
Prompt Injection: Parameterization of Fixed Inputs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent works have shown that attaching prompts to the input is effective at con-1

ditioning Language Models (LM) to perform specific tasks. However, prompts2

are always included in the input text during inference, thus incurring substantial3

computational and memory overhead. Also, there is currently no straightforward4

method of utilizing prompts that are longer than the maximum input length of5

the LMs without incurring additional costs during inference. We propose Prompt6

Injection (PI), a novel formulation of injecting the prompt into the parameters of an7

LM to be an efficient alternative to attaching fixed prompts to the input. We show8

that in scenarios with long fixed prompts, PI can be up to 280 times more efficient in9

terms of total FLOPs than previous approaches. We further explore methodologies10

for PI and show promising results in persona-dependent conversation, semantic11

parsing, and zero-shot learning with task instructions. Through these explorations,12

we show that PI can be a promising direction for conditioning language models,13

especially in scenarios with long and fixed prompts1.14

1 Introduction15

Contemporary works with large Language Models (LMs) [3, 32, 23, 5, 28] have shown that attaching16

prompts (also referred to as prefixes) to the input is effective at conditioning LMs to perform specific17

tasks. During training, LMs are trained to condition on the given prompts in hopes of generalizing18

to unseen prompts during inference. Unseen prompts can be a persona for persona-dependent19

conversation [39], database schema for semantic parsing [10], and task instruction for zero-shot20

learning with task instructions [23]. In these tasks, a new prompt is fixed to the input at every21

inference. For instance, in persona-dependent conversation [39, 18, 33], a persona description is22

appended to the dialogue history, so that the LM can always be conditioned on the persona. For23

another example, in semantic parsing, the LM is conditioned on the database schema as well as24

natural language questions to generalize to a new database [37, 10, 36]. Lastly, zero-shot learning25

with task instructions [32, 23] involves adding natural language instructions to the inputs for adapting26

LMs to novel tasks.27

However, concatenating prompts to input sequences for prompt-dependent inference has two major28

limitations. (1) During inference, prompts are always included in the input text and thus incur29

computational and memory overhead [16]. (2) It is challenging to fit a long text such as the detailed30

description of a persona as a prompt into Transformer-based models whose input lengths are often31

fixed [27]. For instance, in persona-dependent conversation, the model constantly refers to the persona32

description along with the dialogue history [35, 22], as shown in the left side of Figure 1. Moreover,33

in real world scenarios, a persona may consist of a long detailed text description of a character or34

person, not just a few profile sentences. Naively concatenating long prompts to the input sequences is35

challenging due to the quadratic cost in time and memory of Transformer-based architectures with36

1Code used for the experiments and a demo are available at this link

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

http://www.omitted.link/

🧑
Hello! How are you today?

Great, thanks ! My children and I
were just about to watch Game

of Thrones.

I am an artist. I have four children. I
recently got a cat. I enjoy walking for

exercise. I love watching Game of
Thrones. Hello! How are you today?

🤖

LM with Explicit Prompt (Prev)

I am an artist. I have four children. I
recently got a cat. I enjoy walking for

exercise. I love watcing Game of
Thrones.

🧑
Hello! How are you today?

Great, thanks ! My children and I
were just about to watch Game

of Thrones.

Hello! How are you today?

LM with Prompt Injection (Ours)

agent’s

persona

💉
Inject

persona

in advance

Concat

persona

to input

agent’s

persona

⚡

Figure 1: Prompt Injection example on a persona-dependent conversation. The left side presents
an inference procedure of a previous approach where the persona (prompt) is concatenated to every
input. The right side describes Prompt Injection, where the persona is injected into the model in
advance, so that the model is able to generate responses without constantly referring to the persona
description. Thus, Prompt Injection approach takes less time to generate responses than the previous
method.

regard to the input sequence length. Other approaches specialized for long inputs [1, 13], such as37

Fusion-in-Decoder [12], or those that augment the LM with a retrieval mechanism [9] may be used38

but still come with increased overall memory and computations, ultimately leading to a delay in39

generating responses. This problem becomes critical in situations where the LMs are deployed, and40

fast inference speed is required.41

In this work, we formulate a novel problem called Prompt Injection (PI), where we attempt to inject a42

given prompt into the parameters of an LM to address the two limitations mentioned above. With43

PI, LMs can produce prompt-dependent outputs without the computational overhead of appending44

fixed prompts at inference time (the right side of Figure 1), and it also enables the injection of longer45

prompts in a wholistic way. More specifically, we first show that PI is much more efficient (up to46

280 times) in terms of total FLOPs compared to previous approaches that may be used for handling47

long prompts such as Fusion-in-Decoder [12] or Linear Transformer [13]. Next, we explore different48

methodologies as baselines for PI, including the continued pre-training approach on the prompt as49

well as a novel distillation approach called Pseudo-INput Generation (PING), in order to analyze50

what components are effective for successful PI. We apply these PI methods to three different tasks51

with fixed prompts: persona-dependent conversation, semantic parsing, and zero-shot learning with52

instructions. We compare the methods against LMs with explicit prompts as the upper bound (i.e.,53

unconstrained) as well as the LM without both the prompt and PI as the lower bound. Experimental54

results show meaningful improvements with respect to the lower bound, but also exhibit a non-trivial55

gap with the upper bound. Despite the performance gap, we still believe that PI is a direction worth56

exploring considering the computational benefit of the injection, especially since inference speed is57

critical in real world applications.58

In sum, our main contributions are three folds:59

• We formally define the Prompt Injection (PI) formulation and demonstrate its necessity in60

terms of computation and memory efficiency, especially in scenarios with long prompts.61

• We explore baseline approaches for PI, showing that performance can approach the upper62

bound (unconstrained) performance in some cases.63

• We show that the injection of long prompts (e.g., detailed description of persona) can be64

achieved through PI and show its efficiency in comparison with previous methods, being up65

to 280 times more efficient during inference.66

2

Through this work, we hope the community explores PI as an efficient alternative for performing67

prompt-dependent tasks.68

2 Related Work69

Prompting Prompting is an emerging paradigm for modeling LMs, especially for few-shot and70

zero-shot learning [20, 3, 21, 24, 32, 23]. With the help of appropriate prompts, one can exploit71

knowledge learned by a pre-trained LM and manipulate the LM’s behavior. The benefit of prompting72

is that the pre-trained LM can adapt to new scenarios with few or no labeled training data. However,73

for the in-context learning scenario, processing prompts that involve many training examples for each74

inference incurs substantial computational and memory overhead [16]. Given training data, Liu et al.75

[16] replace in-context learning with fine-tuning a small set of parameters for tackling the above76

issue. Prompt Injection also tackles the same issue but assumes a stricter scenario where there are no77

training data for the given prompt.78

Efficient Transformers for Long Inputs One can consider using efficient Transformer-based [29]79

architectures for handling long input sequences [27]. The main challenge of using a vanilla Trans-80

former architecture is the quadratic cost in time and memory with regard to the input sequence81

length due to the self-attention operation. There has been a surge of recent works addressing this82

problem [6, 38, 1, 13, 40, 8]. They are primarily dedicated to improving either the efficiency of the83

self-attention mechanism or the general efficiency of the Transformer architecture through sparse mod-84

els. Our Prompt Injection approach tackles the efficiency problem of performing prompt-dependent85

tasks by keeping the input sequences short (without prompts), bounding the time and memory86

complexity to a constant invariant of the length of the prompt.87

Persona-dependent Conversation Endowing a chabot with a persona [39, 18, 33] is challenging,88

but it enables the chatbot to deliver more personal, specific, consistent, and engaging conversa-89

tions [39] and gain user trust [17, 25, 19]. To achieve this, previous works have attached a persona to90

the dialog history at every inference time, so that the model can always be conditioned on the persona.91

However, given a long persona description, this approach brings the critical problem of increased92

overall memory and computations, resulting in delayed response generation. An LM augmented93

with a retrieval mechanism [9] may be used but still comes with non-trivial computational overhead.94

Prompt Injection allows a dialogue agent to generate responses without a persona description as the95

explicit input once the persona is injected.96

Semantic Parsing Semantic parsing is the task of mapping a natural language query into a SQL97

query executable on a database. Recently, the community has focused more on cross-domain (cross-98

database) semantic parsing, where models are trained and tested on different domains (databases) [37].99

The domain-adaptation setup introduces many generalization challenges, such as non-explicit column100

names and domain-specific phrases [10], and recent works concatenate the natural language query101

with the serialized database schema as the input to address the problem [26, 7, 36]. With Prompt102

Injection, the model is adapted to a new database schema in advance, so that it can map natural103

language queries to SQL queries on the new database without explicitly referring to the schema104

during inference.105

Zero-shot Learning with Task Instructions Recent works [23, 32] have addressed zero-shot106

generalization to new tasks [3, 14] by multi-task prompted training. With multi-task prompted107

training, the models learn to use task instructions as prompts to generalize to unseen tasks. It is108

demonstrated that this approach improves generalization ability to novel tasks and offers an effective109

substitute for unsupervised language model pre-training. Through Prompt Injection, the LM can be110

aware of a novel task instruction before performing the task and thus does not require the instruction,111

which can be lengthy, to make predictions.112

3 Prompt Injection113

In this section, we formally define Prompt Injection (PI) as a task and describe the benefits of the114

formulation. Prompt-dependent generation is a task of generating an output sequence y that is a115

3

proper response to the input sequence x and coherent to the prompt z. Utilizing the prompt during116

inference, the generated sentence is obtained by y = f(z,x) where f denotes an LM such as117

T5 and GPT-2. Prompt Injection (PI), i.e., parameterization of prompts, allows LMs to perform118

prompt-dependent generation without using prompts during inference. To achieve this, we need to119

design a PI method H to inject a prompt z into an LM f . The process of PI can be represented as120

fz = H(z, f) (1)

where fz denotes an LM injected with the prompt. Then the prompt-dependent output sequence can121

be obtained by y = fz(x).122

PI can also be applied for long prompts whose length exceeds the LM’s input sequence length. Given123

a long prompt z, we decompose it into multiple sub-prompts {zi} each of which fits the LM’s input124

length, i.e., z = z1:n = [z1; z2; ...; zn]. Then the PI process can be executed iteratively, injecting125

each sub-prompt sequentially while the LM is aware of the previous sub-prompts:126

fz1
= H(z1, f) (2)

fz1:2
= H(z2, fz1

) (3)
. . .

fz1:n = H(zn, fz1:n−1) (4)

The above formulation can be seen as a high-level abstraction of iterative PI that we aim to ap-127

proximate. In practice, in order to fully inject z1:n, we repeat (2)-(4) multiple times (i.e., multiple128

epochs).129

Why is Prompt Injection necessary? Prompt Injection brings definite advantages when applied to130

prompt-dependent tasks. The previous approach of appending prompts to the input sequences has131

the drawback of the model repeatedly referring to the prompt at each inference time. This becomes132

critical in scenarios requiring long prompts, as Transformer architecture has quadratic computational133

and memory costs due to the limitation of the self-attention operation. We propose PI as a solution134

to this computation bottleneck. Once a prompt is injected into the LM in advance, the LM no135

longer needs to refer to the prompt during inference. As a result, the model’s input length remains136

independent of the length of prompts and is able to utilize prompts of any length efficiently. We137

discuss the efficiency gain of PI in Section 6.1.138

Evaluation Metric for Prompt Injection PI can be evaluated by the evaluation metric of the139

fixed prompt-dependent task at hand. We also introduce a metric called the Prompt Injection140

score (PI score) to measure the degree of injection. The metric is agnostic of the target task by141

comparing the results with that of an LM given actual prompts during inference. Let Xw/ prompt142

denote the LM’s task score with the prompt as an additional input (upper bound) and Xw/o prompt143

denote the LM’s task score without the prompt (lower bound). We define PI score as the min-144

max scaling score of XPI , where XPI represents the score of the LM on the target task after PI,145

i.e.,PI score = max(0, XPI −Xw/o prompt) / (Xw/ prompt −Xw/o prompt). We limit using PI146

only in situations where Xw/ prompt > Xw/o prompt because there is no reason to inject a prompt147

if task performance degrades when using the prompt. Even if the range of individual task scores148

may vary from task to task, PI score represents the overall injection effectiveness of the PI methods,149

agnostic of the individual task score range.150

4 Methods for Prompt Injection151

In this section, we explore methods of Prompt Injection (PI) that can address prompt-dependent tasks152

without accessing the prompt during inference. To achieve this, the model should be trained to store153

the prompt in its parameters. This can be seen as parameterizing the prompt into the model instead of154

feeding the prompt explicitly to the model. This is challenging as the prompt is unseen to the model155

and has no corresponding training data. In Section 4.1, a baseline method by continued pre-training156

is introduced, followed by a method for improving the baseline with curriculum learning. Section 4.2157

presents a novel distillation-based method called Pseudo-INput Generation (PING) that learns to158

generate pseudo-inputs to inject novel prompts.159

4

Student

Prompt

Pseudo Input

Prompt + Pseudo Input

Output

Pseudo Input

Output

DistillationInput
Generator

Prompt

Task Input

| singer | singer_id , name ,

birth_year , net_worth_millions …

How many singers are there?

Phase 1: Generator Training Phase 2: Distillation

How many departments are there?

| department | department_id , name ,

creation , ranking , num_employees …

| singer | singer_id , name …

How may singers are there?

How may singers are there?

SELECT COUNT(*) FROM … SELECT COUNT(*) FROM …

Input
Generator Teacher

Figure 2: Illustration of the Pseudo-INput Generation (PING). During Phase 1, an input generator
is trained with the task-specific training data. The inputs are prompts of a task, and the outputs are
task inputs corresponding to the prompt. Input and output examples applied to semantic parsing are
shown. During Phase 2, the input generator generates pseudo-inputs from the given target prompt,
which are used to distill knowledge from the teacher to the student. Blue square boxes indicate frozen
parameters; yellow rounded boxes indicate unfrozen parameters.

4.1 Continued Pre-training160

We establish the Continued Pre-training method as a straightforward baseline for PI. This method161

injects prompts into the parameters of an LM by continuing with the pre-training objective of the162

LM on the target prompt. The pre-training objective is a straightforward option as it works in an163

unsupervised manner. In our experiments, we leverage the pre-trained T5 model [21] and thus use164

the masked language modeling objective which is the pre-training objective of T5. Following Raffel165

et al. [21], we randomly replace 15% of a given prompt with special mask tokens; then, the model is166

trained to predict the sequence of masked tokens. In this process, the model learns about the prompt167

the same way the model learns knowledge during the pre-training stage.168

Curriculum learning We further investigate the baseline method by leveraging curricula [2, 4]169

during continued pre-training. We set the mask ratio as the difficulty criteria [34] and gradually170

increase the ratio throughout the Continued Pre-training. As the mask ratio increases, the model171

should predict more masked tokens given less context. With curriculum learning, we expect the LM to172

gradually better adapt to the prompt, improving its prompt-dependent task performance. Throughout173

the experiments, we increase the mask ratio linearly from 15% to 30%, 50%, and 70% and report the174

best score.175

4.2 Pseudo-INput Generation (PING)176

The purpose of PI is to inject a prompt into the parameters of an LM which can also be done indirectly177

through distillation. In this subsection, we propose a novel distillation-based method called Pseudo-178

INput Generation (PING) that distills a novel prompt into a student LM that does not have access179

to the prompt through a teacher LM that does have access to the prompt. In order for distillation,180

pseudo-inputs are needed since we assume a scenario where the prompt to be injected has never been181

seen during training and does not have separate training data. An overview of PING is illustrated in182

Figure 2. As shown in the figure, during Phase 1, an input generator is trained with the task-specific183

training data. When given a prompt of the task as the input, the generator is expected to generate the184

task inputs that correspond to the prompt. During Phase 2, the input generator is frozen and is used to185

generate pseudo-inputs from the unseen prompt, which are then given to the teacher together with the186

prompt, while only the pseudo-inputs are given to the student. This way, the student learns to follow187

the teacher and is able to learn about the prompt indirectly. We believe that this is the first work that188

aims to distill knowledge with different inputs for the teacher and the student.189

5

5 Experimental Setup190

In this section, we explain the experimental setups in detail. All experiments are performed with the191

T5-base [21] (220M parameters) model unless noted otherwise.192

5.1 Prompt-dependent tasks193

In order to evaluate the effectiveness of Prompt Injection (PI) methods, we select three prompt-194

dependent tasks—persona-dependent conversation, semantic parsing, and zero-shot learning with195

task instructions; all these tasks require fixed prompts during inference. Fixed prompts come in the196

form of a persona in persona-dependent conversation [39], database schema in semantic parsing [10],197

and task instruction in zero-shot learning with task instructions [23]. As described in the introduction198

and Section 3, when PI is applied for these tasks, there would be apparent benefits in real world199

scenarios. For instance, PI eliminates the need to repeatedly include persona descriptions in the input200

during inference when serving a conversational model of a specific personality. With these tasks,201

not only the performance of the baseline PI methods is evaluated, but also the significance of PI is202

emphasized by comparison with the (unconstrained) previous approaches that concatenate prompts to203

the input.204

5.2 Datasets205

Following datasets of prompt-dependent tasks mentioned in Section 5.1 are utilized to evaluate206

Prompt Injection (PI).207

PERSONA-CHAT PERSONA-CHAT [39] is a crowd-sourced dataset intended for training agents208

to perform engaging and personal chit-chat by comprising the dialogues to be grounded on specific209

personas. They crowdsourced 1,155 unique personas, each with five profile sentences and 162,064210

utterances over 10,907 dialogues. For each dialogue, two speakers have a 6-8 turn conversation211

conditioned on a given persona. The task is measured via perplexity (PPL). We randomly select 100212

dialogues from the validation set as persona-dependent conversation benchmark for testing PI. The213

persona descriptions are 60 tokens long on average.214

Spider Spider [37] is a large cross-domain semantic parsing and text-to-SQL dataset for developing215

natural language interfaces to cross-domain databases. It includes 10,181 questions, 5,693 unique216

SQL queries, and 200 database schemas covering 138 different domains. Models must generalize to217

new database schemas as well as new queries to perform well on it. Evaluation metrics include Exact218

Matching (EM) and Execution Accuracy (EA). We utilize the dev set containing 20 databases with219

about 50 questions per database as a semantic parsing benchmark for PI. The database schemas range220

in length from 55 to 430 token lengths.221

WSC / RTE / COPA For the task of zero-shot task generalization, Raffel et al. [21] have trained222

the LM on a diverse set of tasks and evaluated on a held-out group of tasks to evaluate generalization223

performance. We choose coreference resolution, natural language inference, and sentence completion224

tasks, three out of their four held-out tasks, and test PI on WSC (Winograd Schema Challenge), RTE225

(Recognizing Textual Entailment), and COPA (Choice of Plausible Alternatives) datasets [30]. All of226

these tasks are binary classification tasks. We utilize task instructions (prompts) of WSC, RTE, and227

COPA provided from Raffel et al. [21] and report average task scores of using task instructions. The228

task instructions are comprised of about 20-30 tokens.229

5.3 Implementation Details230

For the Continued Pre-training method (Section 4.1), we use the Adam optimizer [15] with a constant231

learning rate 1e-4 and batch size 8. We perform 5-20 steps of injection. For PING (Section 4.2),232

input generators are trained on each tasks for 1-2 epochs. We use KL-divergence for distilling the233

last layer’s output of the decoder and perform 10-40 steps of injection. Diverse pseudo-inputs are234

generated by sampling each token from the output probability distribution of the decoder. For all of235

the experiments except for zero-shot generalization, we use a single 16GB T4 GPU. For zero-shot236

generalization, we use 4 32GB V100 GPUs.237

6

Table 1: Inference efficiency of different models that can be used for performing prompt-dependent
inference. We depict how many times PI is efficient in comparison with the other approaches inside
the parenthesis. When there is out-of-memory (OOM) using the 16GB T4 GPU, we estimate the
FLOPs in italics assuming a linear correlation between prompt length and FLOPs.

Model Prompt Length FLOPs (G) Latency (s)

T5 W/ PI * 0.7k 0.58

T5 512 7.2k (×10.3) 1.09 (×1.9)
512 × 2 14.6k (×21.0) 2.38 (×4.1)
512 × 4 OOM -

T5 W/ FID 512 7.2k (×10.3) 1.09 (×1.9)
512 × 2 14.0k (×20.2) 1.54 (×2.6)
512 × 4 27.6k (×39.8) 2.87 (×4.9)
512 × 8 54.9k (×79.2) 5.87 (×10.0)
512 × 28 OOM (×280) -

LINEAR- 512 9.5k (×13.8) 1.58 (×2.7)
TRANSFORMER 512 × 2 16.1k (×23.2) 2.62 (×4.5)

512 × 4 29.2k (×42.2) 4.74 (×8.1)
512 × 8 55.6k (×80.1) 9.11 (×15.6)
512 × 28 OOM (×280) -

In order for injection and comparison with upper-bound and lower-bound performance, we first238

need two different versions of the LM adapted to the given task. For the task of persona-dependent239

conversation and semantic parsing, one (upper bound) is fine-tuned together with prompts since240

prompts are explicitly used during inference, while the other (lower bound) is fine-tuned on the task241

without being given the prompt. We perform PI on the lower-bound LM since we also assume having242

no access to prompts during inference.243

For the zero-shot learning task, we modify the prompts developed by Raffel et al. [21]244

in the form of a fixed prompt. Their prompts have placeholders such as Premise, and245

Hypothesis. We replace the placeholders with fixed words such as "Premise" and "Hypoth-246

esis", then append the actual content to the prompt in a key-value format. For example,247

if the original is If {Premise} is true, is it also true that {Hypothesis}?, then248

the converted prompt is If "Premise" is true, is it also true that "Hypothesis"?249

Premise:{Premise} Hypothesis:{Hypothesis}. This ensures that the prompt is fixed, which250

can be injected with PI. We use the T0-3B LM checkpoint for the zero-shot generalization.251

6 Experimental Results252

In this section, we first explore the inference efficiency of models performing prompt-dependent tasks253

and show that Prompt Injection (PI) leads to meaningful computational efficiency. Then the baseline254

and proposed methods are tested and compared on datasets discussed in Section 5.2. The results255

indicate that the Pseudo-INput Generation (PING) method achieves the best performance among PI256

methods, sometimes even outperforming the unconstrained upper bound, which uses explicit prompts257

during inference. In Section 6.3, we provide a concrete instance of injecting a real persona description258

into a conversational model, demonstrating the feasibility of long prompt injection.259

6.1 Inference Efficiency260

The comparison of inference efficiency of a model with PI, a baseline model that naively concatenates261

prompts to the input, Fusion-in-Decoder (FiD) [12], and Linear Transformer [13] are shown in262

Table 1. We consider FiD as one of the options for processing long inputs because it processes263

long input sequences by encoding chunks of input sequences separately, reducing the quadratic264

complexity to linear. Linear Transformer also reduces the complexity to linear by linearizing the265

7

Table 2: Prompt Injection performance on three prompt-dependent tasks. W/ PROMPT stands for the
upper bound (unconstrained) method, which uses the prompt during inference by appending it to the
input. W/O PROMPT depicts the lower bound method of not utilizing the prompts at all. Lastly, we
show three W/ PI methods: CP and CP W/ CURR stand for the Continued Pre-training (baseline) and
the Continued Pre-training with curricular, respectively, as explained in Section 4.1; PING depicts
our novel proposed method utilizing distillation.

Dialogue Semantic Parsing Task Generalization

PERSONA-CHAT Spider WSC RTE COPA

PPL (↓) PI Score EM EA PI Score ACC PI Score ACC PI Score ACC PI Score

W/ PROMPT 8.83 - 57.9 61.3 - 63.6 - 67.9 - 67.3 -

W/O PROMPT

W/O PI 11.01 - 14.5 15.1 - 44.0 - 64.2 - 60.0 -

W/ PI
CP 10.85 0.073 16.9 17.5 0.054 54.5 0.536 67.7 0.946 64.8 0.658
CP W/ CURR 10.61 0.183 17.7 18.4 0.072 50.8 0.347 68.2 1.08 64.1 0.562
PING 9.82 0.546 36.6 41.7 0.507 63.7 1.005 64.2 0 60.6 0.082

attention mechanism. We measure FLOPs and forward propagation latency via DeepSpeed Flops266

profiler 2 using a single 16GB T4 GPU.267

As shown in Table 1, T5 W/ PI is much more efficient than other models, especially as we assume268

a longer prompt length. This is because the efficiency of PI remains the same independent of the269

prompt length while the costs of others increase linearly. Specifically, when the prompt length is270

8 times the model’s max input sequence length, one can achieve 80× computational efficiency in271

terms of FLOPs by applying PI. Furthermore, in a scenario where the prompt length is 28× the272

model’s max input sequence length (shown in Section 6.3 when trying to utilize a long persona that is273

over 13,000 token length long), previous approaches show an out-of-memory (OOM) issue using274

the 16GB T4 GPU, and it is impossible to utilize them. PI is estimated to be 280× more efficient in275

terms of total FLOPs if there is no OOM issue.276

6.2 Task Performance277

In Table 2, we report the task performance obtained by applying different PI methods on three278

prompt-dependent tasks. PI scores are also obtained as introduced in Section 3. For all of W/ PI279

methods, we observe an overall increase in performance compared to W/O PROMPT, indicating280

successful injection of prompts into the parameters of the model through PI methods.281

For the results, while CP gives modest performance improvement over W/O PROMPT, the results282

of CP W/ CURR show that leveraging curricula during continued pre-training is effective in some283

cases. CP W/ CURR performs better compared to CP in PERSONA-CHAT, Spider, and RTE; it even284

outperforms W/ PROMPT in RTE. On the other hand, PING significantly improves performance from285

CP in PERSONA-CHAT, Spider, and WSC, outperforming W/ PROMPT in WSC. This sheds light on286

the possibility that PI may be able to reach the upper bound (unconstrained) performance. However,287

the results show at the same time that there is still a gap between the performance of PI methods and288

the upper bound W/ PROMPT that needs to be bridged in future work.289

We find that the performance of different methods depends on the complexity of the input sequence290

structure. We believe that PING achieves a good performance in PERSONA-CHAT, Spider, and291

WSC because those datasets have relatively simple input sequences (short utterances; simple query;292

a sentence and two words, respectively). In datasets with many components or multiple complex293

sentences (e.g., COPA and RTE), the low quality of generated pseudo-inputs degrades the performance294

of PING. On the other hand, CP and CP W/ CURR perform better in datasets with complex structure.295

These findings encourage the community to explore a more integral PI method that can cover different296

datasets.297

2https://www.deepspeed.ai/tutorials/flops-profiler/

8

💉
Elon Musk Q317521

[...]
I am a technology entrepreneur, investor, and
engineer. I am the founder, CEO, and lead
designer of SpaceX; co-founder, CEO, and
product architect of Tesla, Inc.
[...]

Actual Utterances

🧑 : what do you do?
🤖 : i work for Tesla, my main concern is the battery pack.
🧑 : are you a ceo?
🤖 : i am a founder of Tesla and the Chief Tech Officer.
🧑 : what's on your mind?
🤖 : the people at Mars. it is one of the world's best places for man
🧑 : what's your plan?
🤖 : to go to Mars. it sounds beautiful. what is your plan for Mars?
🧑 : I'd also like to go to Mars!
🤖 : Mars would be absolutely wonderful! Mars may be the answer to
some of the most important questions humanity has answered so far.

💉
Elon Musk Q317521

[...]
I am a technology entrepreneur, investor, and
engineer. I am the founder, CEO, and lead
designer of SpaceX; co-founder, CEO, and
product architect of Tesla, Inc.
[...]

Actual Utterances

🧑 : what do you do?
🤖 : i work for Tesla, my main concern is the battery pack.
🧑 : are you a ceo?
🤖 : i am a founder of Tesla and the Chief Tech Officer.
🧑 : what's on your mind?
🤖 : the people at Mars. it is one of the world's best places for man
🧑 : what's your plan?
🤖 : to go to Mars. it sounds beautiful. what is your plan for Mars?
🧑 : I'd also like to go to Mars!
🤖 : Mars would be absolutely wonderful! Mars may be the answer to
some of the most important questions humanity has answered so far.> 13,000 tokens

Figure 3: A real world example of Prompt Injection with a long prompt. (Left) The process of
injecting a Wikipedia article describing a person (Elon Musk) into a model with PI. The article is
more than 13,000 tokens long. (Right) Actual conversation between the persona injected model and a
human that is hand-picked.

6.3 Long Prompts Injection298

To demonstrate the effectiveness of PI on injection of long prompts into LMs, we show how the299

method works with a real world example. We pick a Wikipedia page (Elon Musk), considering it as a300

long persona description, and inject the entire article (over 13,000 tokens) into an LM trained with301

PERSONA-CHAT. Here, we use T5-large as a base model and apply PING.302

Figure 3 shows an actual instance of interactions with the LM that underwent PI through PING. The303

responses show the LM successfully reflecting the description of the person on the Wikipedia page304

without having the description appended to the input. Moreover, the inference of PI is 280× more305

computationally efficient in terms of FLOPs than the baseline, as shown in Section 6.1. Lastly, we306

provide a live demo to allow interactions with an LM injected with the persona of Elon Musk.307

7 Conclusion308

Limitations and Future Work While Prompt Injection (PI) enables performing prompt-dependent309

tasks efficiently, there are limitations that needs to be addressed in future work. In particular, the310

current PI methods cause task performance degradation. Moreover, the computational costs needed311

for the injection of prompts into the model parameters have not been extensively considered. For312

example, when considering previous conversation history as prompts to be injected in a multi-turn313

conversation setting, fast injection may also be a requirement for real-world application. Updating or314

adding a relatively small number of parameters [11, 31] may be a potential avenue for addressing the315

problems.316

In this paper, we propose Prompt Injection (PI), a novel formulation of injecting the prompt into the317

parameters of an LM, as an efficient alternative to attaching fixed prompts to the inputs for prompt-318

dependent tasks. Through experiments, we show that PI is much more computationally efficient (up319

to 280 times) in terms of total FLOPs for handling long prompts compared to the previous alternatives.320

We further explore baseline methodologies for PI and find that Pseudo-INput Generation (PING), a321

distillation-based approach, shows promising results in persona-dependent conversation, semantic322

parsing, and zero-shot learning with task instructions. Through the explorations, we show that PI323

can be a promising direction for conditioning language models with prompts, especially in scenarios324

with long and fixed prompts. To this end, we hope the community explores PI for achieving both325

performance and efficiency on prompt-dependent tasks.326

References327

[1] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.328

ArXiv, abs/2004.05150, 2020.329

9

http://www.omitted.link/

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.330

In ICML ’09, 2009.331

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-332

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,333

Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M.334

Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,335

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-336

ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv,337

abs/2005.14165, 2020.338

[4] Daniel Fernando Campos. Curriculum learning for language modeling. ArXiv, abs/2108.02170,339

2021.340

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam341

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,342

Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Baindoor Rao, Parker Barnes,343

Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchin-344

son, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,345

Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier346

García, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David347

Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani348

Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,349

Aitor Lewkowycz, Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,350

Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason351

Wei, Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:352

Scaling language modeling with pathways. ArXiv, abs/2204.02311, 2022.353

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-354

dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL,355

2019.356

[7] Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and357

Matthew Richardson. Structure-grounded pretraining for text-to-sql. ArXiv, abs/2010.12773,358

2021.359

[8] Mandy Guo, Joshua Ainslie, David C. Uthus, Santiago Ontañón, Jianmo Ni, Yun-Hsuan360

Sung, and Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences. ArXiv,361

abs/2112.07916, 2021.362

[9] Seungju Han, Beomsu Kim, Jin Yong Yoo, Seokjun Seo, Sangbum Kim, Enkhbayar Erdenee,363

and Buru Chang. Meet your favorite character: Open-domain chatbot mimicking fictional364

characters with only a few utterances. arXiv preprint arXiv:2204.10825, 2022.365

[10] Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-sql in the wild: A naturally-occurring366

dataset based on stack exchange data. ArXiv, abs/2106.05006, 2021.367

[11] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and368

Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,369

2021.370

[12] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for371

open domain question answering. In EACL, 2021.372

[13] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Franccois Fleuret. Transformers373

are rnns: Fast autoregressive transformers with linear attention. ArXiv, abs/2006.16236, 2020.374

[14] Boseop Kim, Hyoungseok Kim, Sang-Woo Lee, Gichang Lee, Donghyun Kwak, Dong Hyeon375

Jeon, Sunghyun Park, Sung ju Kim, Seonhoon Kim, Dong Hyung Seo, Heungsub Lee, Minyoung376

Jeong, Sungjae Lee, Minsub Kim, SukHyun Ko, Seokhun Kim, Taeyong Park, Jinuk Kim,377

Soyoung Kang, Na-Hyeon Ryu, Kang Min Yoo, Minsuk Chang, Soobin Suh, Sookyo In,378

Jinseong Park, Kyungduk Kim, Hiun Kim, Jisu Jeong, Yong Goo Yeo, Dong hyun Ham, Do-379

Hyoung Park, Min Young Lee, Jaewoo Kang, Inho Kang, Jung-Woo Ha, Woo Chul Park,380

10

and Nako Sung. What changes can large-scale language models bring? intensive study on381

hyperclova: Billions-scale korean generative pretrained transformers. ArXiv, abs/2109.04650,382

2021.383

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,384

abs/1412.6980, 2015.385

[16] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and386

Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context387

learning. 2022.388

[17] Qian Liu, Yihong Chen, B. Chen, Jian-Guang Lou, Zixuan Chen, Bin Zhou, and Dongmei Zhang.389

You impress me: Dialogue generation via mutual persona perception. ArXiv, abs/2004.05388,390

2020.391

[18] Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Raison, and Antoine Bordes. Training392

millions of personalized dialogue agents. In EMNLP, 2018.393

[19] Qiao Qian, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. Assigning personal-394

ity/profile to a chatting machine for coherent conversation generation. In IJCAI, 2018.395

[20] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language396

models are unsupervised multitask learners. 2019.397

[21] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,398

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified399

text-to-text transformer. ArXiv, abs/1910.10683, 2020.400

[22] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu,401

Myle Ott, Kurt Shuster, Eric Michael Smith, Y.-Lan Boureau, and Jason Weston. Recipes for402

building an open-domain chatbot. In EACL, 2021.403

[23] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang A. Sutawika, Zaid404

Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M SAIFUL405

BARI, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan406

Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,407

Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,408

Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan409

Fries, Ryan Teehan, Stella Rose Biderman, Leo Gao, T. G. Owe Bers, Thomas Wolf, and410

Alexander M. Rush. Multitask prompted training enables zero-shot task generalization. ArXiv,411

abs/2110.08207, 2021.412

[24] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are413

also few-shot learners. ArXiv, abs/2009.07118, 2021.414

[25] Haoyu Song, Weinan Zhang, Yiming Cui, Dong Wang, and Ting Liu. Exploiting persona415

information for diverse generation of conversational responses. In IJCAI, 2019.416

[26] Alane Suhr, Ming-Wei Chang, Peter Shaw, and Kenton Lee. Exploring unexplored generaliza-417

tion challenges for cross-database semantic parsing. In ACL, 2020.418

[27] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.419

ACM Computing Surveys (CSUR), 2022.420

[28] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam M. Shazeer, Apoorv Kulshreshtha,421

Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, Yaguang Li, Hongrae Lee,422

Huaixiu Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry423

Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten424

Bosma, Yanqi Zhou, Chung-Ching Chang, I. A. Krivokon, Willard James Rusch, Marc Pickett,425

Kathleen S. Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos,426

Toju Duke, Johnny Hartz Søraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz,427

Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo,428

Ravindran Rajakumar, Alena Butryna, Matthew Lamm, V. O. Kuzmina, Joseph Fenton, Aaron429

11

Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak,430

Ed Chi, and Quoc Le. Lamda: Language models for dialog applications. ArXiv, abs/2201.08239,431

2022.432

[29] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.433

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762,434

2017.435

[30] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,436

Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose437

language understanding systems. In NeurIPS, 2019.438

[31] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao,439

Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models with440

adapters. In FINDINGS, 2021.441

[32] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,442

Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. ArXiv,443

abs/2109.01652, 2021.444

[33] Sean Welleck, Jason Weston, Arthur D. Szlam, and Kyunghyun Cho. Dialogue natural language445

inference. In ACL, 2019.446

[34] Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. Should you mask 15% in447

masked language modeling? arXiv preprint arXiv:2202.08005, 2022.448

[35] Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. Transfertransfo: A trans-449

fer learning approach for neural network based conversational agents. ArXiv, abs/1901.08149,450

2019.451

[36] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga,452

Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang,453

Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming Xiong, Lingpeng454

Kong, Rui Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Unifiedskg: Unifying455

and multi-tasking structured knowledge grounding with text-to-text language models. ArXiv,456

abs/2201.05966, 2022.457

[37] Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma,458

Irene Z Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider:459

A large-scale human-labeled dataset for complex and cross-domain semantic parsing and460

text-to-sql task. In EMNLP, 2018.461

[38] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,462

Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big463

bird: Transformers for longer sequences. ArXiv, abs/2007.14062, 2020.464

[39] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur D. Szlam, Douwe Kiela, and Jason Weston.465

Personalizing dialogue agents: I have a dog, do you have pets too? In ACL, 2018.466

[40] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,467

and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.468

ArXiv, abs/2107.02192, 2021.469

12

	Introduction
	Related Work
	Prompt Injection
	Methods for Prompt Injection
	Continued Pre-training
	Pseudo-INput Generation (PING)

	Experimental Setup
	Prompt-dependent tasks
	Datasets
	Implementation Details

	Experimental Results
	Inference Efficiency
	Task Performance
	Long Prompts Injection

	Conclusion

