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Abstract

The renaissance of artificial neural networks was catalysed by the success of clas-1

sification models, tagged by the community with the broader term supervised2

learning. The extraordinary results gave rise to a hype loaded with ambitious3

promises and overstatements. Soon the community realised that the success owed4

much to the availability of thousands of labelled examples and supervised learning5

went, for many, from glory to shame: Some criticised deep learning as a whole and6

others proclaimed that the way forward had to be “alternatives” to supervised learn-7

ing: predictive, unsupervised, semi-supervised and, more recently, self-supervised8

learning. However, these seem all brand names, rather than actual categories9

of a theoretically grounded taxonomy. Moreover, the call to banish supervised10

learning was motivated by the questionable claim that humans learn with little or11

no supervision and are capable of robust out-of-distribution generalisation. Here,12

we review insights about learning and supervision in nature, revisit the notion that13

learning and generalization are not possible without supervision or inductive biases14

and argue that we will make better progress if we just call it by its name.15

1 Introduction16

The re-emergence of deep learning during the last decade due to the noteworthy achievements17

of artificial neural networks (ANN) built up a sort of philosophy that nearly anything could be18

automatically learnt from data without human intervention, in contrast to the previous approaches:19

[hand designing good feature extractors, engineering skill and domain expertise]20

can all be avoided if good features can be learned automatically using a general-21

purpose learning procedure. This is the key advantage of deep learning (LeCun22

et al., 2015).23

Read in hindsight, this claim was clearly an overstatement. The success of deep learning has24

required iterative hand design of network architectures and techniques that demanded collective, high25

engineering skill and large doses of interdisciplinary domain expertise. Furthermore, deep learning26

owes much to the immense computational power poured into training artificial networks (Amodei &27

Hernandez, 2018; Schwartz et al., 2019) and to the human effort of manually collecting and labelling28

thousands of images and other data modalities (Russakovsky et al., 2015; Cao et al., 2018). However,29

the gist of the claim has permeated machine learning research and is pervasive up to these days.30

The realisation that the success of deep learning was largely due to the availability of huge labelled data31

sets prompted various reactions: some authors strongly questioned the usefulness of the algorithms32

(Marcus, 2018); some delved into the question of whether neural networks generalise beyond or33

simply memorise the training examples (Zhang et al., 2017; Arpit et al., 2017); and some proposed34
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new research horizons that can be overly ambitious and potentially misleading: “learning a class35

from a single labelled example”, based on the statement that “humans learn new concepts with very36

little supervision, [but] the standard supervised deep learning paradigm does not offer a satisfactory37

solution for learning new concepts rapidly from little data” (Vinyals et al., 2016). As a consequence,38

multiple research programmes, with various brand names, followed up with the aim of minimising or39

removing the need for “supervision” to train neural networks: few-shot, one-shot, zero-shot, predictive,40

unsupervised, semi-supervised and self-supervised learning are only a few popular examples.41

Exploring alternatives to classification and improving the efficiency of learning algorithms should42

indeed be a priority of machine learning research. As a matter of fact, related approaches have43

been subject of study since long before the explosion of deep learning (Hinton & Sejnowski, 1999;44

Chapelle et al., 2006). However, the current publication and discussion trends in the field denote45

overambitious promises that are in part based on misconceptions and overstatements about biological46

learning, and amplified by overselling nomenclature. While much of the research output derived from47

these programmes does provide us with useful techniques and insight, it leaves behind a landscape of48

confusing terminology and tangled research directions that are hard to navigate and lead many astray.49

In this paper, we reflect upon fundamental concepts in machine learning such as supervision, in-50

ductive biases and generalisation, which in spite of resting on theoretical grounds, are at the core51

of misconceptions and overstatements about deep learning commonly seen in the literature. First,52

we review aspects from biological learning, and compare them to the traits often (mis)attributed to53

human learning and generalisation in the machine learning literature (Section 2). Second, we revisit54

insights from classical statistical learning and critically review the terminology and current trends in55

deep learning research (Section 3). Altogether, we aim at tempering certain claims and promises of56

deep learning, helping mitigate the confusion over the terminology and suggesting desirable—in our57

opinion—directions and changes in machine learning research.58

2 Supervision in biological learning59

The link between artificial intelligence—specifically artificial neural networks (Rosenblatt, 1958;60

Fukushima & Miyake, 1982)—and biological learning systems is intrinsic to the field, as one long-61

term goal of artificial intelligence is to mirror the capabilities of human intelligence. However, these62

capabilities are, in our view, often overestimated. One example is the argument that intelligence in63

nature evolves without supervision and is capable of robust out-of-distribution generalisation. In64

particular, it is often claimed that humans and other animals learn to visually categorise objects with65

little or no supervision from a few examples (Vinyals et al., 2016; Marcus, 2018; Morgenstern et al.,66

2019). In what follows, we will discuss three aspects of biological learning to argue against this67

view, so as to gain insights that better inform our progress in machine learning: first, we will discuss68

how generalisation requires exposure to relevant training data; second, we will review the variety of69

supervised signals that the brain has access to; third, we will comment on the role of evolution and70

brain development.71

2.1 Generalisation requires exposure to relevant training data72

In the argument that machine learning models should generalise from a few examples, there seems73

to be a promise or aspiration that future better methods will be able to perform robust visual object74

categorisation—for instance—among many object classes after being trained on one or a few examples75

per class. While a primary objective is to develop techniques that efficiently extract the maximum76

possible information from the available examples, we should also remind ourselves that no machine77

learning algorithm can robustly learn anything that cannot be inferred from the data it has been trained78

on. Although this may seem to contradict certain current trends and statements in the literature, we79

should also bear in mind that learning in nature is not different.80

First, the amount of data that animals and humans in particular are exposed to is often underestimated.81

A biological brain continuously receives, processes and integrates multimodal inputs from various82

sensors—images (light), sound, smell, etc. Humans do not learn to recognise objects by looking83

at photos from ImageNet, but are rather exposed to a continuous flow of visual stimuli with slow84

changes of the viewing angle and lighting conditions. Furthermore, the stimuli are coherent across85

modalities, we are allowed to interact with the objects and we even receive multiple supervision86

signals, as we discuss later.87
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The exposure to so much training data makes the human visual system remarkably robust, but still its88

capabilities are optimised for the tasks it needs to perform and largely determined by the training data89

distribution—and years of evolution, as we will discuss below. For instance, a well-studied property90

of human vision is that our face recognition ability is severely impaired if faces are presented upside91

down (Yin, 1969; Valentine, 1988). Setting aside the specific complexity of face processing in the92

brain, a compelling explanation for this impairment is that we are simply not used to seeing and93

recognising inverted faces. More generally, while human perception of objects is largely invariant94

under certain conditions (Biederman & Bar, 1999), object recognition is sensitive to changes in view95

angle (Tarr et al., 1998), especially when we see objects from unfamiliar viewpoints (Edelman &96

Bülthoff, 1992; Bülthoff & Newell, 2006; Milivojevic, 2012).97

Furthermore, although better than the one-shot or few-shot generalisation of current ANNs, humans98

also have limited ability to recognise truly novel classes (Morgenstern et al., 2019). Interestingly,99

experiments with certain novel classes of objects known as Greebles showed that, with sufficient100

training, humans can acquire expertise in recognising new objects from different viewpoints, even101

making use of an area of the brain—the fusiform face area—that typically responds strongly with102

face stimuli (Gauthier et al., 1999). This provides evidence that recognition from multiple viewpoints103

is possible but only developed after exposure to similar conditions, that is relevant data. This is104

reminiscent of the effectiveness of data augmentation in deep learning, compared to more naïve105

regularisation methods (Hernández-García & König, 2018).106

The need for exposure to relevant stimuli challenges the notion that humans are capable of strong107

out-of-distribution generalisation. Rather, it seems that the transfer learning capabilities of humans108

are limited to relatively small changes in the data distribution. A compelling example is our difficulty109

to learn new languages: someone who natively speaks or has learnt Spanish will be able to transfer a110

significant amount of knowledge if they are to learn Italian, due to the overlap in the data distribution,111

but they will have very little to transfer for learning Kanien’kéha or Mandarin.112

2.2 Supervised signals for the brain113

Another commonly found argument has it that children—animals in general—learn robust object114

recognition without supervision: “a child can generalize the concept of ‘giraffe’ from a single picture115

in a book” (Vinyals et al., 2016). First of all, we should mention the role of evolution (expanded in116

Section 2.3), which can be interpreted as a pre-trained model, optimised through millions of years of117

data with natural selection as a supervisory signal (Zador, 2019). Second, there is abundant evidence118

to argue against the very claim that children—and adults—learn in fully unsupervised fashion.119

Obviously, the kind of supervision that humans make use of is not that of classification algorithms—120

we do not see a class label on top of every object we look at. However, we receive supervision121

from multiple sources. Even though not for every visual stimulus, children do frequently receive122

information about the object classes they see. For instance, parents would point at objects and name123

them, then we learn how to read, and generally play a crucial role as teachers in language development124

(Kuhl, 2007). Non-human animals such as zebra finches learning to sing have also been found to rely125

on feedback (supervision) from the female adult and not just imitation Carouso-Peck & Goldstein126

(2019). Furthermore, humans usually follow guided hierarchical learning: children do not directly127

learn to tell apart breeds of dogs, but rather start with umbrella terms and then progressively learn128

down the class hierarchy (Bornstein & Arterberry, 2010; Spriet et al., 2021). Gopnik (2021) has129

asserted that “we learn more from other people than we do from any other source” and Hasson et al.130

(2020) mention other examples of supervision from social cues, that is from other humans, such as131

learning to recognise individual faces, produce grammatical sentences, read and write; as well as132

from embodiment and action, such as learning to balance the body while walking or grasping objects.133

In all these actions, we can identify a supervisory signal that surely influences learning in the brain134

(Shapiro, 2012; Gopnik et al., 2020).135

While these supervision signals largely differ from what is most commonly considered supervised136

learning in machine learning, we can still draw some parallels with human learning. We learn to137

categorise many concepts and objects as children, but most people carry on learning new categories as138

adults. For example, some people put effort in improving their understanding of the natural world by139

learning to recognise and name trees, plants or birds. Those who have engaged in such an endeavour140

may have noticed that the learning process is easier and faster if we count upon the expert knowledge141

of a friend or of technology such as iNaturalist (Van Horn et al., 2018). Another example: those142
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who have—or attempted to learn—a new language as an adult may have realised that whereas it is143

possible to learn the meaning of a new word by repeated exposure to it in multiple contexts, it is144

certainly easier if we look up the ground truth definition in a dictionary or, even easier, if there exists145

a direct mapping to a word in our native language. Summing up, not only does supervision facilitate146

learning, but human beings actively seek for it.147

Besides this kind of explicit supervision, the brain certainly makes use of more subtle, implicit148

supervised signals, such as temporal stability (Becker, 1999; Wyss et al., 2003): The light that enters149

the retina, and the sound waves that reach the cochlea, are not random signals from a sequence of150

rapidly changing arbitrary photos or noise, but highly coherent and regular flows of slowly changing151

stimuli, especially at the higher, semantical level (Kording et al., 2004). At the very least, this is how152

we perceive it and if such a smooth perception turns out to be a consequence rather than a cause, then153

it should be a by-product of a long process of evolution that would be worth taking into account.154

2.3 The role of evolution and brain development155

In the previous sections, we have discussed some misconceptions or overstatements about how156

humans learn and generalise that are often found in the machine literature. Namely, that humans157

are able to generalise from a few examples and that this occurs with little or no supervision. Still,158

the commonplace comparison of artificial neural networks with human learning and the brain often159

misses a fundamental component of biology, recently brought to the fore by Zador (2019) and Hasson160

et al. (2020), although considered since the early days of artificial intelligence (Turing, 1968): the161

role that millions of years of evolution have played in developing the nervous systems of organisms162

in nature, including the human brain.163

The most common way of training artificial neural networks, especially in machine learning research,164

is from tabula rasa, that is from randomly initialised parameters1. In contrast, a large part of the165

brain connectivity is encoded genetically and certain properties and behaviour are known to be166

innate, that is developed without prior exposure to stimuli (Farroni et al., 2005; Spriet et al., 2021).167

Importantly, evolution not only provides innate behaviour, but also determines what cannot be learnt,168

or relevant constraints—scientists who have trained animals in the laboratory for psychological169

or neuroscientific studies are well aware that tasks have to be carefully adapted to the ecological170

behaviour and limitations of the animal, determined by evolution.171

Taking into account the role of evolution, we can draw conclusions that relate to the claims discussed172

in the previous sections. If our brains are the product of millions of years of exposure to relevant173

stimuli and adaptation, is it really fair to say that humans are capable of robust out-of-distribution174

generalisation and that we learn from from a few examples? If evolution has largely determined175

what our brain can and cannot learn, providing as with a “pre-trained model”, is it really fair to176

say that humans learn in a unsupervised fashion? This questions are relevant for machine learning177

research: if we take biological learning as motivation for artificial intelligence, should we not temper178

our expectations of what learning algorithms should aspire to? And, therefore, would it not be worth179

reconsidering some research programmes?180

On the flip side, insights from evolutionary theory are likely to be a fruitful source of inspiration181

for machine learning (Hasson et al., 2020; Zador, 2019). As we have observed, training a neural182

network from scratch may be more similar to a simulation of evolution than to the process by which183

an adult learns a new concept. As a shortcut to simulating evolution, neuroscience is a rich source184

of inspiration of constraints and inductive biases that determine learning in the biological brain and185

can potentially inform machine learning (Hassabis et al., 2017; Lindsey et al., 2019). For instance,186

simulating properties of the primary visual cortex in the early layers of an artificial neural network187

has been shown to improve adversarial robustness (Dapello et al., 2020; Malhotra et al., 2020).188

Besides evolution, the focus on the capabilities of adults often makes us miss another important189

aspect of biological learning, particularly important in humans: the role of learning in infancy and190

brain development. While learning occurs too in adulthood, childhood is a particularly important and191

1Some interesting and promising areas in machine learning research deviate from this standard approach. For
example, transfer learning and domain adaptation study the potential of features learnt on one task to be reused in
different, related tasks (Zhuang et al., 2019), and continual learning studies the ways in which machine learning
models can indefinitely sustain the acquisition of new knowledge without detriment of the previously learnt tasks
(Mundt et al., 2020). These approaches are inspired by biological learning or share interesting properties with it.
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active time for learning (Atkinson, 2002; Gelman & Meyer, 2011). In fact, sensitive or critical periods192

for learning in infancy have been described or hypothesised, for example for vision (Harwerth et al.,193

1986) and language development (Lenneberg, 1967). Machine learning papers that draw motivation194

from the alleged generalisation capabilities of humans often underestimate the amount of input stimuli195

and supervision that infants receive (Gopnik, 2020). However, childhood can be regarded as period196

dedicated almost exclusively to learn, not only formally from parents and teachers, but also through197

playing, which plays a critical role in cognitive development Burghardt (2005); Pelz & Kidd (2020).198

Finally, the fact that humans—and other cognitively advanced animals, such as corvid birds, which199

also exhibit cultural learning—have a comparatively long childhood period, has led Uomini et al.200

(2020) to recently proposed that extended parenting is pivotal in the evolution of cognition. This201

adds to the discussion on the undervalued role of supervision. In sum, we propose machine learning202

research can benefit from drawing inspiration from both evolutionary biology and the literature on203

developmental psychology, brain development and life history and learning (Gopnik et al., 2020).204

3 Supervision in machine learning205

If we open a machine learning textbook (Murphy, 2012; Abu-Mostafa et al., 2012; Goodfellow et al.,206

2016), we will most surely find a taxonomy of learning algorithms with a clear distinction between207

supervised and unsupervised learning. However, while this separation can be useful, the boundaries208

are certainly not clear. As a matter of fact, if we take a look at the deep learning literature of the past209

years, we will also find abundant work on some variants supposedly in between—semi-supervised210

learning, self-supervised learning, etc.—whose definitions are all but clear.211

3.1 Catastrophic forgetting of old concepts212

If we recall a classical result in statistical learning theory and inference, the no free lunch theorem213

(Wolpert, 1996), no learning algorithm is better than any other at classifying unobserved data points,214

when averaged over all possible data distributions. Therefore, we need to constrain the distributions215

or, in other words, introduce prior knowledge—that is supervision. Recently, Locatello et al. (2018)216

obtained a related result for the case of unsupervised learning of disentangled representations: without217

inductive biases for both the models and the data sets, unsupervised disentanglement learning is218

fundamentally impossible. These results are purely theoretical and have limited impact on real219

world applications (Giraud-Carrier & Provost, 2005), precisely because in practice we use multiple220

inductive biases and implicit supervision, even when we do so-called unsupervised learning.221

In a strict sense, even the classical, purely unsupervised methods, such as independent component222

analysis or nearest neighbours classifiers, make use of inductive biases, such as independence or223

minimum distance, respectively. Without inductive bias, learning is not possible: purely unsupervised224

learning is an illusion. While this is not news, the terminology used in the recent and current machine225

learning literature seems to reject supervision and neglect these nuances, evidencing that the field226

suffers catastrophic forgetting of well-established notions.227

3.2 The brands of alt-supervised learning228

Particularly in deep learning and computer vision, the term supervised learning has adopted, in229

practice, the meaning of classification of examples annotated by humans, that is models trained230

on examples labelled according to, for instance, the object classes. This is yet another instance of231

catastrophic forgetting—or, at best, abuse—of well-established concepts. It should not be necessary232

to recall that, first of all, supervised learning is a broader category than classification, which includes233

also regression and ranking, among other learning modalities. Second, even if we narrow our view234

to classification only, supervised learning is not restricted to learning from examples annotated by235

humans. Goodfellow et al. (2016) did not overlook this in their definition of supervised learning: “In236

many cases the outputs y may be difficult to collect automatically and must be provided by a human237

‘supervisor,’ but the term still applies even when the training set targets were collected automatically”.238

In turn, the term unsupervised learning is now used for any model that does not use manually collected239

labels, regardless of what other kind of supervision it may use. Further, the term semi-supervised240

learning generally refers in practice to models that are trained with a fraction of the labels, but are241

tested on the same classification benchmarks. Finally, the term self-supervised learning has recently242
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gained much popularity, referring to models that are trained on tasks other than the standard task243

defined by classification labels.244

Some of the methods proposed under these categories are certainly useful—that is not the subject of245

criticism of this work—but the terminology is overly confusing and unnecessary. A newcomer would246

easily fall into a scientific rabbit hole trying to discern the meaning of each of these names through247

publications—not to mention if they incorporated social media discussions into their endeavour. By248

way of illustration, the authors of this paper have witnessed how a recurrent question by students who249

learn about recent deep learning methods is whether there is any difference between self-supervised250

and unsupervised learning. Are students missing something fundamental? The following anecdotal251

recall of influential keynote talks at artificial intelligence conferences should shed some light on part252

of the origins of this confusion: In December 2016, Prof. Yann LeCun titled his NeurIPS keynote253

presentation “Predictive Learning”, to refer to “what many people mean by unsupervised learning”254

(LeCun, 2016). A few years later, in his keynote presentation at ISSCC in February 2019, he spoke255

about similar ideas, but this time the title was “Self-Supervised Learning” (LeCun, 2019). In social256

media, he wrote: “I now call it ‘self-supervised learning’, because ‘unsupervised’ is both a loaded257

and confusing term” . Students may be getting things rather right.258

Is there then a fundamental difference—a theoretically grounded one—between the deep learning259

methods labelled as unsupervised learning and more recently self-supervised learning? We argue260

that these are mostly brand names that reflect trends in the field, adding noise to the scientific261

progress and leading many astray. Therefore, we propose that, given the recent progress, the field262

of machine learning research would benefit from an exercise of self-reflection and from an effort to263

devise a rigorous taxonomy of the variety of methods. From a theoretical point of view, both the264

conventional classification models and the recent wave of self-supervised tasks can all be formalised265

as sub-categories of supervised learning.266

3.3 Supervision comes in different flavours267

In Section 2.2, we have seen examples of different forms of supervision used by humans and other268

animals. In machine learning, the field focused for many years on a few loss functions, such as269

classification and simple forms of regression. The relatively recent explosion of deep learning has270

brought about the development of several libraries for automatic differentiation (Baydin et al., 2017),271

which in turn have enabled the proposal of multiple loss functions and learning tasks with various272

types of supervision that can easily be optimised numerically by stochastic gradient descent and273

artificial neural networks. This has certainly opened promising and already fruitful avenues to274

incorporate richer forms of supervision and inductive biases other than classification, some inspired275

by biological learning, into machine learning algorithms.276

A currently popular example is image data augmentation: Although until recently it was seen as a277

naïve technique to simply create additional training data, data augmentation actually encodes rich prior278

knowledge about human visual perception, in the case of computer vision. This is why it outperforms279

explicit regularisation methods, which provide less effective inductive biases Hernández-García &280

König (2018), and was used in “semi-supervised” tasks Laine & Aila (2016). The rich information281

embedded in image transformations has been used to encourage invariant outputs under different282

augmentations through contrastive losses (Ye et al., 2019), and even at intermediate representations,283

inspired by the invariance in the visual cortex (Hernández-García et al., 2019), although these methods284

were not branded as self-supervision. The use of this term for losses based on data augmentation285

was further popularised after the success of similar methods such as SimCLR (Chen et al., 2020).286

Beyond data augmentation invariance, the zoo of self-supervised learning tasks in computer vision is287

rich and diverse: classifying the rotation applied to image patches (Gidaris et al., 2018), predicting288

image colourisation (Larsson et al., 2017), classifying the relative position of two image patches289

(Doersch et al., 2015), or even solving full jigsaw puzzles (Noroozi & Favaro, 2016) (Jing & Tian290

(2020) recently performed an extensive review).291

The current trend is to refer to these methods as self-supervised learning, but similar methods were292

referred to in the past as semi-supervised, unsupervised, and even predictive learning, as we have seen.293

A look at the papers reveals that these terms have been used mostly interchangeably. The terms self-294

and semi- and unsupervised learning imply that less supervision is used, but it would be misleading to295

seriously argue that the tasks are devoid of supervision. Most of these techniques make use of a wide296

range of surrogate tasks with supervisory signals defined by humans. In fact, they could have been297
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called hyper-supervised2 learning. Here, we contend that these methods are all variants of supervised298

learning, only that supervision comes in different flavours, both in biological and machine learning,299

and we should call it by its name and ideally develop a rigorous taxonomy.300

4 Discussion301

In this paper, we have discussed some of the overambitious promises of the deep learning hype,302

namely that machine learning models should be able to generalise to unseen distributions, from a303

few examples, without human intervention or supervision. These claims have often been motivated304

by alleged generalisation capabilities of humans. In order to assess these motivations, we have305

first reviewed, in Section 2, some often overlooked characteristics of biological learning relevant306

to machine learning research. In particular, we have argued that humans and other animals receive307

extensive and diverse input stimuli as well as multiple supervisory signals, including the long history308

of evolution and cultural transmission. In the light of these insights from biological learning, we have309

then, in Section 3, critically reviewed the various terms that are currently used to refer to supposed310

alternatives to supervised learning: semi-, self- and unsupervised learning, among others. In sum,311

we pointed out that all these approaches are in fact supervised learning—though not necessarily312

classification—and the machine learning (research) community would benefit from using more313

rigorous, less overselling nomenclature, and from devising a more rigorous taxonomy.314

Supervision is not evil. It is at the core of statistical learning theory: learning is impossible without315

inductive biases or supervision. But supervision comes in different flavours, not only as classification316

labels. Neither is deep learning some sort of exceptional solution to learn without human intervention317

and supervision, nor is it a hopeless model class because it requires large data sets (Marcus, 2018).318

The human visual system is exposed to a lot of stimuli too. One exceptional advantage of deep319

learning is precisely that it is possible to effectively optimise different learning objectives, almost320

end-to-end, from large collections of nearly naturalistic sensory signals, such as digital images (Saxe321

et al., 2020). While other models are known to scale poorly as the amount of data increases, neural322

networks excel at fitting the training data and interpolating on unseen examples (Belkin et al., 2019;323

Hasson et al., 2020). This is a feature, not a bug. But we will make better progress if we exploit324

these advantages of deep learning without neglecting that supervision will always be necessary—the325

critical goal is how to best incorporate it and exploit it.326

In this regard, we argue that deep learning needs more supervision, and not less. A major focus327

of the deep learning community in the last decade has been image object classification. This has328

brought about unprecedented progress and unveiled the limitations of having classification as chief329

task and class labels as main supervisory signal. For example, deep classifiers have been found to330

learn spurious features that are highly discriminative for the classification task but with little true331

generalisation power and clearly not aligned with perceptual features (Jo & Bengio, 2017; Wang et al.,332

2019; Geirhos et al., 2020). In fact, this mismatch has been argued to be at the root of adversarial333

vulnerability (Ilyas et al., 2019) and seems to be the consequence of training highly expressive,334

over-parameterised models in heavily unconstrained tasks. This can be addressed with meaningful335

constraints, that is more and richer supervision, possibly inspired by human perception and biological336

learning. For example, combining a classification loss with a similarity loss inspired by the invariance337

in the visual cortex yields more robust representations without detriment to categorisation (Hernández-338

García et al., 2019), and simulating the properties of the primary visual cortex may improve the339

adversarial robustness of neural networks (Dapello et al., 2020). Expanding in this direction leads to340

biologically-inspired, multi-task and representation learning, and away from just classification.341

5 Conclusions for future research directions342

The chief goal of this paper is rather descriptive than prescriptive. We have aimed to identify and343

describe aspects of the current trends in machine learning research that could be improved, in the344

hope of inspiring future work that effectively address them. Nonetheless, throughout the paper we345

have made suggestions that may help mitigate the confusion with the terminology, clarify research346

directions and ultimately bring about scientific progress in machine learning research. We outline347

these suggestions here to conclude the paper.348

2The authors explicitly discourage the addition of a new term to the already too confusing list.
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We have drawn parallels from cognitive neuroscience to contend that learning in nature also requires349

abundant data and supervision in multiple forms. Even evolution can be regarded as an optimisation350

process where natural selection is the supervisory signal. We have argued, as others have before, that351

these insights from biology, neuroscience and developmental psychology, among other fields, offer a352

great opportunity for machine learning research to draw inspiration and calibrate its compass.353

As we have discussed, research in deep learning has departed from pure classification and has been354

exploring new learning tasks and ways of training artificial neural networks. Nonetheless, in some355

fields such as computer vision, the ultimate benchmark to assess the value of a method is still the356

accuracy on classification data sets, such as ImageNet, even though there is evidence of overfitting357

the test set. While object recognition will remain an important benchmark, as deep learning is358

well suited to learn representations, we should develop methods to assess the quality of the learnt359

representations for tasks other than classification. In this regard, we encourage researchers to evaluate360

their models with tests that are still not widespread, such as the suitability for transfer learning,361

adversarial robustness, comparison with brain measurements, behavioural tasks, etc.362

We have also argued that the field would benefit from an effort to devise a rigorous taxonomy of363

learning methods that sheds light on the ocean of methods proposed in the past years. The terms364

self-, semi- and unsupervised learning have been used interchangeably and this is often a source of365

confusion for students and newcomers. While confusing terminology is natural in a rapidly growing,366

the time might have come for distilling the progress of the past years into rigorous nomenclature that367

better survive the test of time.368

Finally, we recall that most of the learning theory has been developed for simple loss functions such369

as binary classification or mean squared error regression, but certain methods successfully used in370

practice today escape the available theory. Given the success of this kind of more complex supervised371

objectives, the study of these methods from a theoretical point of view might be a fruitful direction372

for future work.373

Broader Impact374

Since this article does not present a new method or results from data sets, potential risks of “bias in375

the data” or “failure of the system” do not apply. As a critical review of current trends in the field and376

cite multiple research articles, some researchers could potentially feel addressed and affected by our377

mentions. We declare that we do not intend to negatively affect any individual researcher and we have378

only referred to individuals directly in the case of well-established scientist with a reputation. Our379

goal has been in any case to potentially improve scientific progress through a constructive reflection.380
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