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Abstract

Progress in human behavior modeling involves understanding both implicit, early-
stage perceptual behavior, such as human attention, and explicit, later-stage behav-
ior, such as subjective preferences or likes. Yet most prior research has focused
on modeling implicit and explicit human behavior in isolation; and often limited
to a specific type of visual content. We propose UniAR – a unified model of
human attention and preference behavior across diverse visual content. UniAR
leverages a multimodal transformer to predict subjective feedback, such as satisfac-
tion or aesthetic quality, along with the underlying human attention or interaction
heatmaps and viewing order. We train UniAR on diverse public datasets spanning
natural images, webpages, and graphic designs, and achieve SOTA performance on
multiple benchmarks across various image domains and behavior modeling tasks.
Potential applications include providing instant feedback on the effectiveness of
UIs/visual content, and enabling designers and content-creation models to optimize
their creation for human-centric improvements.

1 Introduction

Implicit, early-stage perceptual behavior such as human attention is intricately linked with explicit,
later-stage behavior such as subjective ratings/preferences. Yet prior research has often studied these
in isolation. For example, there is a large body of work on predictive models of human attention
that are known to be useful for various applications, ranging from basic attention/eye-movement
research [32, 35], to optimizing interaction designs [4, 65, 9], enhancing webpage layouts [67, 85, 11],
improving user experience in immersive environments [5] and improving natural image and photo
quality by reducing visual distraction [1]. Prior research has also explored predicting other kinds of
implicit human behavior such as the sequence/order in which items are viewed (attention scanpath)
in natural images or webpages [22, 19], assessing visual importance in graphic designs [47, 63, 27],
and understanding visual clutter [52, 79, 71].

Separately from implicit, early-perceptual behavior, there has also been research in modeling explicit,
later-stage decision-making behavior such as subjective preferences [20] and aesthetic quality [37,
21, 55, 30]. Prior research has been further fragmented due to dedicated models focusing on specific
combinations of behavior tasks, input domain (e.g., natural images, designs, and webpages), and task
scenarios (e.g., free viewing, object searching, and question answering).
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Figure 1: Overview of our UniAR model. UniAR is a multimodal model that takes an image (could
be a natural image, screenshot of a webpage, graphic design, or UI) along with a text prompt as input,
and outputs heatmaps of human attention/interaction, scanpath or sequence of viewing/interaction,
and subjective preference/likes. Example inputs and corresponding outputs for saliency, scanpath,
and rating are shown on the left side, and the detailed model architecture is shown on the right side.

To the best of our knowledge, a unified approach is still missing to modeling human visual behavior,
ranging from implicit, early-perceptual behavior of what draws human attention, to explicit, later-stage
decision-making on subjective preferences or likes.

In this paper, we ask the following question: Can we build a unified model of human attention and
preference behavior that reliably works across diverse types of visual content? If so, how does it
compare with state-of-the-art (SOTA) models dedicated to specific domains and tasks? Such a unified
model could enable a wide variety of applications. For instance, it could augment human decision
making and accelerate evaluation of effective UIs by not only predicting preferences as rewards, but
also providing additional insights in the form of predicted human attention behavior.
UniAR. In this paper, we consider 11 public datasets consisting of different input domains/visual
content (e.g., natural images, cartoons, art, graphic designs and webpages), behavior tasks (e.g.,
attention heatmaps, scanpath, likes/preference), and task-scenarios (e.g., free-viewing, object search,
question answering). We introduce a new model, UniAR – A Unified model for predicting human
Attention and Responses on visual content. UniAR is a multimodal transformer model that takes
images and text prompts as input. The text prompt combines information about the input domain
(e.g., natural image, graphics design or webpage), the desired behavior prediction task (e.g., attention
heatmap or aesthetic score), and specifics of the task scenario when relevant (e.g., object name in an
object search task). Our model generates predictions conditionally on these inputs. Experiments show
that UniAR achieves SOTA performance across diverse datasets, spanning different input domains,
behavior prediction tasks, and task scenarios.

Main contributions of this work are summarized below:

1. We proposed UniAR, a multimodal transformer model to predict different types of human
behavior from attention to likes, across diverse types of visual content.

2. We trained UniAR on 11 benchmark datasets with different input domains (natural images,
webpages, and graphic designs) and output behavior types (attention/importance heatmaps,
viewing sequence or scanpath, and aesthetics/quality scores), and showed that UniAR, which
is a single unified model, can outperform or perform comparably to SOTA models trained
on specific tasks and datasets. We further showed that UniAR generalizes well to tasks with
unseen input and output combinations, under a zero-shot setting.

We present various visualization results from UniAR on saliency/importance heatmap, scanpath, and
ratings in Figure 2, compared to ground truth.

2 Related Work
Saliency prediction. Saliency or attention heatmap prediction is a common implicit behavioral task
aimed at predicting which areas within an image are more likely to draw human attention. Saliency
models can be helpful for understanding human visual attention, and have been used for applications
such as evaluating the quality of UIs, optimizing content placement in graphic designs, and improving
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Figure 2: Examples of UniAR’s predictions across different tasks/domains. Images in green border are
ground-truth, while images in orange border are UniAR’s predictions. First row: attention/saliency
heatmap prediction on natural images (Salicon) and webpages (WS-Saliency). Second row: im-
portance heatmap on graphic designs (Imp1k), and saliency heatmap on Mobile UI. Third row:
scanpath-sequence during free-viewing of webpages (WS-Scanpath) and object-searching within
images (COCO-Search18). Fourth row: preference/rating prediction for natural images (Koniq-10k)
and webpages (Web Aesthetics).

perceptual quality of compressed images/videos (i.e., allocating more resources to visually important
regions, and compressing the rest can preserve information while reducing bandwidth).

Early work focused on the importance of low-level image features in saliency prediction [32, 35,
36, 28, 42]. Recent approaches for saliency modeling use Convolutional Neural Networks (CNNs),
Transformers, or a mixture of models [40, 41, 33, 51, 23, 25] as the backbone architecture to
extract deep representations and predict the probability distribution over human gaze or fixations
(computed as a Gaussian-blurred 2D heatmap, which aggregates all fixations from multiple human
observers) [33, 61, 12, 42, 18]. Customized modules, such as 1×1 read-out convolutions [33] and
Attentive ConvLSTM [18], have been introduced atop these CNNs to boost performance. Instead
of the heatmap, regressing the Gaussian probability distribution has also been demonstrated as an
alternative way for fixation predictions [61]. Chen et al. [12] propose to incorporate user profile
information to personalize saliency predictions for each individual user.

Scanpath prediction. Unlike saliency, which predicts a heatmap/probability distribution over
attention/importance, the goal here is to predict the sequence of eye movements as humans engage
with visual content, offering insights into how individuals observe and comprehend visual information.
With graphic designs as an example, predicting scanpaths can help optimize content placement,
ensuring priority content captures attention first.

Prior work on human scanpath prediction has explored different task-scenarios, such as free-viewing,
object searching, and visual question answering. Yang et al. [77] introduce a method utilizing inverse
reinforcement learning for scanpath prediction during visual object searching. Continuing with
this framework, Yang et al. [78] propose the concept of Foveated Feature Maps, enabling scanpath
prediction when users search for an object that is not present in the initial image. To facilitate
instruction following when performing a visual search over the image, Chen et al. [15] propose
the use of a visual-question-answering model combined with a ConvLSTM module to predict the
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distribution of fixation positions and duration in response to a question regarding the associated
natural image. In recent work, Mondal et al. [54] propose employing the Transformer model to
regress coordinates for each fixation within a scanpath dedicated to object searching. This regression
is conditioned on the embedding of the object’s name from a pretrained language model.
Subjective rating prediction. Predicting explicit human responses such as subjective prefer-
ence/likes can help to better assess image quality and improve graphic designs. These responses
can be continuous or discrete ratings, and may reflect both technical quality and aesthetic quality
of an image. Explicit human feedback has been used in many applications. Statistic-based meth-
ods [53, 83] and Convolutional Neural Networks-based methods [84, 68] are proposed, and recently
Vision Transformer has also been adopted for this task [37].
Limitations of prior work. While there has been significant progress in modeling behavioral tasks
such as saliency, scanpaths and subjective preferences, a key limitation is that prior approaches often
focused on a dedicated model for each specific task x input domain. As a result, there are saliency
models for natural images, scanpath prediction models for graphic designs, or subjective ratings/likes
on webpages, but there isn’t a single unified model that generalizes across different tasks and domains.
Instead of several dedicated per-task or per-domain models, our work seeks to build a single, unified
model for these human-centered prediction tasks across diverse visual content.
Multi-tasking unified model for language & vision. There have been significant recent advances
in large language models for natural language processing and vision-language learning [14, 57, 17, 3,
69, 62]. The underlying modeling recipe involves fine-tuning large transformer models on datasets
containing a variety of recognition and reasoning tasks such as text summarization, sentiment analysis,
machine translation for language models, and image captioning, question-answering, detection, and
segmentation for vision-language models. These fine-tuned large models show strong generalization
capacity across various tasks and data domains. Inspired by these generalizable models for language
and vision, we propose UniAR – a unified model for predicting different types of human visual
behavior (from attention to likes) on a variety of visual content.

3 Unifying Human Attention and Responses

Our model architecture along with example inputs and corresponding outputs is shown in Figure 1.

3.1 Model Architecture

Inspired by the recent progress in large vision-language models [14, 50, 45], We adopt a multimodal
encoder-decoder transformer model to unify the various human behavior modeling tasks. The model
takes two types of inputs: an image and a text prompt. Its architecture comprises of the following
components: a Vision Transformer model [24] for image encoding, a word embedding layer to embed
text tokens, and a T5 [60] Transformer encoder to fuse image and text representations. Additionally,
it has three separate predictors: a heatmap predictor for attention/saliency heatmaps or visual
importance heatmaps, a scanpath predictor for the sequence/order of viewing, and a rating predictor
for quality/aesthetic scores of images or webpages. These predictors are described in Sections 3.2
to 3.4. Besides the architecture, the text prompt is designed to encode relevant information about the
input domain (e.g., natural image, graphic design, webpages), the expected prediction type of the
model (e.g., interaction heatmaps, sequence-of-viewing, or aesthetic score), and other task-related
information such as viewing scenarios (e.g., free-viewing or object-searching), target object names,
or questions to be answered, as described in Section 3.5. More details about model architecture
including # of layers and layer size can be found in Appendix A.

To pretrain the model, we use both natural images from the WebLI dataset [14] and Web/mobile UI
images [50], to ensure that the model can generalize to multiple domains. Image captioning and
captioning for a screen region are used as the pretraining tasks, as in the original papers. To support
sequence tasks involving prediction of gaze/interaction coordinates, such as scanpath prediction, we
also add a pretraining task to predict the coordinates of the bounding box of relevant items given a
text snippet and the screenshot (for webpage and mobile interface data).

3.2 Heatmap Predictor

Our model incorporates a heatmap head which is commonly used in attention/saliency research (i.e.,
predicting probability distribution of gaze over the input image). The heatmap prediction head takes
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Table 1: List of all public datasets used to train our model. ‘# Image’ denotes the number of unique
images in the entire dataset. Note that for annotation ‘scanpath,’ there are multiple scanpaths recorded
from a group of users associated with one image, so ‘# Training Sample’ is much larger than ‘#
Image.’ During training, we randomly sample from all training datasets with an equal sampling rate.

Dataset Domain Annotation Viewing style # Image Resolution # Training

Salicon [34] Natural images Attention heatmap Free-viewing 15,000 640 × 480 10,000
OSIE [75] Natural images Attention heatmap Free-viewing 700 800 × 600 500
CAT2000 [6] Natural images/cartoons/art... Attention heatmap Free-viewing 4000 1920 × 1080 2000
WS-Saliency [11] webpage Attention heatmap Free-viewing 450 1,280 × 720 392
Mobile UI [47] Mobile user interface Attention heatmap Free-viewing 193 Varied 154
Imp1k [27] Graphic design Importance heatmap N/A 998 Varied 798
WS-Scanpath [11] webpage Scanpath (sequence) Free-viewing 450 1,280 × 720 5,448
FiWI [67] webpage Attention heatmap Free-viewing 159 1,360 × 768 121
COCO-Search18 [16] Natural images Scanpath (sequence) Object-searching 3,101 1,680 × 1,050 21,622
Koniq-10k [31] Natural images Subjective rating N/A 10,073 1,280 × 720 7,000
Web Aesthetics [21] webpage Subjective rating N/A 398 1,280 × 768 398

the fused image tokens after the Transformer encoder, and processes the features via several read-out
convolution layers, together with up-sampling so that the output will match the resolution of the input
image. A sigmoid function is used at the end to ensure the generated values fall within the range
[0, 1] for each pixel.

In the experiments, we consider two different types of heatmaps, namely saliency and importance
heatmap. A saliency heatmap is generated by aggregating human eye fixations from multiple
participants viewing an image. On the other hand, importance heatmaps are obtained by participants
highlighting or drawing bounding boxes to indicate the most critical design elements in a graphic
design [27]. Each of these heatmaps reflects distinct aspects of human attention and preference.

The text prompt specifies which heatmap-type to generate for a given input sample, thereby allowing
our model to predict a variety of heatmap prediction tasks (e.g., attention, interaction, importance
etc.) using a single heatmap prediction head. We adopt a pixel-wise ℓ2 loss function for the heatmap
predictor during training.

3.3 Scanpath (Sequence) Predictor

The scanpath predictor takes both the fused image and text tokens after the Transformer encoder as
input, and applies a Transformer decoder to generate the predicted scanpath.

A scanpath is defined as a sequence of 2D locations (x1, y1), (x2, y2), . . . , (xN , yN ) with a total of N
fixations, capturing the temporal aspect of attention and visual exploration. The subsequent fixations
are conditional on all the previous fixations, thus fitting an autoregressive model with conditional
generation. Inspired by previous literature, we use Transformer decoder for object detection and
other localization tasks [13, 50], and therefore generate the location end-to-end with Transformer and
text generation. In general, we let the Transformer predict the sequence of coordinates as characters
in a string one after one and readout the locations from the generated text subsequently.

We spatially decompose the entire image into 1,000 × 1,000 bins with equal interval, and map each
coordinate xn or yn to its nearest bin x̃n, ỹn ∈ Z in the range [0, 999].

To formulate the target sequence for teacher-forcing training, we put a special token ‘<extra_id_01>’
at the start of each target sequence, and attach another special token ‘<extra_id_02>’ at the end, to
indicate the entire scanpath sequence. We concatenate location coordinates with a separation word
‘and’. Let y indicate the target sequence with length 3N + 1 (corresponding to N fixations), we have
the target sequence for teacher-forcing training as follows (↪→ indicates the line changing due to the
paper format):

y = <extra_id_01> x̃1 ỹ1 and x̃2 ỹ2 and . . . and x̃N ỹN <extra_id_02>.

The training objective is to maximize the log-likelihood of tokens conditioned on the input image and
all preceding tokens in ground-truth scanpath string, i.e.,

max

3N+1∑
j=1

wj logP (ỹj |x, y1:j−1), (1)

where x is the input image and text prompt, and y is the target sequence associated with x. wj is the
weight for the j-th token.We use a unified weight for each token in experiments.
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Decoding during inference. During inference, it is not strictly guaranteed that the generated string
will exactly follow the format of the target sequence, especially when the number of fixations is
relatively large (e.g., N ≥ 30), resulting in an invalid sequence to readout. To deal with the possible
invalid cases, in practice, we identify two special tokens ‘<extra_id_01>’ and ‘<extra_id_02>’
in the predicted string if available, and extract the context between these two special tokens. Then we
split the extracted string with the separator word ‘and’. For a pair of two tokens from the beginning,
we check if they are both numerical. If so, we add one fixation with this coordinate after mapping
them to the original resolution, then iteratively move to the following, and if not, we terminate the
decoding process and keep the existing sequence. If there is no fixation available in the predicted
string, we mark the scanpath as invalid. During training, we observe that the valid rate (#valid
scanpaths / #scanpaths generated) of scanpath decoding quickly converges to 1, meaning every
predicted scanpath will contain valid fixation(s).

Compared to the scanpath predictors in GazeFormer [54] which predicts each point as 2D continuous
numbers instead of two text tokens, our model seems less intuitive. However, as shown in Section 4.3,
the proposed scanpath predictor works quite well. Moreover, one advantage of the current design
of the scanpath predictor is that it can be easily extended to predict other types of human behavior
sequences, e.g., text sequence, or 1-D number sequence, with minor modifications on the sequence
output format. This flexibility is important for a unified model like ours.

3.4 Rating Predictor

This prediction head takes image tokens after the Transformer encoder module, and processes the
features via a few convolution and connected layers. An ℓ2 loss is used for training the rating predictor
with rating data.

3.5 Text Prompt

To enhance the model’s ability to generalize across a variety of visual content and task scenarios, we
integrate specific task instructions into the model via text prompts. The prompts used in UniAR are
structured as follows:

INPUT_TYPE:<input_type> OUTPUT_TYPE:<output_type> QUERY:<query>.

We fill <input_type> with string taken from {natural image | webpage | graphic design |
mobile user interface} and <output_type> taken from {saliency heatmap | importance
heatmap | aesthetics score | scanpath}. We append a query in string Query:<query> to the
prompt if a task-specific query is available, for example, the object name to search, or the question to
answer, depending on the use case. For example, an example full prompt is “INPUT_TYPE: natural
image OUTPUT_TYPE: scanpath QUERY:searching a bowl”, which guides the model to predict
scanpath output on a natural image under the task of “searching a bowl”. The prompt we use is
modularized and can easily adapt to different types of datasets and scenarios.

4 Experiment

4.1 Protocol

Datasets. Please refer to Table 1 for all public datasets we consider in training and benchmarking.
For more dataset processing details, please refer to Appendix B.

Benchmarks. We reuse benchmarks from recent literature for model comparison purposes. We
adopt the benchmarks for WS-Saliency and WS-Scanpath from Tables 3 and 7 in Chakraborty et al.
[11] respectively, Mobile UI from Table 2 in Leiva et al. [47], Imp1k from Table 2 in Fosco et al. [27],
OSIE from Table 4 in Chen et al. [12], Salicon from Table 1 4 in Reddy et al. [61], COCO-Search18
from Table 1 in Mondal et al. [54], KonIQ-10k from Table 2 in Ke et al. [37], and Web Aesthetics
from Table 4 in Delitzas et al. [21]. We also provide model results from some other papers for
comparison [25, 33]. The baseline results for CAT2000 are from CAT2000 Leaderboard 5.

4There are two versions of Salicon data: Salicon 2015 and Salicon 2017. The results are on Salicon 2017.
5CAT2000 Leaderboard: https://saliency.tuebingen.ai/results_CAT2000.html
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Evaluation metrics. Inheriting from the above benchmarks, we consider the following evaluation
metrics. CC [44]: Pearson’s Correlation Coefficient is used here to measure the linear relationship in
all pixel values between the predicted and ground-truth saliency heatmaps; KLD [39]: the metric
to use KL-Divergence between the predicted heatmap and ground-truth heatmap to measure the
distribution discrepancy, with the prediction used as the target distribution. AUC-Judd [35]: Area
under ROC curve (AUC) in the variant from Judd et al. [35] treating the heatmap prediction as binary
classification with various thresholds. The specific calculations of true positive and false positive rates
can be referred to [10]. sAUC [7]: the shuffled AUC metric samples negatives from other images
for AUC calculation. NSS [59]: Normalized Scanpath Saliency is the average saliency strength
(pixel values in the predicted heatmap) at all ground-truth fixation locations. SIM [64]: Similarity
is computed as the sum of the minimum values among the normalized prediction and ground-truth
heatmaps. RMSE: the root mean square error between the predicted and ground-truth heatmaps.
R-Squared (R2): the coefficient of determination applied to all values in the heatmap. SemSS [78]:
Semantic Sequence Score converts each fixation to an ID decided by a semantic segmentation over
the image, and compares two strings with a string-matching algorithm [56]. SemFED [78]: similar
to SemSS, Semantic Fixation Edit Distance uses Levenshtein distance for string matching [48].
SequenceScore: similar to SemSS, but instead of using a semantic segmentation map, the Sequence
Score uses the clustering results from a MeanShift clustering to segment the image and map the
fixation to their ID. MultiMatch [22]: MultiMatch is the average of four metrics of scanpath, namely:
Shape, Direction, Length, and Position, characterizing the similarity between the predicted scanpath
and its ground-truth. SRCC and PLCC: refer to Spearman’s rank correlation coefficient and Pearson’s
linear correlation coefficient, respectively, used to quantify the quality of predicted ratings.

Experimental benchmarks for one task among different datasets may not have uniform evaluation
metrics but most of their metrics are shared. For saliency and importance heatmap predictions, we
resize the predicted heatmap back to its original image resolution for evaluation.

4.2 Model Training
We pretrain the model on a series of pre-training tasks, including Web/Mobile UI understanding [50]
and natural image captioning [14]. Subsequently, we fine-tune the entire model using the Adafactor
optimizer with a learning rate of 0.1, batch size of 128, and image resolution of 512×512. All images
maintain their aspect ratio and are padded to fit the training resolution. The model uses ViT B16 as
the vision encoder and T5 base as the Transformer encoder of the image and text tokens, resulting in
a total of 848 million parameters. The model is implemented in JAX. We use 64 Google Cloud TPU
v3 to train UniAR for 20k steps in 12 hours.

Table 2: Subjective rating prediction results on Natural image
image dataset KonIQ-10k and webpage dataset Web Aesthetics.

Dataset Method SRCC ↑ PLCC ↑

KonIQ-10k [31]
(Natural image)

BRISQUE [53]’12 0.665 0.681
ILNIQE [83]’15 0.507 0.523
HOSA [74]’16 0.671 0.694
BIECON [38]’16 0.618 0.651
WaDIQaM [8]’17 0.797 0.805
PQR [81]’17 0.880 0.884
SFA [49]’18 0.856 0.872
DBCNN [84]’18 0.875 0.884
MetaIQA [86]’20 0.850 0.887
BIQA (25 crops) [68]’20 0.906 0.917
MUSIQ-single [37]’21 0.905 0.919
UniAR 0.905 -0.11% 0.925 +0.65%

Web Aesthetics [21]
(webpage)

Rating-based Calista [21]’23 - 0.770
Comparison-based Calista [21]’23 - 0.820
UniAR 0.811 0.839 +2.31%

Datasets mixture. As we are
combining a series of public
datasets, in every iteration, for all
training datasets in Table 1, we em-
ploy a random sampling strategy
that ensures an equal sampling rate
across these datasets. This approach
guarantees that each dataset has an
equal probability of contributing a
sample, irrespective of its sample
volume.

4.3 Experiment Results

We present the results of UniAR for
predicting heatmaps, scanpath-sequences as well as ratings across domains and datasets in Tables 2
to 4, in comparison with the baselines that are trained on a specific domain, task, or dataset.

Heatmap prediction. Table 3 shows the performance of UniAR across 7 public benchmarks. A
complete version of results including all baselines and metrics is presented in Table 6 in Appendix C.
Among these datasets, which vary in domains (natural images, webpages, and graphic designs) and
tasks (heatmaps of attention, and importance), UniAR achieves SOTA performance compared to
strong baselines, and outperforms previous SOTAs in many cases. On Mobile UI and Imp1k datasets,
UniAR outperforms previous SOTA across every metric. Out of the 27 metrics listed in Table 3,
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Table 3: Heatmap prediction results on 7 public datasets across natural images, art, cartoons, mobile
UIs, and webpages (Please refer to Table 6 in Appendix C for complete baselines & metrics).
For Imp1k we predict the importance heatmap, while for the remaining datasets, we predict the
attention/saliency heatmap. For each dataset and metric, the best result is in bold, second best is
in blue, and our method is highlighted in green. For our model, the relative performance change
compared to the best result is noted. Note that the metric values for baseline models are obtained
from existing references as described in the "Benchmarks" paragraph. "-" means the metrics are
not reported in references. Also note that there are two versions of Salicon data, Salicon 2015 and
Salicon 2017. The results in this table are on Salicon 2017.

Dataset Method CC ↑ KLD ↓ AUC-Judd ↑ NSS ↑

WS-Saliency [11]
(Webpage)

SAM-ResNet [18]’18 0.596 1.506 0.795 1.284
EML-NET [33]’20 0.565 2.110 0.790 1.277
UMSI [27]’20 0.444 1.335 0.757 1.042
DI Net + WS [76]’19 0.798 0.690 0.852 1.777
AGD-F (W/o-L) [11]’22 0.815 0.637 0.858 1.802
UniAR 0.827 +1.47% 0.299 -53.06% 0.860 +0.23% 1.783 -1.05%

FiWI [67]
(Webpage)

AGD-F [11]’22 0.735 - 0.767 1.606
EML-NET [33]’20 0.661 0.603 0.847 1.653
EML-NET + Salicon [33]’20 0.689 0.567 0.848 1.722
Chen et al. [12]’23 0.699 0.564 0.851 1.752
UniAR 0.734 -0.14% 0.571 +0.29% 0.859 +0.94% 1.838 +4.91%

Mobile UI [47]
(Mobile interface)

ResNet-Sal [47]’20 0.657 - 0.692 0.704
SAM-S2015 [18]’18 0.477 - 0.650 0.537
SAM-S2017 [18]’18 0.834 - 0.723 0.839
SAM-mobile [47]’20 0.621 - 0.666 0.655
UniAR 0.879 +5.40% 0.115 0.756 +4.56% 1.008 +20.14%

CAT2000 [43]
(Natural images,
cartoons, art...)

DeepGaze II [42]’17 0.795 0.382 0.864 1.962
UNISAL [25]’20 0.740 0.470 0.860 1.936
DeepGaze IIE [51]’21 0.819 0.345 0.869 2.112
SalFBNet [23]’22 0.703 1.198 0.855 1.879
UniAR 0.870 +6.23% 0.613 +77.68% 0.877 +0.92% 2.338 +10.70%

Salicon [34]
(Natural images)

SimpleNet w. ResNet-50 [61]’20 0.895 0.211 0.868 1.881
SimpleNet w. PNASNet-5 [61]’20 0.907 0.193 0.871 1.926
MDNSal [61]’20 0.899 0.217 0.868 1.893
UNISAL [25]’20 0.880 0.226 0.867 1.923
EML-NET [33]’20 0.890 0.204 0.802 2.024
UniAR 0.900 -0.77% 0.214 +10.88% 0.870 -0.11% 1.946 -3.85%

OSIE [70]
(Natural images)

SAM-ResNet [18]’18 0.758 0.480 0.860 1.811
UMSI [27]’20 0.746 0.513 0.856 1.788
EML-NET [33]’20 0.717 0.537 0.854 1.737
Chen et al. [12]’23 0.761 0.506 0.860 1.840
UniAR 0.742 -2.50% 0.583 +21.46% 0.862 +0.23% 1.789 -2.77%

Dataset Method CC ↑ KLD ↓ RMSE ↓ R2 ↑

Imp1k [27]
(Graphic design)

SAM [18]’18 0.866 0.166 0.168 0.108
UMSI-nc [27]’20 0.802 0.177 0.152 0.095
UMSI-2stream [27]’20 0.852 0.168 0.141 0.105
UMSI [27]’20 0.875 0.164 0.134 0.115
UniAR 0.904 +3.31% 0.124 -25.00% 0.079 -41.04% 0.823 +615.65%

UniAR achieves the best result in 17 of them and the second best in 6 cases. In summary, UniAR
experimentally demonstrates promising performance in saliency modeling in various fields.

Scanpath prediction. In Table 4, scanpath-sequence prediction results are shown for two datasets:
COCO-Search18 [16] (scanpath in natural images for object searching) and WS-Scanpath [11]
(scanpath on webpages under free viewing). On both the datasets, UniAR performs comparably to
baselines, and further outperforms the baselines on all the metrics on WS-Scanpath. Among the 5
reported metrics in Table 4, our model achieved the best result in 4 of them. A complete version of
results including all baselines and metrics is presented in Table 7 in Appendix C.

Score prediction. In Table 2, we present rating prediction results on two datasets: KonIQ-10k [31]
on natural images and Web Aesthetics [21] on webpages. UniAR achieves the best results for PLCC
metrics on both datasets and the second best for SRCC on KonIQ-10k. Note that in Ke et al. [37],
a multi-scale version of MUSIQ performs slightly better than UniAR on SRCC (0.916 vs 0.905).
However, since UniAR does not use multi-scale inputs, we did not include those results.
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Table 4: Scanpath (sequence) prediction results on natural image and digital design datasets. Please
refer to Table 7 in Appendix C for complete baselines & metrics.

Dataset Method SemSS ↑ SemFED ↓ Sequence Score ↑ MultiMatch ↑

COCO-Search18 [16]
(Natural images,
object searching)

IRL [77]’20 0.481 2.259 - 0.833
Chen et al. [15]’21 0.470 1.898 - 0.820
FFM [78]’22 0.407 2.425 - 0.808
Gazeformer [54]’23 0.496 1.861 - 0.849
UniAR 0.521 +5.04% 2.004 +7.68% - 0.874 +2.94%

WS Scanpath [11]
(webpage,
free-viewing)

SceneWalker [66]’20 - - 0.194 0.716
AGD-F (w. layout) [11]’22 - - 0.203 0.719
AGD-S (w/o layout) [11]’22 - - 0.221 0.745
AGD-S (w. layout) [11]’22 - - 0.224 0.755
UniAR - - 0.267 +19.20% 0.887 +17.48%

Table 5: Experiments on transferring knowledge from other do-
main/task combinations to WS-Scanpath dataset for scanpath pre-
dictions. CC = COCO-FreeView dataset.

Training Set Sequence Score ↑ MultiMatch ↑
WS-Scanpath (previous SoTA [11]) 0.224 0.755
WS-Scanpath (ours) 0.261 0.894
UniAR full model 0.267 0.887

CC scanpath (ours) 0.196 0.836
CC scanpath + WS-Saliency (ours) 0.190 0.858
CC saliency/scanpath + WS-Saliency (ours) 0.231 0.857

Transferring knowledge be-
tween tasks. We test UniAR’s
ability to generalize and transfer
to unseen tasks/domain combina-
tions. Our model is trained on
certain combinations of task and
image domains, and tested on
new, unseen combinations of be-
havior tasks and image domains.

Our experiment uses WS (web-
page) and COCO-Freeview (free-viewing on natural image) datasets, where WS-saliency, WS-
scanpath, CC saliency and CC scanpath, are saliency and scanpath data for WS and COCO-Freeview
data respectively. We test the model performance on scanpath prediction on the webpage scanpath
data (WS-Scanpath dataset). We consider three different training scenarios: (1) Using scanpath data
from natural image (COCO-Freeview); (2) Combining scanpath from natural image (COCO-Freeview)
with saliency heatmaps from webpage (WS); (3) Employing both scanpath and saliency heatmap
from natural image (COCO-Freeview), augmented with saliency heatmap from webpage (WS). Each
scenario maintains some relevance to our test set by either sharing the same task or image domain,
but never both.

In Table 5, we show experimental results for the above scenarios, and also attach the baseline results
on this test set and the results from UniAR (full training data) as reference. As shown in Table 5,
our third training scenario: leveraging scanpath and saliency heatmaps from COCO-Freeview and
saliency heatmap from WS, shows good results against previous SoTA [11], despite the model not
having seen webpage scanpath data during training. Prediction performance declines in scenarios 1 &
2, which take more limited datasets, but remain competitive.

5 Limitations and Future Work

When modeling human preferences and behavior, it is important to carefully consider ethics and AI
principles, and acknowledge dataset limitations.
Ethics and AI principles. Modeling any aspect of human behavior should adhere to ethical
guidelines on data collection and applications, and be conducted in a transparent way, including
clarifying the limitations of the model when replicating human preferences. It should keep humans
in the loop, as the model prediction is intended as a reference, not as a means to replace evolving
human preferences with a synthetic guide. We take these ethical considerations and AI Principles
into account, ensuring that the model usage remains socially beneficial and responsible.
Aligning with human preference. While UniAR is trained to predict human preferences and
behavior, we recognize that using it as a reward model may lead to reward hacking, which would
make it less representative of genuine human preference. We suggest considering techniques [46, 26]
to mitigate this.
Representing diverse human preferences. Humans have diverse preferences for subjective notions
like image attractiveness. Without personalization, the model converges towards a more uniform
notion of preference - a common concern for ML models. To promote visual diversity when using
UniAR, we propose two strategies: (1) using the model in a hybrid manner, providing insights to
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help humans make decisions in applications like web or visual content optimization, and (2) develop
personalized models based on our initial unified model, which will help generate more diverse
predictions based on user attributes.
Adjusting to evolving human preferences. Human preferences evolve over time, and to remain
accurate, the model has to adjust accordingly. Updates can be achieved by fine-tuning with more
recent data. Future work will include updating the training data, and exploring concepts like continual
learning techniques [72], to keep the model up to date.
Dataset limitations. Using diverse, representative datasets is important to minimize potential
biases in the model. In this paper, we focus on a proof-of-concept for unified modeling of human
attention/preference behavior, based on existing, publicly available datasets. Below is a listing of
annotator demographics, as described in the original papers.

1. WS-saliency [11]: "A total of 41 participants (19 females, 22 males; age range 17-23; with
normal or corrected-to-normal vision) participated in our data collection."

2. Mobile UI [47]: "Thirty participants (12 male, 18 female). [...] The average age was
25.9 (SD=3.95). The participants had normal vision (8) or corrected-to-normal-vision (22).
Twenty of the 22 wore glasses and the remaining two wore contact lenses."

3. Imp1k [27]: "The data of 43 participants (29 male, most in their 20s and 30s) were used in
the resulting analyses."

4. FiWI [67]: "11 students (4 males and 7 females) in the age range of 21 to 25 participated in
data collection. All participants had normal vision or corrective visual apparatus."

Despite some balance in male vs. female participants, the age distribution is skewed towards
participants in their 20s. This is likely because most data were collected at universities. Crowdsourced
datasets like Salicon and Koniq-10K are expected to cover a wider range of age and other attributes.
Future work will focus on gathering a more diverse and representative dataset.

Improve accessibility. UniAR predicts human attention, trained on datasets collected from humans
not experiencing visual impairments beyond corrective lenses. UniAR cannot model behavior of, for
example, blind and low-vision users directly, but it can still benefit them by acting as an accessibility
tool for highlighting important areas of a webpage for a screen reader. One way to enhance the
accessibility of the model is using multi-modal preference modeling, which incorporates not just
visual cues, but also how users interact with content through screen readers, voice commands, and
other assistive technologies. Collaborating with accessibility experts and organizations could help
improve future iterations of our work.

6 Conclusion

We developed a multimodal, unified model UniAR to predict different types of implicit and explicit
human behavior on visual content, from attention to subjective preferences/likes, using image and
text prompts. This model, trained on diverse public datasets across natural images, graphic designs,
webpages and UIs, effectively predicted human attention heatmaps, scanpath sequences, and aesthetic
or quality scores. Our model achieved SOTA performance across multiple benchmarks and tasks. We
plan to explore more behavior tasks and domains in future work.
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Figure 3: Another set of visualizations on UniAR’s predictions. Images in green border are ground-
truth, while images in orange border are UniAR’s predictions. First row: saliency heatmap on
Salicon and WS-Saliency. Second row: importance heatmap on Imp1k, and saliency heatmap on
Mobile UI. Third row: free-viewing scanpath on WS-Scanpath and object-searching scanpath on
COCO-Search18. Fourth row: rating prediction on Koniq-10k and Web Aesthetics datasets.

A Model Details

The main model components consist of a ViT B16 encoder for image encoding, a T5 base encoder for mixing
image and text tokens, and three predictors for rating, heatmap, and scanpath prediction, respectively.

Vision Transformer and T5 Encoder. The ViT B16 encoder uses 16× 16 patch size, 12 layers with 12
heads, MLP dimension 3,072, and hidden dimension 768. The T5 base encoder uses 12 layers with 12 heads and
MLP dimension 2,048 and hidden dimension 768.

Score Predictor. The score predictor consists of four convolutional layers with Layer Normalization and
ReLU activation. The filter size, kernel size, and strides are [768, 384, 128, 64], [2, 2, 2, 2], [1, 1, 1, 1], respec-
tively. Three dense layers of size 2,048, 1,024 and 1 are used to generate a scalar with ReLU activations for the
first two layers, and sigmoid for the last.

Heatmap Predictor. The heatmap predictor consists of two convolution layers with filter size, kernel size,
and stride as [768, 384], [3, 3], [1, 1], respectively. It then uses four de-convolution layers to up-sample to the re-
quired output resolution, with the filter size, kernel size, and stride as [768, 384, 384, 192], [3, 3, 3, 3], [2, 2, 2, 2],
respectively. Each de-convolution layer is with two read-out convolution layers of kernel size 3 and stride 1.
Layer Normalization and ReLU are used for each layer. In the end, two read-out convolution layers and a final
sigmoid activation are used to generate the heatmap prediction.

Scanpath Predictor. The scanpath predictor is implemented using a T5 base decoder with 12 layers of 12
heads and MLP dimension 2,048 and hidden dim 768. Output token length is 64.

We combine the losses from the three predictors, i.e., sequence cross-entropy loss, heatmap L2 loss, and score
L2 loss using weights [1, 500, 50] empirically (to make them at the similar scale).

B Dataset Processing

In this section, we describe some of the key dataset processing details.
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Table 6: The full table for heatmap prediction results on 7 public datasets spanning digital design
and natural images, benchmarking with eight metrics in total. The details on datasets and evaluation
metrics can be found in Section 4.1. For Imp1k dataset we predict the importance heatmap, while
for the rest of the four datasets, we predict attention/saliency heatmap. Our method is highlighted
with green background . For each dataset and each metric, the best result in the current column is in
bold, and the second best result is in blue. For our model, the relative performance change compared
to the second best result (or the best result if we are not the best) in % is noted.

Dataset Method CC ↑ KLD ↓ AUC-Judd ↑ sAUC ↑ SIM ↑ NSS ↑ RMSE ↓ R2 ↑

Mobile UI [47]
(Mobile interface)

Itti et al. [32]’98 0.082 - 0.223 - 0.558 0.126 - -
BMS [82]’13 0.131 - 0.249 - 0.206 0.138 - -
GBVS [28]’06 0.580 - 0.666 - 0.709 0.591 - -
ResNet-Sal [47]’20 0.657 - 0.692 - 0.734 0.704 - -
SAM-S2015 [18]’18 0.477 - 0.650 - 0.562 0.537 - -
SAM-S2017 [18]’18 0.834 - 0.723 - 0.819 0.839 - -
SAM-mobile [47]’20 0.621 - 0.666 - 0.664 0.655 - -
UniAR 0.879 +5.40% 0.115 0.756 +4.56% - 0.832 +1.59% 1.008 +20.14% 0.116 0.777

WS-Saliency [11]
(webpage)

Itti et al. [32]’98 0.367 0.840 0.710 0.661 - 0.769
Deep Gaze II [41]’16 0.574 3.449 0.815 0.644 - 1.380 - -
SalGAN + WS [58]’17 0.637 0.622 0.818 0.703 - 1.458 - -
DVA [73]’17 0.571 0.701 0.805 0.711 - 1.260 - -
UAVDVSM [29]’19 0.519 0.858 0.739 0.668 - 1.133 - -
SAM-ResNet [18]’18 0.596 1.506 0.795 0.717 - 1.284 - -
EML-NET [33]’20 0.565 2.110 0.790 0.702 - 1.277 - -
UMSI [27]’20 0.444 1.335 0.757 0.698 - 1.042 - -
TaskWebSal-FreeView [85]’18 0.525 0.784 0.769 0.714 - 1.107 - -
SAM-ResNet + WS [18]’18 0.718 0.994 0.828 0.725 - 1.532 - -
DI Net + WS [76]’19 0.798 0.690 0.852 0.739 - 1.777 - -
AGD-F (W/o-L) [11]’22 0.815 0.637 0.858 0.753 - 1.802 - -
UniAR 0.827 +1.47% 0.299 -53.06% 0.860 +0.23% 0.779 +3.45% 0.737 1.783 -1.05% 0.085 0.691

FiWI [67]
(webpage)

DeepGaze II [41]’16 0.488 - 0.797 0.625 - 1.229 - -
SAM-ResNet [18]’18 0.595 - 0.791 0.673 - 1.246 - -
UMSI [27]’20 0.457 - 0.755 0.675 - 0.938 - -
AGD-F [11]’22 0.735 - 0.767 0.748 - 1.606 - -
EML-NET [33]’20 0.661 0.603 0.847 0.675 - 1.653 - -
EML-NET + Salicon [33]’20 0.689 0.567 0.848 0.697 - 1.722 - -
Chen et al. [12]’23 0.699 0.564 0.851 0.704 - 1.752 - -
UniAR 0.734 -0.14% 0.571 +0.29% 0.859 +0.94% 0.749 +0.13% 0.627 1.838 +4.91% 0.082 0.544

Salicon [34]
(Natural images)

SimpleNet w. ResNet-50 [61]’20 0.895 0.211 0.868 - 0.786 1.881 - -
SimpleNet w. PNASNet-5 [61]’20 0.907 0.193 0.871 - 0.797 1.926 - -
MDNSal [61]’20 0.899 0.217 0.868 - 0.797 1.893 - -
UNISAL [25]’20 0.880 0.226 0.867 0.725 0.771 1.923 - -
EML-NET [25]’20 0.890 0.204 0.802 0.778 0.785 2.024 - -
UniAR 0.900 -0.77% 0.214 +10.88% 0.870 -0.11% 0.753 -3.32% 0.791 -0.75% 1.946 -3.85% 0.079 0.823

OSIE [70]
(Natural images)

SALICON [34]’15 0.685 0.575 0.846 - 0.600 1.641 - -
SAM-ResNet [18]’18 0.758 0.480 0.860 - 0.648 1.811 - -
UMSI [27]’20 0.746 0.513 0.856 - 0.631 1.788 - -
EML-NET [33]’20 0.717 0.537 0.854 - 0.619 1.737 - -
Chen et al. [12]’23 0.761 0.506 0.860 - 0.652 1.840 - -
UniAR 0.742 -2.50% 0.583 +21.46% 0.862 +0.23% 0.745 0.640 -1.84% 1.789 -2.77% 0.103 0.558

CAT2000 [43]
(Natural image)

ICF [42]’17 0.780 0.445 0.856 0.619 0.670 1.959 - -
DeepGaze II [42]’17 0.795 0.382 0.864 0.650 0.687 1.962 - -
UNISAL [25]’20 0.740 0.470 0.860 0.668 0.663 1.936 - -
DeepGaze IIE [51]’21 0.819 0.345 0.869 0.668 0.706 2.112 - -
SalFBNet [23]’22 0.703 1.198 0.855 0.633 0.643 1.879 - -
UniAR 0.870 -0.92% 0.613 +13.96% 0.877 +0.81% 0.615 -7.93% 0.752 +6.52% 2.338 +10.70% - -
Gold Standard 0.969 0.089 0.916 0.787 0.866 2.743 - -

Imp1k [27]
(Graphic design)

Bylinskii et al. [9]’17 0.758 0.301 - - - - 0.181 0.072
Bylinskii et al. [9]’17 0.732 0.388 - - - - 0.205 0.061
SAM [18]’18 0.866 0.166 - - - - 0.168 0.108
UMSI-nc [27]’20 0.802 0.177 - - - - 0.152 0.095
UMSI-2stream [27]’20 0.852 0.168 - - - - 0.141 0.105
UMSI [27]’20 0.875 0.164 - - - - 0.134 0.115
UniAR 0.904 +3.31% 0.124 -25.00% - - 0.836 - 0.079 -41.04% 0.823 +615.65%

Imp1k. In the Imp1k dataset, we observe some resolution mismatch between the image and its ground-truth
importance map. To unify the image and the ground-truth into the same resolution, we find out the lower
resolution (with a smaller area) between these two and downsample the larger one into the lower resolution.

WS-Scanpath. We asked Chakraborty et al. [11] for their code on evaluating the scanpath, and follow them
to MeanShift clustering to generate spatial bins for the metric SequenceScore. We also follow their criteria to
select the number of clusters in MeanShift clustering which will be used in the evaluation later on.

Mobile UI. We contacted the authors but the original dataset partition is missing. We randomly partitioned
the dataset into a training and a testing set with the number of instances following Leiva et al. [47]. We calculate
the saliency results using images without padding.

COCO-Search18. For the scanpath results, we follow the updated experimental results in the appendix of
GazeFormer [54]. The original results in the main paper are impacted by an image padding issue, as reported in
their GitHub repo.

C Full Results and More Visualizations

We attach another set of visualizations of UniAR’s predictions in Figure 3 including heatmap, scanpath, and
rating predictions.
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Table 7: The full table for scanpath prediction results on natural image and digital design datasets,
with object-searching and free-viewing tasks.

Dataset Method SemSS ↑ SemFED ↓ Sequence Score ↑ Shape ↑ Direction ↑ Length ↑ Position ↑ MultiMatch ↑

COCO-Search18 [16]
(Natural image,
object searching)

IRL [77]’20 0.481 2.259 - 0.901 0.642 0.888 0.802 0.833
Chen et al. [15]’21 0.470 1.898 - 0.903 0.591 0.891 0.865 0.820
FFM [78]’22 0.407 2.425 - 0.896 0.615 0.893 0.850 0.808
Gazeformer [54]’23 0.496 1.861 - 0.905 0.721 0.857 0.914 0.849
UniAR 0.521 +5.04% 2.004 +7.68% - 0.946 +4.53% 0.724 +0.42% 0.924 +3.47% 0.901 -1.42% 0.874 +2.94%

WS Scanpath [11]
(webpage,
free-viewing)

Itti et al. [32]’98 - - 0.177 0.781 0.676 0.778 0.594 0.707
MASC [2]’17 - - 0.169 0.788 0.580 0.818 0.514 0.717
SceneWalker [66]’20 - - 0.194 0.843 0.616 0.842 0.562 0.716
G-Eymol [80]’19 - - 0.218 0.820 0.673 0.816 0.681 0.748
AGD-F (w. layout) [11]’22 - - 0.203 0.787 0.642 0.771 0.677 0.719
AGD-S (w/o layout) [11]’22 - - 0.221 0.814 0.663 0.805 0.698 0.745
AGD-S (w. layout) [11]’22 - - 0.224 0.820 0.677 0.813 0.708 0.755
UniAR - - 0.267 +19.20% 0.967 +14.71% 0.826 +22.01% 0.960 +14.01% 0.794 +12.15% 0.887 +17.48%

We present full tables of UniAR’s performance on heatmap and scanpath predictions in Tables 6 and 7, with
more baselines and a complete set of evaluation metrics. UniAR offers consistently good predictions on three
tasks across multiple datasets, compared to the ground-truths.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Contributions and scope are accurately reflected.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: : No new theory in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See experiments details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: Not appliable for now.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the existing references for experiment results on benchmark datasets, where
only average metric number, but no error bar, are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: See Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: They are all publicly available data with proper license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: No new human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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