, t′|x, t) is the conditional probability density. One can see that by the definition the
forward and backward velocities are

D+x(t) = b+(x, t) (70)
D−x(t) = b−(x, t) . (71)

According to Itô’s lemma ?? for any function f

df(x, t) =
∂f

∂t
dt+ dxi∇if +

1

2
dxidxj

∂2f

∂xi∂xj
+ o(dt) (72)

And one can obtain the forward and backward processes in terms of forward and backward derivative
operators

D+f(x, t) = (
∂

∂t
+ bi+∇i + β∆)f(x, t) (73)

D−f(x, t) = (
∂

∂t
+ bi−∇i − β∗∆)f(x, t) (74)

(75)

Considering the space-time configuration M × I such that
∫
M×I fdp =

∫
I
Epf(x(t), t)dt and

Ep[f ] =
∫
f(x)dp

Let f(x) and g(x) be two smooth functions with compact support in C∞
0 and we define F (t) =

g(x(t)) and G(t) = g(x(t)) be two functions of time.
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To establish the relationship between b+ and b− we need two identities

Ep[F (b)G(b)− F (a)G(a)] =

∫ b

a

Ep[D+F (t)G(t)]dt+

∫ b

a

Ep[F (t)D−G(t)]dt (76)

To prove this identity, we divide the interval [a, b] into N equal intervals tj = a + j b−aN for j =
0 . . . N . Then

Ep[F (b)G(b)− F (a)G(a)] = lim
N→∞

N−1∑
j=1

Ep[F (tj+1)G(tj)− F (tj)G(tj−1)] =

lim
N→∞

N−1∑
j=1

Ep[(F (tj+1)− F (tj))
G(tj) +G(tj−1)

2
+
F (tj+1) + F (tj)

2
(G(tj)−G(tj−1))] =

lim
N→∞

N−1∑
j=1

Ep[(D+F (tj))G(tj) + F (tj)D−G(tj)]
b− 1

N
=

∫ b

a

Ep[(D+F (t))G(t) + F (t)D−G(t)]dt .

On the other hand,

Ep[F (b)G(b)− F (a)G(a)] =

∫ b

a

Epd(F (t)G(t))dt = (77)

=

∫ b

a

EpdF (t)G(t)dt+
∫ b

a

EpF (t)dG(t)dt+
∫ b

a

EpdF (t)dG(t)dt =

=

∫ b

a

EpD+F (t)G(t)dt+

∫ b

a

EpF (t)D+G(t)dt+

∫ b

a

Ep2βij∇if(x)∇jg(x)dt

Eliminating Ep[F (b)G(b)− F (a)G(a)] we get

Epf(x, t)D−g(x, t) = Epf(x, t)D+g(x, t) + Ep2βij∇if(x)∇jg(x) = (78)

Epf(x, t)D+g(x, t)−
∫
f(x)2βij∇i∇jg(x)p(x)dx−

∫
f(x)2βij∇jg(x)

∇ip(x)

p(x)
p(x)dx (79)

Substituting the definitions for D+ and D− we obtain

D− = D+ − 2βij∇i∇j − 2βij∇i log p(x)∇j . (80)

We immediately recover β⋆ = β and b− = b+ − 2βij∇i log p(x) in the special case, when βij =
βδ(i, j) we obtain b− = b+ − 2β∇ log p(x).

For the forward and backward in-time diffusion equations the corresponding Fokker-Planck equa-
tions are

∂tp(x, t) = −∇i(b
i
+p(x, t)) + β∆p(x, t) (81)

∂tp(x, t) = −∇i(b
i
−p(x, t))− β∆p(x, t) (82)

Nelson introduces the drift and osmotic velocities defined as

vi =
bi+ + bi−

2
(83)

ui =
bi+ − bi−

2
= β∇i log p (84)

The drift velocity v allows to rewrite FPEs equation in the form of the continuity equation

∂tp+∇i(v
ip) = 0 (85)
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One can rewrite the FPEs given in terms of probability density p and drift coefficients b+ and b−
in terms of two dynamical equations of motion for defined velocities u and v. For this reason, one
needs to introduce the stochastic acceleration

ai =
1

2
(D+b

i
− +D−b

i
+) (86)

Using equations of motion for the drift coefficients

D+b
i
− =

∂bi−
∂t

+ (bj+∇j)b
i
− + β∆bi−

D−b
i
+ =

∂bi+
∂t

+ (bj−∇j)b
i
+ + β∆bi+ (87)

For the external potential ϕ, Newton’s second law reads F = ma = −∇ϕ, which allows us to
rewrite the diffusion laws of motion in terms of Nelson’s equations

∂vi

∂t
= − 1

m
∇iϕ− (vj∇j)v

i + (uj∇j)u
i + β∆ui

∂ui

∂t
= −β∆vi −∇i(vjuj) (88)

The first equation is obtained by summing the equations for the drift coefficients. To obtain the
second equation of motion we use the continuity equation by dividing it by 1/p and taking gradients
on both sides. These two equations give the complete description of the dynamics of a Brownian
particle in the context of stochastic mechanics.

D.1 TIME-INDEPENDENT SCHÖDINGER EQUATION

Nelson equations 88 are nonlinear in nature. However, one can reduce them to linear via a substi-
tution reminiscent of the Hopf-Cole transformation Eberhard (1950); Cole (1951). By definition,
the osmotic velocity u = β∇ log p is a gradient of a function R = 1

2 log p. We make a similar
assumption on the drift velocity v = 2β∇S being a gradient of some function S.

u = 2β∇R
v = 2β∇S (89)

Introducing the following complex function ψ

ψ = eR+iS (90)

one can see that |ψ|2 = e2R = p , which is equivalent to Born’s rule. In this case, it is derived rather
than postulated. We want to demonstrate that the function ψ satisfies the Schrödinger equation

iℏ
∂ψ

∂t
= (− ℏ2

2m
∆+ ϕ)ψ (91)

Indeed, substituting the definition of ψ, we need to prove the following equation

(
∂R

∂t
+ i

∂S

∂t
)ψ = i

ℏ
2m

(∆R+ i∆S + |∇R+ i∇S|2)ψ − i
1

ℏ
ϕψ (92)

Dividing by ψ and separating real and imaginary parts we obtain two equations:

∂R

∂t
= − ℏ

2m
∆S − 2ℏ

2m
∇R · ∇S (93)

∂S

∂t
=

ℏ
2m

∆R+
ℏ
2m

(|∇R|2 + |∇S|2)− 1

ℏ
ϕ (94)

Taking the gradients of both equations, we can make a substitution for ∇R and ∇S from 89. In
addition, we connect the diffusion coefficient β to Planck’s constant β = ℏ

2m , and we rewrite the
Schrödinger equation in terms of Nelson’s velocities u and v, given by equation 88 which we already
proved.

17



Under review as a conference paper at ICLR 2024

E KL−DIVERGENCE BETWEEN TWO PROBABILITY MEASURES AND
GIRSANOV THEOREM

To find the KL−divergence DKL(dP ||dQ) between the probability measures dP and dQ one can
decompose the probability densities using Markov properties

p(x1, . . . xn) = p(x1) p(x2|x1) . . . p(xn|xn−1) (95)
q(x1, . . . xn) = q(x1) q(x2|x1) . . . q(xn|xn−1) (96)

(97)

Using sde evolution for one step xi+1 = xi+ b∆t+
√
2β dw and xi+1 = xi+γ∆t+

√
2β dw with

dw ∼ N (0,∆t)for two SDEs correspondingly, obtain probability for a single step transition in the
form of Gaussian distribution

p(xi+1|xi) =
√

1

4πβ∆t
exp

(−(xi+1 − xi − b∆t)2

4β∆t
) (98)

q(xi+1|xi) =
√

1

4πβ∆t
exp

(−(xi+1 − xi − b∆t)2

4β∆t
) (99)

As a result,

DKL(dP ||dQ) =

∫
dP ln

dP

dQ
=

∫
p(x) ln

p(x)

q(x)
Dx =

= DKL(p(x0)||q(x0)) +
∑
i

∫
p(x) ln

p(xi|xi−1)

q(xi|xi−1)
Dx =

= DKL(p(x0)||q(x0)) +
∫
p(x)

2dx(γ − b)∆t+ (b2 − γ2)∆t2

4β∆t
Dx =

= DKL(p(x0)||q(x0)) +
1

4β

∫
p(x)(2(γ − b)dx+ (b2 − γ2)∆t)Dx =

= DKL(p(x0)||q(x0)) +
1

4β

∫
p(x)||b− γ||2∆tDx =

= DKL(p(x0)||q(x0)) +
1

4β
EdP

∫ 1

0

||b− γ||2∆t (100)

Which completes our proof.

F DERIVATION OF SCHRÖDINGER EQUATION IS CALCULUS OF VARIATIONS

The differential of the stochastic action 17

δA =
1

4

∫ 1

0

∫ (
2vp δv − 2upδu+ v2δp− u2δp

)
dxdt (101)

Using the equation for continuity 14 and 13 we have the following additional equations for differ-
entials

β∇δp = pδu+ uδp (102)
∂tδp = ∇ · (pδv + vδp) (103)

Inserting these equations into differential for stochastic action

δA =
1

4

∫ (
2vp δv − 2upδu+ v2δp− u2δp

)
dx dt (104)

derivation and discussion D.
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G RELATIVE ENTROPY OF THE FORWARD AND BACKWARD PATH

The probability density of the trajectory (x1, x2, . . . xn) can be decomposed into the probability of
the forward and backward trajectory using Markov property assumption

p(x1, . . . xn) = p(x1) p(x2|x1) . . . p(xn|xn−1) (105)
p(x1, . . . xn) = p(xn) p(xn−1|xn) . . . p(x1|x2) (106)

As a result, the relative entropy between forward and backward paths can be written

H(p+||p−) =
∫
p+ ln

p+
p−

Dx =

∫
p+ ln

p(x1)

p1(xn)
Dx+

i=n∑
i=1

∫
p+ ln

p(xi+1|xi)
p(xi|xi+1)

Dx =

∫
p+ ln p(x1)Dx−

∫
p+ ln p(xn)Dx+

i=n∑
i=1

∫
p+ ln

p(xi+1|xi)
p(xi|xi+1)

Dx (107)

Making an observation that
∫
p(xi+1|xi)dxi+1Dx = 1 the first term becomes the negative entropy

of the marginal distribution at the initial time step.∫
p+ ln p(x1)Dx =

∫
p(x1) ln p(x1)dx1 = −H(x1) (108)

The second term is the entropy at the final time step. Indeed,∫
p+ ln p(xn)Dx =

∫
p(xn−1)p(xn|xn−1) ln p(xn)dxn−1dxn = −H(xn) (109)

As for the last term, using the Bayes theoremp(xi+1|xi)
p(xi|xi+1)

= p(xi+1)
p(xi)

i=n∑
i=1

∫
p+ ln

p(xi+1|xi)
p(xi|xi+1)

Dx =

i=n∑
i=1

∫
p+ ln p(xi+1)Dx−

i=n∑
i=1

∫
p+ ln p(xi)Dx =

i=n∑
i=1

∫
p(xi)dxi[

∫
p(xi+1|xi) ln p(xi+1)dxi+1 − ln p(xi)]

=

i=n∑
i=1

E[
∫
p(xi+1|xi) ln p(xi+1)dxi+1 − ln p(xi)] =

i=n∑
i=1

E[
∫
p(xi+1|xi) ln p(xi+1)dxi+1 − ln p(xi)] =∫ n−1

i=1

E[
Et[ln p(ξi+1)]− ln p(ξi)

∆t
]∆t =

∫ 1

0

E[D+ ln p(ξ(t))]dt (110)

If we recall the expansion for the forward derivative D+ from the formula 75 the relative entropy
can be rewritten as

H(p+||p−) = H(xn)−H(x1) +

∫ 1

0

E[
∂

∂t
+ bi+∇i + β∆ ln p]dt (111)

Since
∫ 1

0
E ∂
∂t ln pdt =

∫
dx1p(x1) −

∫
dxnp(xn) = 0 and recalling the definition of the osmotic

velocity 84 we can write∫ 1

0

E[D+ ln p(ξ(t))]dt =

∫ 1

0

E[∇i(u
i − bi+)]dt =

∫ 1

0

E[∇iv
i]dt (112)

All together,

H(p+||p−) = H(xn)−H(x1)−
∫ 1

0

E[∇iv
i]dt (113)

Analogously, one can prove that

H(p−||p+) = H(x1)−H(xn) +

∫ 1

0

E[∇iv
i]dt (114)

we observe that H(p+||p−) = −H(p−||p+). But since the relative entropy is always nonnegative,
this is only possible when H(p+||p−) = 0.
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H HAMILTON-JACOBI EQUATIONS AND LINEARIZATION VIA HOPF-COLE
TRANSFORMATION

The minimization problem

inf
p,b

∫ 1

0

∫
1

2
bibi p(x, t)dxdt (115)

dp

dt
+∇ · (pb) = β∆p (116)

p(x, 0) = p0(x), p(x, 1) = p1(x) (117)

The corresponding Lagrangian is written as∫ 1

0

∫
{1
2
bibi p(x, t) + ψ(x, t)× (

dp

dt
+∇ · (pb)− β∆p)} dxdt (118)

where ψ(x, t) plays the role of Lagrange multiplier. Getting rid of derivatives of probability function
p via the integration by part, we can rewrite the above equation as∫ 1

0

∫
{1
2
bibi p(x, t) + (−dψ(x, t)

dt
− b · ∇ψ) + β∆ψ)} p(x, t) dxdt (119)

Taking the derivative with respect to b we obtain the expression for the optimal drift.

boptimal = ∇ψ (120)

Substituting this expression back into the equation and make the assumption that the above equation
should hold true for all functions p(x, t) we obtain the following Hamiton-Jacobi equation

dψ(x, t)

dt
+

1

2
||∇ψ||2 = −β∆ψ (121)

which is a Hamiltion-Jacobi equation. This equation can be linearized via Hopf-Cole transformation
Eberhard (1950) by making a substitution ψ = 2β log ϕ. By direct substitution we get

dϕ

dt
= −β∆ϕ (122)

If we look for a decomposition in the form of p = ϕϕ̂ and substituting the decomposition into the
Fokker-Planck equation we get

ϕ̂(
dϕ

dt
+ β∆ϕ) + ϕ(

dϕ̂

dt
− β∆ϕ) = 0 (123)

which can only be satisfied if and only if

dϕ̂

dt
= β∆ϕ̂ (124)

with the transformation ϕ̂ = pϕ−1 = p exp −ψ
2β .

I CLASSICAL SCHRÖDINGER BRIDGE FORMALISM

Theorem 5. The KL−divergence between two probability measures dP = ρDx and dQ = qDx
with two probability densities ρ and q defined on a measure space Dx = dx1dx2 . . . dxn induced
by two stochastic differential equations

dx = bdt+
√
2β dw, x(0) ∼ π (125)

dx = γ dt+
√
2β dw, x(0) ∼ p0 (126)

can be decomposed into KL− divergence between marginal distributions and mean squared error
between drift coefficient along the trajectories Pavon & Wakolbinger (1991)

DKL(dP ||dQ) = DKL(π || p0) + EdP (

∫ 1

0

1

4β
||b− γ||2)dt (127)
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Proof. This intuitive result is a direct consequence of disintegration theorem and Girsanov theorem.
See appendix E for the derivation.

The above theorem allows to formulate Schrödinger Bridge problem as finding minimizing the KL−
divergence between probability measure induced by an SDE and Brownian motion process

minDKL(dP ||Wβ) = min bibi (128)

The Schrödinger Bridge formulation is given as

min
p,b

1

2

∫ ∫
|b+|2 p(x, t)dtdx

subject to dx = b+ dt+
√
2β(t) dw for 0 < t < 1

p0(x) = p0, p1(x) = p1(x)e

(129)

If we define a Largrangian

L =
1

2
EdP+ b

i
+b+i (130)

the variational approach with Lagrangian constraint can be written as the following minimization
problem

min

∫ 1

0

Ldt+ ψ

∫ 1

0

EdP [
∂p

∂t
+∇ · (pb)− β∆p]dt (131)

Minimizing with respect to Lagrangian multiplier ψ and b+ gives the well-known Hamilton-Jacobi
dynamical equation of motion in tandem with Fokker-Planck equation

dψ(x, t)

dt
+

1

2
||∇ψ||2 = −β∆ψ (132)

dp

dt
+∇ · (p∇ψ) = β∆p (133)

where the optimal value of b is given by

boptimal
+ = ∇ψ (134)

The above equation can be easily transformed into the following forward-backward differential heat
equations via the transformation ϕ = exp ψ

2β and ϕ̂ = p exp− ψ
2β and probability density p(x, t) =

ϕ(x, t)ϕ̂(x, t). (See appendix H ) for the derivation.{
dϕ
dt = −β∆ϕ
dϕ̂
dt = β∆ϕ̂

and ϕ(x, 0)ϕ̂(x, 0) = p0(x), ϕ(x, 1)ϕ̂(x, 1) = p1(x) (135)

And the optimal drift can be written in terms of ϕ and ϕ̂ functions as boptimal
+ = 2β log ϕ and boptimal

+ =

−2β log ϕ̂ correspondingly. If the forward trajectory is guided by the drift coefficient boptimal
+ =

2β∇ log ϕ then the optimal backward trajectory has an optimal drift boptimal
− = boptimal

+ −2β(∇ log ϕ+

∇ log ϕ̂) = −2β∇ log ϕ̂. Solution to the optimization problem 8 can be expressed as a path measure
simulated by the forward and backward SDEs

dxi = 2β∇ log ϕdt+
√

2β(t)dwi x0 ∼ p0 (136)

dxi = −2β∇ log ϕ̂dt+
√

2β(t)dwi x0 ∼ p1 (137)

Using Itó lemma we can write the down SDE equations for log ϕ and log ϕ̂ for the forward trajecto-
ries 136 (See appendix A.4 for the derivation)

dx = 2β∇ log ϕ dt+
√

2β(t)dw (138)

d log ϕ = β|∇ log ϕ|2dt+
√
2β∇ log ϕdw (139)

d log ϕ̂ = (2β∇ · ∇ log ϕ̂+ β|∇ log ϕ̂|2 + 2β∇ log ϕ · ∇ log ϕ̂)dt+
√
2β∇ log ϕ̂dw (140)
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Interestingly enough, since log p = log ϕ+ log ϕ̂

dx = 2β∇ log ϕdt+
√
2β(t)dw (141)

d log p = (2β∇ · ∇ log ϕ̂+ β|∇ log p|2dt+
√
2β∇ log p dw (142)

If one integrates over the trajectories in time, one can immediately recover the loglikelihood of the
data point x0 as

log p(x0) = EdP+ [log pT (xN )]−
∫ 1

0

EdP+(2β∇ · ∇ log ϕ̂+ β|∇ log p|2)dt (143)

where the expectations are taken over the forward trajectories dP+.

J SCHRÖDINGER BRIDGE FORMALISM AS AN OPTIMAL TRANSPORT

For any two Borel probability measures b and ν on two Polish space (X , dX ) and (Y, dY) and
a positive semi-continuous cost function c, X × Y → R+, the problem of optimal transport is
concerned with finding a solution to the following optimization problem

Wp(x, y) := inf
π∈Π(x,y)

∫
Rd×Rd

c(x, y) dπ(x, y) , (144)

where Π(b, ν) is a set of measures on X × Y with marginals b and ν. In the case when the role of
the cost function plays Euclidean distance c(x, y) = ||x− y||p with p ≥ 1, the the Lp -Wasserstein
distance is introduced

Wp(x, y) := ( inf
π∈Π(x,y)

∫
Rd×Rd

d(x, y)p dπ(x, y))
1
p (145)

This is known as the Kantorovich formulation of optimal transport. When b is absolutely continuous
with respect to the Lebesgue measure (i.e. when b has a density), the above can be written in terms
of Monge formulation T#b = ν i.f.f. for all Borel sets A, ν(T (A)) = b(A).

Solving the above equation is problematic,

inf
π∈Π(b,ν)

∫
X×Y

c(x, y) dπ(x, y) + ϵD‘(π | b× ν) , (146)

where
DKL(p | q) =

∫
X×Y

log
dp

dq
dp

stands for the Kullback-Leibler (KL) divergence between two distributions, p and q. Introducing
Gibbs measure K

dK(x, y) = exp

(
−c(x, y)

ϵ

)
db(x) dν(y) . (147)

one may rewrite the entropy regularized OT problem as

inf
π∈Π(b,ν)

DKL(π | K). (148)

If one replaces Gibbs measure with Wiener measure Wγ , one arrives at the static formulation of the
Schrödinger Bridge problem

inf
π∈Π(b,ν)

DKL(π | Wγ). (149)

The Schrödinger bridge problem can equivalently be formulated using a dynamic formalism

min
ρ,b

∫ 1

0

∫
Rd

|∇Φt(x)|2ρt(x) dxdt

Subject to: (150)
∂tρt + div(ρt∇Φt) = β∆ρt for 0 < t < 1,

ρ0 = b, ρ1 = ν.
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Now we focus on the Lagrangian point of view which is based on variational principles: Given a
Lagrangian L(q̇, q, t) an object be it a particle or a ray of light) chooses the trajectory q(t) that makes
the action S

S =

∫ 1

0

L(ẋ, x, t)dt (151)

stationary. The action depends on the endpoints (t0 = 0, x0) and (t1 = 1, x1) and the trajectory
x(t) must obey the Euler-Lagrange equation

d

dt

∂L
∂ẋ

− ∂L
∂x

= 0 (152)

For a classical particle, the Lagrangian is the difference between the kinetic and the potential energy
L = T − V .

The Hamiltonian is defined as a Legendre transform of the Lagrangian

H = sup
ẋ
{p · x − L(x, ẋ, t)} (153)

The corresponding Hamilton-Jacobi equation reads

∂tS +H = 0 (154)

23


	Introduction
	Theoretical Foundations of the diffusion Schrödinger bridge
	Stochastic Action minimization
	Stochastic Action

	Effective Lagrangian
	Experiments
	Toy model

	Discussion and Conclusions
	Appendix
	Kolmogorov Backward equation
	Probability flow ODE for the Kolmogorov Backward Equation
	Itô Formula
	Application of Itô formula
	Kolmogorov Forward Equation
	Probability flow ODE for the Kolmogorov Forward Equation
	Reverse Time Stochastic Differential Equation

	Fokker-Planck diffusion equation
	Space of probability measures
	Nelson Theory
	Time-Independent Schödinger equation

	KL-divergence between two probability measures and Girsanov theorem
	Derivation of Schrödinger equation is calculus of variations
	Relative entropy of the forward and backward path
	Hamilton-Jacobi equations and linearization via Hopf-Cole transformation
	Classical Schrödinger Bridge Formalism
	Schrödinger bridge formalism as an optimal transport

