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ABSTRACT

Out-of-Domain (OOD) generalization is the ability of a model trained on one
or more domains to generalize to unseen domains. In the ImageNet era of com-
puter vision, evaluation sets for measuring a model’s OOD performance were
designed to be strictly OOD with respect to style. However, the emergence of
foundation models and expansive web-scale datasets has obfuscated this evaluation
process, as datasets cover a broad range of domains and risk test domain contam-
ination. In search of the forgotten domain generalization, we create large-scale
datasets subsampled from LAION—LAION-Natural and LAION-Rendition—that
are strictly OOD to corresponding ImageNet and DomainNet test sets in terms of
style. Training CLIP models on these datasets reveals that a significant portion
of their performance is explained by in-domain examples. This indicates that the
OOD generalization challenges from the ImageNet era still prevail and that training
on web-scale data merely creates the illusion of OOD generalization. Furthermore,
through a systematic exploration of combining natural and rendition datasets in
varying proportions, we identify optimal mixing ratios for model generalization
across these domains. Our datasets and results re-enable meaningful assessment of
OOD robustness at scale—a crucial prerequisite for improving model robustness.

Models turn out not to be robustModels appear robustModels are not robust

Trained as in B

Trained as in C

Trained as in B

Trained as in C

R
en

di
tio

n
N

at
ur

al

Domain Accuracy Before/AfterD

...

Ev
al

ua
tio

n

IN-S

Clipart

IN-R

LAION-Natural

Tr
ai

ni
ng

Web-Scale + FilterC

filter

...

Ev
al

ua
tio

n

IN-S

Clipart

IN-R

LAION

Tr
ai

ni
ng

Web-Scale EraB

Rendition DomainEv
al

ua
tio

n IN-S IN-R

Natural Domain

ImageNet

Tr
ai

ni
ng

ImageNet EraA

Figure 1: Evaluated correctly, CLIP’s OOD performance on renditions drops significantly.
A: Models used to be trained on a single domain like natural images from ImageNet (Russakovsky
et al., 2015) and evaluated for out-of-domain (OOD) generalization on a different domain like
renditions from test sets such as ImageNet-R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang
et al., 2019). B: Today, large foundation models like CLIP (Radford et al., 2021) are trained on
web-scale datasets such as LAION-400M (Schuhmann et al., 2021) containing images from many
domains. Tested on a specific domain like renditions, CLIP exhibits unprecedented performance and
appears robust. C: We subsample from a deduplicated LAION-400M (Abbas et al., 2023) to obtain
LAION-Natural, a web-scale dataset containing only natural images, which re-enables a meaningful
assessment of CLIP’s generalization performance to renditions. D: CLIP trained on LAION-Natural
performs noticeably poorer on renditions, suggesting that its OOD performance has been previously
overestimated. The models are evaluated on refined test datasets containing samples only from their
intended domains.

1 INTRODUCTION

Foundation models have revolutionized our world, demonstrating remarkable capabilities in solving
grade school math problems, writing creative essays, generating stunning images, and comprehending
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visual content OpenAI (2023); Schulman et al. (2022); Ramesh et al. (2022). One notable example
is CLIP (Radford et al., 2021), a vision-language model pretrained on a vast dataset of image-text
pairs, which forms the backbone of numerous other foundation models (Ramesh et al., 2022; Liu
et al., 2023a). CLIP has achieved unprecedented performance across a wide range of benchmarks
spanning many domains—a sharp contrast to models from the ImageNet era, which struggled to
generalize from a training domain mostly consisting of natural photographs to stylistically different
domains such as ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and
DomainNet (Peng et al., 2019).

Domains, while often challenging to quantify in practice (Ben-David et al., 2010), emerge from
collecting data from specific sources and conditions. Some domains, like natural images or renditions,
are better delineated, allowing the creation of datasets like the ones mentioned above. Out-of-domain
(OOD) generalization refers to a model’s ability to perform well on data from domains other than its
training domain(s) (Wang et al., 2021). In this work, we collectively refer to the domain represented
by ImageNet-Sketch, ImageNet-R, DomainNet-Painting, DomainNet-Clipart, DomainNet-Sketch,
and DomainNet-Quickdraw as the rendition domain, since it contains images that are renditions of
natural objects and scenes. Generalization to the rendition domain (especially OOD) is crucial for
aligning models with human perception, as humans can interpret abstract visual renditions, while
machines tend to rely heavily on textural cues (Hendrycks et al., 2021a; Geirhos et al., 2019).

CLIP’s strong performance in several domains, including renditions, is attributed to its vast training
distribution, rather than its contrastive learning objective, language supervision, or dataset size (Fang
et al., 2022). However, Fang et al. (2022) do not specify what characteristics of the training distribution
drive this performance. CLIP could be learning more robust representations due to the diversity of
natural images in its training set—or it may simply have been exposed to many datapoints from the
(assumed to be OOD) test domains during training. Indeed, Mayilvahanan et al. (2023) revealed that
CLIP’s training data contains exact or near duplicates of samples of many OOD datasets. Yet, they
showed that CLIP still generalizes well when this sample contamination is corrected. However, their
analysis failed to account for domain contamination.

In contrast to sample contamination, domain contamination does not focus on duplicates of specific
datapoints but rather examines whether critical aspects of a test domain are present in the training
domain, such as images with different content but similar style to test samples. For example, after
the correction by Mayilvahanan et al. (2023), many other rendition images, while not duplicates,
remained in CLIP’s training set (refer to Tab. 2). Prior works often assume that CLIP is capable of
generalizing OOD (Radford et al., 2021; Abbasi et al., 2024; Nguyen et al., 2024; Fang et al., 2022;
Li et al., 2023; Shu et al., 2023); however, it remains unclear whether this is truly the case or if its
performance is primarily driven by training on images from the test domain. This leads us to our
central question:

To what extent does domain contamination explain CLIP’s performance on renditions?

We address the central question with the following contributions:

• Constructing Clean Single-Domain Datasets: To rigorously test whether CLIP’s success in
the rendition domain stems from their exposure during training, we first train a domain classifier
to distinguish natural images from renditions (Sec. 3.2). By applying the domain classifier to
a deduplicated version of LAION-400M, we create and release two datasets: LAION-Natural
contains 57M natural images; LAION-Rendition consists of 16M renditions of scenes and objects.
Additionally, we refine existing rendition OOD benchmarks (ImageNet-R, ImageNet-Sketch, etc.)
by removing samples that do not belong to the corresponding domain (Sec. 3.4).

• Refining the Evaluation of CLIP’s OOD Performance: Using LAION-Natural, we demon-
strate that CLIP trained only on natural images significantly underperforms on rendition domain
shifts (Sec. 4). This suggests that its original success stems from domain contamination, not from
an intrinsic OOD generalization ability (see Fig. 1 for a summary).

• Investigating Domain Mixing and Scaling Effects: Our single-domain datasets enable analyzing
the effects of training on controlled mixtures of natural and rendition images across scales (Sec. 5).
We identify the optimal mixing ratio for the best overall performance and show the degree to which
training on one domain enables some generalization to the other.
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Through this work, we aim to shed light on the limitations of foundation models like CLIP in handling
OOD generalization and provide valuable datasets and tools to the community for further exploration.
Fig. 1 illustrates our core methodology.

2 RELATED WORK

Measuring the OOD Generalization of CLIP Models We aim to understand the OOD gener-
alization capabilities of CLIP from a data-centric viewpoint. While multi-modal training with rich
language captions does seem to contribute to robustness against distribution shifts (Xue et al., 2024),
Fang et al. (2022) demonstrated that the nature of CLIP’s training distribution (as opposed to its
mere size, its specific training objective, or natural language supervision) causes strong performance
on various distribution shifts. However, it is unclear what aspects of the data distribution drive
the robustness gains. Mayilvahanan et al. (2023) remove images highly similar to the test sets to
show that data contamination and high perceptual similarity between training and test data do not
explain generalization performance. While their data pruning technique removes some samples from
LAION-400M that lie outside the natural image domain, they do not address domain generalization:
They only account for the part of a domain covered by existing test sets and give no guarantee that
all images of a given domain were removed. In another line of work, Nguyen et al. (2022) discover
that a model’s effective robustness (Fang et al., 2022; Taori et al., 2020) on a test set interpolates
when training data is compiled from various sources. However, they only consider mixing datasets
that each cover multiple domains. In this work, we take their analysis further and show how mixing
two data sources from distinct domains interpolates the effective robustness on those domains. Our
study’s title is inspired by Gulrajani & Lopez-Paz (2021), who studied generalization from multiple
distinct source domains. In contrast, we focus on generalization from single or mixed source domains
to unseen domains. Overall, we aim for our work to be a valuable addition to the literature on OOD
generalization (Liu et al., 2023b; Koh et al., 2021; Madan et al., 2021; Gulrajani & Lopez-Paz, 2021;
Madan et al., 2022; Arjovsky et al., 2019; Arjovsky, 2021).

Domain Classification The primary goal of our work necessitates creating web-scale datasets
of different domains. This entails building a robust domain classifier that can reliably distinguish
natural images from renditions. This task can be regarded as classifying the style of an image,
which Gatys et al. (2015) proposed to measure using Gram matrices and which has been widely
explored since then (Sandoval et al., 2019; Menis-Mastromichalakis et al., 2020; Sandoval Rodriguez
et al., 2018; Joshi et al., 2020; Garcia & Vogiatzis, 2018; Chu & Wu, 2018; Bai et al., 2021). More
recently, Cohen-Wang et al. (2024a) use a fine-tuned CLIP model from OpenCLIP (Ilharco et al.,
2021) to distinguish between ImageNet and test sets with a domain shift, such as ImageNet-Sketch,
ImageNet-R, and ImageNet-V2 (Recht et al., 2019). Wang et al. (2023) and Somepalli et al. (2024)
develop a dataset classifier using a backbone trained by self-supervised learning and classification
through retrieval via a database. Liu & He (2024) report high performance when training image
classifiers to distinguish between different large-scale and diverse datasets.

3 CONSTRUCTING CLEAN SINGLE-DOMAIN DATASETS

To answer our central question—how much of CLIP’s performance on renditions can be explained
by domain contamination—we must filter out datapoints from specific domains within web-scale
datasets. Similar to how ImageNet is compared to ImageNet-Sketch and ImageNet-R, or how
DomainNet-Real is compared to DomainNet-Sketch (Quickdraw, Infograph, Clipart, and Painting),
we aim to create clean natural and rendition datasets from LAION by building a domain classifier to
distinguish between these domains.

To build a robust domain classifier, we first create a labeled dataset where each class represents a
distinct domain. The labeling process is outlined in Sec. 3.1, and we explore different ways to build a
domain classifier in Sec. 3.2. Further, in Sec. 3.3, we employ the best-performing classifiers to analyze
the composition of different training and test sets and finally use it to subsample LAION-Natural and
LAION-Rendition in Sec. 3.4.

LAION-200M For the remainder of this work, we substitute LAION-400M with LAION-200M,
which we obtain by de-duplicating LAION-400M based on perceptual similarity as introduced by
Abbas et al. (2023). Both Abbas et al. (2023) and Mayilvahanan et al. (2023) demonstrate that CLIP
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Figure 2: Labeled natural, ambiguous, and rendition samples from different datasets. Natural
images are photos or high-quality renders with minor filters that preserve fine-grained textures, while
renditions are typically sketches, paintings, or graphics with flat or simplified textures. Images with
elements of both, such as collages or natural images with large stylized elements, and images mainly
containing text are labeled as ambiguous.

trained on LAION-200M obtains comparable downstream performance while greatly reducing the
computational burden of training models from scratch and analyzing the dataset.

3.1 LABELING

LAION-200M contains diverse images from a multitude of sources. The images vary from naturally
occurring to synthetically generated. We encourage the reader to glance at Fig. 20 to get a sense of the
dataset and the difficulty of determining the domain of each image. We aim to classify these images
mainly as natural or renditions. We also add an extra ambiguous class for images with elements of
both domains, images with elements of neither, and edge cases.

We manually label images based on a labeling handbook derived from analyzing the existing OOD
test sets, which we outline in Appx. A.1.1. In general, we adopt a texture-centric approach to
distinguish renditions of a scene or object from their natural depictions. That is, depictions where
fine-grained texture information is preserved are generally considered natural, while depictions with
simplified or flat textures are considered renditions. Fig. 2 illustrates this demarcation on samples
from LAION-200M, ImageNet test sets, and DomainNet test sets.

To further ease the labeling procedure, we first build a rough binary classifier by fine-tuning CLIP ViT-
L/14 with a linear readout to differentiate between some of the natural ImageNet and DomainNet test
sets (namely, ImageNet-Val, ObjectNet (Barbu et al., 2019), ImageNet-V2, ImageNet-A (Hendrycks
et al., 2021b), and DomainNet-Real) and rendition test sets (namely, ImageNet-Sketch, ImageNet-R,
DomainNet-Painting, DomainNet-Sketch, and DomainNet-Clipart). We use this classifier to roughly
pre-label samples before they are annotated by a human. The annotator verifies and potentially
updates the labels for 25 images at a time (see Fig. 7).

Overall, we label 19 000 random images from LAION-200M and 1000 images from each of the
ImageNet and DomainNet test sets (12 000 in total). Notably, almost all ImageNet and DomainNet test
sets usually assumed to contain only images of a single domain exhibit some domain contamination.
We discuss this in detail in Sec. 3.3. Tab. 4 contains a detailed breakdown of labels for each dataset.
We show more samples grouped by domain for each dataset in Figs. 23 and 34.

3.2 TRAINING AND CHOOSING THE DOMAIN CLASSIFIER

With the domain-labeled dataset, we can train a domain classifier to partition all of LAION-200M
into natural images, renditions, or ambiguous images. Since we aim to obtain datasets containing
only images from a single domain, we need a domain classifier that is as precise as possible. To this
end, we train classifiers on 13 000 labeled LAION-200M images, retaining 3000 samples each for a
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Table 1: We chose the best natural classfier and the best rendition classifier between a binary
classifier based on (DR) (Cohen-Wang et al., 2024b) and a ternary classifier using a linear readout
based on fine-tuned CLIP model (FT). All models use CLIP ViT-L/14 pretrained on LAION-2B. We
report precision and recall for the natural class (top) and rendition class (bottom) on ImageNet (IN)
and DomainNet (DN) test sets and average performance across all test sets. For each class, we select
the classifier with the highest validation-recall.

cls=natural Val Test IN-Val IN-v2 IN-A ON DN-R Average
Model P R P R P R P R P R P R P R P R

DR-R 0.98 0.08 0.72 0.08 1.00 0.00 1.00 0.00 1.00 0.00 0.95 0.20 1.00 0.00 0.95 0.05
FT 0.98 0.41 0.95 0.44 1.00 0.36 0.99 0.40 1.00 0.46 0.99 0.53 1.00 0.42 0.99 0.43

cls=rendition Val Test IN-R IN-S DN-S DN-Q DN-P DN-C DN-I Average
Model P R P R P R P R P R P R P R P R P R P R

DR-R 0.98 0.35 0.98 0.41 1.00 0.60 1.00 0.71 1.00 0.74 1.00 0.33 0.99 0.60 1.00 0.65 0.98 0.39 0.99 0.53
FT 0.98 0.27 0.95 0.26 1.00 0.38 1.00 0.57 1.00 0.61 1.00 0.68 1.00 0.21 1.00 0.50 1.00 0.30 0.99 0.42

validation and test set. From the domain classification literature discussed in Sec. 2, we evaluate four
methods with publicly available code. All methods build on CLIP ViT-L/14 pretrained on LAION-2B,
which we choose for its balance between accuracy and inference speed. For brevity, we present the
two methods we finally employ here, and refer the reader to Appx. A.1.2 for a detailed description,
results, and comparisons with other approaches.

Density Ratios Cohen-Wang et al. (2024b) aim to estimate the probability that a given sample is
drawn from a reference distribution pref. Since high dimensional density estimation is challenging,
they build a classifier to distinguish between a reference and a shifted distribution and compute the
density ratio pref

pshifted
which they threshold at 0.2 to classify a given sample. We deploy their method

unchanged to our task. We obtain two binary classifiers, DR-N and DR-R, that distinguish natural
from non-natural samples and renditions from non-renditions, respectively.

Fine-Tuning We fine-tune pretrained CLIP ViT-L/14’s image encoder with a randomly initialized
linear readout on the training dataset to obtain a ternary classifier, dubbed FT.

We use the validation set to determine the two best domain classifiers, one for natural images and
one for renditions. Since the domain classifier should maximize precision above all else, we set the
confidence threshold for each model such that it achieves 98% per-class precision. We then pick the
classifier with the highest per-class recall to minimize the number of datapoints that are discarded
when subsampling LAION-200M to build LAION-Natural and LAION-Rendition. We choose FT,
the fine-tuned ternary classifier, and DR-R, the binary classifier using density ratios, to detect natural
and rendition images, respectively. We use these classifiers for all subsequent experiments. Tab. 1
reports these models’ precision and recall on the natural and rendition class across ImageNet and
DomainNet test sets. For comparison to other methods see Appx. A.1.2. For raw accuracy numbers
of all models, which in general are high for most, refer to Tabs. 7 and 8 in Appx. A.1.5. We also
assess the quality of the labels and the domain classifier’s predictions in Appx. A.1.4, finding them to
be robust even in the presence of label noise during training.

3.3 ANALYZING THE DOMAIN MAKE-UP OF DIFFERENT DATASETS

Both ImageNet and DomainNet are web-scraped datasets that were refined through extensive human
annotation. In contrast, LAION-400M is obtained purely through web scraping without subsequent
human domain filtering. Since human annotators can make mistakes, and LAION-200M’s domain
composition is inherently unknown, we use our domain classifiers to understand it.

To this end, we deploy the chosen classifiers from Sec. 3.2 and label a sample ambiguous if the
natural and rendition classifier disagree. We apply the classifiers both with their strict thresholds
at 98% validation-precision, which yields a strong lower bound for the number of samples in each
domain, as well as with their default thresholds, which yields a more rounded estimate.

From Tab. 2, it is clear that LAION-200M contains a considerable portion of strictly rendition images
(at least 7.90%, corresponding to 16 million images), and potentially many more images with some
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Table 2: Domain composition of training sets. We apply our natural and rendition domain classifiers
with their strict thresholds at 98% validation-precision to get a lower bound of samples from each
domain and with their default thresholds to obtain a more balanced estimate. ImageNet-Train has a
much smaller fraction of rendition samples than LAION-200M. We also note that ‘combined-pruned’,
the training set from Mayilvahanan et al. (2023) that corrected for test set contamination, still contains
a large fraction of renditions.

Classifier Precision

Dataset # Samples Natural Rendition Natural Ambiguous Rendition

LAION-200M 199 663 250 0.79 0.77 60.74 % 25.41 % 13.86 %
0.98 0.98 28.40 % 63.70 % 7.90 %

ImageNet-Train 1 281 167 0.79 0.77 89.20 % 9.62 % 1.18 %
0.98 0.98 36.00 % 63.60 % 0.40 %

combined-pruned 187 471 515 0.79 0.77 62.98 % 25.18 % 11.83 %
0.98 0.98 29.58 % 64.02 % 6.40 %

rendition elements in the ambiguous group. In contrast, for ImageNet, we find a much smaller
fraction of renditions (at least 0.4% of samples).

Additionally, we observe that many evaluation datasets are considerably domain-contaminated
(at least 5% of samples stem from the opposite domain), especially ImageNet-R, DomainNet-Real,
DomainNet-Clipart, DomainNet-Painting, and DomainNet-Infograph (see Tab. 9, Appx. A.1.6).

Both observations together suggest that previous domain generalization performance for models
trained or evaluated on those datasets needs to be taken with a grain of salt: It is highly likely that
their scores are inflated and the models’ true OOD generalization capability is lower.

We also analyze the domain composition of datasets from Mayilvahanan et al. (2023), who created
several subsets of LAION-200M filtered for samples that are highly similar to ImageNet OOD test
sets. The removed images are expected to be (near-) duplicates of test images in terms of both content
and style. Their dataset ‘combined-pruned’ is a subset of LAION-200M where highly similar images
to ImageNet-Sketch, ImageNet-R, ImageNet-Val2, ImageNet-Val, ImageNet-A, and ObjectNet were
pruned. In their work, it remained unclear whether pruning also effectively removed all images of the
rendition domain, which we can now answer.

Tab. 2 reveals that a considerable number of renditions remains in the pruned dataset (at least 6.4%,
corresponding to around 11 million images). These remaining renditions might have played a
significant role in the generalization performance of their CLIP models, especially on ImageNet-
Sketch and ImageNet-R. As a result, CLIP’s domain generalization performance is yet to be evaluated
fairly. We refer the reader to Appx. A.1.6 for further analysis on domain composition at different
domain classifier validation-precision levels.

3.4 SINGLE-DOMAIN DATASETS

We now use our domain classifiers at 98% validation-precision to subsample LAION-200M. We ob-
tain LAION-Natural with roughly 57million samples and LAION-Rendition with roughly 16million
samples. Fig. 3 shows random samples from both datasets, more samples are shown in Figs. 20
and 21. We also deploy the domain classifiers on the ImageNet and DomainNet test sets to remove
the domain contamination reported above and create clean test sets. The exact number of datapoints
and the number of classes for each test set are detailed in Tab. 12. These datasets enable us to more
fairly assess CLIP’s out-of-domain generalization performance in the following sections.

4 REFINING THE EVALUATION OF CLIP’S OOD PERFORMANCE

Training Details For all our experiments, we train CLIP ViT-B/32 (Dosovitskiy et al., 2020)
from scratch for 32 epochs with a batch size of 16 384 on a single node with either four or eight
A100 GPUs (training takes several days, depending on dataset size). We use the implementation and
hyperparameters provided by Ilharco et al. (2021).
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LAION-Natural  ~57 million samples

Figure 3: Random samples from LAION-Natural and LAION-Rendition.
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Figure 4: Across scales, CLIP performs substantially poorer on unseen domains. The relative
corrected OOD accuracy shows performance losses or gains of a CLIP model trained exclusively
on the natural domain via LAION-Natural compared to a CLIP model trained on an equally-sized
subsample of the domain-contaminated LAION-200M. We evaluate models on the standard ImageNet
and DomainNet test sets (left) and our cleaned versions of them (right, see Sec. 3.4). When training
only on samples from the natural domain, we see a decrease in performance for both standard and
cleaned test datasets (i.e., relative performance < 1). This means that without samples from the
rendition domain, CLIP’s generalization ability suffers significantly and consistently across scales.

We now return to our central question: To what degree is CLIP’s ability to generalize to renditions
influenced by seeing many renditions during training? To answer this, we first train CLIP on the
full 57-million-sample LAION-Natural dataset, as well as random subsets of 45million, 30million,
16million, and 4million samples. We then compare the classification accuracy of these models to
CLIP models trained on equally sized random subsets of LAION-200M, reporting the accuracy ratio,
which we term relative corrected OOD accuracy. We evaluate this metric on the original ImageNet
and DomainNet test sets as well as on our cleaned versions (see Sec. 3.4). The results are summarized
in Fig. 4.

Across the board, we find that the relative corrected OOD accuracy on the clean datasets is around or
above 1.0 for natural test sets but drops to around 0.4 for most rendition test sets. This demonstrates
that, without domain contamination of the training distribution, CLIP does not generalize across
domains nearly as effectively as previously assumed. Notably, the relative corrected OOD accuracy
is very consistent across dataset scales, allowing us to conjecture that this result also holds for CLIP
models trained on even larger data sizes. For raw accuracy comparisons of LAION-Natural vs.
LAION, we refer the reader to Appx. A.2.2.

To further reinforce this observation, we build LAION-Mix-nM by replacing n million samples
from LAION-Natural with samples from LAION-Rendition. As shown in Tab. 3, replacing 13 or
16million samples with renditions has minimal impact on performance in the natural domain but
significantly boosts performance in the rendition domain (near 100% increase) compared to the model
trained solely on LAION-Natural, highlighting the effect of domain contamination. For comparison,
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Table 3: Performance on the rendition domain is largely driven by renditions in the train-
ing data. We compare the top-1 accuracy of CLIP trained without renditions on LAION-Natural
to CLIP trained on datasets of the same size with renditions: LAION-Mix-nM contains n mil-
lion renditions, LAION-Rand is a random subset of LAION-200M with an estimated fraction of
7.9% – 13.86% renditions (see Tab. 2). Training with renditions greatly impacts performance on the
rendition domain. The natural column shows the average performance of each model on ImageNet-
A, ObjectNet, ImageNet-V2, ImageNet-Val, and DomainNet-Real, while the rendition column
reflects the average performance on DomainNet-Painting, DomainNet-Clipart, DomainNet-Infograph,
DomainNet-Sketch, DomainNet-Quickdraw, ImageNet-R, and ImageNet-Sketch.

Standard Datasets top-1 Acc. Clean Datasets top-1 Acc.

Dataset Natural Rendition Natural Rendition

LAION-Natural 36.88 % 21.98 % 39.72 % 17.81 %
LAION-Mix-13M 37.28 % 40.48 % 38.97 % 40.78 %
LAION-Mix-16M 36.92 % 41.46 % 38.58 % 42.07 %
LAION-Rand-57M 37.62 % 40.66 % 36.99 % 39.58 %

we also include the performance of a CLIP model trained on LAION-Rand-57M (57million random
subsample of LAION-200M), which outperforms the LAION-Natural model on rendition domains.
This is likely due to LAION-Rand-57M containing an estimated 7.9% – 13.86% renditions and a
higher proportion of ambiguous samples (25.41% – 63.70%).
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Figure 5: CLIP’s effective robustness to renditions is driven by domain contamination. We
evaluate effective robustness (Fang et al., 2022; Taori et al., 2020) of models trained on different
LAION-200M subsets. Left: The y-axis represents average accuracy on ImageNet-centric natural
domain datasets (ImageNet-A, ObjectNet, ImageNet-V2). Right: The y-axis shows average per-
formance on ImageNet-centric rendition datasets (ImageNet-Sketch, ImageNet-R). Overall, CLIP
trained on LAION-Natural matches the effective robustness of a LAION-200M-trained CLIP on the
natural domain but has significantly lower effective robustness on the rendition domain. This shows
that CLIP requires rendition samples in its training distribution to perform well on this domain.

To put the relative corrected OOD accuracy of Fig. 4 in context, we also evaluate effective robustness
on the natural and rendition domains. Fig. 5 shows the top-1 classification accuracy of multiple
CLIP models trained on LAION-200M, LAION-Natural, LAION-Rendition, LAION-Mix, and
ResNets trained on ImageNet (see Appx. A.3 for more details on ResNet training). The x-axis shows
performance on ImageNet-Val. The y-axis represents average accuracy on ImageNet-centric natural
domain datasets (ImageNet-A, ObjectNet, ImageNet-V2) for the left plot and average performance
on ImageNet-centric rendition datasets (ImageNet-Sketch, ImageNet-R) for the right plot. We show
results for the 13million version of LAION-Mix as it aligns most closely with the effective robustness
of LAION-200M models.

As expected, models with the same training regimen align along a line, with the y-offset from the
ImageNet line indicating effective robustness. While all models trained on LAION subsets achieve
similar effective robustness on the natural domain (Fig. 5 left), effective robustness on the rendition
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Figure 6: A: Optimal data mixture. We show the average accuracy on the natural and rendition
domain for models trained with LAION-Mix of different absolute sizes and rendition-to-natural
ratios (red indicates only renditions and blue only natural images). The best overall performance
(corresponding to the point furthest from the origin) is achieved with a rendition-to-natural ratio
between 1:1 and 3:1, which is consistent across scales. B: Effect of adding renditions. We also
analyze model performance with increasingly more renditions added to a fixed-size training set of
natural images (which increases overall dataset size). The amount of additional rendition samples
required to reach a specific performance on the rendition domain depends on the number of natural
samples included in the training set. While natural training samples give some performance boost on
the rendition domain, rendition samples do this much more efficiently.

domain varies greatly and is notably lowest for LAION-Natural-trained models. Effective robustness
plots on the individual ImageNet and DomainNet test sets can be found in Appx. A.4.

Combining the findings in this section, we now answer our original question: To what extent does
domain contamination explain CLIP’s performance on renditions?

Domain contamination contributes substantially to CLIP’s strong performance on renditions.

5 INVESTIGATING DOMAIN MIXING AND SCALING EFFECTS

In the previous section, we explored training on single-domain datasets. Equipped with these clean
datasets, we can now, for the first time, conduct a controlled investigation on what happens when
large-scale datasets from different domains are mixed.

First, we show performance on the natural and rendition domain for models trained on LAION-Mix
of different sizes and mixing ratios in Fig. 6A. Varying the mixing ratio while keeping the overall
training set size constant reveals that a rendition-to-natural ratio between 1:3 and 1:1 achieves the best
overall performance. This optimal range is consistent across training set sizes, although insights on
larger scales are limited by the availability of LAION-Rendition samples (in total 16million images).
We hope our results can help practitioners while mixing such domains.

In our second experiment, we progressively add more rendition samples to fixed-size training sets of
natural images (Fig. 6B). We find that models starting with more natural images require far fewer
renditions to achieve the same performance on the rendition domain. This suggests that large amounts
of natural images help the model learn some features that can be useful for generalizing to renditions,
and relatively few additional renditions suffice to reach good performance on the rendition domain.
In addition to boosting the performance on rendition test sets, adding rendition samples to the training
set marginally boosts the performance on natural test sets, albeit with quickly diminishing returns.
While performance in the natural domain benefits from rendition samples, natural samples are much
more helpful. Likewise, training on few rendition samples gives higher performance than training on
substantially more natural samples (see Fig. 6B, Tab. 3)—echoing our conclusion in Sec. 4 that CLIP
does slightly generalize but much less than previously assumed.
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6 DISCUSSION

Contextualizing our core result The literature often assumes that CLIP is capable of generalizing
OOD (Radford et al., 2021; Abbasi et al., 2024; Nguyen et al., 2024; Fang et al., 2022; Li et al., 2023;
Shu et al., 2023). Our main result is that CLIP’s strong generalization to rendition domains is largely
due to the presence of samples from those domains in its training distribution. Fang et al. (2022)
showed CLIP’s robustness is tied to its data distribution but do not mention any specific characteristic.
In contrast, Mayilvahanan et al. (2023) indicate that other dataset properties, not train-test similarity
on a per-sample level, influence robustness. We conclusively demonstrate that CLIP’s apparent OOD
robustness on standard OOD benchmarks like ImageNet-Sketch or ImageNet-R is often an artifact of
overlapping domain data, rather than genuine OOD generalization. This refines the conclusion of
Fang et al. (2022) and directly challenges Mayilvahanan et al. (2023) (see Sec. 3.3 and Sec. 4), and
several other works (Radford et al., 2021; Abbasi et al., 2024; Nguyen et al., 2024; Fang et al., 2022;
Li et al., 2023; Shu et al., 2023). To the best of our knowledge, no work exists that addresses OOD
generalization without domain contamination at this paper’s scale (10s of millions).
Validity of conclusions for larger datasets Although our training sets are constrained by the
availability of natural and rendition samples, we believe that the insights gained from analyzing
datasets with sizes spanning over one order of magnitude will remain applicable to even larger
datasets. Specifically, the disparity in ‘relative corrected accuracy’ shown in Fig. 4 remains stable
across dataset sizes from 4M to 57M. Similarly, effective robustness illustrated in Fig. 5 is influenced
by the training distribution rather than the dataset size, which is also supported by findings in previous
works (Miller et al., 2021; Fang et al., 2022; Mayilvahanan et al., 2023). Lastly, CLIP’s performance
scales predictably across domain mixtures as shown in Sec. 5. Overall, we see no indication that our
results should not transfer to larger scales.
Validity of conclusions for other architectures and loss functions Prior work strongly supports
the generalizability of our findings on data contamination and optimal ratios across architectures and
training methods beyond CLIP (Miller et al., 2021; Fang et al., 2022). For instance, Fang et al. (2022)
demonstrates that CLIP’s robustness is driven primarily by the training distribution, with factors like
dataset size, language supervision, and contrastive loss playing minimal roles. They also show that
models trained on identical data distributions, regardless of loss functions (e.g., SimCLR+FT, CLIP,
Supervised) or architectures (e.g., varying backbones and parameter sizes), exhibit similar effective
robustness. This indicates that our conclusions are likely to hold across model types. We further
address their validity across dataset sizes in Sec. 6.
Choice of domain and validity of conclusions for other domains For models to align with human
perception, it is essential that they generalize to rendition domains, particularly in out-of-distribution
(OOD) scenarios. Humans are adept at interpreting abstract visual renditions (Hendrycks et al.,
2021a), while machines often depend primarily on textural cues (Geirhos et al., 2019). Consequently,
we focus on natural images vs. renditions as our subject of study. Our methodology can be applied to
evaluate OOD generalization for other domains, and we expect that our findings will hold true, as
domain contamination is a general problem not tied to the specific domains we examined. However,
we do anticipate challenges in accurately characterizing certain domain shifts, which could impede
training the domain classifier. Nonetheless, if a small labeled dataset can be created to differentiate
between these shifts, the subsequent processes should proceed smoothly. Given the manual effort
required and the potential redundancy in findings, we defer this task to future work.

7 CONCLUSION

With the emergence of models trained on web-scale datasets containing abundant samples from
seemingly all possible domains, the study of domain generalization mostly came to a halt. Hence, the
question of how dataset scale actually affects the ability of models to generalize between domains
remains unanswered. Here, we try to answer this question thoroughly by fully controlling the
domains used for model training. By creating clean subsets of LAION containing either natural
images or renditions, and by training models on various mixtures and dataset sizes, we show that
the generalization performance of CLIP trained on only one domain drops to levels similar to what
has been observed for ImageNet-trained models. Hence, we conclude that the domain generalization
problem remains unsolved even for very large-scale datasets. We release all training set splits as
well as pretrained models and encourage the field to re-consider domain generalization as a central
benchmark for future progress on model architectures, inductive biases, and learning objectives.
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REPRODUCIBILITY

We describe the methodology to create all of the datasets we use in Secs. 3.1 and 3.4 and Appx. A.1.1.
We also detail our domain classifiers and their training in Sec. 3.2 and Appx. A.1.2 and A.1.3.
Further, the training details of the CLIP models and the ResNet models are in Sec. 4 and Appx. A.3.
This should be sufficient to reproduce all our experimental results. We will release all of our labeled
datasets, all cleaned test datasets, our LAION-400M subsets (LAION-Natural and LAION-Rendition),
the domain classifiers, and the CLIP model checkpoints. All of these resources are already uploaded to
HuggingFace and will be made public at acceptance of this paper. The source code for all experiments
can be found in the supplementary material and will be publicly released, too. For training the CLIP
models we used the publicly available code from (Ilharco et al., 2021) exclusively.
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A APPENDIX

A.1 MORE DETAILS ON THE DOMAIN CLASSIFIER

A.1.1 LABELING

As mentioned in Sec. 3.1, we take a texture-centric approach in domain labeling. We resolve further
ambiguities with respect to labeling in the following way:

• Natural objects with watermark or text, infographs with natural objects, signs with human
symbol (eg. walking signal), objects with common logos (eg. Nike), naturalistic books
or movie covers, images that are retro / low resolution / blurry / grainy / or with fake
background but with texture information preserved, graphically altered natural images with
significant texture information, and real objects with fake backgrounds are all classified as
natural.

• Stylistic: Infographs with stylized objects, stylized books or movie covers, retro / low
resolution / blurry / grainy /graphically altered images with significant loss in texture
information, stylized objects on plain or common natural background (eg. wall, bedsheet
etc.) are all classified as stylistic.

• Ambiguous: Tattoos where hand / back is very visible, sculpture with real objects around,
real images with distinct drawing of logos with objects, images that are retro / low resolution
/ blurry / grainy / or with fake background but with little texture information preserved are
all classified as ambiguous.

The labeling of 19,000 images were done by one annotator who labeled about 750-1000 images per
hour. The annotator also did a checking of these labels by regrouping and going over them again.
Two other annotators re-labeled the test set, a collection of 3000 images to affirm the quality of labels
and the domain classifier (see Appx. A.1.4). All annotators are the authors of the work. We visualize
our labeling setup in Fig. 7. We also state the final breakdown of labeled images in Tab. 4.

Table 4: Number of labeled data points from several datasets and their domain-wise breakdown.
For training our domain classifier, we use the LAION-200M (Train), and LAION-200M (Val) for
validation, and everything else to evaluate the final test performance.

Dataset Natural Stylistic Ambiguous Total
LAION-200M (Train) 7268 2978 2754 13000
LAION-200M (Val) 1000 1000 1000 3000
LAION-200M (Test) 1000 1000 1000 3000

ImageNet-A 974 7 19 1000
ObjectNet 917 2 81 1000
ImageNet-R 22 859 119 1000
ImageNet-Sketch 49 937 14 1000
ImageNet-V2 945 5 50 1000
ImageNet-Val 934 16 50 1000

DomainNet-Clipart 48 933 19 1000
DomainNet-Infograph 134 720 146 1000
DomainNet-Painting 101 795 104 1000
DomainNet-Quickdraw 0 1000 0 1000
DomainNet-Real 836 111 53 1000
DomainNet-Sketch 24 942 34 1000

A.1.2 OTHER METHODS FOR TRAINING DOMAIN CLASSIFIERS

Apart from the domain classifier training methods explored in Sec. 3.2, we explore a few more as
follows:
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Figure 7: Labeling setup. By clicking on the image, the border changes to red, green, or blue, each
representing natural, ambiguous, or rendition. By pressing the right or the left button the previous or
next set of 25 images are rendered and the labels of the previous images are updated in a json file.

Contrastive Style Descriptors (CSD) Somepalli et al. (2024) fine-tune pre-trained backbones via
multi-label supervised contrastive learning and self-supervised learning with only style-preserving
augmentations (random flips, resize, rotation). The resulting final-layer embeddings serve as style
descriptors: During inference, they find the k stylistically nearest neighbors in a database of labeled
images (e.g., the training set) by computing pairwise embedding-similarities to the test images. An
image is classified as belonging to a style if at least one of the k neighbors has that style. We can
directly set up their method using the 13 000 labeled LAION-200M images as both the training set
and the database for inference. From that, we obtain two binary classifiers, CSD-N (classifying
natural vs. non-natural) and CSD-R (classifying renditions vs. non-renditions), which jointly can be
used for our ternary classification.

Centroid Embeddings Inspired by the baselines used by Somepalli et al. (2024), we implement a
simple model (embedding model plus linear readout). Here, we take the pre-trained CLIP ViT-L/14 as
the embedding model and create a linear readout by comparing embeddings to the centroid embedding
of each domain. We use this as a ternary untrained nearest-neighbor classifier, dubbed CE.
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Table 5: We chose the best natural classfier and the best rendition classifier amongst binary
classifiers based on Contrastive Style Descriptors (CSD) (Somepalli et al., 2024) and Density Ratios
(DR) (Cohen-Wang et al., 2024b) as well as ternary classifiers using a linear readout based on either
each domain’s centroid embedding (CE) or a fine-tuned CLIP (FT). All models use CLIP ViT-L/14
pretrained on LAION-2B. We report precision and recall on for the natural class (top) and rendition
class (bottom) on ImageNet (IN) and DomainNet (DN) test sets and average performance across all
test sets. Model hyperparameters are chosen for a validation precision of 98% if possible. For each
class, we select the classifier with the highest recall on the validation.
cls=natural Val Test IN-Val IN-v2 IN-A ON DN-R Average
Model P R P R P R P R P R P R P R P R

CSD-N k=1 0.61 0.85 0.58 0.85 0.96 0.93 0.97 0.92 0.98 0.91 0.93 0.94 0.92 0.88 0.85 0.90
CSD-R k=23 0.98 0.26 0.99 0.29 1.00 0.22 1.00 0.27 1.00 0.27 1.00 0.59 0.99 0.32 0.99 0.32
DR-N 0.98 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00
DR-R 0.98 0.08 0.72 0.08 1.00 0.00 1.00 0.00 1.00 0.00 0.95 0.20 1.00 0.00 0.95 0.05
CE 0.98 0.35 0.89 0.33 0.95 0.02 1.00 0.04 1.00 0.02 0.99 0.16 0.99 0.11 0.97 0.15
FT 0.98 0.41 0.95 0.44 1.00 0.36 0.99 0.40 1.00 0.46 0.99 0.53 1.00 0.42 0.99 0.43

cls=rendition Val Test IN-R IN-S DN-S DN-Q DN-P DN-C DN-I Average
Model P R P R P R P R P R P R P R P R P R P R

CSD-N k=6 0.98 0.26 0.99 0.24 1.00 0.20 1.00 0.18 1.00 0.25 0.00 0.00 1.00 0.24 1.00 0.22 0.98 0.34 0.88 0.21
CSD-R k=1 0.64 0.56 0.68 0.60 0.93 0.62 0.98 0.63 0.98 0.62 0.00 0.00 0.92 0.59 0.98 0.63 0.82 0.46 0.77 0.52
DR-N 0.98 0.20 0.98 0.23 1.00 0.29 1.00 0.20 1.00 0.27 1.00 0.01 1.00 0.28 1.00 0.28 0.98 0.11 0.99 0.21
DR-R 0.98 0.35 0.98 0.41 1.00 0.60 1.00 0.71 1.00 0.74 1.00 0.33 0.99 0.60 1.00 0.65 0.98 0.39 0.99 0.53
CE 0.98 0.11 0.99 0.12 0.99 0.43 1.00 0.39 1.00 0.30 1.00 0.09 0.98 0.47 1.00 0.38 1.00 0.01 0.99 0.26
FT 0.98 0.27 0.95 0.26 1.00 0.38 1.00 0.57 1.00 0.61 1.00 0.68 1.00 0.21 1.00 0.50 1.00 0.30 0.99 0.42

We use the validation set to determine the two best domain classifiers, one for natural images and
one for renditions. Since the domain classifier should maximize precision above all else, we set
the confidence threshold for each model such that it achieves 98% per-class precision. For CSD,
we instead choose k to reach this precision. Tab. 5 reports each model’s precision and recall on the
natural and rendition class across ImageNet and DomainNet test sets. For raw accuracy numbers of
all models, which in general are high for most, please refer to Tabs. 7 and 8 in Appx. A.1.5.

A.1.3 TRAINING DETAILS FOR THE DOMAIN CLASSIFIERS

As mentioned in Sec. 3.2, we train several domain classifiers with several different training procedures.
For the baselines (Cohen-Wang et al., 2024b; Somepalli et al., 2024), we simply use the training code
detailed in their works and their public code. For the FT (Finetuning) model, as mentioned in Sec. 3.2,
we finetune a CLIP ViT-L/14 pretrained on LAION-2B with a linear readout. We finetune all models
on 4 A100 GPUs, using a batch size of 256, weight decay of 5e− 4, using an SGD optimizer, with
step scheduler (0.1 every 20 epochs), at a learning rate of 0.1, for 50 epochs. All models converge.
Each model took about 2 A100 GPU hours to train, therefore all the models took around 30 A100
GPU hours. The storage requirement for these datasets were less than 100 GB memory.

We train these models on the 13K LAION domain dataset or subsets of it with 2 or 3 classes. To
compare with the models from Cohen-Wang et al. (2024b), we train binary classifiers where we club
natural with ambiguous and differentiate it from rendition (we name this FT-R), or we club rendition
with ambiguous and differentiate it from natural (we name this FT-N). Further, we create several
subsets for each of the ternary and the binary classification problem by balancing the number of
datapoints in each class. We add the prefix ’(balanced)’ to these models.

A.1.4 AFFIRMING THE QUALITY OF LABELS AND THE DOMAIN CLASSIFIER

Our primary goal is to create clean versions of natural and rendition datasets. To achieve this, we
use domain classifiers at a threshold where the validation set precision is high, ensuring the selection
of images that are distinctly ‘natural-like’ or ‘rendition-like’. This allows us to train the domain
classifiers with some label noise as long as the most obvious images are correctly classified. Our
experimental results (see Sec. 4; Fig. 1, 4, 5; Tab. 3) and visualizations of random samples from
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Table 6: Domain classifiers precision and recall for original and adjusted test set on the corre-
sponding natural or rendition classes. For the adjusted test set, two additional annotators labeled
each image, and the final label was assigned based on majority agreement, with ambiguous cases
labeled as such. We observe no substantial change in precision and recall values indicating the
robustness of our pipeline.

cls=nat,rend Test Test (Adjusted)

Model P R P R

FT 0.95 0.45 0.95 0.48
DR-R 0.98 0.41 0.97 0.41

natural and rendition datasets (see Fig. 3, 21, 22) confirm the reliability of our labeling procedure and
our domain classifiers.

Nonetheless, we re-labeled our test set of 3,000 images with two additional independent annotators.
We generated new labels for the test set based on the majority vote, labeling images as ambiguous if
there was no consensus. We note that the majority vote agreed with our previous labels on 93% of the
images. Testing our domain classifiers at a 98% validation precision on this new test set, we found
that precision and recall remained high, indicating strong agreement on the clearly ’natural-like’ or
’rendition-like’ images (see Tab. 6). This further reinforces the overall confidence in the labeling
procedure and the domain classifiers.

A.1.5 RAW DOMAIN CLASSIFIER PERFORMANCE ON LABELED SETS

In the main text in Sec. 3.2 we only compute the precision and recall obtained from the threshold
at which we get 98% precision on LAION-200M Val domain dataset. We here report the accuracy
of these classifiers on these test sets at their own standard precision of these models. We also train
additional classifiers binary and ternary classifiers and by balancing the dataset sizes. The results can
be found in Tabs. 7 and 8.

Table 7: Accuracy on each of the natural test sets on class natural without thresholding. Some
classifiers give the illusion of being good but have very low precision or recall(see Sec. 3.2).

Model (Val) (Test) IN-Val IN-V2 IN-A ON DN-R DN-I
FT 0.90 0.89 0.93 0.94 0.96 0.95 0.94 0.72
CE 0.75 0.78 0.80 0.84 0.86 0.95 0.81 0.19
FT-N 0.89 0.90 0.94 0.95 0.97 0.97 0.93 0.49
DR-N (balanced) 0.89 0.91 0.94 0.94 0.95 0.98 0.92 0.50
DR-R 0.98 0.97 0.99 0.99 1.00 1.00 0.97 0.90
FT (balanced) 0.78 0.82 0.84 0.86 0.86 0.88 0.83 0.46
FT-R 0.96 0.95 0.93 0.95 0.97 0.98 0.96 0.90
FT-N (balanced) 0.85 0.85 0.92 0.95 0.96 0.95 0.91 0.43
DR-R (balanced) 0.93 0.92 0.93 0.94 0.95 0.99 0.90 0.75
FT-R (balanced) 0.86 0.86 0.88 0.88 0.90 0.89 0.88 0.84
DR-N 0.93 0.92 0.94 0.95 0.94 0.99 0.92 0.76

A.1.6 DOMAIN COMPOSITION AT DIFFERENT PRECISION LEVELS

We provide a detailed overview over the domain composition of datasets at standard precision in
Tab. 9, and over the domain composition of datasets at 98% precision in Tab. 10. In Fig. 8, we
examine LAION’s composition at different validation precision levels. Starting with a lower validation
precision threshold (0.33) where both natural and rendition images are present, we observe that the
number of ambiguous examples increases at both high and low precision levels, which is expected
given that our final domain classification relies on the agreement of two classifiers. Fig. 8 further
supports our choice of a 0.98 precision threshold, as it strikes a good balance between precision and
the ability to select sufficiently large datasets in the tens of millions.
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Table 8: Accuracy on each of the rendition test sets on class natural without thresholding. Some
classifiers give the illusion of being good but have very low precision or recall(see Sec. 3.2).

Model (Val) (Test) IN-R IN-S DN-S DN-Q DN-P DN-C DN-I
DR-R 0.77 0.80 0.93 0.98 0.98 0.96 0.92 0.93 0.88
FT (balanced) 0.78 0.88 0.82 0.94 0.94 0.91 0.80 0.85 0.77
FT 0.76 0.75 0.75 0.91 0.90 0.95 0.73 0.80 0.74
DR-N 0.89 0.92 0.99 0.99 0.99 0.98 0.97 0.97 0.94
FT-R 0.69 0.68 0.69 0.81 0.80 0.79 0.65 0.72 0.67
DR-N (balanced) 0.93 0.94 0.97 0.99 0.99 1.00 0.95 0.94 0.99
FT-R (balanced) 0.86 0.84 0.80 0.92 0.91 0.90 0.75 0.83 0.88
CE 0.61 0.62 0.95 0.90 0.89 0.96 0.95 0.93 0.32
DR-R (balanced) 0.90 0.93 0.99 0.99 0.99 0.99 0.98 0.97 0.96
FT-N 0.84 0.83 0.72 0.83 0.82 0.48 0.63 0.77 0.97
FT-N (balanced) 0.87 0.86 0.75 0.93 0.91 0.96 0.64 0.88 0.98

Table 9: Domain composition of datasets at standard precision (without thresholding). The first
three columns show the fraction of samples in the original dataset classified as natural, stylistic, or
ambiguous, respectively, while the latter column shows the dataset’s total number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total
LAION-200M 60.74 13.86 25.41 199 663 250

ImageNet (Train) 89.2 1.18 9.62 1 281 167
ImageNet (Val) 89.1 1.18 9.72 50 000
ObjectNet 90.22 0.1 9.68 18 574
ImageNet-V2 88.49 1.38 10.13 10000
ImageNet-A 93.79 0.52 5.69 7 500
ImageNet-R 9.75 64.42 25.83 30 000
ImageNet-Sketch 3.69 85.34 10.97 50 889

DomainNet-Real 80.07 7.59 12.34 175 327
DomainNet-Quickdraw 1.35 93.27 5.38 172 500
DomainNet-Clipart 8.28 75.89 15.83 48 833
DomainNet-Painting 13.97 56.33 29.7 75 759
DomainNet-Sketch 3.1 84.18 12.71 70 386
DomainNet-Infograph 11.17 53.41 35.41 53 201

A.1.7 ON THE DOMAIN COMPOSITION OF MAYILVAHANAN ET AL. (2023)

Please find in Tab. 11 the exact number of rendition examples calculated by deploying our domain
classifier on each the 3 datasets (pruned using rendition test sets) from Mayilvahanan et al. (2023).
We see that at least 11-13M images are not pruned away from the datasets, therefore explaining the
insignificant drop in performance.

A.1.8 PREPARING CLEAN DATASETS

In Sec. 3.4, we created several train and test sets from LAION-200M and ImageNet / DomainNet
shifts respectively, by deploying our classifier at 98% precision. The exact number of samples and
the number of (remaining) classes are in Tab. 12.
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Table 10: Domain composition of datasets at 98% precision. The first three columns show the
fraction of samples in the original dataset classified as natural, stylistic, or ambiguous, respectively,
while the latter column shows the dataset’s total number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total
LAION-200M 28.4 7.9 63.7 199 663 250

ImageNet (Train) 36.0 0.4 63.6 1 281 167
ImageNet (Val) 35.73 0.37 63.9 50 000
ObjectNet 50.32 0.0 49.68 18 574
ImageNet-V2 36.04 0.29 63.67 10000
ImageNet-A 43.25 0.16 56.59 7 500
ImageNet-R 3.56 52.82 43.61 30 000
ImageNet-Sketch 1.21 67.92 30.87 50 889

DomainNet-Real 34.31 3.98 61.71 175 327
DomainNet-Quickdraw 0.09 34.41 65.5 172 500
DomainNet-Clipart 3.46 62.53 34.01 48 833
DomainNet-Painting 5.3 47.55 47.15 75 759
DomainNet-Sketch 1.38 69.58 29.04 70 386
DomainNet-Infograph 1.59 28.11 70.3 53 201

Figure 8: Domain composition of LAION-200M at different precision levels. We see the evolution
of domain composition of the LAION-200M dataset, determined using the domain classifiers at
various precision levles from the validation set.

Table 11: Number datapoints within the dataset vs number of datapoints pruned away in
Mayilvahanan et al. (2023).

Dataset Size Within Pruned
sketch-pruned 191 481 491 24 016 047 3 654 180
r-pruned 194 088 525 24 304 991 3 365 236
combined-pruned 187 471 515 22 173 006 5 497 221

sketch-pruned (98% precision) 19 1481 491 13 266 999 2 482 751
r-pruned (98% precision) 194 088 525 13 338 759 2 410 991
combined-pruned (98% precision) 187 471 515 11 999 276 3 750 474
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Table 12: Clean datasets composition. Obtained by deploying the domain classifiers from Sec. 3.2
at 98% precision.

Dataset Classes Size
LAION-Natural - 56 685 759
LAION-Stylistic - 15 749 750

ImageNet-Val 985 17 864
ImageNet-V2 926 3 604
ImageNet-Sketch 991 34 564
ImageNet-R 200 15 847
ImageNet-A 197 3 244
ObjectNet 113 9 347

DomainNet-Real 339 60 148
DomainNet-Quickdraw 344 59 353
DomainNet-Infograph 345 14 957
DomainNet-Clipart 345 30 536
DomainNet-Sketch 344 48 974
DomainNet-Painting 345 36 020

A.2 NOTES ON THE CLIP MODELS

A.2.1 RESOURCES SPENT

We train about 28 CLIP ViT-B/32 models on several subsets of LAION-200M. These models took
about 8000 A100 GPU hours. We also needed about 18 TB of memory to store these datasets.

A.2.2 RAW ACCURACY NUMBERS OF CLIP TRAINED ON LAION-N VS LAION

In Sec. 4, in Fig. 4, we only reported the relative numbers. Here, in Fig. 9, 11, 10, 12, we report
the actual numbers as a function of dataset size.

Figure 9: CLIP trained on LAION v LAION-N performance on standard natural test sets.
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Figure 10: CLIP trained on LAION v LAION-N performance on standard rendition test sets.

Figure 11: CLIP trained on LAION v LAION-N performance on clean natural test sets.

A.3 TRAINING RESNETS ON IMAGENET

We deploy our natural domain classifier from Sec. 3 at 90% precision (threshold obtain from LAION
13K Val set) on ImageNet-Train to obtain about 1M datapoints belonging to the natural domain
(dubbed ImageNet-N). We create several datasets of smaller sizes subsampling from ImageNet-N.
We also create randomly sampled datasets of similar sizes from the original ImageNet. We train
ResNet-50 models on all of these datasets. We follow the training recipe A3 of Wightman et al.
(2021) and train the models for 200 epochs. We then evaluate these models on standard test sets and
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Figure 12: CLIP trained on LAION v LAION-N performance on clean rendition test sets.

clean test sets from Sec. 3.4. The accuracies of ResNets trained on subsets of original ImageNet is
used for the effective robustness plots in Sec. 4, A.4. Further, the comparison of accuracies between
the models trained on subsets from ImageNet-N and ImageNet is in Fig. 13, 15, 14, 16. As such
there is no significant performance difference anywhere, thus indicating that ImageNet does not have
substantial domain leakage.

Figure 13: Resnets trained on ImageNet v ImageNet-N performance on standard natural test
sets.
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Figure 14: Resnets trained on ImageNet v ImageNet-N performance on standard rendition test
sets.

Figure 15: Resnets trained on ImageNet v ImageNet-N performance on clean natural test sets.
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Figure 16: Resnets trained on ImageNet v ImageNet-N performance on clean rendition test
sets.
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A.4 DETAILED EFFECTIVE ROBUSTNESS PLOTS ON INDIVIDUAL SHIFTS

In Fig. 5 in the main manuscript, we report aggregated results where we average over natural and
stylistic ImageNet distribution shifts. We display the results on the individual distribution shifts
in Fig. 17. On ImageNet-R and ImageNet-Sketch (bottom row), we observe that the effective
robustness of the CLIP models can be modulated by training it on the different dataset splits, i.e.
LAION-Natural, LAION-Rendition, LAION-Mix. The model trained on LAION-Natural is much
closer to the ImageNet trained model in terms of effective robustness compared to the model trained
on LAION-Rendition. In contrast, effective robustness is barely affected on the natural splits (top
row). This can be explained by the final data distributions of the different training splits: Our filtering
procedure does not affect natural images which are most responsible for the performance on natural
datasets which explains the consistency in performance.

We also investigate effective robustness on the DomainNet shifts in Fig. 18. We note that the
ImageNet model’s accuracy numbers on DomainNet are not comparable to the CLIP models because
the ImageNet model has been evaluated on a subset of DomainNet (ImageNet-D, Rusak et al., 2022)
which is compatible with ImageNet classes. DomainNet has many classes which are not present
in ImageNet, such as for example “The Great Wall of China” or “paper clip” which have been
removed in ImageNet-D to enable evaluating ImageNet trained models without the need for training
an additional readout layer. In contrast, we evaluate the CLIP trained models on the full DomainNet
splits following standard zero-shot evaluation procedure. We will add a Figure where we control
for the missing classes and evaluate the CLIP models on ImageNet-D in the next version of the
manuscript.

On DomainNet, we similarly observe strong changes in effective robustness of the CLIP trained
models when evaluating on the stylistic domains (all domains except for DomainNet-Real), and
barely any changes when evaluating on the DomainNet-Real domain.

Figure 17: Effective Robustness of different models on different ImageNet distribution shifts.
On ImageNet-R and ImageNet-Sketch (bottom row), we observe that the effective robustness of the
CLIP models can be modulated by training it on the different dataset splits, i.e. LAION-Natural,
LAION-Rendition, LAION-Mix. The model trained on LAION-Natural is much closer to the
ImageNet trained model in terms of effective robustness compared to the LAION-Rendition model.
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Figure 18: Effective Robustness of different models on different DomainNet distribution shifts.
On the stylistic domains, we observe that the effective robustness of the CLIP models can be modu-
lated by training it on the different dataset splits, i.e. LAION-Natural, LAION-Rendition, LAION-
Mix. Effective robustness barely changes when evaluating different CLIP models on DomainNet-Real.

A.5 VISUALIZATION OF ERRORS MADE BY THE DOMAIN CLASSIFIER

We show images which have been misclassified by our domain classifier Fig. 19. We observe that the
errors are interpretable. For example, the “natural” images which have been classified as “ambiguous”
are indeed ambiguous: We see a sculpture in one image, a large woodwork of an ant in another and a
pencil drawing of an airplane with a partly visible human hand drawing it in a third image.

A.6 VISUALIZATION OF SAMPLES FROM THE LAION DATASET

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from
LAION in Figs. 20 and 22.

A.7 VISUALIZATIONS OF IMAGENET DISTRIBUTION SHIFTS

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from the
considered ImageNet shifts datasets in Figs. 23 and 28. We show 20 images per split; occasionally,
there are fewer than 20 images in some of these splits, such as e.g. there are very few renditions in
ImageNet-A. In that case, we plot all images from that split and leave the remaining subplots blank.

A.8 VISUALIZATIONS OF DOMAINNET DISTRIBUTION SHIFTS

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from
different DomainNet datasets in Figs. 29 and 34. We show 20 images per split; occasionally, there
are fewer than 20 images in some of these splits, such as e.g. no natural images in the Quickdraw
domain. In that case, we plot all images from that split and leave the remaining subplots blank.

A.9 EXTENDED DISCUSSION

Object class distribution of our subsampled datasets Our domain classifier separates images into
three categories: natural images, renditions, and ambiguous images. While our classifier’s accuracy
and recall are high, it should be noted that we did not further control for potential biases (like favoring
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Figure 19: Confusion matrix of example images which have been misclassified by our domain
classifier.

specific object classes within domains) or the overall object class distribution across all training
and test sets. We therefore expect a dissimilar distribution of object classes in LAION-Natural and
LAION-Rendition, and we leave a controlled analysis for future work.

Ambiguous datapoints Our work does not examine the impact of ambiguous samples that exhibit
both natural and rendition elements. To gain a clearer understanding of their effect, it is essential to
distinguish between those ambiguous samples and those that belong to neither domain. We anticipate
that the former category significantly enhances performance and sample efficiency, while the latter
does not contribute substantially. A more thorough analysis of this distinction is left for future work.

Short-cut learning The domain generalization gap in ImageNet models has been linked to shortcut
learning, where models rely on features like texture over shape (Geirhos et al., 2018; 2019; 2020).
While larger datasets are thought to mitigate this, our results suggest that simply adding more natural
samples is insufficient to address all effects.

Bias due to labeling Human labeling biases can propagate to classifiers and influence results. To
address this, we rely on high-precision domain classifiers to filter millions of samples, minimizing
domain contamination and ensuring the robustness of our conclusions. This approach balances
scalability with accuracy while acknowledging the limitations of large-scale annotation.
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Efficacy of the domain classifiers The domain classifiers used in this work were trained, validated,
and tested on randomly sampled subsets of LAION-200M, ensuring no distribution shift between their
training and evaluation data. To ensure high reliability, the classifiers were deployed with a threshold
of 98% precision, achieving strong precision and recall metrics on both the LAION-200M test set
and test sets from ImageNet and DomainNet, as detailed in Tabs. 1 and 5. Additionally, random
samples from the classified LAION-Natural and LAION-Rendition datasets, visualized in Figs. 3,
21 and 22, confirm that the retrieved samples align well with their respective natural or rendition
categories. Finally, our core results demonstrate that models trained on these subsets excel in their
respective domains but show limited performance on the other, further validating the effectiveness of
the classifiers in accurately separating the domains.
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Figure 20: Random samples from LAION-200M. We omit NSFW images and images of humans.
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Figure 21: Random samples from LAION-Natural. We omit NSFW images and images of
humans.
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Figure 22: Random samples from LAION-Rendition. We omit NSFW images and images of
humans.
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Figure 23: Random samples of ImageNet-A grouped by domain. We omit NSFW images and
images of humans.
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Figure 24: Random samples of ObjectNet grouped by domain. We omit NSFW images and images
of humans.
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Figure 25: Random samples of ImageNet-R grouped by domain. We omit NSFW images and
images of humans.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 26: Random samples of ImageNet-Sketch grouped by domain. We omit NSFW images
and images of humans.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure 27: Random samples of ImageNet-V2 grouped by domain. We omit NSFW images and
images of humans.
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Figure 28: Random samples of ImageNet-Val grouped by domain. We omit NSFW images and
images of humans.
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Figure 29: Random samples of DomainNet-Clipart grouped by domain. We omit NSFW images
and images of humans.
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Figure 30: Random samples of DomainNet-Painting grouped by domain. We omit NSFW images
and images of humans.
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Figure 31: Random samples of DomainNet-Real grouped by domain. We omit NSFW images
and images of humans.
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Figure 32: Random samples of DomainNet-Infograph grouped by domain. We omit NSFW
images and images of humans.
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Figure 33: Random samples of DomainNet-Quickdraw grouped by domain. We omit NSFW
images and images of humans.
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Figure 34: Random samples of DomainNet-Sketch grouped by domain. We omit NSFW images
and images of humans.
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