
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND SEQUENTIAL RERANKING: RERANKER-
GUIDED SEARCH IMPROVES REASONING INTENSIVE
RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

The widely used retrieve-and-rerank pipeline faces two critical limitations: they are
constrained by the initial retrieval quality of the top-k documents, and the growing
computational demands of LLM-based rerankers restrict the number of documents
that can be effectively processed. We introduce Reranker-Guided-Search (RGS), a
novel approach that bypasses these limitations by directly retrieving documents
according to reranker preferences rather than following the traditional sequen-
tial reranking method. Our method uses a greedy search on proximity graphs
generated by approximate nearest neighbor algorithms, strategically prioritizing
promising documents for reranking based on document similarity. Experimental
results demonstrate substantial performance improvements across multiple bench-
marks: 3.5 points on BRIGHT, 2.9 on FollowIR, and 5.1 on M-BEIR, all within a
constrained reranker budget of 100 documents. Our analysis suggests that, given a
fixed pair of embedding and reranker models, strategically selecting documents to
rerank can significantly improve retrieval accuracy under limited reranker budget.

1 INTRODUCTION

Retrieval involving complex query-document relationships has recently received significant research
attention across scientific reasoning, instruction following, and multi-modal contexts (Su et al. (2024);
Weller et al. (2024); Wei et al. (2024); Oh et al. (2024)). While embedding-based retrieval methods
Gao et al. (2021); Karpukhin et al. (2020); Formal et al. (2021); Xiao et al. (2023); Meng et al. (2024)
enable efficient search over large corpora, they often struggle with complex tasks due to inherent
capacity limitations. The retrieve-then-rerank pipeline Nogueira & Cho (2019) addresses this by
using computationally intensive rerankers to assess the top-k search results, with recent large language
model (LLM)-based rerankers Sun et al. (2023); Pradeep et al. (2023); Qin et al. (2023); Weller
et al. (2025); Shao et al. (2025) substantially improving relevance rankings by jointly analyzing
query-document pairs.

While LLM-based rerankers greatly improve relevance ranking, their high computational cost limits
the number of documents that can be reranked. As a result, accuracy is bottlenecked by the initial
retrieval stage. This leads to a key question: Given a fixed reranker budget, how can we select
documents for reranking to maximize accuracy? In this work, we move beyond the common
sequential scan of retrieval results and propose selecting documents for reranking using a search
algorithm over document-document similarity.

Inspired by the recent popular graph-based algorithm for nearest neighbor search in the bi-metric
setting Xu et al. (2024), we propose Reranker-Guided-Search to bypass sequential reranking. Based
on the clustering hypothesis Jardine & van Rijsbergen (1971) that similar passages have similar
relevancy to the same query, we run a greedy search on the proximity graph built from Approximate
Nearest Neighbor Search (ANNS) algorithm Jayaram Subramanya et al. (2019); Malkov & Yashunin
(2018); Fu et al. (2019) on the document embedding. Specifically, given a search query, we first
retrieve a list of seed documents close to the query in the embedding space and rerank them. After
that, we expand the document candidates by including the neighborhood of those documents favored
by the reranker, and rerank those documents again. We iteratively repeat the expand and rerank
process until we reach the reranking budget.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An example from TheoremQA-T illustrating how our Reranker-Guided-Search works. We
show the summarized version of the query and document titles on the left.

Our method enhances retrieval accuracy by strategically allocating the reranking budget. We first
rerank a small neighborhood of the query, then avoid spending resources on low-ranked neighbor-
hoods. As illustrated in Figure 1, while query Q and document C1/D1 share surface-level similarities
(both Q and D1 mention sine functions, Q and C1 mention amplitude), the reranker assigns C1 a
lower rank because it fails to provide the correct mathematical relationship. It then expands D1 to
get D2, and D2 to get D3, because document D2, despite minimal word overlap with Q, contains
the appropriate method to solve the problem—a quality captured by the reranker. Consequently, our
approach finds the correct document D3 by exploring D2’s neighborhood while reranking fewer than
500 documents. RGS saves reranker budget by skipping documents similar to the lower-ranked C1.
In this case, document D3 was initially ranked 2812th in the embedding space and wouldn’t have
been found using sequential reranking.

We empirically test our RGS algorithm on three different benchmarks: a reasoning intensive bench-
mark BRIGHT Su et al. (2024), a multi-modality benchmark M-BEIRWei et al. (2024), and an
instruction following benchmark FollowIR Weller et al. (2024). When the reranker budget is fixed
to at most 100 documents, our RGS method improves the NDCG@10 score from 25.3 to 28.8 on
BRIGHT, from 60.4 to 63.3 on FollowIR, and from 25.9 to 31.0 on M-BEIR, compared to the
standard sequential reranking method.

Our analysis shows that in the regime of high reranker budget (e.g. 500), RGS exhibits a unique
property that the final retrieval accuracy is less dependent on the embedding model capacity but more
decided by the alignment between the reranker model and the groundtruth label. Furthermore, our
RGS is robust to query embedding perturbance. It still manages to get reasonable retrieval accuracy
even if the similarity between document embedding and query embedding provides little information
about their relevancy, which makes RGS suitable for reasoning-intensive retrieval tasks.

In summary, this work makes the following contributions:

• We propose a novel retrieval pipeline RGS, which leverages the similarity of documents to prioritize
reranking of more promising documents and improve performance in retrieving complex query-
document relationships.

• We propose a rarely discussed evaluation setup—Reranker@k—to assess the efficiency of different
methods in applying rerankers and to evaluate their performance on complex query-document
matching tasks, including BRIGHT, FollowIR, and M-BEIR.

• We show that, given a pair of embedding and reranker models, strategically selecting documents
for reranking can significantly improve accuracy within a fixed reranker budget.

2 RELATED WORK

Graph-based reranking Recently, several graph-based reranking methods have been proposed to
bypass the sequential reranking bottleneck. GAR MacAvaney et al. (2022) builds a KNN graph over
the corpus and maintains a graph frontier of reranked documents. It alternates between reranking
documents from the shortlist returned by vector similarity search and from the graph frontier. RAR

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Frayling et al. (2024) extends GAR by incorporating the query point and constructing a bipartite
graph between documents and queries. SlideGAR (Rathee et al., 2025) further extends GAR
to accommodate listwise rerankers. From a practical perspective, all prior works (GAR, RAR,
SlideGAR) evaluate their methods only on the classical TREC dataset (Craswell et al., 2020),
which does not capture the complexity of modern user queries. In contrast, our analysis shows that
RGS exhibits strong performance on more complex retrieval tasks.

Graph-based ANNS algorithms Graph-based ANN algorithms Jayaram Subramanya et al. (2023);
Malkov & Yashunin (2018); Fu et al. (2019) are a family of heuristic-based methods that have recently
gained increased attention in the ANN community. These algorithms typically build a proximity
graph over high-dimensional vectors and then perform a greedy search to traverse toward the query’s
nearest neighbors. Although Indyk & Xu (2023) has shown that graph-based methods lack worst-case
theoretical guarantees, they have demonstrated strong empirical performance. In addition to excelling
at standard ANN tasks, graph-based algorithms offer other advantages. For example, Xu et al. (2024)
proposes a bi-metric framework that leverages a proximity graph built using the DiskANN algorithm
under one distance metric to search for nearest neighbors according to a different distance metric.
This idea inspired us to design Reranker-Guided-Search for reranking.

3 METHOD

3.1 PRELIMINARIES

Given a document corpus C = {d1, ..., dn} and a query q, we have access to an embedding model
E(·) that maps queries and documents to a shared embedding space, and a reranker model D that
evaluates the relevance between a query and a document. An ideal embedding model E should satisfy
two conditions:

• document-wise similarity: Given two documents d1 and d2, the more similar they are, the larger
the inner product between E(d1) and E(d2).

• query-document relevance: Given a query q and a document d, the more relevant the document is
to the query, the larger the inner product between E(q) and E(d).

The goal of retrieval task is to return the most relevant document to the query in the most efficient
way. In the scope of our paper, we focus on how to better utilize the reranker model. Our objective is
to find the most relevant document while under fixed reranker calls budget.

3.2 BASELINE

We mostly compare our RGS method with two other baselines: Retrieve-and-Rerank and SlideGAR.
Here, we briefly describe SlideGAR, introduced in a recent work Rathee et al. (2025). SlideGAR
performs reranking in rounds until its reranker call quota is exhausted. In each round, it asks the
reranker to rerank w documents and retains the top w/2 among them. The w candidates are composed
of two parts: one half comes from the top w/2 documents selected in the previous round, and the
other half is alternately sampled from either the initial short list sorted by vector similarity or from
the KNN graph neighbors of the w documents reranked in the previous round.

Although both SlideGAR and our RGS explores the graph frontier on the corpus graph, we highlight
key algorithmic differences between them and our RGS method. First, our RGS maintains an up-
to-date document order by the reranker’s preference. RGS explores all the neighbors of the most
promising document and inserts them to the sorted list. In contrast, SlideGAR only picks w/2
documents from the graph frontier with the top vector similarity score, discarding the rest of them.
This means that even if a relevant document appears in the graph frontier, it may not be ranked
immediately if its embedding is not close to the query. Thus, we view SlideGAR more like an
augmented linear rerank with the addition of the graph neighbors from the current candidates, while
RGS tries to simulate a standard beam search used in graph-based approximate nearest neighbor
search algorithms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.3 RERANKER-GUIDED-SEARCH

Inspired by the clustering hypothesis Jardine & van Rijsbergen (1971), we believe that if a document
is judged to be relevant by a reranker, then its similar documents are likely to be relevant as well. We
thus prioritize to rerank those documents whose similar documents have been assigned high scores
by the reranker. We combine this idea with the bi-metric techniques from Xu et al. (2024) to design
Reranker-Guided-Search.

Our RGS algorithm first builds a proximity graph over documents by running the DiskANN algorithm
Jayaram Subramanya et al. (2019) on the document embeddings. DiskANN incrementally constructs
the proximity graph by inserting new points into the graph data structure. For each new point p, it
first performs a greedy search on p to obtain the set of visited points V . Then it creates bi-directional
edges between p and points in V . Finally, a robust pruning procedure is applied to any points with
more than R edges. After preprocessing, DiskANN produces a proximity graph in which each point
v has at most R outgoing neighbors Nout(v). (Please refer to Jayaram Subramanya et al. (2019) for
details)

Given a query q, RGS performs a two-stage search to locate the relevant document. In stage one, we
run DiskANN to find the document s whose embedding is closest to that of the query. In stage two,
we run a greedy search guided by the reranker, starting from document s. Specifically, RGS maintains
an ordered list A of the most relevant documents found so far. Initially, the list only contains one
document s. At each step, we pick the first unexpanded document v in the list, explore its neighbor
documents Nout(v) in the graph, and append them (at most R documents) to the end of the list. We
then use a listwise reranker to reorder the newly added documents from the end toward the front
using a sliding window. This expand and rerank process is repeated until we reach the reranker call
budget. Finally, the first document in list A is returned as the most relevant document to the query.
Please refer to Algorithm 1 for details.

In our implementation, we focus on a listwise reranker model D, as Sun et al. (2023) suggests it
performs better than a pointwise reranker when applied to LLMs. Our RGS algorithm can be easily
modified to accommodate a pointwise reranker by replacing the list A with a priority queue sorted by
reranker scores.

Algorithm 1 Reranker-Guided-Search(q)

1: Input: Graph index G, listwise-reranker D, query q, search list size L, sliding window size w.
2: Output: the most relevant document for query q
3: s← Use DiskANN algorithm to search for the closest vector from query embedding
4: A← {s}
5: U ← ∅
6: while A \ U ̸= ∅ do
7: v ← the first vertex in A \ U
8: U ← U ∪ v
9: Append Nout(v) \A to the end of A ▷ Nout(v): out neighbors of node v in G

10: for i = |A| down to 0 step size w/2 do
11: Use reranker D to reorder A[i-w · · · i]
12: if |A| > L then
13: A← the first L vertices in A
14: return the first element in A

3.4 ANALYSIS

We first analyze the running time of our RGS algorithm. Since the time bottleneck lies in calling
the reranker model, we focus on bounding the number of reranker calls. Empirically, the number of
expanded nodes is usually bounded by O(L), where L is the search list size. For each expansion,
we run the reranker D to reorder the search list using a sliding window with step size w/2, which
involves O(L/w) reranker calls. Overall, the estimated number of reranker calls is O

(
L2

w

)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Regarding accuracy, we can invoke Theorem 1.1 from Xu et al. (2024), which shows that as long as
the vector similarity approximates the reranker score (e.g., for a pointwise reranker) within a constant
factor, our RGS algorithm is able to find the most relevant documents according to the reranker score.

4 EXPERIMENTS

To evaluate the performance of our RGS method, we compare RGS with other two methods (Retrieve-
and-Rerank, and SlideGAR (Rathee et al., 2025)) and test them on three benchmarks: BRIGHT
(Su et al., 2024) (reasoning intensive), M-BEIR (Wei et al., 2024) (multi-modality), and FollowIR
(Weller et al., 2024) (instruction following). We believe that these benchmarks represent the most
complicated retrieval tasks available, which can’t be solved by simple semantic similarity, and serve
as a better testbed for evaluating the efficiency of different high-performing retrieval methods.

4.1 EXPERIMENTAL SETUP

Dataset Details BRIGHT Su et al. (2024) is a reasoning-intensive benchmark composed of naturally
occurring human data from 12 different domains. Relevance in this dataset goes beyond simple
lexical or semantic similarity; the authors constructed hard negatives that are topically related to the
query but do not meet its specific requirements. M-BEIR Wei et al. (2024) is a multimodal retrieval
benchmark built from eight different query-corpus modality combinations. It poses a challenge
for retrieval methods, as models must integrate knowledge from multiple modalities to interpret
user queries and return answers in the specified modality. FollowIR Weller et al. (2024) is an
instruction-following retrieval benchmark curated from three TREC datasets, in which annotators
create different instructions for each query to test a model’s ability to adjust retrieval results based
on nuanced differences in user intent. We believe these three benchmarks all demand a non-trivial
degree of reasoning compared to classical IR tasks and are therefore more suitable for evaluating the
capabilities of retrieval methods to capture complicated query-document relationships.

Metrics We propose a rarely discussed evaluation setup Reranker@k, which limits the reranker to
scan at most k documents. In our experiment, we set k = 100/300/500 and measure NDCG@10
under different reranker budget. Note that our setup allows each document to be reranked multiple
times by a listwise reranker. We also consider the number of token usage, API calls in Appendix A.1.
For M-BEIR, we randomly sample a subset of 100 queries to test and we remove those groundtruth
labels not appearing in the corpus for accurate NDCG@10 evaluation.

Baselines and Algorithm Details We compare our method with two baselines shown as follows:

• Retrieve-and-Rerank: For different reranker budget k = 100/300/500, it uses DiskANN algorithm
to retrieve the top k documents closest to the query embedding and rerank them in a sliding-window
way Sun et al. (2023) with window size w = 10.

• SlideGAR: We reimplement the algorithm in Rathee et al. (2025). First, SlideGAR uses the
DiskANN algorithm to retrieve a shortlist of the top k documents closest to the query embedding.
Next, it builds a KNN graph based on document-document similarity. It then alternates between
reranking documents from either the retrieved shortlist or the graph frontier until the reranker
budget is reached. Following Rathee et al. (2025), we set the window size to w = 20.

• Reranker-Guided-Search: In practice, we make the following adaptions to Algorithm 1. The search
list size Ls is tuned based on the reranker budget k (Ls = 20/30/50 for k = 100/300/500). We
initialize our search with k/5 start points returned by the first stage vector similarity search. The
algorithm is forced to immediately return the best documents seen so far once the reranker budget k
is exhausted We set window size to w = 10 for our RGS method and return the top-10 documents
in list A for evaluating NDCG@10.

Embedding/Reranker Model Details We choose BGE-Large Xiao et al. (2023) as the embedding
model for BRIGHT and FollowIR, and CLIP Radford et al. (2021) embeddings for M-BEIR. We
prompt Gemini-2.0-Flash to be our reranker model. Please refer to Appendix A.1 for our prompt. For
the multi-modality benchmark M-BEIR, when either the query or a candidate in the corpus contains
both image and text information, we use CLIP’s text and image encoders to separately encode each
modality, and then apply element-wise addition to produce the final embedding.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 RESULTS

Scientific and Mathmatical Reasoning The evaluation results on BRIGHT are presented in
Table 1. Using dense retrieval with BGE-Large as the encoder yields an average NDCG@10 of
13.7 across all datasets. When applying a retrieval-and-rerank pipeline, sequential reranking of the
top-100 documents improves the score to 25.3, and scanning the top-500 documents yields 27.7. This
suggests that dense retrieval alone struggles to capture complex query-document relationships, which
rerankers can help improve.

SlideGAR achieves 25.4 at Reranker@100 and 26.9 at Reranker@500, showing minimal improvement
over sequential scanning. In contrast, our method, RGS, achieves 28.8 (+14%) at Reranker@100 and
33.0 (+19%) at Reranker@500, demonstrating a substantial improvement in accuracy under the same
reranker budget.

We also observe that RGS provides the largest gains over sequential scanning in scientific reasoning
tasks, whereas the improvement is minimal on AoPS and LeetCode. We speculate that reranking a
list of math or code examples requires intensive reasoning ability, which remains challenging—even
when using Gemini-Flash-2.0 as the reranker. In these cases, no reranking method is able to improve
upon the first-stage retrieval.

Instruction Following The evaluation results on FollowIR are presented in Table 2. Using dense
retrieval with BGE-Large as the encoder yields an average NDCG@10 of 49.9 across all datasets.
Applying a retrieve-and-rerank pipeline, sequentially reranking the top-100 documents improves
the score to 60.4, while scanning the top-500 documents yields 61.6. This suggests that sequential
reranking provides limited benefit in capturing user instructions.

SlideGAR achieves 62.5 at Reranker@100 and 59.8 at Reranker@500, showing a slight decrease as
the reranker budget increases. In contrast, our method, RGS, achieves 63.3 (+5%) at Reranker@100
and 64.2 (+4%) at Reranker@500, demonstrating a stable improvement in accuracy under the same
reranker budget.

Compared with the results on BRIGHT, the performance gap between different methods is smaller on
FollowIR. We observe that on FollowIR, over 87% of the ground-truth answers are located within the
top 100 documents ranked by query-document vector similarity, whereas the number is only 31% on
BRIGHT. This indicates that the marginal benefit of searching beyond the top 100 is limited. Since
most of the newly discovered documents beyond the top 100 are likely to be noise—and the LLM-
based reranker doesn’t always align with ground-truth labels-this explains the slight performance
drop observed in some methods as the reranker budget increases.

Multi-modality retrieval The evaluation results on M-BEIR are presented in Table 3. Using
dense retrieval with clip-ViT-B-32 as the encoder yields an average NDCG@10 of 15.3 across
all datasets. When applying a retrieval-and-rerank pipeline, sequential reranking of the top-100
documents improves the score to 25.9, and scanning the top-500 documents yields 30.1. This
suggests that dense retrieval alone struggles to capture cross-modality retrieval tasks, which rerankers
can help improve.

SlideGAR achieves 28.6 at Reranker@100 and 29.9 at Reranker@500, showing minimal improvement
over sequential scanning. In contrast, our method, RGS, achieves 31.0 (+20%) at Reranker@100 and
38.3 (+27%) at Reranker@500, demonstrating a substantial improvement in accuracy under the same
reranker budget.

We notice that the improvement is significant on certain tasks. For example, on task 6, while
the standard CLIP embedding scored less than 5 even after reranking the top-500 candidates, our
RGS achieves an NDCG@10 score of 30.7 and 15.6 using the same reranker budget. In Wei et al.
(2024), the authors mention that they use the ’Wikipedia page title’ as text input rather than using
the ’100 tokens from the Wikipedia page’ as the candidate because it provides better ’zero-shot
performance.’ This indicates that they are aware of the limited ability of embedding models to encode
long context, which we believe is an ideal case to demonstrate the advantage of our reranking method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

No reranker Reranker@100 Reranker@300 Reranker@500
Dataset BGE-Large RR SlideGAR RGS RR SlideGAR RGS RR SlideGAR RGS

Biology 11.7 31.1 33.9 37.0 37.6 37.0 42.8 38.9 40.7 46.8
Earth Science 24.6 42.2 43.7 45.3 43.0 43.2 47.1 38.5 43.5 49.2

Economics 16.6 23.0 26.0 26.2 27.4 29.1 28.5 28.8 28.8 30.4
Psychology 17.5 32.0 33.1 40.9 39.5 38.5 45.4 40.4 41.1 49.2

Robotics 11.7 24.5 24.6 26.5 22.9 28.0 29.5 25.0 21.9 29.8
Stack Overflow 10.6 27.2 26.2 29.9 27.5 26.7 29.1 27.5 24.2 27.7

Sustainable Living 13.1 30.8 31.4 35.5 24.7 35.5 36.2 26.8 30.8 37.1

LeetCode 26.7 26.0 17.4 25.3 24.5 17.0 23.5 25.8 11.2 22.1
Pony 5.7 24.5 21.6 22.5 21.1 19.8 21.9 23.7 20.8 25.1

AoPS 6.0 6.7 6.9 7.1 7.5 4.0 7.8 6.7 3.5 7.4
TheoremQA-Q 13.0 20.1 17.7 21.2 22.3 20.6 28.6 25.8 23.7 30.2
TheoremQA-T 6.9 15.8 21.9 28.2 20.8 29.6 39.3 24.5 33.0 40.7

Avg 13.7 25.3 25.4 28.8 26.6 27.4 31.6 27.7 26.9 33.0

Table 1: BRIGHT evaluation with varying reranker budgets for RR (retrieve-and-rerank), SlideGAR
(Rathee et al., 2025), and our RGS (Reranker-Guided-Search).

No reranker Reranker@100 Reranker@300 Reranker@500
Dataset BGE-Large RR SlideGAR RGS RR SlideGAR RGS RR SlideGAR RGS

Robust04 47.2 58.7 59.2 61.6 59.6 56.6 63.3 61.0 55.9 65.0
News21 52.6 57.4 58.5 58.8 58.7 57.3 58.6 58.6 56.5 58.2
Core17 49.8 65.0 69.7 69.6 64.3 66.7 70.3 65.2 67.1 69.5

Avg 49.9 60.4 62.5 63.3 60.9 60.2 64.1 61.6 59.8 64.2

Table 2: FollowIR evaluation with varying reranker budgets for RR (retrieve-and-rerank), SlideGAR
(Rathee et al., 2025), and our RGS (Reranker-Guided-Search).

No reranker Reranker@100 Reranker@300 Reranker@500
Task Dataset CLIP RR SlideGAR RGS RR SlideGAR RGS RR SlideGAR RGS

1. qt → ci

VisualNews 24.4 36.4 36.9 37.4 35.1 39.8 39.9 35.8 41.2 36.5
MSCOCO 41.1 59.4 55.6 55.8 58.7 55.3 57.6 60.3 54.6 55.1

Fashion200K 2.4 7.4 5.9 5.6 10.3 6.8 8.6 8.9 9.9 7.7

2. qt → ct WebQA 22.7 44.3 49.8 52.7 48.4 53.6 62.8 50.3 54.3 67.9

3. qt → (ci, ct)
EDIS 24.5 43.2 46.6 52.6 45.2 46.7 53.6 49.0 48.2 55.3

WebQA 20.5 42.8 46.4 48.4 45.7 45.5 53.6 48.6 46.4 54.3

4. qi → ct
VisualNews 24.0 30.4 33.3 27.3 31.1 30.9 32.3 30.3 29.5 33.3
MSCOCO 35.8 44.3 44.5 46.5 44.5 44.6 44.7 44.9 43.8 45.3

Fashion200K 1.6 4.7 5.0 5.3 5.9 8.0 9.5 9.2 6.9 8.7

5. qi → ct NIGHTS 24.4 26.7 24.0 28.9 29.8 26.0 26.0 31.0 26.2 25.4

6. qi → (qt, ct)
OVEN 0.0 0.0 2.9 4.2 3.0 3.7 21.4 3.0 5.7 30.7

InfoSeek 0.1 1.0 2.1 3.9 1.3 4.1 6.8 0.7 4.2 15.6

7. qi → (qt, ci)
FashionIQ 2.7 8.1 12.2 11.8 11.6 11.0 16.0 9.8 8.8 15.3

CIRR 12.8 31.8 33.3 33.6 40.8 35.6 47.5 41.6 34.9 49.2

8. (qi, qt)→ (ci, ct)
OVEN 5.4 14.8 33.2 41.4 15.7 36.8 57.9 29.9 36.8 59.5

InfoSeek 2.8 18.8 25.2 40.4 28.8 20.0 47.0 28.4 27.2 52.6
Avg 15.3 25.9 28.6 31.0 28.5 29.3 36.6 30.1 29.9 38.3

Table 3: M-BEIR evaluation with varying reranker budgets for RR (retrieve-and-rerank), SlideGAR
(Rathee et al., 2025), and our RGS (Reranker-Guided-Search).

5 ANALYSIS

In this section, we investigate how the quality of the embedding / reranker model and noise in the
embeddings affect retrieval accuracy. We also perform an error analysis to identify the source of
missing ground-truth results. Please refer to Appendix A.1 for ablation studies on the impact of
first-stage retrieval, graph types.

5.1 RETRIEVAL RESULTS WITH DIFFERENT EMBEDDING / RERANKER MODELS

We study the extent to which embedding quality affects final retrieval accuracy. Our experiments
are conducted on a selected subset of datasets—Biology, Psychology, Sustainable Livings, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

TheoremQA-T-from the BRIGHT benchmark. We choose these four datasets because they exhibit
the largest performance gaps between our RGS method and RR, making the algorithmic behavior of
our method more pronounced and easier to analyze. To examine the impact of embedding quality,
we apply four embedding models of varying sizes: SFR-Mistral (7B), BGE-Large (300M),
BGE-Base (100M), and BGE-Micro (17M).

As shown in Figure 2, for the retrieve-and-rerank method, we observe a consistent performance gap
between stronger and weaker embedding models. In cases where the reranker model has significantly
higher capacity than the embedding model, the final retrieval accuracy is largely constrained by how
many ground-truth answers are retrieved during the first-stage ANN search.

For our method RGS , although more powerful embedding models achieve higher retrieval accuracy
at earlier stages, all models converge to similar accuracy under the Reranker@500 setting. This
supports our claim that the embedding model primarily determines how many reranker calls are
needed to reach a given retrieval accuracy, while the final performance is ultimately bounded by the
reranker’s capability.

0 100 200 300 400 500
Reranker Budget

10

20

30

40

ND
CG

@
10

Reranker-Guided-Search

BGE-Micro
BGE-Base
BGE-Large
SFR-Mistral

0 100 200 300 400 500
Reranker Budget

10

20

30

40

ND
CG

@
10

Retrieve-and-Rerank

BGE-Micro
BGE-Base
BGE-Large
SFR-Mistral

Figure 2: Average NDCG@10
result over a selected subset
of datasets from BRIGHT. The
left figure is our method RGS,
the right figure is retrieve-and-
rerank. Experiments involve
4 different embedding models
with varying embedding quality.

We also study how our method performs across different reranker models. In Table 5 from Appendix,
we present experimental results on a subset of BRIGHT datasets using “gpt-4.1-mini”. We observe
that our RGS method consistently achieves the highest retrieval accuracy across various reranker
budgets and datasets, although the final accuracy varies compared to Table 1. This demonstrates the
generalization ability of our RGS method, and highlights that different reranker models have their
own specialties.

5.2 DIFFERENT ROLES OF DOCUMENT-DOCUMENT SIMILARITY AND QUERY-DOCUMENT
RELEVANCE IN THE RETRIEVAL PROCESS

We perform a fine-grained ablation study to examine how embedding quality affects the retrieval
accuracy of the three methods: RR, SlideGAR, and RGS. As mentioned in Section 3, we believe
that an ideal embedding should satisfy two conditions: preserving document-wise similarity and
approximating query-document relevance. In the following, we investigate the role of each by
introducing different levels of perturbation to either the query or document embeddings.

Perturbation on query embeddings Fix a ratio w ∈ [0, 1], we mix each query embedding with
another random query embedding according to the ratio 1 − w : w. This simulates the situation
where the embedding model fails to distinguish subtle differences between queries. In this case,
the embedding model’s ability to measure query-document relevance is compromised, while the
document-wise similarity structure remains intact, as the document embeddings are unchanged.

Perturbation on document embeddings Fix a ratio w ∈ [0, 1], we mix each document embedding
with another random document embedding according to the ratio 1 − w : w. This simulates the
scenario where the embedding model fails to distinguish subtle differences between documents. In
this case, both key functions of the embedding model—measuring query-document relevance and
preserving document-wise similarity—are compromised.

Please see Figure 3 for retrieval result on the Psychology dataset from BRIGHT after applying two
types of perturbations to the query and document embeddings. Note that w = 0 corresponds to
the original, unaltered embeddings, while w = 1 represents the case where the embedding model
completely confuses one document/query with another.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 0.2 0.4 0.6 0.8 1
Perturbation Level

0

10

20

30

40

50

ND
CG

@
10

49.2 48.3

43.5

19.4

4.8
1.1

36.2
38.2 36.9

15.5

4.1
1.6

40.4
42.2

35.2

22.3

5.2

0.8

Document
RGS
SlideGAR
RR

0 0.2 0.4 0.6 0.8 1
Perturbation Level

0

10

20

30

40

50

ND
CG

@
10

49.2
47.2 46.8 48.1

41.7 40.4

36.2 35.7

30.9

26.4

17.6

13.2

40.4

36.6

29.7

19.1

3.1 1.8

Query

Figure 3: For different levels
of perturbation added on query
(right) / document(left) embed-
dings, we report the retrieval
accuracy for different retrieval
methods

100 200 300 400 500

43.3%

15.0%

41.8%

48.6%

26.0%

25.5%

48.1%

30.5%

21.4%

52.2%

34.3%

13.5%

53.8%

34.4%

11.8%
Reranker-Guided-Search

100 200 300 400 500

31.9%

8.2%

59.9%

35.5%

14.7%

49.8%

39.2%

17.9%

42.8%

39.4%

23.9%

36.7%

39.0%

27.8%

33.2%

Retrieve-and-Rerank
Figure 4: For different Reranker
budgets, each stacked bar shows
the percentage of ground-truth
passages that were retrieved (or-
ange), examined but not selected
(light orange), or never exam-
ined (grey). Results are re-
ported for running RGS (left)
and RR (right) methods on
BRIGHT/Biology dataset.

We observe that for RR, its performance remains consistent regardless of whether the perturbation
is applied to the query or the document, as adding noise to either is symmetric under the sequential
reranking process. Its retrieval accuracy drops to nearly zero as w increases from 0 to 1.

For SlideGAR, retrieval accuracy degrades more slowly when the perturbation is applied to the query
embedding. This is because, even if a completely incorrect query embedding results in a meaningless
first-stage shortlist, SlideGAR can still leverage document-document similarity to approach the
correct answer.

For our RGS method, retrieval accuracy declines only slightly even when the query embedding
contains no useful information (i.e., when w = 1). This is because the query embedding is used
solely to initialize the starting point for RGS’s second-stage search. A random starting point may
slow down the search process but has limited impact on the final retrieval result.

5.3 ERROR ANALYSIS

We perform an error analysis to understand why the performance of RGS stops improving as the
reranker budget continues to grow. We categorize the ground-truth answers into three classes: (1)
answers returned by the retrieval algorithm (orange), (2) answers seen during the retrieval process but
not selected by the reranker (light orange), and (3) answers not seen at all during the retrieval process
(gray). We plot the percentage of each class as the reranker budget increases for both RGS and the
retrieve-and-rerank method (see Figure 4). We observe that although the percentage of returned
answers does not increase—and sometimes even slightly decreases—the percentage of seen answers
consistently grows with the reranker budget. This suggests that the final retrieval accuracy is limited
not by the efficiency of our retrieval algorithm, but by the fact that the reranker model’s preferences
do not always align with human-labeled relevance.

6 CONCLUSION

In this paper, we propose Reranker-Guided-Search, to bypass the sequential reranking bottleneck.
Our method leverages a proximity graph built on document-wise similarity and performs a greedy
search guided by the reranker to traverse toward the correct answer. We conduct extensive experiments
to demonstrate the effectiveness of our method on three reasoning-intensive retrieval benchmarks. Our
ablation studies show that the quality of the embedding model affects the reranker budget required to
achieve a certain level of retrieval accuracy, while the final retrieval accuracy is primarily determined
by the reranker model. A limitation of our RGS method is that adaptively choosing documents to
rerank may hinder parallelization, which we leave for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of
the trec 2019 deep learning track. arXiv preprint arXiv:2003.07820, 2020.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and
expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2288–2292, 2021.

Erlend Frayling, Sean MacAvaney, Craig Macdonald, and Iadh Ounis. Effective adhoc retrieval
through traversal of a query-document graph. In European Conference on Information Retrieval,
pp. 89–104. Springer, 2024.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Nsg : Navigating spread-out graph for
approximate nearest neighbor search. https://github.com/ZJULearning/nsg, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neighbor search
implementations: Guarantees and limitations. Advances in Neural Information Processing Systems,
36:66239–66256, 2023.

Nick Jardine and Cornelis Joost van Rijsbergen. The use of hierarchic clustering in information
retrieval. Information storage and retrieval, 7(5):217–240, 1971.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in neural information processing Systems, 32, 2019.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann. https://github.com/microsoft/DiskANN, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. Adaptive re-ranking with a corpus
graph. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pp. 1491–1500, 2022.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824–836, 2018.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog, 2024.
URL https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon
Seo. Instructir: A benchmark for instruction following of information retrieval models. arXiv
preprint arXiv:2402.14334, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models. arXiv preprint arXiv:2309.15088, 2023.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv preprint arXiv:2306.17563, 2023.

10

https://github.com/ZJULearning/nsg
https://github.com/microsoft/DiskANN
https://blog.salesforceairesearch.com/sfr-embedded-mistral/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Mandeep Rathee, Sean MacAvaney, and Avishek Anand. Guiding retrieval using llm-based listwise
rankers. In European Conference on Information Retrieval, pp. 230–246. Springer, 2025.

Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan
Kian Hsiang Low, Sewon Min, Wen-tau Yih, Pang Wei Koh, et al. Reasonir: Training retrievers
for reasoning tasks. arXiv preprint arXiv:2504.20595, 2025.

Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Haisu Liu,
Quan Shi, Zachary S Siegel, Michael Tang, et al. Bright: A realistic and challenging benchmark
for reasoning-intensive retrieval. arXiv preprint arXiv:2407.12883, 2024.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023.

Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhu Chen.
Uniir: Training and benchmarking universal multimodal information retrievers. In European
Conference on Computer Vision, pp. 387–404. Springer, 2024.

Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme,
Dawn Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models
to follow instructions. arXiv preprint arXiv:2403.15246, 2024.

Orion Weller, Kathryn Ricci, Eugene Yang, Andrew Yates, Dawn Lawrie, and Benjamin Van Durme.
Rank1: Test-time compute for reranking in information retrieval. arXiv preprint arXiv:2502.18418,
2025.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Haike Xu, Sandeep Silwal, and Piotr Indyk. A bi-metric framework for fast similarity search. arXiv
preprint arXiv:2406.02891, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A FULL EXPERIMENTAL RESULTS

A.1 EXPERIMENTAL DETAILS IN SECTION 4

Prompt for Gemini-2.0-Flash Here, we use a similar prompt from Sun et al. (2023) to ask
Gemini-2.0-Flash to rerank the documents.

System
Instruction

You are RankGPT, an intelligent assistant that can rank answers based on their
relevance to the query. I will provide you with 10 passages, each indicated
by a number identifier []. Rank the answers based on their relevance to query:
{query}.

Messages

[1] {Passage 1}
[2] {Passage 2}
...
[10] {Passage 10}
Query: {query}. Rank the 10 passages above based on their relevance to the
query. The passages should be listed in descending order using identifiers. The
most relevant passages should be listed first. The output format should be like
[1] >[2] ... >[10]. Only response the ranking results, do not say any word or
explain.

Table 4: Prompt for “Gemini-2.0-Flash” to serve as a reranker

Computational resource to reproduce our experiments Our experiments are run on an Intel(R)
Xeon(R) Platinum 8481C CPU with 44 cores and we use one NVDIA A100 GPU to generate the
embeddings. The estimated cost spent on Gemini-2.0-Flash to reproduce Table 1, Table 2, and Table 3
is $600.

More metrics Previously, we defined the reranker budget as the number of documents seen by
the reranker. However, this may not accurately reflect the total computational resources consumed
during retrieval, as each document can be seen multiple times by a listwise reranker. Here, we plot
the average number of tokens or API calls sent to the LLM-based reranker per query versus retrieval
accuracy. Please see Figure 5 for the results. We observe that RGS achieves the highest retrieval
accuracy on BRIGHT under a fixed budget, whether measured by token usage or API calls.

0.1 0.2 0.3 0.4 0.5 0.6
Token Usage (in millions of tokens)

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

ND
CG

@
10

BRIGHT
RGS
RR
SlideGAR

0 25 50 75 100 125 150 175 200
API Calls

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

ND
CG

@
10

BRIGHT
RGS
RR
SlideGAR

Figure 5: Average NDCG@10 versus number of tokens or API calls sent to the LLM-based reranker
on the BRIGHT benchmark

A.2 IMPACT OF FIRST STAGE RETRIEVAL

Inspired by the observation that our RGS method still performs reasonably well even when the query
embedding is completely incorrect, we question whether the first-stage nearest neighbor search based
on the query embedding is necessary. To investigate this, we experiment with different initialization
strategies for RGS (see Figure 6). When we initialize RGS with a noisy starting point (e.g., the

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

No reranker Reranker@100 Reranker@300 Reranker@500
Dataset BGE-Large RR SlideGAR RGS RR SlideGAR RGS RR SlideGAR RGS

Biology 11.7 34.4 42.6 46.3 44.5 52.3 56.6 46.0 53.0 57.8
Psychology 17.5 32.3 34.7 42.8 43.2 42.2 50.7 41.9 42.3 49.4

Sustainable Living 13.1 33.3 38.5 41.1 36.7 42.3 42.9 36.7 43.2 43.5
TheoremQA-T 6.9 18.0 24.4 29.9 26.0 35.8 42.4 31.1 38.5 41.4

Table 5: A subset of the BRIGHT evaluation on “gpt-4.1-mini” with varying reranker budgets for RR
(Retrieve-and-Rerank), SlideGAR (Rathee et al., 2025), and our RGS (Reranker-Guided-Search).

1000th closest vector to the query) or use the default start point of the DiskANN algorithm, our
method still achieves comparable retrieval accuracy—albeit with increased reranker usage. Notably,
the default start point strategy does not require a first-stage search via vector similarity, nor does
it require the query embedding at all. This indicates that the initial vector similarity search is not
essential for our method. In fact, when the first-stage search is entirely removed, the query embedding
becomes unnecessary; all we need from the document embeddings is their encoding of document-wise
similarity.

100 200 300 400 500 600 800
Reranker Budget

10

20

30

40

50

ND
CG

@
10

BRIGHT/Psychology

No start
Exact Start
Noisy Start

Figure 6: Impact of choosing different start points
to initialize our second stage search on retrieval
accuracy. Exact start means we start at the closest
document to the query in the embedding space.
Noisy start means we start at the 1000th closest
document to the query. No start means we start at
the default start point of the ANNS data structure

100 200 300 400 500
Reranker Budget

0.25

0.30

0.35

0.40

0.45

0.50

ND
CG

@
10

BRIGHT/Psychology
DiskANN
KNN
Random

Figure 7: Impact of running our second-stage
search on different graph data structures for re-
trieval accuracy. DiskANN: proximity graph gen-
erated by the DiskANN algorithm. KNN: each
document is connected to its k nearest neighbors
in the embedding space. Random: a randomly
connected graph with degree k.

A.3 IMPACT OF DIFFERENT GRAPH TYPES

Our RGS method relies heavily on the underlying graph data structure which reflects docuemnt-wise
similarity. Here, we investigate whether our RGS works on different graph structures. Besides the
proximity graph built by the DiskANN algorithm, we also consider random graphs and KNN graphs,
which are common choices in recent graph-based methods in the literature (Rathee et al. (2025);
MacAvaney et al. (2022)). Please see Figure 7. We initialize RGS on the 50 documents closest to the
query and observe how quickly the greedy search approaches the true answer. RGS still manages to
improve on KNN graphs but the process is much slower, and it shows no improvement on random
graphs. We hypothesize that in KNN graphs, edges exist only between nearby documents, while
connections between distant documents are missing, preventing the search from reaching the correct
neighborhood. This also explains why graph-based ANN algorithms (e.g., HNSW, DiskANN, NSG)
do not perform greedy search on KNN graphs. For random graphs, it is expected that RGS shows no
improvement because the search is equivalent to randomly scanning documents in the corpus.

B USAGE OF LARGE LANGUAGE MODELS

We use LLMs to guide our search algorithm in our experiments. We also use LLMs to polish writing.

13

	Introduction
	Related Work
	Method
	Preliminaries
	Baseline
	Reranker-Guided-Search
	Analysis

	Experiments
	Experimental Setup
	Results

	Analysis
	Retrieval Results with Different Embedding / Reranker Models
	Different Roles of Document-Document Similarity and Query-Document Relevance in the Retrieval Process
	Error Analysis

	Conclusion
	Full Experimental Results
	Experimental Details in Section 4
	Impact of First Stage Retrieval
	Impact of Different Graph Types

	Usage of Large Language Models

