
CESRec: Constructing Pseudo Interactions
for Sequential Recommendation via Conversational Feedback

Anonymous ACL submission

Abstract

Sequential Recommendation Systems (SRS)001
have become essential in many real-world ap-002
plications. However, existing SRS methods003
often rely on collaborative filtering signals004
and fail to capture real-time user preferences,005
while Conversational Recommendation Sys-006
tems (CRS) excel at eliciting immediate inter-007
ests through natural language interactions but008
neglect historical behavior. To bridge this gap,009
we propose CESRec, a novel framework that010
integrates the long-term preference modeling011
of SRS with the real-time preference elicitation012
of CRS. We introduce semantic-based pseudo013
interaction construction, which dynamically up-014
dates users’ historical interaction sequences by015
analyzing conversational feedback, generating016
a pseudo-interaction sequence that seamlessly017
combines long-term and real-time preferences.018
Additionally, we reduce the impact of out-019
liers in historical items that deviate from users’020
core preferences by proposing dual alignment021
outlier items masking, which identifies and022
masks such items using semantic-collaborative023
aligned representations. Extensive experiments024
demonstrate that CESRec achieves state-of-the-025
art performance by boosting strong SRS mod-026
els, validating its effectiveness in integrating027
conversational feedback into SRS1.028

1 Introduction029

Sequential Recommendation Systems (SRS) are030

pivotal in various applications, such as e-031

commerce (Zhou et al., 2018) and streaming plat-032

forms (Pan et al., 2023), by providing personalized033

item recommendations based on users’ historical034

interaction sequences (Fang et al., 2020). Recently,035

large language models (LLMs) have demonstrated036

remarkable reasoning capabilities (Mann et al.,037

2020; Zhang et al., 2022), making them promis-038

ing method for enhancing recommendation tasks.039

1Code is available at
https://anonymous.4open.science/r/NLESR-4342
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Figure 1: Comparison of sequential recommenda-
tion, conversational recommendation, and our CESRec,
which combines the advantages of both sequential and
conversational recommendation systems.

Several studies (Liao et al., 2024; Bao et al., 2023) 040

have demonstrated the superiority of directly ap- 041

plying LLMs to sequential recommendation tasks. 042

In contrast, Conversational Recommendation Sys- 043

tems (CRS) employ natural language interactions 044

to inquire about user preferences and predict per- 045

sonalized item recommendations (Friedman et al., 046

2023; Mysore et al., 2023). However, existing SRS 047

methods usually rely on collaborative filtering sig- 048

nals while neglecting the rich semantic information 049

associated with items. A significant limitation of 050

these approaches is their inability to capture users’ 051

real-time interests, as immediate preferences are 052

not dynamically reflected in the behavior sequence. 053

Conversely, while CRS methods excel at captur- 054

ing immediate interests through natural language 055

conversations, they typically fail to incorporate his- 056

torical interaction sequences into their frameworks. 057

Consequently, the first challenge lies in dynami- 058

cally integrating the long-term preference model- 059

ing of SRS with the real-time interests modeling 060

facilitated by natural language interactions in CRS. 061
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In this paper, we propose Conversation062

Enhanced Sequential Recommendation (CESRec).063

To address the first challenge, we introduce064

semantic-based pseudo interaction construction,065

a novel method that directly updates the histori-066

cal interaction sequence based on users’ conversa-067

tional feedback. Specifically, this approach ana-068

lyzes users’ natural language inputs to model their069

current preferences and refines their historical inter-070

action sequence, generating a pseudo-interaction071

sequence that seamlessly integrates both long-term072

and real-time preferences. Next, we use the pseudo-073

interaction sequence as input to SRS, which effec-074

tively combines the collaborative filtering signals075

of SRS with the semantic signals derived from076

conversational feedback. This enables accurate077

recommendations based on natural language inter-078

actions without requiring extensive modifications079

to existing SRS-based systems, ensuring seamless080

integration and enhanced user experience.081

Since historical interaction sequences often con-082

tain items that deviate substantially from users’083

main preferences, such as mistakenly clicked items084

or transient interests, as observed in many recent085

studies (Lin et al., 2023; Wang et al., 2021), these086

outliers can adversely affect the modeling of user087

behavior. These items can negatively influence the088

LLM’s modeling of user behavior, potentially mis-089

leading the construction of the pseudo-interaction090

sequence. For example, if a user’s primary pref-091

erence is horror films, the inclusion of a comedy092

movie in the interaction sequence might lead the093

LLMs to utilize “horror-comedy” films to construct094

the pseudo-interaction sequence, rather than a pure095

horror film. In this work, we refer to such items096

as outlier items. Therefore, the second challenge097

is how to accurately identify these outlier items098

and mask them in the interaction sequence to mini-099

mize their impact on the generation of the pseudo-100

interaction sequence.101

To address this, we propose dual alignment out-102

lier items masking, a method that accurately iden-103

tifies outlier items from the user’s historical inter-104

action sequence based on semantic-collaborative105

aligned representations and subsequently masks106

these items. Specifically, we leverage LLMs to107

obtain semantic embeddings of items and extract108

collaborative representations from the SRS model.109

We then introduce a dual alignment mechanism to110

derive hybrid item representations, which simul-111

taneously capture co-occurrence relationships and112

semantic information among items. Based on these113

hybrid representations, we identify items that sub- 114

stantially deviate from the user’s core preferences, 115

ensuring precise masking while preserving the in- 116

tegrity of the user’s historical behavior sequence. 117

The experimental results demonstrate that our CES- 118

Rec can boost the performance of several state-of- 119

the-art SRS models in terms of HR and NDCG, 120

which verifies that our CESRec effectively inte- 121

grates the conversational feedback into the SRS. 122

The main contributions of this work are as follows: 123

• We propose CESRec, which combines the ad- 124

vantage of real-time conversational feedback with 125

the efficiency of learning user preferences from 126

historical behavior. 127

• We introduce semantic-based pseudo interaction 128

construction method to refine user historical inter- 129

action sequences by leveraging user conversational 130

feedback. 131

• We propose dual alignment outlier items mask- 132

ing method to optimize item selection during the 133

sequence refinement process. 134

• Extensive experiments demonstrate that our pro- 135

posed CESRec achieves state-of-the-art perfor- 136

mance by boosting the performance of several 137

strong SRS models. 138

2 Related Work 139

Sequential Recommendation Sequential recom- 140

mendation aims to predict the next item that aligns 141

with a user’s preferences based on their historical 142

interaction sequence (Fang et al., 2020; Li et al., 143

2023a,b). Traditional sequential recommendation 144

models capture user preferences by leveraging item 145

co-occurrence relationships. To model complex 146

sequential patterns, CNN-based (Tang and Wang, 147

2018) and GNN-based (He et al., 2020) methods 148

have been introduced. Additionally, transformer- 149

based approaches, such as SASRec (Kang and 150

McAuley, 2018) and BERT4Rec (Sun et al., 2019), 151

have been developed to capture long-term depen- 152

dencies between arbitrary items. However, most 153

of these methods primarily model user preferences 154

based on long-term interaction histories, making it 155

challenging to effectively capture dynamic shifts in 156

user interests. As a result, they struggle to reflect 157

users’ real-time preferences within interaction se- 158

quences, leading to recommendations that may not 159

accurately align with users’ immediate interests. 160

Conversational Recommendation Conversa- 161

tional Recommendation System (CRS) aims to pro- 162

vide recommendations via natural language con- 163
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versations (Zhou et al., 2020; Lei et al., 2020; He164

et al., 2023). Feng et al. (2023) propose an LLM-165

based CR method that utilizes LLMs for sub-task166

management, expert collaboration, and response167

generation. Fang et al. (2024) propose a multi-168

agent collaborative system that optimizes dialogue169

flow and recommendation accuracy, incorporating170

a user feedback-aware reflection mechanism to en-171

hance the user interaction experience. While CRS172

methods excel at capturing immediate user interests173

through natural language conversations, they often174

fail to effectively integrate historical interaction175

sequences into their frameworks.176

LLMs for Recommendation Large Language177

Models (LLMs) have demonstrated remarkable ca-178

pabilities across various domains. By encoding ex-179

tensive world knowledge during pretraining, LLMs180

have increasingly been utilized to enhance recom-181

mendation systems (Dai et al., 2023; Geng et al.,182

2022; Hou et al., 2024). LLaRA (Liao et al., 2024)183

utilizes a hybrid prompting approach, combining184

ID-based item embedding learned by traditional185

recommendation models with textual item features186

as input to predict the next item. Rajput et al.187

(2023) propose a generative retrieval approach in188

which the retrieval model decodes semantic IDs189

of target candidates. (Liu et al., 2024) propose190

leveraging LLMs to generate item embeddings,191

which can be seamlessly incorporated into sequen-192

tial recommendation models to improve their per-193

formance. Hu et al. (2024) introduce a method for194

learning semantically aligned item ID embeddings195

from textual descriptions, using a projector module196

to map item IDs to embedding vectors, which are197

then transformed into descriptive text tokens by198

the LLM. (Bao et al., 2023) introduces a method199

that converts collaborative embeddings into binary200

sequences for LLM interpretability. While these201

approaches leverage LLMs to process textual infor-202

mation, they primarily focus on transforming item203

content into embedding representations. However,204

they do not fully exploit the rich semantic informa-205

tion contained in users’ conversational feedback,206

limiting their ability to dynamically adapt recom-207

mendation strategies based on real-time user pref-208

erences.209

3 Problem Definition210

In this paper, we follow the problem definition211

commonly used in sequential recommendation212

tasks (Hu et al., 2024). Given a user u ∈ U , where213

U represents the set of all users, and a historical in- 214

teraction sequence I(u) = {v(u)1 , v
(u)
2 , . . . , v

(u)
Nu

}, 215

the model aims to predict the next item the user is 216

likely to interact with based on I(u). Here, v(u)i 217

denotes the i-th item interacted by user u, and all 218

items belong to the item set V . The sequence length 219

of I(u) is denoted by Nu. 220

4 CESRec 221

4.1 Overview 222

In this section, we show the details of 223

the Conversation Enhanced Sequential 224

Recommendation (CESRec), which is illus- 225

trated in Figure 2. The proposed model consists 226

of two main components: Semantic Pseudo 227

Sequence Construction and Dual Alignment 228

Outlier Items Masking. The Semantic Pseudo 229

Sequence Construction module is designed to 230

construct the pseudo-interaction sequence by 231

refining the historical interaction sequence via 232

users’ conversational feedback. Subsequently, 233

the Dual Alignment Outlier Items Masking 234

module further enhances the refinement process by 235

identifying and masking items that deviate from 236

the user’s core preferences. 237

4.2 Dual Alignment Outlier Items Masking 238

In the process of constructing a semantic-based 239

pseudo interaction sequence, the model leverages 240

the user historical sequences to capture their core 241

preferences and selects appropriate replacement 242

items based on conversational feedback. However, 243

during the modification of the original interaction 244

sequence, items in the historical sequence that de- 245

viate from the user’s core preferences can interfere 246

with the LLM’s modeling of user behavior. This 247

misalignment can introduce bias, potentially lead- 248

ing to the inappropriate replacement of items. In 249

this work, we refer to such items as outlier items. 250

To address this issue, we propose a dual-alignment 251

outlier items masking method to ensure that such 252

deviating items are appropriately masked. 253

According to a recent study (Sheng et al., 2024), 254

LLMs can implicitly encode user preference in- 255

formation, and items sharing similar content tend 256

to exhibit similar semantic embeddings. Based 257

on this observation, we extract item embeddings 258

from LLMs, which are rich in semantic informa- 259

tion. Given an item v
(u)
i with content information 260

ci such as title, we employ an LLM to obtain the 261
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Figure 2: Overview of CESRec. In our proposed framework, we first employ the conventional sequential recom-
mendation method (a.k.a., Recsys) to predict an item based on the user’s historical interaction sequence. Next, our
CESRec refines the interaction sequence by constructing the pseudo-interaction sequence and masking the outlier
items. Finally, we employ Recsys to give a new recommendation by using the refined sequence.

semantic embeddings eLLMi :262

eLLMi = Extractor(ci), (1)263

where Extractor(·) refers to the LLM tokenizer and264

encoder layers, and we utilize the output of the last265

hidden layer eLLMi as the semantic embedding.266

Relying solely on semantic embeddings to iden-267

tify outlier items may compromise the integrity268

of the user’s historical behavior sequence, thereby269

limiting the effectiveness of SRS in accurately mod-270

eling user preferences. We introduce a trainable271

adapter to align the semantic embeddings derived272

from LLMs with the collaborative signals typically273

used in SRS. This adapter is specifically trained274

to fuse the positional influence and co-occurrence275

information while utilizing semantic embeddings276

for masking:277

e
hybrid
i = Adapter(θcollab; eLLMi ), (2)278

where e
hybrid
i represents the hybrid embedding that279

integrates both semantic and collaborative informa-280

tion. The Adapter is a two-layer perception with281

trainable parameters θcollab.282

Finally, to identify outlier items in interactions,283

we rank items based on the similarity between user284

representation and each item. We first obtain all the 285

hybrid embeddings of all the user interacted items 286

in I(u), and fuse all the item representation as the 287

user embedding uhybrid: 288

uhybrid = Fuse({ehybrid
1 , e

hybrid
2 , . . . , e

hybrid
Nu

}), (3) 289

where the Fuse(·) denotes the mean-pooling opera- 290

tor. Then, we calculate the similarity between each 291

item representation e
hybrid
i and user representation 292

uhybrid. 293

si = Similarity(ehybrid
i , uhybrid), (4) 294

where si ∈ [0, 1] denotes the similarity score, and 295

we employ the cosine similarity as the Similarity(·) 296

function to measure the semantic gap between 297

e
hybrid
i and uhybrid. To identify outlier items in in- 298

teraction sequence, we rank items based on their 299

similarity scores si. The top k items with the low- 300

est similarity scores are considered as the outlier 301

items and will be subsequently masked from the 302

user interaction sequence. 303

The input and output format of the final dual 304

alignment outlier items masking is as follows: 305

I(u)′ = Dual-Alignment(I(u)), (5) 306
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where I(u)′ = {v(u)1 , . . . , v
(u)
Nu−k, v̂

(u)
1 , . . . , v̂

(u)
k }307

represents interaction sequence after masking, v̂(u)i308

represents the top k items with the lowest similarity309

scores. Using these hybrid representations, we310

identify and mask the outlier items that deviate311

from the user’s core preferences while preserving312

the integrity of their historical behavior sequence.313

This optimization enables the CESRec to better314

concentrate on core preferences when constructing315

a semantic-based pseudo interaction sequence.316

4.3 Semantic Pseudo Sequence Construction317

To address the challenge of dynamically inte-318

grating long-term preference modeling of SRS319

with real-time interest modeling driven by natu-320

ral language interactions in CRS, we propose a321

semantic-based pseudo sequence construction ap-322

proach. This method leverages natural language in-323

teraction with users to directly capture their current324

preferences, and generates semantic-based pseudo325

sequence by incorporating current preferences to326

historical interaction sequence. Specifically, we327

introduce a constructor that constructs semantic-328

based pseudo interaction sequences based on user-329

provided feedback. Following the previous conver-330

sational recommendation works (Fang et al., 2024),331

we ask the user for preference about the target tar-332

get item attributes.333

feedback = User-Interaction(v(u)rec, Attrtarget) (6)334

where v
(u)
rec represents the recommended item gen-335

erated by an SRS with input I(u), Attrtarget refers336

to attributes of the target item, and feedback de-337

notes a conversational feedback derived from the338

user that describes the user preference of the item339

attributes. For instance, if the SRS recommends340

<Avatar> to the user, but the user prefers films di-341

rected by Christopher Nolan, the user may respond342

with feedback such as: “I don’t like film directed343

by James Cameron; I prefer Christopher Nolan.”.344

Next, the Constructor integrates user feedback to345

iterative refine the historical interaction sequence346

I ′(u) and generate the pseudo-interaction sequence347

Ipseudo(u):348

Ipseudo(u) = Constructor(I ′(u), feedback), (7)349

where Ipseudo(u) represents the pseudo-interaction350

sequence generated by the Constructor, dynami-351

cally adjusted based on user conversational feed-352

back.353

Dataset #User #Item #Review #Density

Video Games 55,223 17,408 496,315 0.051628%
Toys 208,180 78,772 1,826,430 0.011138%
MovieLens 6,040 3,883 1,000,209 4.264680%

Table 1: Statistics of three datasets.

To construct the training data for the constructor 354

module, we construct a semantic pseudo sequence 355

by replacing items that no longer align with the 356

user’s current preference, considering both histori- 357

cal behavior and current preferences for the replace- 358

ments. We construct training data by randomly se- 359

lecting an item from the sequence as an “outdated” 360

item. The target item, which reflects the user’s up- 361

dated preference, serves as the ground truth, while 362

the feedback generated between the outdated and 363

target items is used as input for the model. The 364

training instruction is as follows: 365

Instruction: Based on the preferences mentioned in
the user feedback and the information about <items>
contained in the historical interaction sequence, re-
place the <items> the user dislikes with <items>
user may currently prefer.
Input: historical interaction sequence: <sequence>;
user feedback: <feedback>.
Output: pseudo-interaction sequence:<pseudo se-
quence>

366

Finally, after refining the interaction sequence of 367

the user by the Constructor, we use the semantic 368

pseudo interaction sequence Ipseudo(u) as the input 369

to the SRS to regenerate recommended items. 370

v
(u)
Nu+1 = SRS(Ipseudo(u)), (8) 371

where SRS represents sequential recommendation 372

models, v(u)Nu+1 represents the regenerated recom- 373

mended item based on the semantic pseudo inter- 374

action sequence. Since our proposed CESRec is 375

model-agnostic, it can be seamlessly integrated 376

with existing sequential recommendation models. 377

5 Experimental Setup 378

5.1 Dataset and Evaluation Metric 379

We conduct experiments on two commonly used 380

recommendation datasets, Video Games and Toys, 381

constructed from the Amazon review datasets (Ni 382

et al., 2019). We also employ the MovieLens 383

datasets (Harper and Konstan, 2015) which is a 384

widely adopted dataset for sequential recommen- 385

dation tasks, which contains user interactions with 386

movies. Statistics are shown in Table 1. 387
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We adopt two widely used metrics to evaluate388

the performance: Normalized Discounted Cumula-389

tive Gain (NDCG@K) and Hit Rate (HR@K) with390

K=5,10. We select 100 non-interacted items to con-391

struct the candidate set, ensuring the inclusion of392

the correct subsequent item.393

5.2 Implementation Detail394

For the sequential recommendation method, SAS-395

Rec (Kang and McAuley, 2018), we train the396

model on all three datasets using the Adam op-397

timizer (Kingma, 2014) for 200 epochs, with398

a learning rate of 0.001 and a batch size of399

256. For the LLM-based recommendation method,400

LLaRA (Liao et al., 2024), the original configura-401

tion selects the top-ranked item from the candidate402

set as the recommendation result. To ensure con-403

sistency with our experimental setup, we adopt the404

ranking method from (Wang et al., 2024), which405

ranks the candidate items based on the cosine sim-406

ilarity between item embeddings and the output407

embeddings of LLaRA. In our CESRec, we mask408

1 item in three datasets. We implement our CES-409

Rec using two LLMs as the backbone: LLaMA-2-410

7b (Touvron et al., 2023) and LLaMA-3-8b (Dubey411

et al., 2024). And we use the same user simulator as412

the previous conversational recommendation stud-413

ies Fang et al. (2024) when training and evaluating414

the models.415

5.3 Baselines416

We conducted experiments using two strong SRS417

backbones: (1) SASRec (Kang and McAuley,418

2018) is a widely used sequential recommenda-419

tion model that employs a self-attention mecha-420

nism to effectively capture relationships between421

items within a user’s interaction sequence. (2)422

LLaRA (Liao et al., 2024) is an LLM-based recom-423

mendation model that utilizes a hybrid prompting424

approach, combining ID-based and text-based rep-425

resentations of items as input. This model aims to426

enhance recommendation accuracy by integrating427

both structured and unstructured data sources.428

6 Experimental Results429

6.1 Main Results430

We evaluate the performance of our proposed CES-431

Rec and baseline methods on three datasets using432

four evaluation metrics. As shown in Table 2, SAS-433

Rec+CESRec and LLaRA+CESRec consistently434

outperform their corresponding base SRS model435
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Figure 3: Performance of using different lengths of the
historical interaction sequence.

(a.k.a., SASRec and LLaRA) across all datasets 436

and metrics. This demonstrates that the semantic- 437

based pseudo interaction sequences, which incor- 438

porate users’ current feedback, enable recommen- 439

dation models to more effectively capture users’ 440

real-time preferences. Secondly, CESRec demon- 441

strates improved performance when leveraging 442

larger LLMs as the backbone, suggesting that more 443

powerful LLMs possess the stronger capability to 444

accurately model user preferences and select rele- 445

vant replacement items. 446

6.2 Ablation Study 447

To validate the effectiveness of each module, we 448

compare the performance of the following variants 449

of CESRec-LLaMA3 on the SASRec backbone: (1) 450

CESRec w/o d.a.: we solely employ user conver- 451

sational feedback to construct pseudo interaction 452

sequences and remove the dual alignment from 453

CESRec. (2) CESRec w/o c.: we only leverage 454

dual alignment method to mask outlier items and 455

do not construct pseudo sequence. The results, as 456

shown in Table 3, demonstrate that all modules 457

in the model contribute to enhancing sequential 458

recommendation. The superior performance of 459

CESRec-LLaMA3 over CESRec w/o d.a. indi- 460

cates that the dual alignment outlier items masking 461

method enables CESRec to concentrate on user’s 462

main preference, and construct semantic pseudo se- 463

quences that better align with user preferences. By 464

employing the dual alignment and masking module 465

to mask items that deviate from the user’s core pref- 466

erences, SASRec+CESRec w/o c. demonstrates im- 467

proved performance over SASRec. This indicates 468

that our dual alignment method does not interfere 469

with the SRS method’s ability to effectively capture 470

user preferences. 471

6.3 The Impact of Historical Interaction 472

Sequence Length 473

To investigate the impact of historical interaction 474

sequence length, we evaluate model performance 475
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Dataset Model HR@5 NDCG@5 HR@10 NDCG@10 Model HR@5 NDCG@5 HR@10 NDCG@10

Video Games
SASRec 0.590 0.4629 0.717 0.5042 LLaRA 0.270 0.2277 0.360 0.2558
+CESRec-LLaMA2 0.633 0.4847 0.725 0.5144 +CESRec-LLaMA2 0.380 0.3097 0.450 0.3316
+CESRec-LLaMA3 0.646 0.4923 0.745 0.5242 +CESRec-LLaMA3 0.380 0.3254 0.440 0.3445

Movielens
SASRec 0.757 0.5688 0.866 0.6045 LLaRA 0.170 0.1416 0.210 0.1542
+CESRec-LLaMA2 0.824 0.6076 0.882 0.6264 +CESRec-LLaMA2 0.260 0.2192 0.310 0.2347
+CESRec-LLaMA3 0.810 0.5996 0.886 0.6244 +CESRec-LLaMA3 0.280 0.2348 0.330 0.2508

Toys
SASRec 0.431 0.3173 0.537 0.3509 LLaRA 0.420 0.3957 0.430 0.3986
+CESRec-LLaMA2 0.472 0.3376 0.557 0.3647 +CESRec-LLaMA2 0.500 0.4671 0.590 0.4955
+CESRec-LLaMA3 0.478 0.3408 0.557 0.3659 +CESRec-LLaMA3 0.500 0.4671 0.600 0.4993

Table 2: Performance on three datasets. We apply our proposed CESRec on two strong SRS: SASRec and LLaRA,
and we implement CESRec based on two LLM: LLaMA2 and LLaMA3.

Dataset Method HR@5 NDCG@5 HR@10 NDCG@10

Video Games

+CESRec-LLaMA3 0.646 0.4923 0.745 0.5242
+CESRec w/o d.a. 0.634 0.4849 0.723 0.5136
+CESRec w/o c. 0.610 0.4711 0.723 0.5077
SASRec 0.590 0.4629 0.717 0.5042

Movielens

+CESRec-LLaMA3 0.810 0.5996 0.886 0.6244
+CESRec w/o d.a. 0.805 0.5940 0.880 0.6186
+CESRec w/o c. 0.774 0.5766 0.866 0.6061
SASRec 0.757 0.5688 0.866 0.6045

Toys

+CESRec-LLaMA3 0.478 0.3408 0.557 0.3659
+CESRec w/o d.a 0.468 0.3354 0.557 0.3638
+CESRec w/o c. 0.443 0.3222 0.530 0.3501
SASRec 0.431 0.3173 0.537 0.3509

Table 3: Performance of ablation models. We conduct
ablation study on SASRec+CESRec.

1 2 3

0.82

0.84

0.86

0.88

0.90

HR
 M

et
ric

s

Movivelens

HR@5
HR@10

1 2 3
0.650

0.675

0.700

0.725

0.750

Video Games

HR@5
HR@10

1 2 3
0.475

0.500

0.525

0.550

0.575

0.600 Toys

HR@5
HR@10

1 2 3
Iterations

0.60

0.61

0.62

0.63

0.64

ND
CG

 M
et

ric
s

NDCG@5
NDCG@10

1 2 3
Iterations

0.49

0.50

0.51

0.52

0.53

0.54

NDCG@5
NDCG@10

1 2 3
Iterations

0.34

0.35

0.36

0.37

0.38

0.39

NDCG@5
NDCG@10

Figure 4: Performance of using different interaction
numbers. We evaluate the impact of the number of
conversational interactions between CESRec and users.

using different sequence lengths in terms of HR@5476

and NDCG@5 on the Toys and Video Games477

datasets. As shown in Figure 3, the results demon-478

strate that our proposed CESRec consistently out-479

performs the baseline SASRec across all three se-480

quence length ranges. This demonstrates the robust-481

ness of our model in effectively handling historical482

interaction sequences of varying lengths, further483

confirming its adaptability in diverse recommenda-484

tion scenarios.485

6.4 Analysis of Interaction Numbers486

We further investigate the impact of the number of487

conversational interactions of CESRec-LLaMA3,488
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Figure 5: The impact of masking different numbers of
outlier items.

based on SASRec. As illustrated in Figure 4, as 489

the number of interactions between users and the 490

CESRec-LLaMA3 increases, the performance of 491

the recommendation system consistently improves. 492

The HR@K and NDCG@K metrics (with K=5, 10) 493

demonstrate a steady upward trend across all three 494

real-world datasets. This indicates that as users pro- 495

vide more feedback, the recommendation system 496

becomes increasingly effective at capturing users’ 497

real-time interests. By constructing semantic-based 498

pseudo interaction sequences that reflect these in- 499

terests, the system generates recommendations that 500

better align with users’ current preferences. More- 501

over, the improvement in both HR and NDCG met- 502

rics suggests that the recommendation system not 503

only predicts items that users are more likely to 504

engage with but also ranks relevant items higher in 505

the recommendation list, thereby delivering more 506

accurate and user-centric ranking results. 507

6.5 Analysis of Masking Outlier Items 508

We further investigated the impact of the number of 509

masked outlier items on the performance of CES- 510

Rec. The results show that for the MovieLens and 511

Video Games datasets, the model achieves optimal 512

performance when the number of masked items 513

is set to 2. Beyond this threshold, performance 514
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Historical interaction sequence: 

Semantic-based pseudo interaction sequence:

User core preference: comedy; horror

Masking item: 《Super Mario Bros.》(action / sci-fic) 

Replacement Operation:《Cops and Robbersons》(comedy)

→《Carnosaur 2》(horror)

User feedback: I don’t like comedy ，
I prefer horror

Recommended item:《Jack Frost》
Target item Rank: 7

Recommended item:《 Halloween: H20 》
Target item Rank: 1

Model: SASRec

Model: CESRec

Masked

Figure 6: A case study of CESRec, where SASRec first
recommends an item based on user historical interaction
sequence, and then the user gives feedback. Next, our
CESRec refines the interaction sequence and employs
the SASRec to give a new recommendation by using the
updated sequence.

begins to decline as the number of masked items515

increases. This decline can be attributed to the516

fact that excessive masking reduces the length of517

the user’s historical sequence, leading to a loss of518

valuable information regarding user preferences.519

Consequently, the model struggles to accurately520

capture user behavior and predict items that align521

with these preferences. In contrast, for the Toys522

dataset, the model’s performance improves as the523

number of masked items increases. This trend524

can be attributed to the higher sparsity of the Toys525

dataset compared to other two datasets, as shown526

in Table 1. With greater sparsity, the items in the527

constructed sequences exhibit more variability, and528

as the model adjusts these sequences based on user529

feedback expressed in natural language, the impact530

on the recommendation outcomes becomes more531

notable. Therefore, by masking items that deviate532

from the user’s preferences, the model can concen-533

trate on the most relevant interactions, resulting in534

improved performance.535

6.6 Case Study536

To intuitively validate the effectiveness of our pro-537

posed CESRec, we randomly select an example538

from MovieLens dataset, as shown in Figure 6. The539

user’s historical interactions with movies include:540

“I Still Know What You Did Last Summer”, “Jungle 541

2 Jungle”, “Two if by Sea, M. Butterfly”, “Su- 542

per Mario Bros”, “Blank Check”, “Repossessed”, 543

“The Evening Star”, “The Beautician and the Beast”, 544

“Mr. Wrong”, “A Night at the Roxbury”, “Hal- 545

loween: The Curse of Michael Myers”, “Stop! Or 546

My Mom Will Shoot”, “Cops and Robbersons”. 547

Given this sequence as input, SASRec generates 548

“Jack Frost” as a recommended item by capturing 549

the co-occurrence relationships between movies. 550

However, “Jack Frost” is a comedy film, which 551

does not align with the user’s current preference 552

for horror films. To encourage the model’s focus on 553

the user’s core interests, we employ the dual align- 554

ment outlier items masking method. This method 555

masks the “Super Mario Bros.”, which belongs 556

to the action/animation genre and deviates from 557

the user’s core preference for horror films. Thus, 558

the model can better align with the user’s primary 559

interests and improve recommendation accuracy. 560

This masking process enables the CESRec to better 561

concentrate on the user’s core preferences. Since 562

“Jack Frost” is inconsistent with the user’s prefer- 563

ence, CESRec constructs a semantic-based pseudo- 564

interaction sequence incorporating the user’s con- 565

versational feedback: “I don’t like comedy; I prefer 566

horror.”. During this process, CESRec replaces 567

“Cops and Robbersons (comedy)” with “Carnosaur 568

2 (horror)” to reinforce the user’s stated prefer- 569

ence. Ultimately, based on this refined interaction 570

sequence, CESRec predicts “Halloween: H20” as 571

the recommended item. 572

7 Conclusion 573

In this paper, we proposed Conversation Enhanced 574

Sequential Recommendation (CESRec), a novel 575

framework that seamlessly integrates the long-term 576

preference modeling of SRS with the real-time pref- 577

erence elicitation of CRS. By leveraging users’ con- 578

versational feedback, CESRec dynamically refines 579

historical interaction sequences to generate pseudo- 580

interaction sequences that capture both long-term 581

preferences and real-time interests. Additionally, 582

the dual alignment outlier items masking method 583

addresses the challenge of outlier items in his- 584

torical sequences by accurately identifying and 585

masking items that deviate from users’ core prefer- 586

ences. Extensive experiments on three real-world 587

datasets demonstrate that CESRec enhances the 588

performance of SOTA SRS models, achieving su- 589

perior results in terms of HR and NDCG metrics. 590
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Limitations591

Our method relies on user conversational feedback592

to dynamically refine the historical interaction se-593

quence, aiming to better align with the user’s real-594

time preferences. However, if the user’s feedback595

is expressed in a vague, ambiguous, or unclear man-596

ner, the model may fail to capture the user’s real-597

time preferences accurately, leading to the genera-598

tion of an imprecise pseudo-interaction sequence,599

which in turn affects the recommendation perfor-600

mance. In future work, we will investigate more601

sophisticated dialogue mechanisms that can effec-602

tively guide users to articulate their latent prefer-603

ences.604

Ethical Considerations605

The research conducted in this paper centers on606

investigating the effectiveness of leveraging LLMs607

to bridge the gap between conversational recom-608

mendation and sequential recommendation. Our609

work systematically benchmarks LLMs under var-610

ious real-world scenarios and evaluates their per-611

formance. In the process of conducting this re-612

search, we have adhered to ethical standards to613

ensure the integrity and validity of our work. To614

minimize potential bias and ensure fairness, we615

employ the same prompts and experimental setups616

as those used in existing publicly accessible and617

freely available studies. We have made every effort618

to ensure that our research does not harm individ-619

uals or groups and does not involve any form of620

deception or misuse of information.621
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