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Abstract

Federated learning (FL) is a distributed learning framework that claims to protect1

user privacy. However, gradient inversion attacks (GIAs) reveal severe privacy2

threats to FL, which can recover the users’ training data from outsourced gradients.3

Existing defense methods adopt different techniques, e.g., differential privacy,4

cryptography, and gradient perturbation, to against the GIAs. Nevertheless, all5

current state-of-the-art defense methods suffer from a trade-off between privacy,6

utility, and efficiency in FL. To address the weaknesses of existing solutions, we7

propose a novel defense method, Aligned Dual Gradient Pruning (ADGP), based8

on gradient sparsification, which can improve communication efficiency while9

preserving the utility and privacy of the federated training. Specifically, ADGP10

slightly changes gradient sparsification with a stronger privacy guarantee. Through11

primary gradient parameter selection strategies during training, ADGP can also12

significantly improve communication efficiency with a theoretical analysis of its13

convergence and generalization. Our extensive experiments show that ADGP can14

effectively defend against the most powerful GIAs and significantly reduce the15

communication overhead without sacrificing the model’s utility.16

1 Introduction17

Federated learning (FL) [1] is a distributed learning framework, where multiple users train and send18

their gradients of the local models to the server without sharing their local data [1, 2, 3]. FL claims19

to protect the users’ training data since the users do not need to share local data with the server20

directly. However, recent studies reveal that gradients can be used to recover the original training21

data information via gradient inversion attacks (GIAs) [4, 5]. To against GIAs, a large number of22

studies have been proposed, where they leverage the advanced privacy protection techniques, such as23

differential privacy (DP) [6], cryptography [7, 8, 9] and gradient perturbation [10, 11, 12]. However,24

none of the existing defense methods could take care of all privacy, utility, and efficiency difficulties25

in FL. For example, DP and cryptography-based methods could effectively defend GIAs, but sacrifice26

either the utility or efficiency respectively [6, 7, 8, 9]. In order to achieve better utility and efficiency27

in FL, perturbation-based methods design various gradient perturbations [10, 11, 12], but all existing28

perturbation-based methods could only defend one or two kinds of GIAs in practice.29

Fox example, recent perturbation-based defense methods (i.e., Precode [12], Soteria [10], and30

ATS [11]) can effectively defend against optimization-based GIAs [5, 13, 14, 15], but fail to work31

against the active GIAs [16, 17, 18]. On the contrary, the classic Top-k based gradient sparisification32

method [19, 20] is generally considered as a bad privacy protection solution on optimization-based33

GIAs, but in fact performs much better than recent defense methods under the active attack from34

our experiments as shown in Table 2. The new findings inspire us to seek for a more practical35

perturbation-based defense against both optimization-based and active GIAs.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Table 1: Comparison of our method with existing privacy-preserving FL methods. Note: !represents
the scheme has a high guarantee for the property, while%represents otherwise.

Defense
Privacy

Utility EfficiencyAnalytical attack Optimization attack Active server attack
R-GAP [22] DLG [4] IVG [5] Curious [16] Rob [21]

Precode [12] ! ! ! % % % %

ATS [11] % ! % % % ! %

Soteria [10] ! ! ! % % ! %

DP [23] ! ! ! ! ! % %

Top-k [19] ! ! % ! ! ! !

ADGP (Ours) ! ! ! ! ! ! !

In this paper, we propose a new gradient pruning based method, Aligned Dual Gradient Pruning37

(ADGP). Specifically, ADGP consists of two components: dual gradient pruning (DGP) and gradient38

location bounding. Dual gradient pruning is a novel gradient sparsification technique, which removes39

top-k1 largest gradient parameters and the bottom-k2 smallest gradient parameters from the local40

model. DGP leads to a strong privacy protection against both optimization-based and active GIAs.41

To further reduce the expensive download costs caused by the asymmetric gradient selection among42

different users, we propose gradient location bounding strategy to make the aggregated global gradient43

stay in the same sparsified region. In summary, ADGP achieves a better utility and privacy trade-off,44

increases FL system efficiency, and is robust against active attacks.45

Furthermore, we give the theoretical analysis of ADGP, which proves the reconstruction error is46

proportional to gradient distance. So removing larger gradient parameters could enlarge the gradient47

distance resulting in a low reconstruction error. However, removing larger gradients will significantly48

impact the model’s utility. Thus, to improve the sparsification ratio, which is essential to robustness49

against active attack [21, 16], we also remove the model parameters with smaller gradients. In such a50

way, our method could significantly mitigate GIAs without affecting the model’s utility.51

We conduct extensive experiments over multiple datasets and models to evaluate our method. The52

quantitative and visualized results show that our design can effectively make recovered images53

recognizable under different attacks, and reduce nearly half of the communication costs. Our54

contributions are as follows: 1) We revisit gradient sparsification to show its potential on mitigating55

GIA; 2) We propose an improved gradient pruning strategy to provide sufficient privacy guarantee56

while balancing the model accuracy and the system efficiency; 3) We conduct extensive experiments57

to show that our design outperforms perturbation-based defense methods w.r.t privacy protection,58

model accuracy, and system efficiency.59

2 Related work60

Federated learning [1, 3] is considered to be a privacy-preserving framework for distributed machine61

learning as the training data is not directly outsourced. However, the emerging of GIAs [4, 5, 21, 16,62

22, 24, 25, 26, 27] shatters this conception. It has been proved that the attacker (e.g., a curious server)63

can easily recover the private training data from gradient information to a great extent. The privacy64

guarantee of federated learning urgently needs to be strengthened.65

Cryptographic Defense. Traditionally, there are two approaches to construct privacy-preserving66

federated learning: using DP to disturb gradients [6, 23, 28, 29, 30] or using cryptographic tools to67

perform secure aggregation [7, 8, 9, 31, 32]. DP [6] is a popular and effective privacy protection68

mechanism by adding random noise to the raw data, but it is well known that the noises intro-69

duced by DP can greatly degrade the model accuracy when meaningful privacy is enforced [33].70

Cryptographic-based secure aggregation can guarantee both privacy and accuracy simultaneously, but71

incurs expensive computation and communication costs [34]. Using the shuffle model [35, 36] can72

only provide anonymity. Moreover, it totally changes the system model of FL since an additional73

semi-trusted third party is introduced to work cooperatively with the server.74

Gradient Perturbation Defense. Recently, researchers have begun to explore the possibility of75

constructing new gradient perturbation mechanisms to better balancing privacy and accuracy. Sun et76

al. [10] proposed Soteria, a scheme that perturbs the representation of training data by pruning the77
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gradients of a single fully connected layer. Gao et al. [11] proposed ATS, a training data augmentation78

policy by transforming original sensitive images into alternative inputs, to reduce the visibility of79

reconstructed images. Scheliga et al. [12] presented Precode to extend the model architecture by using80

variational bottleneck (VB) [37] to prevent attackers from obtaining optimal solutions to reconstructed81

data. These defenses work well against GIAs in the semi-honest setting [4, 5, 38, 13], but fail to82

protect privacy when an active server modifies the model to launch GIAs [21, 16]. Moreover, these83

works suffer from high computation costs or huge communication burden.84

Gradient Sparsification Defense. From an independent research domain, gradient sparsification85

has been commonly used for saving communication bandwidth. The most common sparsification86

strategy is Top-k selection, which selects top k gradient parameters with the largest absolute values87

[19, 20]. It has been widely proved that gradient sparsification provides very limited privacy protection88

ability [4, 10, 11, 12, 39] unless a high pruning ratio (e.g., removing 99% of the gradients) is used89

at the cost of 10% accuracy drop [39]. However, we emphasize that this is misunderstood as they90

only consider the Top-k sparsification strategy that has never received an in-depth investigation in the91

field of security. It is originally designed for improving system efficiency, thus a direct application92

inherently suffers from many weaknesses. As shown in Section 4, a slight modification can unleash93

the potential of gradient sparsification to provide a strong privacy guarantee.94

3 Threat Model and Attacks95

In this work, we consider a strong threat scenario, where an active server, after receiving gradients96

from users, tries to reconstruct the local training data and is motivated to modify model parameters97

in each iteration to strengthen the attack performance. Note that the server also wants to obtain a98

high-quality global model with high accuracy. More specifically, we consider the following three99

kinds of GIAs:100

Analytical attack. Analytical attack exploits the structure of the gradients to recover the input,101

such as using gradient bias terms [40]. Recently proposed R-GAP attack [22] exploits the recursive102

relationship between gradient layers to solve the input. An effective analytical attack depends on the103

specific structure and parameters of gradients.104

Optimization attack. Optimization attack is first proposed using L-BFGS optimizer to solve105

min ||∂l(x,y)∂W − ∂l(x∗,y∗)
∂W ||22 and gets dummy data x∗ and dummy label y∗, where y is the label of106

x [4]. The state-of-the-art optimization attack method IVG [5] uses Adam to optimize the cosine107

distance and has been widely used to evaluate defense works [10, 11, 12].108

Despite different optimizers can be used to achieve better attack quality [5, 13, 14, 15], the existing109

attacks are all measured by the distance between the generated gradients ∇W∗ and the original110

gradients∇W. We therefore propose a general definition for optimization attack to better evaluate111

its performance. As shown in Definition 1, a smaller ε indicates a stronger optimization attack.112

Definition 1. An optimization attack is a (ε, δ)-attack, if it satisfies:113

P(E(D(∇W,∇W∗)) ≤ ε) ≥ 1− δ. (1)

where P represents the probability, E represents the expectation, D is the distance function commonly114

instantiated with Euclidean or cosine distance.115

Active server attack. In this kind of attack, the server can actively modify the global model to116

realize a better attack result rather than honestly executing the protocols [16, 17, 18]. Recently117

proposed Rob attack [21] adds imprint modules to the model and uses the difference between the118

gradient parameters in adjacent rows of the imprint module to recover the data, achieving the best119

attack effect in the literature.120

4 Aligned Dual Gradient Pruning121

4.1 Analysis of Gradient Sparsification122

We owe the failure of common Top-k gradient sparsification methods to two reasons: 1) the distance123

between the Top-k sparsified (i.e., perturbed) gradient g and the real gradient∇W is small; and 2)124

large gradient parameters in∇W also reveal label information about user data.125
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To explain the first reason, we investigate the relationship between the reconstruction error of user126

data and distance of perturbed gradient v.s. real gradient, as shown in Proposition 1.127

Proposition 1. For any given input x and shared model W, the distance between the recovered data128

x′ and the real data x is bounded by:129

||x− x′||2 ≥
||∇W − g||2

||∂φ(x,W)/∂x||2
, (2)

where φ is the mapping from x to ∇W, i.e., the reconstruction quality is limited by ||∇W − g||2.130

The proof of the above proposition is moved to the supplementary due to space limit (the same131

hereinafter). From this Proposition, it is clear that the reconstruction error is proportional to the132

gradient distance ||∇W − g||2, i.e., effective defense methods should enlarge the gradient distance133

as much as possible. However, for the Top-k based gradient sparsification [19, 20], the k largest134

parameters are retained, making the gradient distance small by nature.135

To explain the second reason, we consider a L-layer perceptron model trained with cross-entropy136

loss for classification. Let a column vector r = [r1, r2, . . . , rn] be the logits (the output of the137

L-th linear layer) that input to the softmax layer, the confidence score probability vector is thus138 [
er1∑
j erj

, er2∑
j erj

, · · · , ern∑
j erj

]
and the succinct form of the cross-entropy loss becomes ℓ(x, y) =139

− log( ery∑
j erj

). Focus on the L-th layer WLx + bL = r, it is easy to find140

∂ℓ(x, y)

∂bi
=

∂ℓ(x, y)

∂ri
· ∂ri
∂bi

=
∂ℓ(x, y)

∂ri
=

eri∑
j e

rj
− Ii=y, (3)

and141

∇WL =
∂ℓ(x, y)

∂r
· xT = [

∂ℓ(x, y)

∂r1
, · · · , ∂ℓ(x, y)

∂rn
] · xT . (4)

For a given x (and so xT is fixed), the magnitude of certain elements of the gradient matrix ∇WL142

(i.e., the i-th row) is particularly large if i is the true label of the training data x due to reason that143

|∂ℓ(x,y)∂ri
| =

∑
j ̸=i |

∂ℓ(x,y)
∂rj

|.144

To summarize, due to the above two reasons, we conclude that common Top-k gradient sparsification145

cannot provide sufficient protection for user data against passive optimization attacks. From another146

point of view, a sufficient gradient sparsification ratio also plays an important role in defending against147

active server attacks. As mentioned in Section 3, active attackers can exploit the correspondence of148

partial gradient parameters to recover the real data. So, the gradient sparsity rate will directly destroy149

the relationship among gradient parameters constructed by the active attacker. Intuitively, the higher150

the sparsity rate, the more severe the impact. As will be validated in Section 6, a higher sparsity rate151

can prevent the attacker from obtaining useful gradient information.152

4.2 Dual Gradient Pruning153

Generally speaking, large gradient parameters of local model need to be removed to make the154

gradient difference larger, but the difference should also be appropriately bounded to maintain high155

model accuracy. Moreover, it is also necessary to delete small gradient parameters to achieve a156

high sparsification ratio. With these observations, we propose dual gradients pruning (DGP), a new157

parameter selection strategy for gradient sparsification.158

The users first sort the absolute values of all Size(∇W) local gradient parameters in the descending159

order. Let Tk1
(∇W) represent the set of top-k1 elements of ∇W, Bk2

(∇W) represent the set of160

its bottom-k2 elements. Then the users remove Tk1
(∇W) and Bk2

(∇W) from ∇W for gradient161

sparsification. Note that we set p = k2/k1 as a hyperparameter to regulate the trade-off between162

privacy and accuracy. Clearly, even with a fixed value p, different user will have different sets of163

Tk1
(·) and Bk2

(·) because their respective local models could be different from each other.164

We emphasize that although such dual gradients pruning strategy is very simple, it can significantly165

mitigate GIAs without affecting the model accuracy. A rigorous security proof is shown in Section 5,166

and experimental results can be found in Section 6.167
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Algorithm 1: Aligned Dual Gradient Pruning (ADGP)
Input :Original gradient matrix∇W, location binary matrix I, values of k1 and k
Output :Sparsified gradient matrix g =

{
g1; · · · ; gL

}
for l← 1 to L do

Remove parameters in Tk1(∇Wl) from ∇Wl

Keep parameters in ∇Wl when location is in I, and discard all other parameters
Upload gl = Tk(∇Wl) to the server

Algorithm 2: A Complete Illustration of our Defense

Input :Initial global model W0, value k and k1, total rounds T , total users N
Output :Shared global model WT

Set e0 = 0
for t← 0 to T − 1 do

Randomly select a user to broadcast the location matrix It of its parameter set T2k
for i← 1 to N do

Pt
i = ∇Wt

i + eti
gt
i = ADGP(k1, k,Pt

i, It)
et+1
i = Pt

i − gt
i

Sever side aggregation:
Wt+1 = Wt − η

∑N
i=1 gt

i

N

4.3 A Complete Illustration of Our Method168

Although dual gradient pruning provides a sufficient privacy guarantee as well as reduces upload cost169

of users, users’ download costs could still be expensive. This is because different users have different170

sets of Tk1(·) and Bk2(·) when sparsifying their own local gradients, which will ultimately make the171

global gradient become dense after aggregation.172

We thus propose aligned dual gradient pruning (ADGP), an improved scheme to align the selected173

gradients across different users. Similar to DGP, for best privacy, each user will still firstly identify174

his top-k1 gradients location set Tk1
. Different from DGP, ADGP also wants to save users’ download175

cost by ensuring that all users’ uploaded sparsified gradients reside in the same location set. This is176

achieved by randomly selecting a user, who identifies a top-2k (k1 < k) location set T2k (represented177

with a binary matrix I) and broadcasts I to all other users. Note that Tk1 ⊂ T2k is not necessary178

true. Upon receiving I, each user first discards gradient parameters in Tk1 and then only transmits179

the k largest gradient parameters whose locations belong to I. After aggregation at the server side,180

users only need to download global gradients’ parameters associated with I. A detailed illustration181

of ADGP is shown in Algorithm 1.182

For ADGP pruning, in each FL iteration round, all gradient parameters whose locations are outside of183

I will not participate the current round global model aggregation. In the extreme case, I can remain184

static for all iteration rounds and the local accumulated error (accumulated unused local gradient185

parameters) becomes large, thus hindering global model convergence. To reduce this negative impact186

and increase convergence speed, we design an error feedback mechanism. In particular, at the iteration187

round t, after user i obtaining his local gradient ∇Wt
i , he will combine ∇Wt

i with an error term188

accumulated in the previous (t− 1) rounds before performing the ADGP sparsification pruning. A189

complete illustration of our method is shown in Algorithm 2.190

5 Theoretical Analysis191

This section presents the security analysis with regard to passive attacks (i.e., analytical and opti-192

mization attacks presented in Section 3), as well as the generalization and convergence analyses193

of the proposed ADGP algorithm. Following the literature studies in [41, 42], for a given L-layer194

centralized model, we model the first (L− 1) layers as a robust feature extractor of any input sample.195
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Thus, the function of this model is characterized by f(x|W) = Wx + b, and the optimization196

objective is the loss ℓ(x, y) (such as cross-entropy or L2 loss). To facilitate analyses and following197

literature studies [19, 41, 43, 44], the assumptions about the smoothness of DGP, ADGP and l, as198

well as the variance of the stochastic gradient are employed.199

Assumption 1. The pruning mechanisms DGP(k1, k2,∇Wt) and ADGP(k1, k,∇Wt, It) are both
bi-Lipschitz, so the following conditions hold:

||∇W − DGP(k1, k2,∇W)||22 = ||DGP(0, 0,∇W)− DGP(k1, k2,∇W)||22 ≥ γ1||∇W||22,
||∇W − ADGP(k1, k,∇Wt, It)||22 ≤ γ2||∇W||22,

where γ1 is a constant determined by k1 and k2, and γ2 is a constant determined by k1 and k.200

Assumption 2. The objective function l : Rd → R has a low bound l∗ and it is Lipschitz-smooth, i.e.,201

for any x1, x2, ||∇l(x1) − ∇l(x2)||2 ≤ K||x1 − x2||2 and l(x1) ≤ l(x2) + ⟨∇l(x2), x1 − x2⟩ +202
K
2 ||x1 − x2||22.203

Assumption 3. The full gradient ∇l(Wt) is bounded, i.e., ||∇l(Wt)||22 ≤ G2, and the federated204

stochastic gradient ∇Wt
i (i = [1, N ]) is the unbiased estimation of the full gradient ∇l(Wt), i.e.,205

E(∇Wt
i) = ∇l(Wt). Moreover, the variance between ∇Wt

i and∇l(Wt) is bounded: E||∇Wt
i −206

∇l(Wt)||22 ≤ σ2.207

Security Analysis. It is noted that, for the same sparsification ratio, user’s uploaded gradient208

parameters from ADGP is generally smaller than that from DGP. Indeed, the uploaded gradient209

parameters from both methods are the same only when Tk1
⊂ T2k holds. From this observation and210

referring to Proposition 1, DGP is the security lower bound of our design for privacy protection.211

So, our focus is the security analysis of DGP. As shown in the theorem below, we prove that DGP212

achieves a stronger privacy protection in the sense of Definition 1.213

Theorem 1. For any (ε, δ) optimization attack, under the presence of DGP, it will be degenerated214

to (ε +
√
γ2||∇W||2, δ)-attack if D is measured by Euclidean distance, and degenerated to (1 −215 √

γ1(1− ε), δ)-attack if D is measured by cosine distance.216

The Theorem is based on Assumption 1 about DGP. It reveals that, with the same successful chance217

1− δ, DGP weakens the attacker’s capability to optimize a better estimation of the true∇W.218

Generalization and Convergence Analyses. The generalization analysis aims to quantify how the219

trained model performs on the test data, and it is achieved by analyzing the how ADGP affects the220

properties of the optima reached (without gradient pruning) [41, 42]. Assisted with Assumption 3221

and Assumption 1 about ADGP gradient pruning, the following Lemma can be obatined.222

Lemma 1. Let et =
∑N

i=1 e
t
i/N be the averaged accumulated error among all users at iteration t,223

the expectation of the norm of et is bounded, i.e.,224

E||et||22 ≤
γ2
2
(
2 + γ2
1− γ2

)2(G2 + σ2). (5)

Note that the difference between the averaged pruned gradient gt =
∑N

i=1 g
t
i/N and the averaged225

Fed-SGD gradient ∇Wt =
∑N

i=1∇Wt
i/N is simply ||

∑T−1
i=0 (∇Wt − gt)||22 = ||eT ||22. So226

the lemma above indicates that the accumulated gradient difference between our algorithm and227

Fed-SGD is bounded. That said, the optima reached by ADGP and the optima reached by Fed-228

SGD will eventually be the same if the algorithm converge. Armed with Lemma 1 and based on229

Assumptions 1, 2 and 3, we demonstrate the convergence of the our algorithm.230

Theorem 2. The averaged norm of the full gradient ∇l(Wt) derived from centralized training is231

correlated with the our algorithm as follows:232 ∑T−1
t=0 E||∇l(Wt)||22

T
≤ 4

l0 − l∗

ηT
+ 4η2K2 γ2

2
(
2 + γ2
1− γ2

)2(G2 + σ2) + 2Kη(G2 +
σ2

N
), (6)

where l0 is the initialization of the objective l, and η is the learning rate.233

The immediate implication of Theorem 2 is that, with an appropriate learning rate η, ADGP converges234

similar to Fed-SGD (slower by a negligible term O( 1
T ), as shown in Corollary 1.235
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Table 2: Evaluation of defense performance under three attacks.

Attack Metric Baseline Precode DP Soteria ATS-I ATS-II Top-k Ours

IVG
PSNR (↓) 34.8805 9.6441 6.9554 9.2447 16.6894 31.3200 14.1338 7.6192
LPIPS(↑) 0.0016 0.4473 0.5504 0.3774 0.1621 0.0015 0.2754 0.4829
SSIM (↓) 0.9273 0.4793 0.2451 0.4173 0.6851 0.9189 0.5336 0.2923

R-GAP
PSNR (↓) 36.7656 - 5.0691 5.1817 10.8442 42.0900 5.1017 5.1196
LPIPS(↑) 0.0007 - 0.3621 0.3532 0.2094 1.8e-05 0.4817 0.4863
SSIM (↓) 0.9307 - 0.2483 0.2124 0.3962 0.9121 0.2027 0.1928

Rob
PSNR (↓) 102.8838 109.6553 8.7491 102.8838 9.6166 115.9886 13.0685 13.0804
LPIPS(↑) 0.0960 0.1488 1.3434 0.0960 0.6410 0.0486 0.8920 0.9184
SSIM (↓) 0.8969 0.8440 0.2064 0.8969 0.2545 0.9490 0.0428 0.0229

Final model accuracy 93.4400 93.1699 86.8900 93.2300 93.3900 93.3900 93.2099 93.1700

Original Baseline Soteria Precode ATS Top‐k Ours DP Original Baseline ATSSoteria Top‐k Ours DP

(a) R-GAP, CNN6

Original Baseline Soteria Precode ATS Top‐k Ours DP Original Baseline ATSSoteria Top‐k Ours DP

(b) IVG, LeNet (Zhu)

Figure 1: Visualization of the reconstructed data under R-GAP and IVG attacks.

Corollary 1. Let η =
√

l0−l∗

KT (G2+σ2/N) , we have236

∑T−1
t=0 E||∇l(Wt)||22

T
≤ 6

√
l0 − l∗

KT (G2 + σ2/N)
+O( 1

T
). (7)

6 Experiments: Privacy-Accuracy-Efficiency Tradeoff237

6.1 Experimental Setup238

Datasets and models. We conduct experiments on CIFAR10 with LeNet (Zhu) [5], CIFAR10 [45]239

with CNN6 and CIFAR100 [45] with LeNet (Zhu) and ResNet18 respectively. We run these experi-240

ments in a pytorch environment by using a single RTX 2080 Ti GPU and 2.10GHz CPU.241

Evaluation Metrics. We quantify the privacy effect of defenses, follow [39, 46], we visualize the242

reconstructed data and use learned perceptual image patch similarity (LPIPS), peak signal-to-noise243

ratio (PSNR), structural similarity (SSIM) to measure the quality of the recovered data. A better244

defense scheme should has a larger LPIPS (↑), smaller peak signal-to-noise ratio (PSNR) (↓) and245

structural similarity (SSIM) (↓).246

Attack methods. We evaluate our defense against IVG attack [5], R-GAP attack [22], and Rob247

attack [21], which represent three kinds of state-of-the-art GIAs, as illustrated in Section 3. All248

these attacks are implemented strictly following the original settings, i.e., IVG is evaluated on249

CIFAR10 with LeNet (Zhu), R-GAP is evaluated on CIFAR10 with CNN6, Rob attack is evaluated250

on CIFAR100 with LeNet (Zhu). More settings for attacks are shown in the supplementary.251

Defense methods. We compare our method with five state-of-the-art defenses: Soteria [10],252

ATS [11], Precode [12], Differential Privacy (DP) [2], and Top-k based gradient sparsification1 [19].253

Besides, we set Fed-SGD [3] as the baseline that adopts no defenses. Following the DP design254

in [2], we use the Gaussian differential privacy mechanism with ε = 10.7, δ = 10−5, which is the255

suggested best setting for the privacy-accuracy trade-off and can make most models converge. When256

quantifying the defense performance of ATS, we not only evaluate the similarity between the raw257

images and the recovered data (ATS-I), but also evaluate the similarity between the disturbed training258

1Hereinafter, we abuse the notion of k to denote the send rate (k/Size(∇W))×100% since it will not cause
ambiguity. And the sparse ratio is 1-k. The smaller the ratio k is, the better communication efficiency.

7



Original

Top‐k

DGP

(a) Recovered images under IVG attack with ResNet18 on CIFAR100
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Top-k: CIFAR10
DGP: CIFAR10
Baseline: CIFAR100
Top-k: CIFAR100
DGP: CIFAR100

(b) ResNet18 on CIFAR dataset

Figure 2: A detailed comparison between Top-k and our DGP on privacy and model accuracy.

Original Baseline Soteria Precode Top-kATS Ours DP

Figure 3: Visualization of reconstructed images under Rob attack with batchsize=16.

images (i.e., the real inputs) and the recovered data (ATS-II). We set the send rate k = 0.2 and the259

regulation hyperparameter p = 15. The supplementary gives more experiments under different p and260

k. The rest defense schemes remain the original settings.261

6.2 Defense Performance Evaluation262

Table 2 shows the defense performance with PSNR, SSIM, and LPIPS under three attacks. The263

results show that ATS, Soteria, Precode perform poorly under Rob attack, while Top-k is vulnerable264

to IVG attack although it performs better under Rob attack. In most cases, our scheme performs265

comparably with DP and outperforms all the other defenses. More evaluation results under Rob266

attack are presented in our supplementary.267

We also visualize the reconstructed images in order to perceptually demonstrate the defense per-268

formance. Figure 1(a) shows the the recovered images against R-GAP and IVG attacks. We can269

see that all the existing defenses can well defend against R-GAP attack except ATS because it does270

not damage the gradient structure, proving that a slight perturbation on gradients can mitigate the271

analytical attacks easily. We are not able to provide the result of Precode because its VB operation272

destroys the model structure thus analytical attack R-GAP cannot be implemented. In Figure 1(b),273

recovered images under IVG attack are presented. We can find that the attacker can still recover the274

outline of inputs with ATS and Top-k defenses. DP, Soteria, Precode, and our scheme can still make275

the recovered images unrecognizable. Figure 3 evaluates the defenses against Rob attack. It shows276

that ATS, Soteria, and Precode fail to work and most inputs can be reconstructed.277

In Rob attack, the attacker uses the gradient of the imprint module to reconstruct the training data.278

Our method, Top-k, and DP can effectively defend against Rob attack because the gradients of279

all layers are sparsed or perturbed, including those of the malicious imprint modules. However,280

we emphasize that the main weakness of Top-k is its vulnerability to optimization attacks (e.g.,281

IVG), as widely demonstrated in the literature [4, 10, 11, 39, 12]. We thus further evaluate Top-k282

and our scheme under IVG attack with ResNet18 on CIFAR datasets. We set k1/Size(∇W) =283

0.05, k2/Size(∇W) = 0.75.284

6.3 Model Accuracy Evaluation285

To evaluate model performance, we train ResNet18, LeNet (Zhu), VGG13_bn [47] on CIFAR10,286

CIFAR100 with ten users, respectively. We set epoch=100, the learning rate η=0.1 if epoch ≤ 50,287
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Figure 4: Evaluation of model accuracy with different datasets and model architectures.

Table 3: Commu. cost in one iteration (MB)

Method Baseline Soteria Precode ATS DP Top-k Ours
Resnet18 85.2506 85.2268 88.1644 85.2506 85.2506 43.7979 27.3067
VGG13 71.8385 71.7318 74.8433 71.8385 71.8385 34.9625 22.9697
LeNet 0.1207 0.0764 1.8624 0.1207 0.1207 0.0493 0.0424

η=0.01 if epoch >50, and η=0.05 if epoch >70. We show in Table 2 the accuracy of ResNet18 over288

CIFAR10 under different defenses, and here we only compare our scheme with the baseline Fed-SGD,289

DP, and Top-k since they perform best for privacy protection. Because [41] showed that the error290

feedback is beneficial to improve the model accuracy, even without using gradient sparsification. To291

give a fair comparison, we set the error feedback mechanism as the basic setting for all the defenses.292

The experimental results in Figure 4 show that we achieve similar model performance with the293

baseline, while DP, as expected, significantly damage the model accuracy.294

6.4 Efficiency Evaluation295

To clearly demonstrate the system efficiency, we evaluate the communication cost, which is obtained296

by computing the total overheads of sending updated gradients and receiving aggregated gradients.297

For ease of presentation, we only show the results for one iteration. As shown in Table 3, our scheme298

reduces more than half of the communication costs compared with existing defenses, and our gradient299

sparsification incurs negligible computation burden. The specific computation cost evaluation is300

presented in the supplementary.301

7 Conclusions, Limitations, and Broader Impact302

Our work firstly reveals the risks of privacy-preserving methods that only perturb the gradients of303

some layers. Through a comprehensive analysis of gradient inversion attacks, we show that it is304

necessary to perturb or sparse the gradients of each layer for privacy preservation. And considering305

the challenge of high communication cost in federated learning, we propose aligned dual gradient306

sparsification method to achieve the trade-off between privacy protection, model performance, and307

efficient communication, and give sufficient theoretical support. We hope that our newly proposed308

gradient sparisification method can shed new light on addressing privacy leakage concern as well as309

saving communication bandwidth.310

In terms of limitations, the success of our scheme relies on selecting a reliable user to broadcast its311

gradient locations. Randomly selecting users may encounter malicious users that destroy the entire312

system. Our design is delegated to protecting privacy and has no negative societal impacts in practice.313
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