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ABSTRACT

Partial-label learning (PLL) allows each training example to be equipped with a set
of candidate labels where only one is the true label. Existing deep PLL research
focuses on a learning-centric perspective to design various training strategies for
label disambiguation i.e., identifying the concealed true label from the candidate
label set for model training. However, when the size of the candidate label set
becomes excessively large, these learning-centric strategies would be unable to
find the true label for model training, thereby causing performance degradation.
This motivates us to think from a data-centric perspective and pioneer a new PLL-
related task called candidate label set pruning (CLSP) that aims to filter out cer-
tain potential false candidate labels in a training-free manner. To this end, we
propose the first CLSP method based on the inconsistency between the represen-
tation space and the candidate label space. Specifically, for each candidate label of
a training instance, if it is not a candidate label of the instance’s nearest neighbors
in the representation space, then it has a high probability of being a false label.
Based on this intuition, we employ a per-example pruning scheme that filters out
a specific proportion of high-probability false candidate labels. Theoretically, we
prove an upper bound of the pruning error rate and analyze how the quality of rep-
resentations affects our proposed method. Empirically, extensive experiments on
both benchmark-simulated and real-world PLL datasets validate the great value of
CLSP to significantly improve many state-of-the-art deep PLL methods.

1 INTRODUCTION

The effective training of modern deep neural networks (DNNs) commonly requires a large amount
of perfectly labeled data, which imposes a great challenge on data annotations. However, better data
quality is normally at odds with lower labeling costs in many real-world applications (Zhou, 2018).
To achieve a rational trade-off, partial-label learning (PLL), a coarse-grained labeling scheme that
allows assigning a candidate label set for each training example (Cour et al., 2011), has attracted
increasing attention in recent years (Wang et al., 2022b; Xu et al., 2023b). PLL naturally arises
in many real-world applications, such as web news annotation (Luo & Orabona, 2010), automatic
image annotation (Chen et al., 2017), and multi-media analysis (Zeng et al., 2013).

Existing deep PLL research focuses on a learning-centric perspective to design various training
strategies for label disambiguation, i.e., identifying the true label from the candidate label set for
model training, e.g., progressive purification (Lv et al., 2020; Wu et al., 2022), class activation value
(Zhang et al., 2022), class prototypes (Wang et al., 2022b). However, the excessively large magni-
tude of the candidate label set inevitably brings an obstacle to label disambiguation (i.e., identifying
the concealed true label) for these learning-centric deep PLL methods, because the misidentified
labels could have profound negative impacts on model training throughout the training process.

In this paper, we pioneer a new PLL-related task called candidate label set pruning (CLSP). CLSP
aims to filter out potential false candidate labels in a training-free manner, instead of learning DNNs
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with various training strategies for label disambiguation in conventional deep PLL research. To this
end, we propose the first versatile training-free CLSP method, based on the inconsistency between
the representation space and the candidate label space. Specifically, for each candidate label of a
training instance, if it is not a candidate label of the instance’s nearest neighbors in the representation
space, then it has a high probability of being a false label. Based on this intuition, we employ a per-
example pruning scheme that filters out a specific proportion of high-probability false candidate
labels. Theoretically, we prove an upper bound of the pruning error rate and analyze how the quality
of representations affects the proposed algorithm. Empirically, we evaluate the task of CLSP on
both benchmark-simulated and real-world datasets across various PLL settings with eleven state-of-
the-art deep PLL methods. Extensive experiments clearly validate the effectiveness of our proposed
CLSP method to improve existing PLL methods.

Our main contributions can be summarized as follows:
• A new data-centric perspective for deep PLL. Different from the conventional learning-centric

perspective in deep PLL research, we pioneer a new PLL-related task called candidate label set
pruning (CLSP) to improve existing deep PLL methods.

• A versatile efficient algorithm. We propose the first versatile training-free CLSP algorithm that
prunes a certain proportion of candidates based on the inconsistency between the representation
space and candidate label space.

• Theoretical analysis. We theoretically prove an upper bound of the per-example pruning error
rate and analyze how the representation quality affects the proposed algorithm.

• Significant experimental improvements. We perform comprehensive experiments on four bench-
marks under various PLL settings with eleven state-of-the-art deep PLL methods. Significant
improvement validates the superiority of the proposed CLSP method.

2 RELATED WORKS

Conventional partial-label learning. Early exploration of PLL before the trend of deep learning
techniques focused on small-scale datasets with hand-crafted features (Gong et al., 2022). There are
mainly two different strategies to handle candidate labels: averaging and identification. The former
treats all candidate labels equally (Cour et al., 2011), while the latter aims to identify the concealed
true label from candidate labels (Zhang et al., 2016; Xu et al., 2019; Lyu et al., 2019). The drawback
of this line of work lies in its limited ability to scale to modern large datasets due to its heavy reliance
on hand-crafted features, native linear models, and cost-prohibitive optimization algorithms.

Deep partial-label learning. To address the above limitations, recent research of PLL has been
focusing on end-to-end training of DNNs (Yan & Guo, 2023b; He et al., 2022). Early deep PLL
works studied the consistency of the classification risk and the learned classifier (Feng et al., 2020;
Lv et al., 2020; Wen et al., 2021). Due to the unsatisfying practical performance of these meth-
ods, subsequent works focused on designing various powerful training strategies for effective label
disambiguation, based on class activation value (Zhang et al., 2022), class prototypes (Wang et al.,
2022b), or consistency regularization (Wu et al., 2022). Moreover, recent works started to consider
more realistic PLL scenarios, including label-dependent (Wang et al., 2022b), instance-dependent
(Xu et al., 2021; Xia et al., 2022; Qiao et al., 2023; He et al., 2023b), and noisy (Yan & Guo, 2023a;
He et al., 2023a) candidate label set generation, and long-tailed data distribution (Wang et al., 2022a;
Hong et al., 2023). In particular, recent work (Xu et al., 2023b) proposed a theoretically grounded
algorithm to filter out false candidate labels progressively in every epoch. In summary, existing
works in both conventional and deep PLL focus on a learning-centric perspective and inevitably
suffer from performance degradation when the size of candidate label sets is excessively large.

Dataset pruning and distillation. Dataset pruning (distillation) aims to select (synthesize) a small
but representative subset from the entire training data as a proxy set without significantly sacrificing
the model’s performance. Existing methods generally achieved this goal by certain sample-related
characteristics, e.g., diversity (Sener & Savarese, 2018), forgetfulness (Toneva et al., 2018), gradient
norm (Paul et al., 2021), training trajectories (Zhao et al., 2021), and the gradients and features
(Zhao et al., 2021). These methods focused on reducing the number of training data and meanwhile
maintaining the data utility, while our studied CLSP aims to reduce the magnitude of candidate label
sets and facilitate existing deep PLL methods.
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k-NN for partial-label learning. The k nearest neighbors (k-NN) algorithm is a well-known non-
parametric classification technique, which also has been applied to PLL (Hüllermeier & Beringer,
2006) by aggregating the candidate labels of nearest neighbors to predict the label for each instance.
Besides, some conventional PLL methods (Zhang & Yu, 2015; Zhang et al., 2016; Xu et al., 2019)
also employed k-NN-based topological structure in the feature space to refine candidate labels and
thus identified the true label for model training. However, these methods focus on learning-centric
solutions and still suffer from the excessively large magnitude of candidate label sets.

3 A DATA-CENTRIC APPROACH FOR CANDIDATE LABEL SET PRUNING

In this section, we first formally define the task of CLSP, then introduce the proposed method for
CLSP, and finally present corresponding theoretical analyses of the pruning error.

3.1 PROBLEM SETUP

We start by introducing some necessary symbols and terminologies to define the task of PLL and
CLSP formally. Let X P Rd be the d-dimensional feature space and Y “ t1, 2, ..., cu be the
label space with c class labels, respectively. In PLL, each instance xi P X is associated with a
candidate label set Yi P 2YztH,Yu that consists of a true label yi P Y and a false candidate label
set Y 1

i “ Yiztyiu containing (|Yi| ´ 1) redundant false candidate labels y1
i P Y . In particular,

the PLL assumption is that the true label yi must be in the candidate label set Yi. Given a PLL
dataset D “ txi, Yiu

n
i“1, the objective of deep PLL is to learn a deep neural network, which can

predict the label of test data as accurately as possible. In contrast, CLSP aims to reduce the size of
the candidate label set towards each training example so that the pruned candidate label set can be
leveraged by existing deep PLL methods to achieve better performance. Below we introduce two
important metrics to evaluate the pruning performance of any pruning method.
Definition 1 (α-error and β-coverage pruning). Given a PLL dataset D “ txi, Yiu

n
i“1, for each

candidate label set Yi, let rYi denote the set of eliminated candidate labels from Yi and sYi denote
the pruned candidate label set of Yi (i.e., sYi “ YizrYi). The pruning method is α-error where

α “

řn
i“1 IryiP rYis

n and β-coverage where β “

řn
i“1 | rYi|

řn
i“1p|Yi|´1q

.

Ideally, the optimal pruning of CLSP is to achieve α “ 0 and β “ 1, which can perfectly find out
all false candidate labels and thus finally identify the true label.

3.2 THE PROPOSED PRUNING METHOD

Here, we introduce the proposed CLSP method that aims to eliminate potential false candidate labels
in the candidate label set of each training PLL instance. Differently from conventional learning-
centric deep PLL methods that focus on training a desired deep neural network, we pursue a data-
centric solution that delves into the PLL data itself. Motivated by the clusterability setting in the
conventional supervised learning (Zhu et al., 2022), we further focus on a label distinguishability
setting on the PLL dataset, i.e., nearby PLL instances are likely to have the same true label (vs. false
candidate label) inside their candidate label sets with a high probability (vs. a limited probability),
which could be formally defined below.
Definition 2 ((k, δk, ρk)-label distinguishability). A PLL dataset D “ tpxi, Yiquni“1 satisfies
(k, δk, ρk) label distinguishability if: @pxi, Yiq P D, the true label yi P Yi is inside the candi-
date label set Y pjq

i of its each k-NN example px
pjq

i , Y
pjq

i q, with probability at least 1 ´ δk, and each
false candidate label y1

i P Yiztyiu is inside the candidate label set Y pjq

i of its each k-NN example
px

pjq

i , Y
pjq

i q with probability no more than ρk.

Definition 2 characterizes the candidate label distribution in the local representation space, which
has two-fold implications. First, the true label of instances in the local representation space appears
in their candidate label sets with a high probability. Second, each false candidate label of instances
in the local representation space appears in their candidate label sets with a limited probability.

Intuitively, the candidate label of an instance that appears most frequently in its k-NN instances’
candidate label sets is more likely to be the true label, and the candidate label that rarely appears in
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its k-NN instances’ candidate label sets has a high probability of being a false label. Motivated by
this intuition, we introduce a per-instance label-wise metric Oij towards the i-th instance (xi, Yi)
associated with the j-th candidate label, to measure the possibility of the j-th candidate label is not
the true label of the instance xi, which implies that we should prune the j-th label from the candidate
label set if Oij is large. Concretely, Oij is calculated by counting the times of its j-th candidate label
not appearing in its k-NN instances’ candidate label set Y pkq

i :

Oij “
ÿk

v“1
Iryij ‰ y

pvq

ij s,@j P Yi, (1)

where Ir¨s is the indicator function and yij is the j-th candidate label of xi. In this way, the value
of Oij denotes the number of the k-NN instances of xi whose candidate label set does not include
the j-th candidate label of xi. Particularly, the calculating process in Eq. (1) is like a “down-voting”
procedure where each nearest neighbor instance of the concerned instance serves a voter to down-
vote the candidate labels that are not inside its candidate label set Y pkq

i . Furthermore, we define a
specified parameter τ to control the pruning extent. Specifically, the number of eliminated candidate
labels of xi is

γi “ rτp|Yi| ´ 1qs, (2)
where r¨s is the ceiling function that returns the least integer greater than or equal to the given
number. Then, for each instance pxi, Yiq, we can eliminate a subset of candidate labels that possess
a high down-voting value:

rYi “ Top-γi-argmaxjPYi
pOijq, (3)

where Top-γi-argmax returns a subset of indices (i.e., candidate labels) that have the highest γi
down-voting values of Oij for j P Yi. After eliminating the selected subset of candidate labels
rYi from Yi for each instance xi, we can obtain the pruned PLL dataset sD “ tpxi, sYiquni“1 where
sYi “ YizrYi. The pseudo-code of the proposed algorithm for CLSP is shown in Appendix A. Notably,
an incorrectly pruned PLL instance pxi, Yiq whose true label yi is inside the eliminated candidate
label set rYi would become a noisy PLL instance (Yan & Guo, 2023a; Xu et al., 2023a; Lv et al.,
2023; Wang et al., 2024), which is more challenging for conventional PLL methods. To alleviate
this issue, we would like to analyze the upper bound of the pruning error in the proposed method.

3.3 THEORETICAL ANALYSIS OF PRUNING ERROR

Given an example pxi, Yiq and its k-NN examples tpx
pjq

i , Y
pjq

i qukj“1 in a PLL dataset D that satisfies
the (k, δk, ρk) label distinguishability, the probability of the true label yi P Yi appearing in each k-
NN instance’s candidate label set Y pjq

i is denoted by t ě 1´δk, and correspondingly the probability
of each false candidate label y1

i P Y 1
i “ Yiztyiu appearing in each k-NN instance’s candidate label

set Y pjq

i is denoted by q ď ρk. We assume that the true label and false candidate labels of each PLL
example appear in its k-NN examples’ candidate label sets independently. Then, the down-voting
statistic of the true label Oiy follows a binomial distribution Bpk, 1´tq, and the down-voting statistic
of each false candidate label Oiy1 follows a binomial distribution Bpk, 1 ´ qq. In this case, there
are one random variable Oiy „ Bpk, 1 ´ tq and |Y 1

i | i.i.d. random variables Oiy1 „ Bpk, 1 ´ qq.
Given the number of eliminated candidate labels γi P r1, |Y 1

i |s, an incorrect pruning event for a
PLL example pxi, Yiq occurs in the proposed algorithm when Oiy P Top-γi- argmaxjpOijq. In
other words, the incorrect pruning implies that the down-voting statistic of the true label Oiy is
larger than the γi-th highest down-voting statistic of the false candidate label. Formally, based on
the definition of the k-th order statistic O

pkq

iy1 which is the k-th item in the ascending order statistics

rO
p1q

iy1 , O
pkq

iy1 , ¨ ¨ ¨ , O
p|Y 1

i |q

iy1 s, the incorrect pruning event can be defined as rO
p|Y 1

i |´γi`1q

iy1 ă Oiys. An
upper bound for the probability of getting such an event is shown below.
Theorem 1. Assume that the (k, δk, ρk)-label distinguishability is satisfied. For each PLL example
(xi, Yi), let us denote that the y-th label in the candidate label set Yi is the true label, and the y1-th
label in the false candidate label set Y 1

i “ Yiztyu is an arbitrary false candidate label, i.e., y1 ‰ y.
Given the number of eliminated candidate labels γi, then the probability of getting an incorrect
pruning can be upper bounded by

PpO
pξiq

iy1 ă Oiyq ď
ÿk

j“1

ÿ|Y 1
i |

m“ξi

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηqp|Y 1
i |´mqbδkpk, jq, (4)
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Figure 1: Numerical simulation experiments to show the effect of k and γi for the upper bound.

where ξi “ p|Y 1
i |´γi`1q,

`

n
r

˘

“ n!
r!pn´rq! is the combination formula, bδkpk, jq “

`

k
j

˘

δjkp1´δkqk´j

denotes the probability mass function of a binomial distribution Bpk, δkq, and η “ Iρk
pk´ j `1, jq

where Iρk
pk, jq “

şρk

0
tk´1p1 ´ tqj´1dt is the regularized incomplete beta function.

The proof is provided in Appendix B. Note that the above upper bound is too complicated to perform
the mathematical quantitative analysis for four key factors k, γi, δk, and ρk. Hence, we aim to
conduct an empirical analysis of the four factors to derive technical insights. Specifically, in the
practical scenario of utilizing the proposed algorithm, given a PLL dataset (including the employed
feature extractor), δk, and ρk are fixed (or can be estimated on the validation set). We need to
choose the appreciate values of k and γi (τ ). Before formally introducing the empirical experiment
of evaluating the effects of varying k and γi, let us additionally come up with another conclusion
shown below.
Theorem 2. Given the same assumption of the (k, δk, ρk)-label distinguishability and notations in
Theorem 1, when increasing the number of eliminated candidate labels (i.e., γ2

i ą γ1
i ), the extra

pruning error can be bounded by

PpO
pξ2i q

iy1 ă Oiyq ´ PpO
pξ1i q

iy1 ă Oiyq ď
ÿk

j“1

ÿξ1i ´1

m“ξ2i

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηq|Y 1
i |´mbδkpk, jq, (5)

where ξ1i “ p|Y 1
i | ´ γ1

i ` 1q, ξ2i “ p|Y 1
i | ´ γ2

i ` 1q, and other notations are the same as those used
in Theorem 1.

The proof is provided in Appendix C. The Theorem 2 implies that the extra pruning error caused by
increasing the number of eliminated candidate labels is also bounded by an upper bound associated
with the four key factors. Now, the key challenge is to choose the appreciate values of k and γi
(τ ), thereby decreasing the upper bound of the pruning error. To this end, we conduct the numerical
simulation experiment to empirically evaluate the effects of varying k and γi for the upper bound.

Numerical simulation. Here, we set various values of δk and ρk where a small value of δk (ρk)
implies high-quality representations (candidate label sets of low label ambiguity). First, we aim to
explore the effect of varying k on the upper bound. Suppose a PLL instance xi possesses three
candidate labels (i.e., |Yi| “ 3) and the number of eliminated candidate label γi “ 1, we set
various values of δk “ r0.2, 0.4, 0.6, 0.8s and ρk “ r0.2, 0.8s. By taking these values into the
formulation (4), we can empirically calculate the upper bound as shown in Figure 1. The experiment
result shows that under a small ρk, as k increases, the upper bound generally decreases except for
a large δk, and under a large ρk, the upper bound maintain stability only with a small δk when k
increases. Moreover, to explore the effect of increasing the number of eliminated candidate labels
γi, we assume a PLL instance xi equipped with a larger size of candidate label set |Yi| “ 6, thereby
leading to a wider pruning range of γi P r1, 5s. The experiment result implies that when increasing
the number of eliminated candidate labels, the upper bound maintains stability with a small δk and
ρk. Based on these observations, we can draw two empirical conclusions: (1) a small value of k
can achieve a relatively low upper bound of the pruning error on imperfect features or high label
ambiguity; (2) eliminating more candidate labels is feasible by using high-quality representations
under low label ambiguity.

4 EXPERIMENTS

In this section, we conduct extensive experiments to verify the effectiveness of the proposed method
for candidate label set pruning (CLSP). We first introduce the experimental setup and then present
comprehensive experimental results. Based on these results, we conduct in-depth empirical analyses.
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Table 1: Test accuracy comparison on CIFAR-10 and CIFAR-100 datasets under uniform, label-
dependent (LD), and instance-dependent (ID) PLL settings. The row in gray color indicates the PLL
method using the pruned candidate label set. The better result is highlighted in bold.

Dataset q CC PRODEN LWS CAVL PiCO CR ABLE IDGP POP

C-10

0.4 81.67 81.11 84.85 78.14 94.20 96.99 94.53 92.34 95.19
86.45 82.07 86.68 81.25 94.44 97.24 94.97 93.38 95.64

0.6 71.16 79.81 81.67 54.52 92.96 96.47 93.69 89.48 94.57
84.62 82.42 85.87 80.99 94.32 97.21 94.92 92.52 95.48

LD 89.57 81.83 86.18 80.43 94.59 97.24 94.77 92.47 95.63
90.81 82.49 87.54 82.17 94.49 97.58 95.19 92.82 95.87

ID 73.92 78.03 78.70 67.21 91.08 87.89 91.17 84.45 93.63
77.57 81.92 84.67 77.97 93.41 95.90 93.99 92.08 95.05

C-100

0.05 64.05 48.68 51.18 41.00 72.31 83.16 74.43 68.39 76.35
64.36 49.72 52.69 49.62 72.66 83.53 75.08 68.86 76.85

0.1 62.31 46.26 45.57 21.34 56.80 82.51 74.80 67.62 74.38
64.05 48.38 51.62 45.48 72.51 83.39 74.76 68.55 75.95

H-0.5 63.72 29.28 51.29 48.76 72.46 82.93 74.11 68.22 74.90
65.56 40.92 53.40 48.88 73.10 83.38 75.59 68.53 75.32

ID 63.06 49.83 53.18 47.35 71.04 80.76 74.04 66.71 73.36
63.30 50.11 52.74 48.24 71.78 80.93 74.49 67.23 74.26

Table 2: Test and transductive accuracy comparison on VOC dataset. The row in gray color indicates
the PLL method using the pruned PLL data. The better result is highlighted in bold.

Dataset CC PRODEN LWS CAVL CRDPLL SoLar RECORDS

VOC
Test 34.21 43.59 17.78 32.25 21.26 64.53 62.52

50.81 47.85 28.08 49.45 38.53 65.42 65.38

Trans. 72.15 77.26 64.46 77.43 67.09 76.56 40.33
77.51 79.01 71.07 86.88 75.09 82.35 68.32

4.1 EXPERIMENTAL SETUP

Datasets. We use three benchmark datasets, i.e., CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), Tiny-ImageNet (Wu et al., 2017), and a real-world PLL dataset PASCAL
VOC (Everingham et al., 2015). Besides, we consider a long-tailed PLL setting (Wang et al., 2022a;
Hong et al., 2023) on CIFAR-10 and CIFAR-100 denoted by CIFAR-10-LT and CIFAR-100-LT,
respectively. Following the previous work (Hong et al., 2023), we employ the imbalance rate ϕ “

r50, 100s that denotes the ratio of the example sizes of the most frequent and least frequent classes,
i.e., ϕ “ Npcq{Np1q, where rNpcq, ¨ ¨ ¨ , Np1qs is in the descending order.

Candidate label generation. To simulate the real-world generation process of the candidate la-
bel set, existing deep PLL research commonly considers various generation models of candidate
labels. We consider three general candidate generation models that involve different types of flip-
ping probability: uniform generation, label-dependent (LD) generation, and instance-dependent
(ID) generation. Specifically, we consider a uniform probability q “ r0.4, 0.6s on CIFAR-10,
q “ r0.3, 0.5s on CIFAR-10-LT, q “ r0.05, 0.1s on CIFAR-100, q “ r0.03, 0.05s on CIFAR-
100-LT, and q “ r0.01, 0.05s on Tiny-ImageNet respectively. For the label-dependent generation,
we consider a candidate probability vector q “ r0.5, 0.4, 0.3, 0.2, 0.1s for each label on CIFAR-10,
and generate hierarchical candidate labels that belong to the same super-class with a probability
0.5 on CIFAR-100. For the instance-dependent generation, following the previous work (Xu et al.,
2021), we use the prediction of a neural network trained with original clean labels as the sample-
and label-wise flipping probability.

Evaluation metric. To evaluate the proposed CLSP method, we can use α-error and β-coverage
in Definition 1 as two metrics. The smaller (larger) the value of α (β), the better the performance.
Besides, we also employ the F1 score to evaluate the pruning. Specifically, the precision of pruning:
Precision “ 1 ´ α and the recall of pruning: Recall “ β. Thus, F1 “ 2pp1 ´ αqβq{p1 ´ α ` βq.
The larger the value of the F1 score, the better the performance.

Feature extractor. In this paper, we consider various visual feature extractors including visual-
only ResNet-18-based models: ResNet-S that performs conventional supervised learning with orig-
inal clean supervision, ResNet-SSL that leverages self-supervised learning (SimCLR (Chen et al.,
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Table 3: Test accuracy comparison on class-imbalanced CIFAR-10 and CIFAR-100 datasets under
long-tailed PLL settings. The row in gray color indicates the PLL method using the pruned candidate
label set. The better result is highlighted in bold.

Dataset q ϕ CC PRODEN LWS CAVL CR SoLar RE

C-10-LT

0.3
50 75.31 76.73 77.28 44.18 71.53 84.48 79.95

77.51 78.66 78.79 44.21 78.37 84.69 79.80

100 67.36 65.58 65.52 43.39 82.61 75.53 70.86
70.48 71.23 72.49 43.41 84.35 76.82 71.43

0.5
50 59.90 62.95 62.22 42.84 47.92 82.41 75.48

66.85 65.30 64.13 48.36 64.94 83.57 76.48

100 55.36 55.37 57.19 44.85 60.43 71.50 65.73
63.05 62.19 62.13 42.59 68.05 70.85 67.08

C-100-LT

0.03
50 43.70 43.93 43.40 32.39 45.06 48.31 39.91

44.67 44.69 45.24 33.33 45.80 49.27 40.30

100 39.32 38.71 38.07 30.55 51.24 42.76 36.42
40.14 39.52 39.24 31.75 52.52 43.81 37.44

0.05
50 42.37 39.53 38.89 28.43 42.92 46.39 44.82

42.66 41.18 40.70 29.46 44.45 47.01 46.06

100 35.59 34.94 34.43 26.16 48.91 40.94 40.03
37.52 37.16 36.31 26.76 49.75 42.33 40.44

Table 4: The magnitude change of the candidate label set, α-error (%), and β-coverage of the
pruning method under various PLL settings. O (vs. P) Avg. C means the average number of
examples’ candidate labels on the original (vs. pruned) PLL dataset.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet VOC
0.4 0.6 LD ID 0.05 0.1 H-0.5 ID 0.01 0.05 ID ˆ

O Avg. C 4.6 6.4 2.5 3.3 6.0 10.9 3.0 4.8 3.0 11.0 8.3 2.5
P Avg. C 2.1 2.9 1.2 2.6 2.9 5.0 1.3 4.4 2.3 7.2 7.1 1.8
α-error (%) .18 .16 .36 .22 .43 .50 2.9 .54 .46 .65 .38 5.2
β-coverage .69 .64 .89 .32 .62 .59 .82 .08 .49 .37 .16 .47

2020)) without supervision, ResNet-I that directly uses the pre-trained model on the ImageNet-V1
dataset, and visual encoders in the pre-trained visual-language model: CLIP (Radford et al., 2021),
ALBEF (Li et al., 2021), BLIP-2 (Li et al., 2023b). More details are shown in Appendix D.

Deep PLL methods. In this paper, we consider eleven state-of-the-art deep PLL methods, in-
cluding six conventional deep PLL methods, e.g., CC, PRODEN, LWS, CAVL, PiCO, CR, three
instance-dependent deep PLL methods ABLE, IDGP, and POP, and two long-tailed deep PLL meth-
ods SoLar and RECORDS.

Implementation. We employ BLIP-2 as the feature extractor based on the open-source library
LAVIS (Li et al., 2023a). For k-NN searching, we employ Faiss (Johnson et al., 2019), a library
for efficient similarity search and clustering of dense vectors. The parameters k and τ used in the
proposed algorithm are shown in Table 5. For each PLL method, we keep the same training scheme
with both original and pruned candidate label sets. More details are shown in Appendix D.

4.2 EXPERIMENTAL RESULTS

CLSP performance. As shown in Table 4, we present the average number of candidate labels on
the PLL datasets before and after the pruning respectively, as well as the defined α-error (%) and
β-coverage of the pruning. As a whole, we can see that the proposed method significantly reduces
the size of candidate label sets at relatively low pruning error rates. Specifically, α-error (%) of the
pruning maintains a relatively low level which is mostly less than 1%, and β-coverage of the pruning
reaches a high level. The largest value of α-error is 5.2% on PASCAL VOC. This is because the
feature quality of images on the dataset is relatively low due to their complicated visual appearances.
The smallest value of β-coverage is 0.08 on CIFAR-100 (ID). This is because label ambiguity on
CIFAR-100 (ID) is knotty (i.e., false candidate labels always co-occur with the true label), which is
challenging for the CLSP task. Besides, we also explore the effects of different feature extractors as
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Figure 2: Transductive accuracy of PRODEN, CC, LWC, CAVL, and CRDPLL algorithms on
CIFAR-10, CIFAR-100, Tiny-ImageNet, and VOC datasets. Bold (vs. thin) curves indicate the
corresponding algorithm using the original (vs. pruned) PLL data. Best viewed in color.

shown in Appendix E. On the whole, the performance of pre-trained vision-language models, i.e.,
CLIP, ALBEF, and BLIP-2, is better than visual-only models ResNet-SSL and ResNet-I.

PLL performance comparison. To show the effect of the proposed CLSP method on improving
deep PLL methods, we conduct each PLL method on the original and pruned PLL datasets respec-
tively under the same training scheme. From comprehensive experimental results, we can draw the
following conclusions:
• Overall performance improvement. On the whole, from the results of Tables 1, 3, 2, and 10,

we can see that test accuracy of PLL methods under almost all cases (145/149«97.3%) is sig-
nificantly improved after training on the pruned PLL dataset. This result directly validates the
effectiveness of the proposed CLSP method in improving deep PLL methods. Furthermore, we
also present the transductive accuracy of PLL methods in Tables 7, 8, 9 and Figure 2. We can
see that the proposed CLSP method also definitely increases the transductive accuracy by a sig-
nificant margin, which implies that more PLL examples are identified correctly after eliminating
their potential false candidate labels. This observation validates our claim that the proposed CLSP
method can reduce label ambiguity and boost label disambiguation effectively. Besides, there are
a few bad cases (4/149 «2.7%) in the experimental results where the performance of certain PLL
methods has slightly degraded after training with pruned PLL data. We argue that this is because
the involved PLL methods (i.e., ABLE and SoLar) in bad cases have a time-consuming training
procedure, i.e., 500 and 1000 epochs respectively, hence they tend to overfit noisy PLL instances
eventually, thereby leading to performance degradation.

• The effect on different candidate generations. Also, we further analyze the effect of the pro-
posed CLSP method on uniform, LD, and ID generations. Under uniform generation, PLL meth-
ods generally have a distinct performance degradation as q increases. For example in Table 1 on
CIFAR-10, the average reduced test accuracy of PLL methods from q “ 0.4 to q “ 0.6 is about
3.6%, while the average reduced test accuracy of PLL methods using the pruned candidate label
set from q “ 0.4 to q “ 0.6 is about 0.6%. This validates the effectiveness of the proposed CLSP
method to eliminate uniformly generated candidate labels. Particularly, the improvement is more
significant under LD and ID generations. This implies that the proposed CLSP method is superior
against knotty candidate labels in LD and ID cases.

• The effect on LT data distribution. As shown in Table 3, the performance of PLL methods has a
serious performance degradation. This is because the class-imbalanced data affects label disam-
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Figure 3: Empirically calculated values of δk and ρk under various settings and feature extractors.
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Figure 4: Various values of k and τ on CIFAR-10 and CIFAR-100 under different PLL settings.

biguation greatly. We can see that PLL methods have a significant performance improvement by
training with the pruned PLL data.

• The significant improvement on the real-world dataset. Note that the PASCAL VOC dataset is a
real-world class-imbalanced PLL dataset (Hong et al., 2023). As shown in Table 2, the proposed
CLSP method significantly improves the transductive and test accuracy of PLL methods. This
shows the practical value of the proposed CLSP method in real-world tasks.

Parameter analysis. Since the values of δk and ρk can be empirically calculated by δk “ 1 ´

p
řn

i“1

ř

k Ipyi “ y
pkq

i qq{kn and ρk “ p
řn

i“1 maxy1
iPY 1

i

ř

k Ipy1
i “ y

1pkq

i qq{kn, where Y 1
i “ Yiztyiu

is the set of false candidate labels. Here, we show the empirical values of δk and ρk on CIFAR-
10 and CIFAR-100. As shown in Figure 3, the overall trend of 1 ´ δk and ρk is decreasing as
k increases. The better the feature extractor, the larger the value of δk, indicating high-quality
representations. Figure 4 shows the results of various values of k and τ on CIFAR-10 and CIFAR-
100 under different PLL settings. From Figure 4, we can find that both the ID and LD candidate
label generation processes lead to a larger value of ρk than the uniform case, which implies a higher
label ambiguity. We employ BLIP-2 as the feature extractor with a large δk and thus are able to
combat the ID and LD cases. Based on the empirical observation, we further evaluate various values
of k and τ . In particular, we evaluate one parameter with another fixed. As shown in Figure 4, when
the number of k-NN increases, the pruning error on uniform generation drops significantly at first
and maintains stability under a large k. This phenomenon accords with the theoretical analysis that a
small δk favors a large k. On the contrary, the pruning error under LD and ID candidate generations
increases obviously as k increases. This means a small k is enough under a large ρk. As for the
parameter τ , we can see that increasing the value of τ consistently increases the pruning error under
all cases. Fortunately, the pruning error growth under uniform candidate generation is relatively
slow, and thus it is favorable to select a relatively large τ .

5 CONCLUSION

In this paper, we pioneer a new PLL-related task called candidate label set pruning (CLSP) that
aims to reduce the size of candidate label sets of PLL instances. To this end, we propose the first
CLSP method that eliminates certain potential false candidate labels of PLL instances based on
a “down-vote” statistic from their k-NN instances in the representation space. Theoretically, we
analyze the effects of the representation quality and label ambiguity against the upper bound of the
pruning error. Empirically, extensive experiments on both benchmark-simulated and real-world PLL
datasets validate the superiority of the proposed CLSP method to significantly improve state-of-the-
art deep PLL methods. In the future, it is also interesting to develop more effective methods for
CLSP. We hope our work will draw more attention of the PLL community from the learning-centric
perspective toward the data-centric perspective.
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A THE PSEUDO-CODE OF THE PROPOSED ALGORITHM

Algorithm 1: The proposed CLSP method
Input: A PLL dataset D “ tpxi, Yiquni“1, a feature extractor Φp¨q, parameters k, τ .
Output: The pruned PLL dataset sD
// Feature Extract

1 Obtain feature representations of all instances the feature extractor by Φp¨q;
// Pruning towards each instance

2 for i ď n do
// k-NN searching using faiss

3 Search k-NN instances rpx
p1q

i , Y
p1q

i q, ¨ ¨ ¨ , px
pkq

i , Y
pkq

i qs on D for each instance pxi, Yiq;
// Down-voting from k-NN instances

4 Calculate a down-vote statistic Oi towards each instance xi by Eq. (1);
// Counting

5 Count the number of eliminated candidate labels γi towards each instancexi by Eq. (2);
// Pruning each candidate label set

6 Select the eliminated candidate labels rYi based on the highest down-voting by Eq. (3);
// Obtain the pruned candidate label set

7 Obtain the pruned candidate label set towards the instance xi: sYi “ YizrYi.
8 end
9 Return the pruned PLL dataset sD “ tpxi, sYiquni“1;

As shown in Algorithm 1, the proposed method does not involve the complex and time-consuming
training process. The most time-consuming step is k-NN searching where we utilize the open-source
library Faiss to accelerate the process. The pruned PLL dataset can be directly leveraged in existing
deep PLL methods.

B THE PROOF OF THEOREM 1

Recall that in Section 3.3, there are one random variable Oiy „ Bpk, 1 ´ tq and (|Y 1
i |) i.i.d. random

variables Oiy1 „ Bpk, 1´qq. The number of eliminated candidate labels γi P r1, |Y 1
i |s. The event of

incorrect pruning for the instance xi is rO
pξiq

iy1 ă Oiys where ξi “ |Y 1| ´ γi ` 1 and O
pkq

iy1 is the k-th

order statistic rO
p1q

iy1 , ¨ ¨ ¨ , O
pkq

iy1 , ¨ ¨ ¨ , O
p|Y 1

i |q

iy1 s. Now, we derive an upper bound for the probability of
getting incorrect pruning for the instance x:

PpO
pξiq

iy1 ă Oiyq “

k
ÿ

j“0

P pO
pξiq

iy1 ă Oiy|Oiy “ jqP pOiy “ jq

“

k
ÿ

j“1

P pO
pξiq

iy1 ď j ´ 1qP pOiy “ jq

ď
ÿk

j“1

ÿ|Y 1
i |

m“ξi

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηqp|Y 1
i |´mqbδkpk, jq,

where ξi “ p|Y 1
i |´γi`1q,

`

n
r

˘

“ n!
r!pn´rq! is the combination formula, bδkpk, jq “

`

k
j

˘

δjkp1´δkqk´j

denotes the probability mass function of a binomial distribution Bpk, δkq, and η “ Iρk
pk´ j `1, jq

where Iρk
pk, jq “

şρk

0
tk´1p1 ´ tqj´1dt is the regularized incomplete beta function.

C THE PROOF OF THEOREM 2

Based on the notations in the proof of Theorem 1, we further denote γ1
i and γ2

i by two numbers of
eliminated candidate labels respectively satisfying γ1

i ă γ2
i . Then we can derive an upper bound for
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Table 5: The values of parameters k and τ used in the proposed method under various PLL settings.

Setup Uniform LD ID LT ˆ

C-10 C-100 T-I C-10 C-100 C-10 C-100 T-I C-10 C-100 VOC

τ 0.6 0.6 0.4 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.1
k 150 150 150 50 150 5 5 50 50 50 5

the extra pruning error

PpO
pξ2i q

iy1 ă Oiyq ´ PpO
pξ1i q

iy1 ă Oiyq “

k
ÿ

j“0

P pO
pξ2i q

iy1 ă Oiy|Oiy “ jqP pOiy “ jq

´

k
ÿ

j“0

P pO
pξ1i q

iy1 ă Oiy|Oiy “ jqP pOiy “ jq

ď
ÿk

j“1

ÿ|Y 1
i |

m“ξ2i

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηqp|Y 1
i |´mqbδkpk, jq

´
ÿk

j“1

ÿ|Y 1
i |

m“ξ1i

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηqp|Y 1
i |´mqbδkpk, jq

ď
ÿk

j“1

ÿξ1i ´1

m“ξ2i

ˆ

|Y 1
i |

m

˙

ηmp1 ´ ηq|Y 1
i |´mbδkpk, jq,

where ξ1i “ p|Y 1
i | ´ γi ` 1q, ξ2i “ p|Y 1

i | ´ γi ` 1q, and other notations’definitions are the same as
that in Theorem 1.

D EXPERIMENTAL CONFIGURATION

In this section, we further show the detailed experimental configuration of the proposed method and
partial-label learning (PLL) methods. First, we present the values of parameters k and τ used in the
proposed method on each dataset under different partial-label learning (PLL) settings.

Candidate label generation. Formally, given an example pxi, yiq „ ppx, yq, candidate genera-
tion models intrinsically consider the flipping probability of a false label y1

j ‰ yi X y1
j P Y being

a candidate one. (1) Uniform Generation (Lv et al., 2020): this case is a naive simple generation
model that assumes each domain label has the same flipping probability of being a candidate. The
uniform real-value flipping probability is P pry P Y |yq “ q; (2) Label-dependent Generation (Wang
et al., 2022b): instead of treating all domain classes equally, semantic-similar domain labels against
the true label are more likely to be inside a candidate label set. The label-wise flipping probability
is P pryj P Y |yq “ qj ; (3) Instance-dependent Generation (Xu et al., 2021): the above two cases do
not consider the instance itself. In a more realistic scenario, candidate labels are usually generated
according to the specific features of the instance. The sample- and label-wise flipping probabil-
ity is P pryij P Yi|xi, yiq “ qij . Specifically, we consider a uniform probability q “ r0.4, 0.6s

on CIFAR-10, q “ r0.3, 0.5s on CIFAR-10-LT, q “ r0.05, 0.1s on CIFAR-100, q “ r0.03, 0.05s

on CIFAR-100-LT, and q “ r0.01, 0.05s on Tiny-ImageNet respectively. For the label-dependent
generation, we consider a candidate probability vector q “ r0.5, 0.4, 0.3, 0.2, 0.1s for each label
on CIFAR-10, and generate hierarchical candidate labels that belong to the same super-class with a
probability 0.5 on CIFAR-100. For the instance-dependent generation, following the previous work
(Xu et al., 2021), we use the prediction of a neural network trained with original clean labels as the
sample- and label-wise flipping probability qij .

Deep PLL methods. CC (Feng et al., 2020): a classifier-consistent method that assumes a set-
level uniform data generation process; PRODEN (Lv et al., 2020): a self-training-based method
that progressively identifies the true labels using the output of the classifier itself; LWS (Wen et al.,
2021): a set of loss functions that weights the risk function by means of a trade-off between losses
on candidates and non-candidates; CAVL (Zhang et al., 2022): a method motivated by Class Activa-
tion Map (CAM) and using the corresponding class activation value for label disambiguation; PiCO
(Wang et al., 2022b): a contrastive learning-based method that establishes class prototypes for label
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disambiguation; CRPLL (Wu et al., 2022): a regularization based method that achieves state-of-
the-art performance in instance-independent PLL; ABLE (Xia et al., 2022): an ambiguity-induced
contrastive learning method that leverages label information into contrastive learning; IDGP (Qiao
et al., 2023): a maximum a posterior (MAP) based probabilistic method that considers a compo-
sitional generation process of candidates; SoLar (Wang et al., 2022a): an optimal transport-based
framework that refines the disambiguated labels towards matching the marginal class prior distri-
bution; RECORDS (Hong et al., 2023): a dynamic rebalancing method that is benign to the label
disambiguation process and theoretically converges to the oracle class prior; POP (Xu et al., 2023b):
a theoretically grounded algorithm to filter out false candidate labels progressively in every epoch.

More details about the k-NN algorithm and feature extractors. We employ the visual encoder
of BLIP-2 to extract 768-dimensional high-quality representations for all training PLL instances.
Then, we leverage faiss to conduct the fast k-NN searching for each instance based on the squared
Euclidean Distance. Besides, we additionally train two visual-only ResNet-18-based models (i.e.,
ResNet-SSL, ResNet-S) on each PLL dataset. Note that we did not use them in the proposed method
and just used them for comparing the effects of different types of feature extractors. Specifically,
ResNet-S is trained with the original clean supervision using the cross-entropy loss (note that we
do not employ data augmentation techniques), while ResNet-SSL is trained by the self-supervised
learning method SimCLR without any supervision. The weak and strong data augmentations used in
SimCLR follow the original configurations on the corresponding PLL dataset. In addition, ResNet-I
is directly employed by loading the checkpoint ”IMAGENET1K V1”. The dimension of these three
models’ output representations is 512.

Parameters k and τ in the proposed method. As shown in Table 5, based on our theoretic
analysis for the effect of k and γ (τ ) against the upper bound Eq. (4) in Theorem 1, we commonly
select a large k and τ on CIFAR-10 and CIFAR-100 datasets under uniform generation due to the
high-quality extracted features on CIFAR-based datasets and the low label ambiguity under uniform
generation, while we choose a relatively low k and τ under ID generation due to the knotty label
ambiguity, or on VOC due to the relatively low-quality extracted features of examples in the dataset.
The effectiveness of the theoretic-inspired guidance is validated in the parameter analysis shown in
Figure 4 where the appropriate values of parameters k and τ effectively reduce the pruning error.

Training scheme of PLL methods. Besides, we further present the detailed training scheme of
PLL methods including model architecture, learning rate, learning rate scheduler, weight decay,
batch size, and data augmentation. On the whole, we employ a base training scheme: a ResNet-18
model, learning rate is 1e-2, and weight decay is 1e-3. On CIFAR-10 and CIFAR-100, CC, PRO-
DEN, LWS, and CAVL do not employ a learning rate scheduler and the data augmentation technique
which is the same as the original implementation. But, on more difficult datasets CIFAR-10-LT,
CIFAR-100-LT, Tiny-ImageNet, and VOC, they are equipped with a consistency regularization with
augmented examples and a “CosineAnnealingLearningRate” scheduler which is a scheduling tech-
nique that starts with a very large learning rate and then aggressively decreases it to a value near 0
before increasing the learning rate again. Especially, on VOC, the epoch is set to 100 for all PLL
methods to avoid overfitting. Although there are different configurations for PLL methods, they both
employ the same training scheme for the original and pruned candidate label sets, which ensures the
performance improvement comes from only the effect of pruning.

PASCAL VOC. Following the previous work (Hong et al., 2023), we construct the dataset where
objects in images are cropped as instances and all objects appearing in the same original image are
regarded as the labels of a candidate set. As for the characteristics of PASCAL VOC, the number
of classes is 20, the number of training (test) instances is 11706 (4000), and the average number of
candidate labels is 2.46. Particularly, the imbalance ratio is 118.8.

E MORE EXPERIMENTAL RESULTS

In this section, we present additional experiment results including the F1 score of using different
feature extractors, transductive accuracy comparison, and training loss curves of PLL methods.

https://github.com/salesforce/LAVIS
https://github.com/facebookresearch/faiss
https://github.com/google-research/simclr
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Table 6: F1 score (%) of different feature extractors adopted in the proposed algorithm.
Dataset q ResNet-S ResNet-SSL ResNet-I CLIP ALBEF BLIP-2

CIFAR-10

0.4 91.71 79.47 89.55 90.82 91.14 91.61
0.6 90.05 76.98 87.87 89.03 89.42 89.97
LD 97.74 78.91 91.94 95.63 96.33 97.48
ID 70.41 63.73 68.03 69.62 69.85 70.50

CIFAR-100

0.05 89.16 71.28 87.42 88.07 88.39 89.08
0.1 87.87 67.11 85.55 86.35 86.86 87.69

H-0.5 96.00 69.93 86.43 89.07 90.70 93.89
ID 34.35 16.85 30.39 31.31 31.64 32.53

Tiny-ImageNet
0.01 79.87 70.53 82.40 82.71 82.66 82.97
0.05 71.25 62.04 73.58 74.05 74.00 74.57
ID 48.22 45.72 49.20 49.01 49.07 49.05

VOC ˆ 86.33 73.48 78.10 79.93 80.05 78.99

Table 7: Transductive accuracy comparison on CIFAR-10 and CIFAR-100 datasets under uniform,
label-dependent (LD), and instance-dependent (ID) PLL settings. The row in gray color indicates
the PLL method using the pruned candidate label set. The better result is highlighted in bold.

Dataset q CC PRODEN LWS CAVL PiCO CR ABLE IDGP

C-10

0.4 90.56 90.54 92.19 88.52 96.10 97.02 96.10 92.86
96.56 93.77 96.90 92.70 97.23 99.06 98.15 96.90

0.6 80.02 86.98 86.94 61.33 94.51 96.52 93.72 82.12
93.96 92.66 94.99 91.04 96.56 98.53 97.16 95.57

LD 95.87 93.87 96.55 92.23 97.42 99.49 98.41 96.43
97.83 94.88 99.09 94.42 97.84 99.54 99.35 97.38

ID 76.66 81.98 80.13 71.78 91.56 88.26 90.52 85.64
86.57 89.20 91.02 86.75 94.95 96.26 94.81 92.81

C-100

0.05 91.81 76.22 90.34 67.54 93.23 97.49 95.57 86.12
93.97 78.19 94.80 77.79 94.52 98.09 97.10 89.53

0.1 87.62 71.03 79.96 38.14 72.81 95.38 92.30 84.32
91.00 75.94 89.86 72.67 92.25 96.39 94.76 85.88

H-0.5 86.50 41.31 82.83 71.39 86.39 92.90 89.17 82.73
91.89 84.74 93.15 76.82 90.57 95.11 94.51 84.52

ID 79.42 67.76 75.64 65.67 82.26 81.18 84.01 76.34
81.09 69.17 77.30 67.48 83.61 81.21 85.33 77.21

Different feature extractors. As shown in Table 6, we present the F1 score using different feature
extractors including visual-only models ResNet-S, ResNet-SSL, and ResNet-I and vision-language
pre-trained models CLIP, ALBEF, and BLIP-2. We can see that ResNet-S achieves the best perfor-
mance. This is reasonable but impractical since it uses clean supervision. On the whole, feature
extractors of CLIP, ALBEF, and BLIP-2, achieve better performance than visual-only ResNet-SSL
and ResNet-I models. This shows the powerful visual representation ability of multi-modal models.

Transductive accuracy comparison. As shown in Table 7 on CIFAR-10 and CIFAR-100 datasets
and Table 8 on CIFAR-10-LT and CIFAR-100-LT datasets and Table 9 on Tiny-ImageNet, we can
see that the performance is improved in almost all cases (147/149«98.7%). Moreover, the improve-
ment in transductive accuracy is more significant than that in test accuracy. These observations defi-
nitely validate that the proposed CLSP method greatly boosts label disambiguation of PLL methods.
Besides, we further discover that naive PLL methods (e.g., CC, PRODEN, LWS, and CAVL) have
more significant performance improvements than advanced PLL methods (e.g., PiCO, CRDPLL,
ABLE, and IDGP). We think that this is because naive PLL methods have a limited capability in
label disambiguation compared with advanced PLL methods, hence the proposed CLSP method has
a bigger effect on promoting label disambiguation in naive PLL methods.

Training loss curves. As shown in Figure 5, we present training loss curves of PLL methods on
CIFAR-10, CIFAR-100, Tiny-ImageNet, and VOC datasets. Note that Bold (thin) curves indicate
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Table 8: Transductive accuracy comparison on class-imbalanced CIFAR-10 and CIFAR-100 datasets
under long-tailed PLL settings. The row in gray color indicates the PLL method using the pruned
candidate label set. The better result is highlighted in bold.

Dataset q ϕ CC PRODEN LWS CAVL CR SoLar RE

C-10

0.3
50 94.57 95.16 95.10 86.37 96.82 98.65 85.18

95.57 96.13 96.02 86.88 98.26 98.87 87.89

100 94.86 95.05 94.95 89.47 97.09 97.63 78.26
96.36 96.65 96.58 90.20 98.04 98.12 82.23

0.5
50 89.33 90.85 90.57 83.74 91.47 96.22 79.51

91.53 92.30 92.18 86.46 95.35 97.45 78.33

100 90.68 91.68 91.72 87.03 91.62 95.43 73.05
93.22 93.95 93.58 88.15 94.23 96.65 71.12

C-100

0.03
50 92.62 91.85 91.84 83.20 95.45 94.72 87.42

93.81 93.58 93.43 85.12 96.41 95.90 88.48

100 92.54 91.76 91.46 86.17 95.61 93.56 87.97
93.97 93.41 93.20 87.04 96.38 94.82 88.57

0.05
50 89.10 86.63 86.57 77.38 92.50 91.23 90.30

90.29 88.63 88.54 79.61 93.72 91.86 91.33

100 88.63 86.98 87.28 79.15 92.28 90.62 90.18
90.29 89.19 89.14 79.61 93.72 92.21 91.51

Table 9: Transductive accuracy comparison on Tiny-ImageNet datasets under uniform and instance-
dependent PLL settings. The row in gray color indicates the PLL method using the pruned candidate
label set. The better result is highlighted in bold.

Dataset q CC PRODEN LWS CAVL CRDPLL

Tiny-ImageNet

0.01 96.93 96.83 97.08 96.57 97.49
97.66 97.62 97.75 97.45 98.03

0.05 89.56 89.21 89.96 55.14 90.70
91.36 91.04 90.84 77.09 92.31

ID 75.81 74.41 75.86 67.39 77.19
77.50 75.93 77.36 70.65 78.43

the corresponding PLL method with the original (pruned) candidate label set. We can see that
PLL methods generally have a faster convergence by using the pruned candidate label set. This
phenomenon also discloses another characteristic of the pruning that accelerates the convergence of
PLL methods. Generally, the training loss values of PLL methods tend to be smaller after training
with pruned data. However, we found an unusual phenomenon where the training loss values of
many PLL methods become larger on PASCAL VOC after training with pruned PLL data. We
reckon that there are two reasons. Firstly, there exists a higher proportion of noisy PLL instances in
PASCAL VOC (where the pruning error is about 5.2%) than in CIFAR and Tiny-ImageNet (where
the pruning error is less than 1% in most cases). Secondly, label disambiguation of training PLL
instances in PASCAL VOC is more challenging due to the complicated visual objects in PASCAL
VOC. Hence, fitting noisy PLL instances in PASCAL VOC is more difficult, thereby leading to a
larger training loss value. Notably, the performance of the involved PLL methods on PASCAL VOC
still has significant improvements, which implies this phenomenon may be benign for PLL methods.
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Figure 5: Training loss curves of PRODEN, CC, LWC, CAVL, and CRDPLL methods on CIFAR-
10, CIFAR-100, Tiny-ImageNet, and VOC datasets. Bold (thin) curves indicate the corresponding
method with the original (pruned) candidate label set. Best viewed in color.

Table 10: Test accuracy comparison on Tiny-ImageNet dataset under uniform and instance-
dependent PLL settings. The row in gray color indicates the PLL method using the pruned candidate
label set. The better result is highlighted in bold.

Dataset q CC PRODEN LWS CAVL CRDPLL

Tiny-ImageNet

0.01 65.04 65.21 66.92 64.97 67.48
65.35 65.28 66.98 65.43 67.56

0.05 63.06 63.02 64.34 35.53 65.99
63.42 63.55 65.61 52.29 66.21

ID 61.06 59.12 61.56 53.52 63.70
62.11 60.15 62.30 55.95 64.27
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