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ABSTRACT

Recent research has introduced data forging attacks, which involve replacing
mini-batches used in training with different ones that yield nearly identical model
parameters. These attacks pose serious privacy concerns, as they can undermine
membership inference predictions and falsely suggest machine unlearning with-
out actual unlearning. Given such critical privacy implications, this paper aims
to scrutinize existing attacks and understand the notion of data forging. First, we
argue that state-of-the-art data forging attacks have key limitations, which make
them unrealistic and easily detectable. Through experimentation on multiple hard-
ware platforms, we demonstrate that approximation errors that existing attacks
report are orders-of-magnitude higher than benign errors caused by numerical de-
viations. Next, we formulate data forging as an optimisation problem and show
that solving it via simple gradient-based methods also results in high approxima-
tion errors. Finally, we theoretically analyse data forging for logistic regression.
Our theoretical results suggest, even for logistic regression, it is difficult to effi-
ciently find forged batches. In conclusion, our findings call for a reevaluation of
existing attacks and highlight that data forging is still an intriguing open problem.

1 INTRODUCTION

Modern machine learning models, including large language models, have been shown to leak sen-
sitive information about their training data or even memorize training data Carlini et al. (2019;
2021; 2022b). Their privacy risk is typically studied through the lens of membership inference at-
tacks Shokri et al. (2017) which detect if a sample was used during training, or via compliance to the
right to be forgotten with approaches like machine unlearning to handle data deletion requests Voigt
& Von dem Bussche (2017). These important privacy implications have stirred up a large body of
work on characterizing privacy leakage via membership inference attacks (see, e.g., Carlini et al.
(2022a); Buzaglo et al. (2023); Haim et al. (2022); Hu et al. (2022)) and machine unlearning (see,
e.g., Cao & Yang (2015); Bourtoule et al. (2021); Nguyen et al. (2022); Xu et al. (2023)).

Some recent works Thudi et al. (2022); Kong et al. (2023) have raised questions on the reliability
of machine unlearning as well as membership inference attacks (MIAs). In particular, Kong et al.
(2023) demonstrated that it is possible for an adversarial model owner to refute the prediction of a
membership inference attack. Thudi et al. (2022) demonstrated that an adversarial model owner can
claim that unlearning via re-training was performed without actually re-training the model. At the
core of these works is the notion of data forging, proposed in Thudi et al. (2022).

Data Forging: At a high level, given a machine learning model’s parameters θ and training dataset
D, a data forging attack forges the training dataset D into a different dataset D′ and produces a
claim that the model was trained on D′. To achieve this, data forging attacks rely on the fact that
supervised training uses iterative algorithms such as Stochastic Gradient Descent (SGD). These iter-
ative training algorithms produce a training trajectory consisting of a sequence of model parameters
and associated mini-batches, starting with the initialization to the final model parameters.1 A data

1A log of the training trajectory can be formalized into a notion of Proof-of-Learning sequence Jia et al.
(2021). We give more details in Sec. 2.
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Figure 1: Privacy implications of data forging in two scenarios: (a) refuting membership inference
claim for sample x, and (b) unlearning sample x without actually re-training the model. The ad-
versarial model owner has access to the true training trajectory denoting the sequence of model
parameters and associated mini-batches. In both scenarios, an adversarial data owner forges a batch
Bi that contains x with a different batch B′i not containing x such that the resulting model θ′i+1 is
nearly identical to θi+1.

forging attack replaces one or more mini-batches in the training trajectory with forged mini-batches
that produce (nearly) identical gradient updates.

More specifically, let {(θi, Bi)}Ti=1 denote the training trajectory, where θi denotes model param-
eters at each gradient update step and Bi denotes the mini-batches used. To forge a batch Bi, the
attacker constructs a different batch B′i (Bi 6= B′i) such that the model θi+1 obtained by updating θi
using the gradient atBi is nearly identical to the model θ′i+1 obtained by updating θi using the gradi-
ent at B′i. Here, nearly identical means that some distance (e.g., the `2-norm) between θi+1 and θ′i+i
is below a given small error threshold ε. Such an approximation error is allowed because even when
reproducing the gradient computation with the same mini-batch and model parameters, numerical
deviations are possible due to benign sources of noise such as different hardware architectures.

Privacy Implications of Data Forging: Consider the scenario from Kong et al. (2023) where a
claimant has used a membership inference attack to accuse a model owner of using their data sam-
ple (x, y) with features x and label y as part of training. Suppose indeed that (x, y) was part of
the training dataset, and appears in batch Bi in the training trajectory. Now, if an adversarial
model owner can forge Bi to B′i that does not contain x, they can refute the claim by provid-
ing the forged training trajectory {(θ1, B1), . . . , (θi−1, Bi−1), (θi, B

′
i), (θi+1, Bi+1) . . . , (θT , BT )}

(see Fig. 1(a)). The adversarial model owner will repudiate the membership inference claim saying
that the training trajectory does not contain any mini-batch that includes the claimant’s data (x, y).

Similarly, in the scenario from Thudi et al. (2022) where the claimant is asking to un-
learn their sample (x, y), an adversarial model owner may perform the same forging from
Bi containing x to B′i not containing x. Then, by providing the forged training trajectory
{(θ1, B1), . . . , (θi−1, Bi−1), (θi, B

′
i), (θi+1, Bi+1) . . . , (θT , BT )}, they will claim to have unlearnt

the data (see Fig. 1(b)). This is because as by the definition of exact unlearning Bourtoule et al.
(2021), the final model parameters are the result of training on a dataset that does not contain the
data required to be unlearnt. Note that the adversarial model owner does not have to perform any
actual re-training.

Our Contributions: Given the serious privacy implications of data forging, it is imperative to scru-
tinize existing attacks and deepen our understanding of the notion of data forging. As a first step
towards this, we ask how ‘realistic’ are state-of-the-art data forging attacks? We answer this ques-
tion negatively by demonstrating key limitations of existing data forging attacks and argue that these
limitations make the current attacks unrealistic and easily detectable. In particular, we show that
the errors reported by existing attacks are too high to be acceptable as benign numerical deviations.
Towards this end, we conduct repeated experiments on different hardware platforms for the same
models and datasets to characterize benign errors. Then, we demonstrate that the errors reported by
prior attacks are orders of magnitude larger than those produced by benign numerical deviations.

Next, we formulate data forging as a constrained optimisation problem. We demonstrate that solving
even the unconstrained relaxation of this optimisation via gradient descent results in large error,
making the attack unrealistic. Finally, we take initial steps in theoretically analysing data forging by
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focusing on logistic regression models. We first show a ‘negative’ result for the case of batch size
one, by proving that any forged example must be a scalar multiple of the original example. Since
such a forged example is easy to detect, and considering that it essentially carries all the information
from the original example, claiming to have not used it is a difficult statement to make. Then, for
sufficiently large batch size, we show that a forged batch exists, however, it is difficult to find a
batch that satisfies domain restrictions. Our findings imply that data forging is still an intriguing
open problem.

2 BACKGROUND

Machine Learning: Supervised machine learning is a process to learn a model, in particular, a
parameterized function Mθ that, given an input from input space X , can predict an output from
output space Y , i.e., Mθ : X → Y . The parameters are typically optimized by applying iterative
methods such as stochastic gradient descent (SGD) to a training set. Let D denote the training
dataset consisting of N samples, i.e., D = {(x(i), y(i))}Ni=1, where each (x(i), y(i)) ∈ X × Y . Let
Db := {B : B ⊂ D, |B| = b}, the set of all mini-batches of size b. For mini-batch SGD, the model
parameters at step t+ 1 are computed as:

θt+1 := θt − η∇θL(Bt; θt)

where Bt is a batch chosen randomly from Db, η is the learning rate, and L is the average loss over
the batch.

Training Trajectory as a Proof-of-Leaning: Note that SGD produces a training trajectory consist-
ing of a sequence of model parameters and mini-batches at all steps. The log of training trajectory
was formalized into the concept of Proof-of-Learning (PoL) by Jia et al. (2021). At a high level,
the core idea of PoL is to maintain a log of intermediate checkpoints of the model, data samples
used, and any other information needed to verify/reproduce the computations (e.g., hyperparame-
ters), which can facilitate the verification of the computations done during training. In this way, PoL
enables an entity to provide evidence that they have trained a machine learning model following all
the steps correctly. Formally, PoL is defined as follows:

Definition 1. A valid Proof-of-Learning log POL(ε) is a sequence S = {(θi, Bi)}Ti=1 of pairs of
model parameters and corresponding mini-batch such that ‖θi+1 − (θi − η∇θL(Bi; θi))‖2 ≤ ε.

The verifier checks the validity of the i-th update by reproducing the i-th checkpoint based on the
information on the (i − 1)-th checkpoint, and computes the distance between their reproduced i-
th checkpoint and the one present in the log. If this distance (referred as the verification error) is
smaller than a certain threshold ε, then this update is valid. The entire PoL sequence is valid if every
update is valid. Note that PoL can be defined using any distance metric on the parameter space, but
we focus on the `2-norm as the distance metric2 similar to previous works (Jia et al. (2021); Thudi
et al. (2022); Zhang et al. (2022); Kong et al. (2023)).

Data Forging: The concepts of forgeability and data forging attacks were introduced by Thudi et al.
(2022) in the context of machine unlearning. Two datasets are considered to be forgeable if, for a
given PoL sequence stemming from one dataset, mini-batches from another dataset can be used to
generate a nearly identical sequence of model parameters. Formally, we define forgeability and data
forging attack as follows:

Definition 2. Given two datasets D and D′, and PoL sequence S = {(θi, Bi)}Ti=1, where ev-
ery Bi ∈ Db, we say that D′ forges D with approximation error ε, if ∀i,∃B′i ∈ D′b such that
‖θi+1 − (θi − η∇θL(B′i; θi))‖2 ≤ ε. Further, an algorithm used to produce the forged batches
{B′i : 1 ≤ i ≤ T} is called as a data forging attack.

Next, we describe existing data forging attacks, categorized by their underlying key technique.

Attacks Based on Greedy Search: Attacks proposed in Thudi et al. (2022); Kong et al. (2023)
forge a dataset D with the dataset D′ := D \ U for a given subset of samples U ⊂ D by greedily
searching over D′. At a high level, for every batch Bi to be forged, these attacks search from D′ a

2Parameters of a deep neural network consists of layers of weight matrices of different shapes. When
calculating the `2-norm, we first concatenate all the weights into a single long vector, similar to prior works.
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batch that is most similar to Bi. To describe in detail, let us consider an adversarial model owner
who has trained their model on a dataset D and holds the true PoL sequence S = {(θi, Bi)}Ti=1,
where every Bi ⊂ D. The goal of the model owner is to forge D with D′ = D \ U for a given
subset of samples U ⊂ D. In Thudi et al. (2022), this scenarios arises because the model owner
receives a request to remove the set U ; while in Kong et al. (2023), this scenario arises because the
model owner wants to refute membership inference claims for the samples in U .

A greedy search attack works in three steps for every batch Bi in S where Bi ∩ U 6= ∅:
1. Sample n data points uniformly from D′.
2. Sample M mini-batches {B̂1, . . . , B̂M} uniformly from the selected n data points.
3. Out of the M mini-batches {B̂1, . . . , B̂M}, select the mini-batch B̂j that minimises
‖θi+1 − (θi − η∇θL(B̂j ; θi))‖2, and output the forged mini-batch B′i = B̂j .

Attack Based on ‘Adversarial’ Optimisation: The attack described by Zhang et al. (2022) at-
tempts to spoof a PoL sequence by creating two valid sequences with the same initial and final
model parameters. They initialise dummy weights θ∗2 , ..., θ

∗
T−1 and attempt to find mini-batches Bi

such that every dummy step in the sequence passes verification. Their goal is to find Bi such that
‖θ∗i+1 − (θ∗i − η∇θL(Bi; θ∗i ))‖2 < ε. In particular, they attempt to accomplish this goal by crafting
adversarial noise by minimising ‖θi+1− (θi−η∇θL(Bi+Ri; θi))‖2+‖Ri‖2, where Bi is a mini-
batch of examples chosen from another existing dataset. This optimisation can itself be performed
using iterative gradient-based methods such as SGD.

3 LIMITATIONS OF EXISTING FORGING ATTACKS

We scrutinize the state-of-the-art attacks by asking the following question: do benign sources of
computational noise cause the level of errors reported by these works? Kong et al. (2023); Thudi
et al. (2022) ran “greedy search” data forging attacks for image classification models: LeNet LeCun
et al. (1989) trained on MNIST LeCun (1998), and VGGmini Simonyan & Zisserman (2014) trained
on CIFAR10 Krizhevsky et al. (2010), reporting average `2-norm errors on the order of ε ≈ 7.9 ×
10−3 for LeNet/MNIST, and ε ≈ 2.398 for VGGmini/CIFAR103, using a batch size b = 100.
Thudi et al. (2022) reported an average `2 distance on the order of ε = 10−3 for Lenet/MNIST with
b = 1000.

Schlögl et al. (2023) found that runtime optimisations via Auto-Tuning Grauer-Gray et al. (2012)
in machine learning frameworks such as TensorFlow Abadi et al. (2016) can result in numerical
deviations in the outputs of neural networks. In order to evaluate the magnitude of these benign
errors we run the following experiment. For 2 different GPU hardware architectures, we produce a
log of 100 triples (θ∗k, B

∗
k ,∇θL(B∗k ; θ∗k)), randomly sampling model weights and mini-batches from

LeNet/MNIST and VGGmini/CIFAR10. Then, we recompute ∇θL(B∗k ; θ∗k) using θ∗k and B∗k (on
different hardware) and report the average `2 distance between the recomputed model parameters
θ∗k − η∇θL(B∗k ; θ∗k) and the ones present in the log. In our experiments, we set η = 0.01 and
use batch sizes of 100, and 1000, as done by Kong et al. (2023); Thudi et al. (2022). We used an
NVIDIA GTX4090 GPU, a Tesla V100 GPU, and TensorFlow v2.15.0.

Table 1: We provide the largest observed hardware reproduction error
εrepr, and the corresponding error ε achieved by the “greedy search” at-
tacks. In each model/dataset setup, we find that the largest reproduction
error is still orders of magnitude smaller than the best error produced by
the attacks. See Appendix A.3.2 for more details.

Model/Dataset (b) εrepr (ε) Author
LeNet/MNIST (100) 3.1e-6 (7.9-e3) Kong et al. (2023)
LeNet/MNIST (1000) 2.1e-6 (1e-3) Thudi et al. (2022)
VGGmini/CIFAR10 (100) 4.4e-4 (2.398) Kong et al. (2023)

Table 1 presents our find-
ings. Our experiments
show that these benign
sources of randomness
in gradient calculations
result in errors that can
be several orders of mag-
nitude smaller than those
reported by the state of
the art “greedy search”
data forging attacks.
Zhang et al. (2022) also

3Kong et al. (2023) used the error measure ‖θi+1 − (θi − η∇θL(Bi; θi))‖22/dim(θ). We convert their
values to the `2 distance between the models. See Appendix A.3.1 for details.
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report high errors for
their adversarial optimisation attack. We do not consider their setup in our experiments because
their threat model differs, however Fang et al. (2023) reported that the adversarial optimisation
formed by Zhang et al. (2022) is difficult to solve, and SGD-based methods do not converge.
Overall, our results show that floating point noise does not result in errors as large as those reported
by the existing attacks, making attempts by an adversarial model owner easily distinguishable by a
PoL verifier from the regular noise that pervades floating point computations.

Considering that the current state-of-the-art data forging attacks produce large error values, the ques-
tion of whether it is possible to forge data with low error is of great importance to an adversary. For
the extreme case of zero error (i.e., exact forging), Baluta et al. (2023) prove the unforgeability of
SGD for “greedy search” style attacks. To eliminate any floating point error, they consider fixed
point arithmetic, and show that for LeNet/MNIST, VGGmini/CIFAR10, and ResNet/CIFAR10, it
was not possible to successfully perform a data forging attack with zero error. In the next section,
we focus on floating point arithmetic and seek forging attacks that can yield low errors.

4 IS DATA FORGING WITH LOW ERROR POSSIBLE?

As existing attacks result in high errors, a natural question is to devise forging attacks that can yield
low errors. We observe that the existing attacks search over a restricted space. In particular, attacks
based on greedy search perform a search over a subset of the dataset D, whereas attacks based on
adversarial optimisation search for a batch that has the form of original features with added noise
and the same labels. In principle, a forging attack can find a forged batch by essentially searching
over the entire domain of inputs and labels (e.g., over all possible images).

Optimisation Perspective on Data Forging: To devise an attack that can search over the entire
domain of inputs and labels, we formulate data forging as a constrained optimisation problem:

B′i = argmin
B̂∈X b×Yb

B̂ 6=Bi

∥∥∥θi+1 −
(
θi − η∇θL(B̂i; θi)

)∥∥∥
2
= argmin
B̂∈X b×Yb

B̂ 6=Bi

∥∥∥η∇θL(B̂; θi)− η∇θL(Bi; θi)
∥∥∥
2
,

where the second equality follows from θi+1 = θi − η∇θ(Bi; θi). To investigate how low the error
can go, we consider an unconstrained relaxation of the above problem:

B′i = argmin
∥∥∥η∇θL(B̂; θi)− η∇θL(Bi; θi)

∥∥∥
2
. (1)
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Figure 2: Data forging by solving the optimisation problem in equation 1. We plot the optimisation
of 10 different runs for both setups, where ε(t) = ‖η∇θL(B̂(t); θi) − η∇θL(Bi; θi)‖2 is the error
between model parameters after the t-th step of gradient descent. We keep η = 0.01.

We solve equation 1 using gradient-based methods, in particular Adam. See Appendix A.4 for the
detailed algorithm. Figure 2 shows the performance of the unconstrained optimisation at generating
a synthetic mini-batch of size b = 100 for both LeNet/MNIST and VGGmini/CIFAR10. The y-axis
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plots the error between model parameters, reaching ε ≈ 0.001 for LeNET/MNIST and ε ≈ 1.38 for
VGGmini/CIFAR10.. We see that even in the unconstrained context, data forging via optimisation
produces errors that are also too large. Solving the constrained optimisation problem, e.g., via
projected gradient descent, is even more difficult and likely to result in higher errors.

Theoretical Analysis for Logistic Regression: Since the data forging optimisation problem posed
above is hard to solve for neural networks, we seek to deepen our understanding of data forging for
simpler logistic regression models. Consider a multi-class logistic regression model with parameter
matrix W ∈ Rd×n, where n is the number of classes. Let z = WT x denote the logits for input
x ∈ Rd. Let L(B;W) denote the average cross-entropy loss over the batch B. We now consider the
question of whether there exist two mini-batchesB andB′ such that∇WL(B;W) = ∇WL(B′;W)?

For batch size one, we present a negative result by showing that a forged example must be a scaled
version of the original example.
Proposition 1. When batch size b = 1, any forged example (x′, y′) of a given example (x, y) must
satisfy x′ = c · x for some constant c ∈ R.

The proof is given in Appendix A.1. The above proposition shows that forging is not possible for
b = 1. This is because such a forged example is easy to detect: a verifier just needs to check whether
any example in the PoL with forged batches is a scalar multiple of their sample to be unlearned or
sample with the MI claim.

Next, for sufficiently large batch size, we show that it is possible to find a forged batch when the
domain constraints are relaxed.
Proposition 2. Let G = ∇WL(B;W), G ∈ Rd×n. There exists a forged mini-batch B′ of size
b ≥ rank(G), where each forged training example (x′, y′) ∈ Rd × Rn such that ∇WL(B′;W) = G.

The proof, given in Appendix A.2, provides a method of constructing forged mini-batches. Exam-
ples are given in Figure 3. Importantly, these forgeries have error on the order of ε ≈ 10−8, a level
of error that is on par with floating point arithmetic error, and is acceptable for a PoL verifier.

. . .

. . .

Figure 3: Bottom: A real mini-batch consisting of 100 examples from MNIST. Top: A forged mini-
batch with verification error ε ≈ 2.5×10−8. We observe that the forged batches we generate consist
of training examples from the original batch, but superimposed on top of each other. For logistic
regression models, aggregation order changes result in errors on the order of 10−8. See Appendix
A.3 for details.

The construction of forged mini-batches through the methodology as given in the proof of Propo-
sition 2 guarantees that its verification error will be on par with the floating point arithmetic error.
However, it does not guarantee that the values for the individual (x′, y′) will be within the domain of
the problem. For instance, images are usually scaled and normalized to [0, 1] and labels are one-hot
vectors. We leave the problem of proving whether it is possible to forge a batch of large size while
obeying domain constraints as an open problem.

5 DISCUSSION AND CONCLUSION

Our findings suggest that successful data forging, i.e., producing forged mini-batches that consist
of valid examples and that have a low verification error, is a non trivial task not only for neural
networks but even for models as simple as logistic regression. We call for a re-evaluation of the
claims made by the state-of-the-art data forging attacks. We argue that implications of data forging,
namely membership inference refutation and the undermining of machine unlearning have yet to be
realised, due to the large levels of verification error presented by the current data forging attacks.
In general, the question of whether data forging with acceptably low errors is possible remains an
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intriguing open question. We hope that our paper motivates the AI security community to conduct
more research into this nascent attack vector against machine learning models. The implications of
successful data forging are serious and wide reaching. With the proliferation of Large Language
Models (LLMs) and the security and privacy risks that come with them, such attacks become more
important to the users of these models, and the owners of the data they are trained on.
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Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, pp. 267284, USA, 2019. USENIX Asso-
ciation. ISBN 9781939133069.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. We have that for multi-class logistic regression, the gradient ∇W` is given by the outer
product of vectors x and ∂`

∂z , where ` is the per example loss, given by `(x, y) = −
∑n
i=1 yi log si

and si = ezi∑n
j=1 e

zj , the softmaxed i-th logit, zi.

If ∇W`(x′, y′) = ∇W`(x, y), then at the ij-th element, we have that

∂`′

∂z′j
· x′i =

∂`

∂zj
· xi

x′i =

∂`
∂zj
∂`′

∂z′j

· xi
(2)

The scalar
∂`
∂zj

∂`′
∂z′

j

is the same for all j, and so clearly the forged x′ = c · x, where c =
∂`
∂zj

∂`′
∂z′

j

A.2 PROOF OF PROPOSITION 2 AND ASSOCIATED LEMMAS

We begin by first showing that for any batch B, the elements of each row of ∇WL(B;W) sum to
zero. Let [n] = {1, 2, ..., n}.
Lemma 1. For any batchB = {(x(1), y(1)), (x(2), y(2)), ..., (x(b), y(b))} of any size b,

∑n
j=1

∂L
∂Wij

=

0, ∀i ∈ [m].

Proof. Consider the cross-entropy training loss function, given by L(B;W) = 1
b

∑
(x,y)∈B `(x, y),

where `(x, y) = −
∑n
i=1 yi log si and si = ezi∑n

j=1 e
zj , the softmaxed i-th logit, zi.

Let `(k) = `(x(k), y(k)), z(k) = WT x(k), and s(k) = softmax(z(k)). Observe that

∂`(k)

∂z
(k)
j

= −
n∑
i=1

y
(k)
i ·

∂ log s
(k)
i

∂z
(k)
j

= −
n∑
i=1

y
(k)
i

s
(k)
i

· ∂s
(k)
i

∂z
(k)
j

(3)

We know that the derivative of the softmax function is given by

∂s
(k)
i

∂z
(k)
j

=

{
s
(k)
j (1− s(k)j ) if i = j

−s(k)i · s
(k)
j otherwise,

(4)

which allows us to rewrite Equation 3 as

∂`(k)

∂z
(k)
j

= −y(k)j (1− s(k)j )−
n∑

m=1
i6=j

y(k)m · (−s
(k)
j )

= −y(k)j + s
(k)
j

n∑
m=1

y(k)m

(5)

where s(k)j is the softmaxed j-th output logit z(k)j of the k-th example. Combined with the fact that
∂`(k)

∂Wij
= ∂`(k)

∂z
(k)
j

· x(k)i , we have that

9
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n∑
j=1

∂L
∂Wij

=

n∑
j=1

1

b

b∑
k=1

∂`(k)

∂wij

=
1

b

n∑
j=1

b∑
k=1

∂`(k)

∂z
(k)
j

x
(k)
i

=
1

b

n∑
j=1

b∑
k=1

(
−y(k)j + s

(k)
j

n∑
m=1

y(k)m

)
x
(k)
i

(6)

Let v(k) =
∑n
j=1 y

(k)
j . We can then rewrite Equation 6 to be

n∑
j=1

∂L
∂Wij

=
1

b

n∑
j=1

b∑
k=1

(
−y(k)j + s

(k)
j v(k)

)
x
(k)
i

=
1

b

(
n∑
j=1

b∑
k=1

−y(k)j x
(k)
i +

n∑
j=1

b∑
k=1

s
(k)
j v(k)x

(k)
i

) (7)

The first term of above the sum can be rewritten as

n∑
j=1

b∑
k=1

−y(k)j x
(k)
i

=

b∑
k=1

−(y(k)1 + y
(k)
2 + ...+ y(k)n )x

(k)
i

=

b∑
k=1

−v(k)x(k)i .

(8)

Additionally, since
∑n
j=1 s

(k)
j = 1, ∀k ∈ [b], the second term of the sum becomes

n∑
j=1

b∑
k=1

s
(k)
j v(k)x

(k)
i

=

b∑
k=1

(s
(k)
1 + s

(k)
2 + ...+ s(k)n )v(k)x

(k)
i

=

b∑
k=1

v(k)x
(k)
i

(9)

Combining the two terms together, we have that

n∑
j=1

∂L
∂Wij

=
1

b

(
b∑

k=1

−v(k)x(k)i +

b∑
k=1

v(k)x
(k)
i

)
= 0.

(10)

Corollary 1. For any training example (x, y),
∑n
j=1

∂`(x,y)
∂zj

= 0.

10
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Proof.
n∑
j=1

∂`

∂zj
=

n∑
j=1

(
−yj + sj

n∑
k=1

yk

)

= −
n∑
j=1

yj +

n∑
j=1

sj ·
n∑
k=1

yk

= −
n∑
j=1

yj +

n∑
k=1

yk

= 0.

(11)

A.2.1 PROOF OF PROPOSITION 2

Finally, we can prove Proposition 2.

Proof. Let G = ∇WL(B;W). Finding a batch B′ = {(x′(1), y′(1)), (x′(2), y′(2)), ..., (x′(b), y′(b))}
with b ≥ rank(G), such that ∇WL(B′;W) = G requires that for every (i, j) ∈ [d]× [n],

∂`′(1)

∂z
′(1)
j

x
′(1)
i +

∂`′(2)

∂z
′(2)
j

x
′(2)
i + ...+

∂`′(b)

∂z
′(b)
j

x
′(b)
i = bGij , (12)

where each `′(k) = `(x′(k), y′(k)), and z′(k) = WT x′(k). We can restate the problem as finding
matrices X′ ∈ Rd×b and C′ ∈ Rb×n such that

X′C′ = bG, (13)

The k-th column of X′ represents x′(k), and the k-th row of C′ represents ∂`′(k)

∂z′(k) . From Corollary 1,
the elements of every row of C′ must sum to zero.

Construct a matrix C′ such that rank(C′) = rank(G), and the elements of every row of C′ sum to
zero. Finding the corresponding X′ amounts to solving the linear system

C′T x′i = bgi (14)

where x′i and gi are the transposed i-th row of X′ and G respectively. For each i, we know that
rank(C′T ) = rank(C′T |bgi), therefore we can be certain that at least one solution exists.

Finally, the batch of examples B′ whose gradient ∇WL(B′;W) = G can constructed from the
matrices X′ and C′. For every k ∈ [b], x′(k) is the given by the k-th column of X′, and as shown in
Lemma 1, each y′(k) = v(k)s(k) − [C′]k, for any constant v(k) ∈ R, and [C′]k returns the k-th row
of C′.

A.3 NUMERICAL EXPERIMENTS

A.3.1 ERROR MEASURE DETAILS

Zhang et al. (2022); Thudi et al. (2022); Kong et al. (2023) report different error measures between
model parameters. Table 2 gives a summary of those used. In our experiments, we report the `2
distance, and so to convert any error results from Thudi et al. (2022), we take the square root. For
instance, they report an `22 error of 10−6 for LeNet/MNIST, which is a `2 =

√
10−6 = 10−3.

Similarly, for Kong et al. (2023), they report `22/dim(θ) = 10−6 for VGGmini/CIFAR10, which is
an `2 =

√
10−6 ∗ dim(θ) ≈ 2.398. Note that VGGmini has 5.75M parameters.

11
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Table 2: The different error measures used by data forging attack papers

.

Work Error Measure
Thudi et al. (2022) `22
Kong et al. (2023) `22/dim(θ)
Zhang et al. (2022) `2

A.3.2 HARDWARE REPRODUCTION ERRORS

GPU Hardware Experimental Details: In Table 3, we provide further details on the reproduction
errors we found between two different GPU models: an NVIDIA GeForce GTX 4090 and a NVIDIA
Tesla V100. Errors in reproduction are due to runtime optimisations that result in computations
being done in different orders, a process called “Auto-Tuning”. We see an error between the original
log produced on a GTX 4090 and the reproduction done on the same GPU, which is caused by auto-
tuning. Interestingly, there is no error between the original log and the reproduced one when both
are done on a V100. We conjecture this occurs because V100s do not perform auto-tuning, however,
we could not confirm this.

Table 3: Further details on reproduction errors across different GPU architectures. Each row indi-
cates the GPU the log was generated on, and the column indicates which GPU the log was verified
on. We provide the `2 distance between models present in the log and the reproduced models.

GTX 4090 Tesla V100
GTX 4090 1.3e-8 3.1e-6
Tesla V100 3.1e-6 0

(a) LeNet/MNIST, b = 100

GTX 4090 Tesla V100
GTX 4090 2.2e-8 2.1e-6
Tesla V100 2.1e-6 0

(b) LeNet/MNIST, b = 1000

GTX 4090 Tesla V100
GTX 4090 2.9e-7 4.4e-4
Tesla V100 4.5e-4 0

(c) VGGmini/CIFAR10, b = 100

Reproduction Errors for Logistic Regression Schlögl et al. (2023) cite different convolution al-
gorithms and changes in aggregation order as potential causes for numerical deviations. As logistic
regression models do not have convolutions, the only cause for error is changes in aggregation or-
der. To simulate changes in aggregation order, we measure the magnitude of these deviations caused
by shuffling the examples in a mini-batch. In particular, for a given mini-batch Bi and model pa-
rameters θi we calculate θi − η∇θL(Bi; θi), and for 100 different shufflings of Bi we measure
‖θi − η∇θL(Bi; θi)− (θi − η∇θL(Bshufflei ; θi))‖2, where Bshufflei is the shuffled version of Bi.
Figure 4 shows the results for both b = 100 and b = 1000. We observe that these errors are on the
order of 10−8, the same order of magnitude as our forged mini-batches given in Section 4.

100
b

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1e 8

LogisticRegression/MNIST b = 100

1000
b

1.2

1.4

1.6

1.8

2.0

2.2

1e 8
LogisticRegression/MNIST b = 1000

Figure 4: Errors between resulting models for different shufflings of the same batch B taken from
MNIST. For both b = 100 and b = 1000, the errors are on the order of 10−8. The y-axis plots
‖θi − η∇θL(Bi; θi)− (θi − η∇θL(Bshufflei ; θi))‖2. We use η = 0.01.

12



Accepted at Private ML @ ICLR 2024

A.4 OPTIMISATION ALGORITHM

Algorithm 1 gives the algorithm used to “adversarially optimise” the forged mini-batch. Given
the gradient of a batch ∇θL(B; θ), we attempt to optimise a forged mini-batch that minimises the
`2 distance. In our experiments we used Adam as our optimisation algorithm, with the following
hyperparamters:

1. I : The total number of iterations
2. α : The learning rate. We use α = 0.5.
3. β1, β2 : Exponential decay rates. We use β1 = 0.9, β2 = 0.999

4. b : The batch size
5. θ : The set of model parameters
6. εadam : 10−8

Algorithm 1 Data forging via direct optimisation using Adam
Input: ∇θL(B; θ), I, α, β1, β2, b, θ

Output: B
′(I)

i
m0 ← 0
v0 ← 0

B
′(0)

i ← (initialisation of b examples)
for t = 1 to I do
D(t−1)
i ← ‖η∇θL(B

′(t−1)

i ; θ)− η∇θL(B; θ)‖2
gt ← ∇B′(t−1)

i

D(t−1)
i

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
m̂t ← mt/(1− βt1)
v̂t ← vt/(1− βt2)
B
′(t)

i ← B
′(t−1)

i − αm̂t/(
√

v̂t + εadam)
end for
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