
Proceedings of Machine Learning Research – Under Review:1–11, 2025 Full Paper – MIDL 2025 submission

Staging Liver Fibrosis with Hepatic
Perivascular Adipose Tissue as a CT Biomarker

Skylar Chan∗1 spencer.chan@nih.gov

Tejas Sudharshan Mathai∗1 tejas.mathai@nih.gov

Praveen T.S. Balamuralikrishna1 thoppeysrinivp2@nih.gov

Vivek Batheja1 vivek.batheja@nih.gov

Jianfei Liu1 jianfei.liu@nih.gov

Meghan G. Lubner2 MLubner@uwhealth.org

Perry J. Pickhardt2 PPickhardt2@uwhealth.org

Ronald M. Summers2 rms@nih.gov
1 Radiology and Imaging Sciences, National Institutes of Health Clinical Center, USA
2 Department of Radiology, University of Wisconsin School of Medicine & Public Health, USA

Abstract

Cirrhosis is the 12th leading cause of death in the US. There are several CT imaging signs
of late fibrosis, such as redistribution of liver segment volume, increased liver nodularity,
and periportal space widening. Timely intervention can reverse the progression of early
hepatic fibrosis, but later stages are irreversible. We hypothesize that the perivascular
adipose tissue (PVAT) around the portal vein arising from periportal space widening may
also be predictive of liver fibrosis. In this work, a fully automated pipeline was developed
to segment the liver, spleen, portal vein and its branches. The PVAT in the vicinity of
the portal vein was identified. From these structures, CT imaging biomarkers (volume,
attenuation, fat fraction) were computed. They were used to build uni- and multivariate
logistic regression models for diagnosing advanced fibrosis and cirrhosis. The best multi-
variate model for cirrhosis achieved 93.3% AUC, 78.9% sensitivity, and 93.4% specificity.
For advanced fibrosis, the multivariate model obtained 88.7% AUC, 84.2% sensitivity, and
73.7% specificity. The automated approach may be useful for population-based studies of
metabolic disease and opportunistic screening.

Keywords: CT, Liver Fibrosis, Cirrhosis, Perivascular Adipose Tissue, Portal Vein, Hep-
atic Arteries

1. Introduction

In the US, ∼4.5 million adults are affected by chronic liver disease (Centers for Disease
Control and Prevention, 2024). It can lead to chronic inflammation, liver fibrosis, and
eventually cirrhosis (Ludwig et al., 2021), which is the 12th leading cause of death in the US.
Chronic hepatitis B/C viral infection, alcohol abuse, and metabolic dysfunction-associated
steatohepatitis (e.g., due to obesity or diabetes) can cause fibrosis. Timely intervention can
reverse early fibrosis, and thus it is necessary to distinguish later stages (advanced fibrosis
and cirrhosis) from earlier stages of fibrosis.

Liver biopsy is the gold standard for staging fibrosis, but it is invasive and suffers from
sampling error. Lab serum tests can be used, but they are insufficient and cannot replace
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Figure 1: Automated framework for staging advanced fibrosis and cirrhosis. A 3D full
resolution nnU-Net segmented the portal vein and its branches. Another model segmented
the liver, Couinaud segments, and spleen. CT biomarkers (volume, attenuation, fat fraction)
of the liver, spleen and perivascular adipose tissue (PVAT) were automatically derived. Liver
(light brown), portal vein (blue), PVAT (yellow), and Couinaud segments (various colors).

histology (Pickhardt et al., 2016). Thus, non-invasive imaging-based biomarkers that per-
form better than biopsy or lab tests are sought (American Liver Foundation, 2022). Certain
findings on abdominal contrast-enhanced CT (CECT) clearly indicate liver fibrosis, such
as splenomegaly or ascites (Yin et al., 2021; Pickhardt et al., 2017), segmental redistribu-
tion (Lee et al., 2022), increased liver surface nodularity (Pickhardt et al., 2016; Mazumder
et al., 2023; Mathai et al., 2024a,b; Lewis et al., 2024), and periportal space widening with
cavernous transformation (Ludwig et al., 2021; Karcaaltincaba et al., 2007).

Periportal space widening is a manifestation of central liver atrophy (Ito et al., 2000).
Due to an increase in distance between the main portal vein and the central liver (Ludwig
et al., 2021), fat can expand into the periportal space. As the portal vein supplies 70-
80% of hepatic blood flow (Ziessman et al., 2006), there may be local paracrine effects of
fat accumulation on nearby regions (Kahn and Bergman, 2022). Recent works suggest that
perivascular adipose tissue (PVAT), or the fat surrounding the blood vessels, can contribute
to metabolic diseases via a distinct pathway (Kahn and Bergman, 2022; Valentini et al.,
2023; Lastra and Manrique, 2015). However, there are very few studies investigating the
relationship between fibrosis and PVAT accumulation around vessels feeding and draining
the liver (Song et al., 2024; Ludwig et al., 2021; Ito et al., 2000).

In this paper, we hypothesize that PVAT biomarkers surrounding the portal vein in
the liver can be used to stage fibrosis. To that end, a fully automated deep learning-based
pipeline was developed to segment the liver, spleen, portal vein and its branches. PVAT
and other CT imaging biomarkers were automatically computed. Uni- and multivariate
models were built to differentiate advanced fibrosis and cirrhosis from earlier stages. To
our knowledge, we are the first to introduce fine grained segmentations of the individual
branches of the portal vein, and to quantitatively examine the utility of perivascular fat
around the portal vein for staging liver fibrosis.
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2. Methods

2.1. Patient Sample

In this retrospective study, three datasets containing abdominal contrast-enhanced CT
(CECT) scans were used: (1) the public Medical Segmentation Decathlon (MSD) Hep-
atic Vessels dataset (Task-8) (Antonelli et al., 2022), (2) an internal National Institutes of
Health (NIH) dataset, and (3) an external dataset from the University of Wisconsin (UW).

In the MSD training data subset, portal venous CT volumes from 157 patients (out of
303) were used. The CT volumes in which the portal vein was clearly visible for annotation
were chosen. Each CT volume in the training data subset also contained the segmentations
of liver tumors and hepatic vessels. Volume dimensions ranged from 512 × 512 × (26 - 177)
voxels and the spacing ranged between (1.5 - 8) mm. The internal NIH dataset contained
43 patients with cirrhosis and other metabolic diseases having ascites (25 patients) and
splenomegaly (18 patients) imaged at the NIH. CT volume dimensions ranged from 512 ×
512 × (51 - 680) voxels and the spacing ranged between (1 - 5) mm.

In the external UW dataset, 480 patients (304 men, median age: 49 ± 9 years) un-
derwent abdominal contrast-enhanced CT exams between 2000 – 2016 (Lee et al., 2022).
The METAVIR staging system was used to categorize patients into 3 groups: patients who
underwent CT imaging as potential kidney donors without any known symptoms of liver
disease (F0, n = 151); patients with variable degrees of pre-cirrhotic hepatic fibrosis in-
cluding early (F1, n = 52), intermediate (F2, n = 82), and advanced (F3, n = 56) fibrosis;
and patients with chronic liver disease (cirrhosis) who had undergone evaluation for liver
transplant (F4, n = 139). Within 1 year of the CT exam, a liver biopsy was required for
patients in the early (F1), intermediate (F2), and advanced (F3) fibrosis cohorts.

Patients had the following causes of liver disease: chronic hepatitis B/C viral infection,
alcoholism, biliary cirrhosis, sclerosing cholangitis and metabolic dysfunction-associated
steatotic liver disease among others. Lab test results (FIB-4 and APRI scores) were also
available. A variety of CT scanners were used (GE, Canon, and Siemens). The tube
voltage ranged between 100 - 140 kVp with patient specific tube current settings. Volume
dimensions ranged from 512 × 512 × (73 - 482) voxels and the spacing ranged between 2.5
- 5 mm.

2.2. Reference Standard

Liver tumors and hepatic vessels were available as a single label in the MSD dataset. First,
the public TotalSegmentator (TS) tool (Wasserthal et al., 2023) was used to obtain liver and
spleen segmentations in this dataset (157 volumes). Next, a public nnU-Net model trained
on this dataset (Task-8) (Isensee et al., 2021) was run on the NIH dataset (43 volumes) to
obtain the hepatic vessel tree. The model jointly segmented the the hepatic arteries, hepatic
veins, and portal vein as a single label. Due to this, the portal vein and its branches (left and
right) were manually annotated in the MSD and NIH datasets (200 volumes) by a research
fellow. Two physicians (2+ years of experience) verified and corrected the segmentations
of all structures (liver, spleen, portal vein and its left/right branches). The hepatic arteries
and veins were separated from the portal vein annotation and treated as a separate label.
This was due to the challenges in distinguishing the hepatic arteries and veins on CT.
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For the external UW dataset, the eight Couinaud segments were obtained by a previously
described tool (Lee et al., 2022). To evaluate the portal vein segmentation, five patients
from each fibrosis stage were randomly chosen. The portal vein was manually segmented
and verified by the same physicians in the 25 selected CT volumes.

2.3. Deep Learning Model

Fig. 1 shows the overall framework. The verified labels from the MSD and NIH datasets
were used for training a 3D full-resolution nnU-Net. The model was tested on the external
UW dataset. The labels were of the full liver, spleen, portal vein and its branches, and
remaining vessels (hepatic arteries and vein). The nnU-Net model is the de facto standard
for segmentation due to its award-winning performance on many tasks (Isensee et al., 2021),
such as multi-organ segmentation in CT and MRI. It has often outperformed other archi-
tectures, such as transformers (Isensee et al., 2024). Thus, only the 3D nnU-Net model was
used with no other comparative implementations. The rationale for this stemmed from the
goal of this work, which is to extract a novel CT-based imaging biomarker (PVAT) and use
it for diagnosing fibrosis.

The nnU-Net framework automatically determined a dataset “fingerprint”, which in-
cluded intensity normalization and resampling to a consistent spacing. Optimal hyper-
parameters were automatically computed and no changes were made to the default values.
The following training parameters were set: 6 stages with 2 convolution layers per stage,
feature maps per stage were [32, 64, 128, 256, 320, 320], kernel sizes were [1, 3, 3, 3, 3, 3],
batch size of 2, learning rate of 0.01, SGD optimizer, and 1000 training epochs. The model
learned to segment the target structures and iteratively refined the predictions during train-
ing via a loss function, which was a combination of the Dice loss and the binary cross entropy
loss. Training was conducted on one NVIDIA A100-SXM4-40GB GPU. Segmentations of
hepatic arteries and veins were not used at test time.

2.4. Automated Extraction of Imaging-based Biomarkers

Liver and Spleen Biomarkers: CT biomarkers were computed from nnU-Net segmen-
tations of the liver and spleen in the UW dataset. Couinaud segments, Biomarkers These
included: volume, attenuation (mean and std. dev.), liver segmental volume ratio (LSVR,
the volume ratio of liver segments 1-3 to 4-8) (Lee et al., 2022), and liver surface nodularity
(LSN) (Mathai et al., 2024a,b; Lewis et al., 2024).

PVAT Biomarkers: The portal vein segmentation was dilated with a kernel size of 4×4×4
voxels following prior research (Nguyen et al., 2024; Chatterjee et al., 2022). Other kernel
sizes (3×3×3, 5×5×5) were also tested and no qualitative difference was found between
them. As shown in Fig. 2, this dilated area represented the perivascular region. Voxels cor-
responding to PVAT in the perivascular region that fell within the HU range of [−190,−30]
were identified (Nguyen et al., 2024). Biomarkers were calculated from these PVAT voxels:
volume, mean and std. dev. (SD) of CT attenuation, and fat fraction (ratio of the number
of PVAT voxels to the number of perivascular region voxels). To account for variations in
scanners, acquisition, and disease characteristics, the PVAT CT attenuation was normalized
by the average vessel lumen attenuation (Chatterjee et al., 2022).
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Figure 2: Top row is for a cirrhotic patient with ascites, and bottom row is for a normal
patient. Last column shows the predicted segmentations of the main portal vein (green),
right branch (blue) and left branch (yellow). The perivascular region (dark gray) was
extracted and PVAT voxels (magenta) in the [-190, -30] range were identified.

2.5. Statistical Analysis

Dice similarity coefficient (DSC) and Hausdorff Distance (HD) error was used to assess the
portal vein segmentation in 25 UW CT volumes. Several uni- and multi-variate logistic
regression models were built (LR, scikit-learn package, Python v3.12) to diagnose fibrosis
stages (advanced fibrosis group included cirrhosis patients). The UW dataset was divided
into training (80%, n = 385 patients) and testing (20%, n = 95 patients) subsets. The test
data subset contained 19 randomly sampled patients from each fibrosis stage.

Regression analysis was conducted following the same approach as prior work (Tallam
et al., 2022). The models used various combinations of the serum (APRI and FIB-4 scores)
and automated CT biomarkers as features. For the univariate analysis, multinomial logistic
regression models were created for each of the 33 features separately. For the multivariate
analysis, a stepwise approach determined the optimal set of explanatory features. Ad-
justment for multiple comparisons was not done. Instead, a general rule-of-thumb p-value
threshold of 0.0015 (0.05/33) was used to identify the best features for final modeling.

For the model with the best features, a further sub-analysis was conducted. Three
other models were created from the best model: (1) without both serum and PVAT fea-
tures, (2) with serum but without PVAT features, and (3) without serum but with PVAT
features, respectively. Performance was assessed with AUC (and 95% confidence intervals),
sensitivity, and specificity. A model with an AUC above 0.6 was considered effective. A
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Table 1: Results of portal vein segmentation by 3D nnU-Net on the UW dataset. PV:
Portal Vein. DSC: Dice Score. HD: Hausdorff Distance error in mm.

Structure DSC (%) ↑ HD (mm) ↓

Main PV 85.8 ± 10.2 (IQR: 82.8, 92.3) 3.0 ± 2.4 (IQR: 1.6, 3.1)
Left PV 81.4 ± 12.8 (IQR: 76.8, 92.0) 7.1 ± 6.9 (IQR: 3.3, 8.4)
Right PV 82.5 ± 14.6 (IQR: 76.7, 94.6) 7.9 ± 8.7 (IQR: 0.8, 9.9)
Full PV 86.4 ± 9.6 (IQR: 80.3, 92.9) 6.9 ± 7.1 (IQR: 2.4, 9.0)

bootstrapped DeLong test (MLstatkit package, Python v.3.12) compared the ROC curves
from two models. A p-value < 0.05 was considered statistically significant.

3. Results

3.1. Portal Vein Segmentation

Table 1 and Fig. 2 show the 3D nnU-Net segmentation performance for delineating the
portal vein and its branches (left and right). The model segmented the main portal vein
branch with a DSC of 85.8 ± 10.2 and HD error of 3.0 ± 2.4 mm. Compared to the main
branch, higher HD errors were seen for the left branch (7.1 ± 6.9 mm) and right branch
(7.9 ± 8.7 mm), respectively. Segmentation of the full portal vein (combination of main
and all branches) was satisfactory with a DSC of 86.4 ± 9.6 and HD error of 6.9 ± 7.1 mm.

3.2. Univariate Results

Table 2 shows the results from the univariate models. For cirrhosis, FIB-4 score obtained
an AUC of 88.5% and specificity of 89.5%, but the sensitivity was lower at 73.7%. Among
the CT features, spleen volume yielded the highest AUC of 89.2% and specificity of 94.7%.
The SD of normalized CT attenuation for the right portal vein was the best PVAT feature
with an AUC of 79.6%. For advanced fibrosis, FIB-4 score and spleen volume achieved the
highest AUCs among the serum and CT imaging features, respectively. However, AUC for
the SD of normalized CT attenuation for the main portal vein was the highest at 67.1%.

3.3. Multivariate Results

Table 2 also provides the multivariate modeling results. Figure 3 shows ROC curves of the
different multi-variate models for advanced fibrosis and cirrhosis.

Cirrhosis: The best CT imaging features for predicting cirrhosis (without serum or PVAT
scores) included the LSVR, LSN, spleen volume, and volume proportions of Couinaud seg-
ments except segment 7. This was the “baseline” model. It achieved a 91.6% AUC and
97.4% specificity. Adding serum scores slightly improved the AUC by 0.2%, but specificity
dropped by 1%. Adding PVAT biomarkers to the baseline model resulted in a small AUC
increase to 92.9%. However, the specificity fell to 90.8%. The PVAT biomarkers that were
predictive included: (1) normalized SD CT attenuation for the main, left, and right portal
veins, and (2) fat volume at the right portal vein. Adding both serum and PVAT fea-
tures improved the baseline AUC to 93.3% with a specificity of 93.4%. The sensitivity of
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Table 2: Results from the uni- and multi-variate logistic regression models with 95% con-
fidence intervals. Blood serum scores (FIB-4 and APRI), Liver Surface Nodularity (LSN),
Portal Vein (PV), Perivascular Adipose Tissue (PVAT), standard deviation (SD) of nor-
malized (Norm) CT attenuation (Att).

Advanced Fibrosis Cirrhosis
AUC Sensitivity Specificity AUC Sensitivity Specificity

FIB4 83.2 (74.1, 91.6) 68.4 (52.6, 82.9) 86.0 (75.4, 94.6) 88.5 (78.0, 96.7) 73.7 (50.0, 91.7) 89.5 (82.2, 95.8)
APRI 73.8 (62.0, 84.1) 52.6 (35.5, 68.4) 87.7 (78.0, 94.9) 82.3 (68.9, 93.0) 73.7 (53.3, 93.3) 84.2 (75.6, 92.0)
Spleen Volume 82.0 (71.7, 90.9) 71.1 (56.5, 84.6) 82.5 (71.2, 91.4) 89.2 (77.1, 98.3) 73.7 (53.3, 93.4) 94.7 (88.9, 98.8)
LSN 76.3 (64.8, 86.7) 65.8 (50.0, 79.5) 80.7 (70.2, 91.2) 88.1 (79.9, 95.1) 78.9 (57.7, 94.7) 88.2 (80.3, 94.9)
Main PV PVAT SD Norm. Att. 67.1 (55.6, 77.4) 50.0 (34.9, 65.8) 77.2 (65.5, 88.0) 70.3 (56.3, 83.1) 63.2 (41.7, 84.6) 68.4 (57.5, 78.5)
Right PV PVAT SD Norm. Att. 64.5 (53.1, 74.6) 78.9 (65.7, 91.2) 49.1 (35.7, 61.7) 79.6 (69.0, 88.6) 94.7 (83.3, 100.0) 53.9 (42.3, 64.6)

Baseline 84.8 (75.9, 92.2) 68.4 (53.3, 83.3) 87.7 (77.8, 95.3) 91.6 (82.0, 98.5) 73.7 (53.3, 93.4) 97.4 (93.2, 100.0)
Baseline & Serum 88.5 (81.0, 94.8) 86.8 (75.0, 97.1) 73.7 (61.4, 84.6) 91.8 (83.5, 98.4) 78.9 (57.9, 95.9) 96.1 (91.0, 100.0)
Baseline & PVAT 83.2 (74.3, 90.8) 55.3 (37.8, 71.0) 94.7 (88.6, 100.0) 92.9 (86.5, 98.1) 78.9 (58.8, 95.2) 90.8 (84.0, 96.3)
baseline & Serum & PVAT 88.7 (81.2, 94.7) 84.2 (72.5, 94.6) 73.7 (62.3, 85.4) 93.3 (86.5, 98.5) 78.9 (57.9, 94.7) 93.4 (87.3, 98.7)

this model was the highest at 78.9%. All multivariate models were significantly different
(p < .05) from APRI score, and normalized mean and SD CT attenuation for main and
right portal vein. However, statistical testing showed no difference between the multivariate
models.

Advanced Fibrosis: The best CT imaging features for predicting advanced fibrosis were
the same features from predicting Cirrhosis (see above). The baseline model attained 84.8%
AUC and 87.7% specificity. Addition of the serum scores improved the AUC by ∼4%, but
the specificity reduced to 73.7%. Addition of the PVAT features reduced the AUC to
83.2% and sensitivity to 55.3%, but the specificity was the highest at 94.7%. The PVAT
scores included the normalized SD CT attenuation for the main, left, and right portal
veins, respectively. Finally, inclusion of both PVAT and serum features to the baseline
model led to the highest AUC of 88.7%, sensitivity of 84.2%, and specificity of 73.7%. This
multivariate model was significantly different (p < .05) from all univariate models except
FIB4 score and spleen volume. Again, statistical testing showed no difference between the
various multivariate models.

4. Discussion

The main contributions in this work included: (1) automated fine-grained segmentations of
the portal vein and its branches (left and right), and (2) use of a novel PVAT CT biomarker
for staging fibrosis. A DSC score of 86.4 ± 9.6 was obtained for the segmentation of the
portal vein. Our results are similar to those obtained by prior approaches (Li et al., 2024;
Ibragimov et al., 2017), wherein DSC scores of 70% - 89% were achieved. As a result, the
portal vein segmentation by the 3D nnU-Net model was deemed satisfactory for clinical use.

With the serum and PVAT biomarkers, multivariate models were trained to achieve
AUCs of 91% - 93.5% and 83% - 89% for cirrhosis and advanced fibrosis, respectively. In
prior literature by Lee et al. (2022) on the same UW dataset, AUCs of 94% and 80% were
obtained for diagnosing cirrhosis and advanced fibrosis, respectively. Similarly, Lewis et al.
(2024) obtained AUCs of 92.5% and 83.8% for cirrhosis and advanced fibrosis, respectively.
The latter approach also used explainable biomarkers for staging hepatic fibrosis, such as

7



Chan Mathai Balamuralikrishna Batheja Liu Lubner Pickhardt Summers

Figure 3: ROC curves for staging cirrhosis (left) and advanced fibrosis (right) with logistic
regression models.

spleen volume, LSVR, and LSN. Other works (Choi et al., 2018) utilized neural networks
to directly diagnose the fibrosis. AUCs of 0.97 and 0.95 were achieved for advanced fibrosis
and cirrhosis, respectively. However, this approach required a large proprietary dataset
of >7000 patients, rendering it challenging to replicate due to a lack of publicly available
datasets with a large number of patients and confirmed fibrosis stages.

Limitations of this work are acknowledged. First, the PVAT biomarkers were not very
predictive on their own for advanced fibrosis or cirrhosis. This may be attributed to the
underlying patient pathophysiology. For example, upon a qualitative analysis, eight patients
amongst the 19 cirrhotic patients in the UW test dataset had ascites (fluid buildup in the
abdomen). From Fig. 2, ascites masked the visceral fat in the periportal region, appeared
brighter than the CT attenuation range of [-190, -30] for fat, and fewer PVAT voxels were
identified as a result. The predictive value of PVAT biomarkers increased when combined
with other features, such as serum or other CT imaging biomarkers (e.g., spleen volume).
Next, periportal space widening may be more pronounced in certain patients in contrast
to others, such as lean individuals with lower BMI (Ludwig et al., 2021). Based on this
evidence, the clinical utility of using PVAT features is questionable. As there is scant
research on automated techniques to measure periportal fat (Song et al., 2024; Ludwig
et al., 2021; Ito et al., 2000), our findings hold value for furthering research into hepatic
PVAT. Second, PVAT biomarkers were not extracted from the hepatic arteries and hepatic
veins in this work. The diagnostic performance may improve with their incorporation.
Third, the automated approach was not validated on non-contrast CT. Lastly, the sample
size used in this work was small (19 patients from each fibrosis stage). External validation
on additional patients is necessary to further clarify the findings. This is the subject of
future work.

In summary, the non-invasive imaging-based biomarkers PVAT derived in this work were
useful for staging advanced fibrosis and cirrhosis. The current approach shows promise for
population-based studies of metabolic disease and opportunistic screening.
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