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Abstract

Incorporating factual knowledge into pre-trained language
models (PLM) such as BERT is an emerging trend in recent
NLP studies. However, most of the existing methods com-
bine the external knowledge integration module with a mod-
ified pre-training loss and re-implement the pre-training pro-
cess on the large-scale corpus. Re-pretraining these models
is usually resource-consuming, and difficult to adapt to an-
other domain with a different knowledge graph (KG). Be-
sides, those works either cannot embed knowledge context
dynamically according to textual context or struggle with
the knowledge ambiguity issue. In this paper, we propose
a novel knowledge-aware language model framework based
on fine-tuning process, which equips PLM with a unified
knowledge-enhanced text graph that contains both text and
multi-relational sub-graphs extracted from KG. We design a
hierarchical relational-graph-based message passing mecha-
nism, which can allow the representations of injected KG and
text to mutually update each other and can dynamically select
ambiguous mentioned entities that share the same text1. Our
empirical results show that our model can efficiently incorpo-
rate world knowledge from KGs into existing language mod-
els such as BERT, and achieve significant improvement on
the machine reading comprehension (MRC) tasks compared
with other knowledge-enhanced models.

Introduction
Pre-trained language models benefit from the large-scale
corpus and can learn complex linguistic representation (De-
vlin et al. 2019; Liu et al. 2019b; Yang et al. 2020). Al-
though they have achieved promising results in many NLP
tasks, they neglect to incorporate structured knowledge
for language understanding. Limited by implicit knowl-
edge representation, existing PLMs are still difficult to
learn world knowledge efficiently (Poerner, Waltinger, and
Schütze 2019; Yu et al. 2020). For example, hundreds of
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1Words or phrases in the text corresponding to certain enti-
ties in KGs are often named “entity mentions”. While entities in
KGs that correspond to entity mentions in the text are often named
“mentioned entities”

related training samples in the corpus are required to un-
derstand the fact “ban means an official prohibition or edict
against something” for PLMs.

By contrast, knowledge graphs (KGs) explicitly organize
the above fact as a triplet “(ban, hypernyms, prohibition)”.
Although domain knowledge can be represented more effi-
ciently in KG form, entities with different meanings share
the same text may happen in a KG (knowledge ambiguity
issue). For example, one can also find “(ban, hypernyms,
moldovan monetary unit)” in WordNet (Miller 1995). Re-
cently, many efforts have been made on leveraging hetero-
geneous factual knowledge in KGs to enhance PLM repre-
sentations. These models generally adopt two methods: (1).
Injecting pre-trained entity embeddings into PLM explic-
itly, such as ERNIE (Zhang et al. 2019), which injects en-
tity embeddings pre-trained on a knowledge graph by using
TransE (Bordes et al. 2013). (2). Implicitly learning factual
knowledge by adding extra pre-training tasks such as entity-
level mask, entity-based replacement prediction, etc. (Wang
et al. 2020c; Sun et al. 2020). Some studies use both of the
above two methods such as CokeBERT (Su et al. 2020).

However, as summarized in Table 1, most of the ex-
isting knowledge-enhanced PLMs need to re-pretrain the
models based on an additional large-scale corpus, they
mainly encounter two problems below: (1) Incorporating
external knowledge during pretraining is usually resource-
consuming and difficult to adapt to other domains with
different KGs. By checking the third column of Table 1,
one can see that most of the pretrain-based models use
Wiki-related KG as their injected knowledge source. These
models also use English Wikipedia as pre-training cor-
pus. They either use an additional entity linking tool (e.g.
TAGME (Ferragina and Scaiella 2010)) to align the en-
tity mention in the text to a single mentioned entity in
a Wiki-related KG uniquely or directly treat hyperlinks
in Wikipedia as entity annotations. These models depend
heavily on the one-to-one mapping relationship between
Wikipedia corpus and Wiki-related KG, thus they never
consider handling knowledge ambiguity issue. (2) These
models with explicit knowledge injection usually use algo-
rithms like BILINEAR (Yang et al. 2015) to obtain pre-
trained KG embeddings, which contain information about
graph structure. Unfortunately, their knowledge context is



Model Downstream Task Used KGs Need
Pre-train

Dynamically
Embedding KG

Context

Inject external
KG’s Representations

Support
Multi-relational

Support
Multi-hop

Handle Knowledge
Ambiguity Issue Base Model

ERNIE (Zhang et al. 2019) Glue, Ent Typing
Rel CLS Wikidata

Yes
(MLM, NSP,

Ent Mask task)
No

Inject pretrained
entity embeddings
(TransE) explicitly

No
(only entity embedding) No

No
(anchored entity mention to
the unique id of Wikidata)

BERTbase

K-BERT (Liu et al. 2019a) Q&A, NER
Sent CLS

CN-DBpedia
HowNet, MedicalKG

Optional
(MLM, NSP) No No Yes

(treat relations as words) No
No

(designed ATT mechanism
can solve KN issue)

BERTbase

KnowBERT (Peters et al. 2019) Rel Extraction
Ent Typing

CrossWikis,
WordNet

Yes
(MLM, NSP,

Ent Linking task)
No

Inject both pretrained
entity embeddings (TuckER)

and entity definition explicitly

No
(only entity embedding) No

Yes
(weighed entity embeddings

shared the same text)
BERTbase

WKLM (Xiong et al. 2019) Q&A, Ent Typing Wikidata
Yes

(MLM, Ent
replacement task)

No No No No
No

(anchored entity mention to
the unique id of Wikidata)

BERTbase

K-Adapter (Wang et al. 2020c) Q&A,
Ent Typing

Wikidata
Dependency Parsing

Yes
(MLM,

Rel predition task)
No No

Yes
(Via Rel prediction task

during pretraining)
No

No
(anchored entity mention to
the unique id of Wikidata)

RoBERTalarge

KEPLER (Wang et al. 2020d)
Ent Typing

Glue, Rel CLS
Link Prediction

Wikidata
Yes

(MLM,
Link predition task)

Yes
Inject embeddings of
entity and relation’s

description explicitly

Yes
(Via link prediction task

during pretraining)
No

No
(anchored entity mention to
the unique id of Wikidata)

RoBERTabase

JAKET (Yu et al. 2020) Rel CLS, KGQA
Ent CLS Wikidata

Yes
(MLM, Ent Mask task,
Ent category prediction,

Rel type prediction)

Yes Inject embeddings of
entity descriptions

Yes
(Via Rel type prediction

during pretraining)
Yes

No
(anchored entity mention to
the unique id of Wikidata)

RoBERTabase

CoLAKE (Sun et al. 2020) Glue, Ent Typing
Rel Extraction Wikidata

Yes
(MLM, Ent Mask task,

Rel type prediction)
Yes No Yes

(treat relations as words) No
No

(anchored entity mention to
the unique id of Wikidata)

RoBERTabase

LUKE (Yamada et al. 2020) Ent Typing, Rel CLS
NER, Q&A

Ent from
Wikipedia

Yes
(MLM, Ent Mask task) No No No No

No
(treat hyperlinks in Wikipedia

as entity annotations)
RoBERTalarge

CokeBERT (Su et al. 2020) Rel CLS
Ent Typing Wikidata

Yes
(MLM, NSP,

Ent Mask task)
Yes

Inject pretrained
entity embeddings
(TransE) explicitly

Yes
(Via S-GNN to encode KG

context dynamically)
Yes

No
(anchored entity mention to
the unique id of Wikidata)

RoBERTalarge

SKG (Qiu et al. 2019) MRC WordNet, ConceptNet No Yes
Inject pretrained

entity embeddings
(BILINER) explicitly

Yes
(Via multi-relational
GNN to encode KG

context dynamically)
Yes No BERTlarge

KT-NET (Yang et al. 2019) MRC WordNet, NELL No No
Inject pretrained

entity embeddings
(BILINER) explicitly

No
(only entity embedding) No

Yes
(dynamically selecting

KG context)
BERTlarge

KELM MRC WordNet, NELL No Yes
Inject pretrained

entity embeddings
(BILINER) explicitly

Yes
(Via multi-relational
GNN to encode KG

context dynamically)
Yes

Yes
(dynamically selecting

related mentioned entity)
BERTlarge

Table 1: A brief summary and comparison of recent knowledge-enhanced PLMs. The full names of some abbreviations are as
follows. MLM: masked language model, NSP: next sentence prediction, Ent: entity, Rel: relation, CLS: classification, Sent:
sentence, ATT: attention. Comments/descriptions of features are written in parentheses. Desired properties are written in bold.

usually static and cannot be embedded dynamically ac-
cording to textual context.

Few works (Qiu et al. 2019; Yang et al. 2019) concentrate
on injecting external knowledge based on fine-tuning PLM
on downstream tasks, which is much easier to change the in-
jected KGs and adapt to relevant domain tasks. They either
cannot consider multi-hop relational information, or strug-
gle with knowledge ambiguity issue. How to fuse hetero-
geneous information dynamically based on the fine-tuning
process on the downstream tasks and use the information of
injected KGs more efficiently remains a challenge.

Figure 1: Unified Knowledge-enhanced Text Graph
(UKET): consists of three parts corresponding to our model:
(1) KG only part, (2) Entity link to token graph, (3) Text
only graph.

To overcome the challenges mentioned above, we pro-
pose a novel framework named KELM, which injects
world knowledge from KGs during the fine-tuning phase

by building a Unified Knowledge-enhanced Text Graph
(UKET) that contains both injected sub-graphs from exter-
nal knowledge and text sentence. The method extends the
input sentence by extracting sub-graphs centered on every
mentioned entity from KGs. In this way, we can get a Uni-
fied Knowledge-enhanced Text Graph as shown in Fig. 1,
which is made of three kinds of graph: (1) The injected
knowledge graphs, referred to as the “KG only” part; (2)
The graph about entity mentions in the text and mentioned
entities in KGs, referred to as the “entity link to token”
part. Entity mentions in the text are linked with mentioned
entities in KGs by string matching, so one entity mention
may trigger several mentioned entities that share the same
text in the injected KGs (e.g. “Ford” in Fig. 1); (3) The “text
only” part, where the input text sequence is treated as a fully-
connected word graph just like classical Transformer archi-
tecture (Vaswani et al. 2017).

Based on this unified graph, we design a novel Hierarchi-
cal relational-graph-based Message Passing (HMP) mecha-
nism to fuse heterogeneous information on the output layer
of PLM. The implementation of HMP is via a Hierarchi-
cal Knowledge Enhancement Module as depicted in Fig. 2,
which also consists of three parts, and each part is designed
for solving the different problems above: (1) For reserv-
ing the structure information and dynamically embed-
ding injected knowledge, we utilize a relational GNN (e.g.
rGCN (Schlichtkrull et al. 2017)) to aggregate and update
representations of extracted sub-graphs for each injected KG
(corresponding to the “KG only” part of UKET). All men-



Figure 2: Framework of KELM (left) and illustrates how to generate knowledge-enriched token embeddings (right).

tioned entities and their K-hop neighbors in sub-graphs are
initialized by pre-trained vectors obtained from the classi-
cal knowledge graph embedding (KGE) method (we adopt
BILINEAR here). In this way, knowledge context can be
dynamically embedded, the structural information about the
graph is also kept; (2) For handling knowledge ambiguity
issue and selecting relevant mentioned entities according
to the input context, we leverage a specially designed atten-
tion mechanism to weight these ambiguous mentioned enti-
ties by using the textual representations of words/tokens to
query the representations of their related mentioned entities
in KGs (corresponding to the “entity link to token” graph of
UKET). The attention score can help to select knowledge ac-
cording to the input sentence dynamically. By concatenating
the outputs of this step with the original outputs of PLM, we
can get a knowledge-enriched representation for each token;
(3) For further interactions between knowledge-enriched
tokens, we employ a self-attention mechanism that oper-
ates on the fully-connected word graph (corresponding to
the “text only” graph of UKET) to allow the knowledge-
enriched representation of each token to further interact with
others.

We conduct experiments on the MRC task, which re-
quires a system to comprehend a given text and answer
questions about it. In this paper, to prove the generaliza-
tion ability of our method, we evaluate KELM on both the
extractive-style MRC task (answers can be found in a span
of the given text) and the multiple-response-items-style
MRC task (each question is associated with several choices
for answer-options, the number of correct answer-options
is not pre-specified). MRC is a challenging task and rep-
resents a value path towards natural language understanding

(NLU). With the rapid increment of knowledge, NLU be-
comes more difficult since the system needs to absorb new
knowledge continuously. Pre-training models on large-scale
corpus is inefficient. Therefore, fine-tuning the knowledge-
enhanced PLM on the downstream tasks directly is crucial
in the application.2

Related Work
Knowledge Graph Embedding
We denote a directed knowledge graph as G(E ,R), where
E and R are sets of entities and relations, respectively. We
also define F as a set of facts, a fact stored in a KG can
be expressed as a triplet (h, r, t) ∈ F , which indicates a
relation r pointing from the head entity h to tail entity t,
where h, t ∈ E and r ∈ R. KGE aims to extract topologi-
cal information in KG and to learn a set of low-dimensional
representations of entities and relations by knowledge graph
completion task (Yang et al. 2015; Lu and Hu 2020).

Multi-relational Graph Neural Network
Real-world KGs usually include several relations. However,
traditional GNN models such as GCN (Kipf and Welling
2017), and GAT (Veličković et al. 2018) can only be used
in the graph with one type of relation. (Schlichtkrull et al.
2017; Haonan et al. 2019) generalizes traditional GNN mod-
els by performing relation-specific aggregation, making it
possible to encode relational graphs. The use of multi-
relational GNN makes it possible to encode injected knowl-
edge embeddings dynamically in SKG and CokeBERT.

2Our anonymous code will be available at https://github.com/
nlp-anonymous-happy/anonymous-KG-guided-NLP.



Joint Language and Knowledge Models

Since BERT was published in 2018, many efforts have been
made for further optimization, basically focusing on the de-
sign of the pre-training process and the variation of the
encoder. For studies of knowledge-enhanced PLMs, they
also fall into the above two categories or combine both of
them sometimes. Despite their success in leveraging exter-
nal factual knowledge, the gains are limited by computing
resources, knowledge ambiguity issue, and the expressivity
of their methods for the fusion of heterogeneous informa-
tion, as summarized in Table 1 and the introduction part.

Recent studies notice that the architecture of Transformer
treats input sequences as fully-connected word graphs, thus
some of them try to integrate injected KGs and textual con-
text into a unified data structure. Here we argue that UKET
in our KELM is different from the WK graph proposed in
CoLAKE/K-BERT. These two studies heuristically convert
textual context and entity-related sub-graph into input se-
quences, both entities and relations are treated as input
words of the PLM, then they leverage a Transformer with
a masked attention mechanism to encode those sequences
from the embedding layer and pre-train the model based
on the large-scale corpus. Unfortunately, it is not trivial for
them to convert the second or higher order neighbors re-
lated to textual context (Su et al. 2020), the structural in-
formation about the graph is lost. UKET differs from the
WK graph of CoLAKE/K-BERT in that, instead of convert-
ing mentioned entities, relations, and text into a sequence
of words and feeding them together into the input layer of
PLM (they unify text and KG into a sequence), UKET uni-
fies text and KG into a graph. Besides, by using our UKET
framework, the knowledge fusion process of KELM is based
on the representation of the last hidden layer of PLM, mak-
ing it possible to directly fine-tune the PLM on the down-
stream tasks without re-pretraining the model. SKG also uti-
lizes relational GNN to fuse information of KGs and text
representation encoded by PLM. However, SKG only uses
GNN to dynamically encode the injected KGs, which cor-
responds to part one of Fig. 1. Outputs of SKG are made
by directly concatenating outputs of graph encoder with the
outputs of PLM. It cannot select ambiguous knowledge and
forbids the interactions between knowledge-enriched tokens
corresponding to part two and part three of Fig. 1, respec-
tively. KT-NET uses a specially designed attention mecha-
nism to select relevant knowledge from KGs. For example,
it treats all synsets of entity mentions within the WN183 as
candidate KB concepts. This limits the ability of KT-NET
to select the most relevant mentioned entities4. Moreover,
the representations of injected knowledge are static in KT-
NET, they cannot dynamically change according to textual
context, the information about the original graph structure in
KG is also lost.

3A subset of WordNet.
4Refer the example given in the case study of KT-NET, the most

relevant concept for the word “ban” is “forbidding NN 1” (with the
probability of 86.1%), but not “ban NN 4”.

Methodology
The architecture of KELM is shown in Fig. 2. It consists of
three main modules: (1) PLM Encoding Module; (2) Hierar-
chical Knowledge Enhancement Module; (3) Output Mod-
ule.

PLM Encoding Module
This module utilizes PLM (e.g.BERT) to encode text to
get textual representations for passages and questions.
An input example of the MRC task includes a para-
graph and a question with a candidate answer, repre-
sented as a single sequence of tokens of the length n:
T={[CLS], Q, (A), [SEP ], P, [SEP ]}={ti}ni=1, where Q,
A and P represent all tokens for question, candidate answer
and paragraph, respectively5. [SEP ] and [CLS] are special
tokens in BERT and defined as a sentence separator and a
classification token, respectively. i-th token in the sequence
is represented by ~hti ∈ Rdt , where dt is the last hidden layer
size of used PLM.

Hierarchical Knowledge Enhancement Module
This module is the implementation of our proposed HMP
mechanism to fuse information of textual and graph context.
We will formally introduce graph construction for UKET,
and the three sub-processes of HMP in detail in the follow-
ing sections.

Construction of UKET Graph (1) Given a set with |Q|
elements: {Gqk(E

q
k ,R

q
k)}
|Q|
q=1

and input text, where |Q| is the
total number of injected KGs, and q indicates the q-th KG.
We denote the set of entity mentions related to the q-th KG
as X q={xqi }

|X q|
i=1 , where |X q| is the number of entity men-

tions in the text. The corresponding mentioned entities are
shared by all tokens in the same entity mention. All men-
tioned entities Mq={mq

i }
|Mq|
i=1 are linked with their rele-

vant entity mentions in the text, where |Mq| is the number
of mentioned entities in the q-th KG. We define this ”en-
tity link to token graph” in Fig. 1 as Gqm(Eqm,Rqm), where
Eqm=X q ∪Mq is the union of entity mentions and their rel-
evant mentioned entities,Rqm is a set with only one element
that links mentioned entities and their relevant entity men-
tions. (2) For i-th mentioned entity mq

i inMq , we retrieve
all its K-hop neighbors {N x

mq
i
}Kx=0 from the q-th knowl-

edge graph, whereN x
mq

i
is a set of i-th mentioned entity’s x-

hop neighbors, hence we haveN 0
mq

i
={mq

i }. We define ”KG-

only graph”: Gqs(Eqs ,Rqs), where Eqs=
⋃|Mq|
i=0

⋃K
x=0N x

mq
i

is
the union of all mentioned entities and their neighbors within
the K-hops sub-graph, and Rqs is a set of all relations in the
extracted sub-graph of q-th KG. (3) The text sequence can
be considered as a fully-connected word graph as pointed
out previously. This “text-only graph” can be denoted as
Gt(Et,Rt), where Et is all tokens in text and Rt is a set
with only one element that connects all tokens. Finally,

5Depending on the type of MRC task (extractive-style v.s.
multiple-response-items-style), candidate answer A is not required
in the sequence of tokens for the extractive-style MRC task.



we define the full hierarchical graph consisting of all three
parts {Gqs}

|Q|
q=1, {Gqm}

|Q|
q=1, and Gt, as Unified Knowledge-

enhanced Text Graph (UKET).

Dynamically Embedding Knowledge Context We use
pre-trained vectors obtained from the KGE method to initial-
ize representations of entities in Gqs(Eqs ,Rqs). Considering
the structural information of injected knowledge graph for-
gotten during training, we utilize |Q| independent GNN en-
coders (i.e. g1(.), g2(.) in Fig. 2, which is the case of inject-
ing two independent KGs in our experiment setting) to
dynamically update entity embeddings of |Q| injected KGs.
We use rGCN to model the multi-relational nature of the
knowledge graph. To update i-th node of q-th KG in l-th
rGCN layer:

~s
q(l+1)
i = σ(

∑
r∈Rq

s

∑
j∈N r

i

1

|N r
i |
W q(l)
r ~s

q(l)
j ) (1)

WhereN r
i is a set of neighbors of i-th node under relation

r ∈ Rqs. W
q(l)
r is trainable weight matrix at l-th layer and

~s
q(l+1)
i is the hidden state of i-th node at (l+1)-th layer. Af-

terL updates, |Q| sets of node embeddings are obtained. The
output of the q-th KG can be represented as Sq ∈ R|Eqs |×dq ,
where |Eqs | and dq are the numbers of nodes of extracted sub-
graph and the dimension of pre-trained KGE, respectively.

Dynamically Selecting Semantics-Related Mentioned
Entities To handle the knowledge ambiguity issue, we in-
troduce an attention layer to weight these ambiguous men-
tioned entities by using the textual representations of to-
kens (outputs of Section 3.1) to query their semantics-related
mentioned entities representations in KGs. Here, we follow
the attention mechanism of GAT to update each entity men-
tion embedding in Gqm:

~x qi = σ(
∑
j∈N q

i

αqijWq~s
q
j ) (2)

Where ~s qj is the output embeddings from the q-th rGCN
in the previous step. ~xqi is the hidden state of i-th entity
mention xqi in X q , and N q

i is a set of neighbors of xqi in
Gqm. Wq ∈ Rdout×din is a trainable weight matrix, we set
din=dout=dq (thus ~x qi ∈ Rdq ). σ is a nonlinear activation
function. αqij is the attention score that weights ambiguous
mentioned entities in the q-th KG:

αqij =
exp(LeakyReLU(~αT

q [Wq
~ht′

i ||Wq~s
q

j ]))∑
k∈Nq

i

exp(LeakyReLU(~αT
q [Wq

~ht′
i ||Wq~s

q
k ]))

The representation ~hti with a dimension of dt is projected
to the dimension of dq , before using it to query the related
mentioned entity embeddings of Sq: ~ht

′

i = W q
proj

~hti, where
W q
proj ∈ Rdq×dt . ~αq ∈ R2dq is a trainable weight vector.
·T is the transposition operation and || is the concatenation
operation.

Finally, we concatenate outputs of |Q| KGs with textual
context representation to get final knowledge-enriched rep-
resentation:

~hki = [~hti, ~x
1
i , . . . , ~x

|Q|
i ] ∈ Rdt+d1+···+d|Q| (3)

If token ti can’t match any entity in q-th KG (say ti /∈ X q),
we fill ~x qi in Eq.3 with zeros. Note that mentioned entities
in KGs are not always useful, to prevent noise, we follow
(Yang and Mitchell 2017)’s work and add an extra sentinel
node linked to each entity mention inGqm. The sentinel node
is initialized by zeros and not trainable, which is the same as
the case of no retrieved entities in the KG. In this way, ac-
cording to the textual context, KELM can dynamically select
mentioned entities and avoid introducing knowledge noise.

Interaction Between Knowledge-enriched Token Em-
beddings To allow knowledge-enriched tokens’ represen-
tations to propagate to each other in the text, we use a fully-
connected word graph Gt, with knowledge-enriched repre-
sentations from outputs of the previous step, and employ the
self-attention mechanism similar to KT-NET to update to-
ken’s embedding. The final representation for i-th token in
the text is ~hfi ∈ R6∗(dt+d1+···+d|Q|).

Output Module
Extractive-style MRC task A simple linear transforma-
tion layer and softmax operation are used to predict start
and end positions of answers. For i-th token, the proba-
bilities to be the start and end position of answer span

are: psi =
exp(wT

s
~hf

i )
n∑

j=1
exp(wT

s
~hf

j )
, pei =

exp(wT
e
~hf

i )
n∑

j=1
exp(wT

e
~hf

j )
, where

ws, we ∈ R6∗(dt+d1+···+d|Q|) are trainable vectors and n
is the number of tokens. The training loss is calculated
by the log-likelihood of the true start and end positions:

L = − 1
N

N∑
i=1

(log psysi + log peyei ), where N is the total num-

ber of examples in the dataset, ysi and yei are the true start
and end positions of i-th query’s answer, respectively. Dur-
ing inference, we pick the span (a, b) with maximum psap

e
b

where a ≤ b as predicted anwser.

Multiple-response-items-style MRC task Since answers
to a given question are independent of each other, to pre-
dict the correct probability of each answer, a fully connected
layer followed by a sigmoid function is applied on the final
representation of [CLS] token in BERT.

Experiments
Datasets
In this paper, we empirically evaluate KELM on both two
types of MRC benchmarks in SuperGLUE (Wang et al.
2020a): ReCoRD (Zhang et al. 2018) (extractive-style) and
MultiRC (Khashabi et al. 2018) (multiple-response-items-
style). Detailed descriptions of the two datasets can be found
in Appendix A. On both datasets, the test set is not public,
one has to submit the predicted results to the organization to
get the final test score. Since frequent submissions to probe
the unseen test set are not encouraged, we only submit our
best model once for each of the datasets, thus the statistics
of the results (e.g., mean, variance, etc.) are not applicable.
We use Exact Match (EM) and (macro-averaged) F1 as the
evaluation metrics.



External Knowledge We adopt knowledge sources the
same as used in KT-NET: WordNet and NELL (Carlson et al.
2010). Representations of injected knowledge are initialized
by resources provided by (Yang and Mitchell 2017), where
the embeddings of WordNet were pre-trained on a subset
consisting of 151,442 triplets with 40,943 synsets and 18 re-
lations, and the embeddings of NELL were pre-trained on
a subset with 180,107 entities and 258 concepts. The size
of these embeddings is 100. We retrieve related knowledge
from the two KGs in a given sentence: (1) For WordNet,
we look up mentioned entities in the WordNet by string
matching operation, and link all tokens in the same word
to the retrieved mentioned entities (tokens are tokenized by
Tokenizer of BERT). Then, we extract all 1-hop neighbors
for each mentioned entity and construct sub-graphs. In this
paper, our experiment results are based on the 1-hop case.
However, our framework can be generalized to multi-hop
easily, and we leave this for future work. (2) For NELL, we
link entity mentions to the whole KG, and return associated
concepts.

Experimental Setups

Baselines and Comparison Setting Because we use
BERTlarge as the base model in our method, we use it as
our primary baseline for all tasks. For fair comparison,
we mainly compare our results with two fine-tune-based
knowledge-enhanced models: KT-NET and SKG, which
also evaluate their results on ReCoRD with BERTlarge as
the encoder part. As mentioned in the original paper of
KT-NET, KT-NET mainly focuses on the extractive-style
MRC task. We also evaluate KT-NET on the multiple-
response-items-style MRC task and compare the results with
KELM. We evaluate our approach in three different KB set-
tings: KELMWordNet, KELMNELL, and KELMBoth, to inject
KG from WordNet, NELL, and both of the two, respec-
tively (The same as KT-NET). Implementation details of our
model are presented in Appendix B.

Dev Test
Model EM F1 EM F1

PLM w/o external knowledge BERTlarge 70.2 72.2 71.3 72.0

Knowledge-enhanced PLM

SKG+BERTlarge 70.9 71.6 72.2 72.8
KT-NETWordNet 70.6 72.8 - -
KT-NETNELL 70.5 72.5 - -
KT-NETBOTH 71.6 73.6 73.0 74.8

KELM
KELMWordNet 75.4 75.9 75.9 76.5
KELMNELL 74.8 75.3 75.9 76.3
KELMBoth 75.1 75.6 76.2 76.7

Table 2: Performance comparison on ReCoRD. The effec-
tiveness of injecting external knowledge are shown.

Results

The results for the extractive-style MRC task and multiple-
response-items-style MRC task are given in Table 2 and Ta-
ble 3, respectively. The scores of other models are taken

Dev Test
Model EM F1 EM F1

PLM w/o external knowledge BERTlarge - - 24.1 70.0

Knowledge-enhanced PLM KT-NET∗BOTH 26.7 71.7 25.4 71.1

KELM
KELMWordNet 29.2 70.6 25.9 69.2
KELMNELL 27.3 70.4 26.5 70.6
KELMBoth 30.3 71.0 27.2 70.8

Table 3: Performance comparison on MultiRC. The effec-
tiveness of injecting external knowledge are shown. [*] Re-
sults are from our implementation.

directly from the leaderboard of SuperGLUE6 and litera-
ture (Qiu et al. 2019; Yang et al. 2019). In this paper, our im-
plementation is based on a single model, and hence com-
paring with ensembles based models is not considered. Best
results are labeled in bold and the second best are under-
lined.

Results on the dev set of ReCoRD show that: (1) KELM
outperforms BERTlarge, irrespective of which external KG
is used. Our best KELM offers a 5.2/3.7 improvement
in EM/F1 over BERTlarge. (2) KELM outperforms previ-
ous SOTA knowledge-enhanced PLM (KT-NET) by +3.8
EM/+2.3 F1. In addition, KELM outperforms KT-NET sig-
nificantly in all three KB settings. On the dev set of Mul-
tiRC, the best KELM offers a 3.6 improvement in EM over
KT-NET. Although the performance on F1 drop a little com-
pared with KT-NET, we still get a gain of +2.9 (EM+F1)
over the former SOTA model7.

Results on the test set further demonstrate the effec-
tiveness of KELM and its superiority over the previous
works. On ReCoRD, it significantly outperforms the former
SOTA knowledge-enhanced PLM (finetuning based model)
by +3.2 EM/+1.9 F1. And on MultiRC, KELM offers a
3.1/0.8 improvement in EM/F1 over BERTlarge, and achieves
a gain of +1.5 (EM+F1) over KT-NET.

Case Study
This section uses an example in ReCoRD to show how
KELM avoids knowledge ambiguity issue and selects the
most relevant mentioned entities adaptively w.r.t the tex-
tual context. Recall that given a token ti, the importance of
a mentioned entity mq

j in q-th KG is scored by the atten-
tion weight αqij in Eq.2. To illustrate how KELM can select
the most relevant mentioned entities, we analyze the exam-
ple that was also used in the case study part of KT-NET.
The question of this example is “Sudan remains a XXX-
designated state sponsor of terror and is one of six coun-
tries subject to the Trump administration’s ban”, where the
“XXX” is the answer that needs to be predicted. The case
study in KT-NET shows the top 3 most relevant concepts
from WordNet for the word “ban” are “forbidding.n.01”,
“proscription.n.01”, and “ban.v.02”, with the weights of

6https://super.gluebenchmark.com/leaderboard (Sept 4th,
2021)

7The best model is chosen according to the EM+F1 score (same
as KT-NET).



0.861, 0.135, and 0.002, respectively. KT-NET treats all
synsets of a word as candidate KG concepts, both “forbid-
ding.n.01” and “ban.v.02” will be the related concepts of the
word “ban” in the text. Although KT-NET can select rel-
evant concepts and suppress the knowledge noise through
its specially designed attention mechanism, we still observe
two problems from the previous case study: (1) KT-NET
cannot select the most relevant mentioned entities in KG that
share the same string in the input text. (2) Lack of ability to
judge the part of speech (POS) of the word (e.g. “ban.v.02”
gets larger weights than “ban.n.04”).

For KELM, by contrast, we focus on selecting the most
relevant mentioned entities to solve the knowledge ambigu-
ity issue (based on the “entity link to token graph” part of
UKET). For injecting WordNet, by allowing message pass-
ing on the extracted sub-graphs (“KG only” part of UKET),
knowledge context can be dynamically embedded accord-
ing to the textual context. Thus the neighbors’ informa-
tion of mentioned entities in WordNet can be used to help
the word in a text to correspond to a particular POS based
on its context. The top 3 most relevant mentioned entities
in WordNet for the word “ban” in the above example are
“ban.n.04”, “ban.v.02”, and “ban.v.01”, with the weights of
0.715, 0.205, and 0.060, respectively.

To vividly show the effectiveness of KELM, we analyze
ambiguous words in the motivating example show in Fig. 1
(The example comes from ReCoRD):

“President Ford then pardoned Richard Nixon, leading to
a further firestorm of outrage.”

Table. 4 presents 5 words in the above passage. For each
word, the most relevant mentioned entity in WordNet with
the highest score is given. The golden mentioned entity for
each word is labeled by us. Definitions of mentioned entities
in WordNet that correspond to the word examples are listing
in Table 5 of Appendix.

Word in text
(prototype)

The most relevant
mentioned entity in

WordNet (predicted)
Golden mentioned entity

ford ford.n.05 (0.56) ford.n.05
pardon pardon.v.02 (0.86) pardon.v.02
nixon nixon.n.01 (0.74) nixon.n.01
lead lead.v.03 (0.73) lead.v.03

outrage outrage.n.02 (0.62) outrage.n.02

Table 4: Case study. Comparisons between the golden label
with the most relevant mentioned entity in WordNet. The
importance of selected mentioned entities is provided in the
parenthesis.

Further Analysis and Discussion
KELM incorporates knowledge in KGs into the representa-
tions in the last hidden layer of PLM (Refer to Methodology
Section). It is essentially a model-agnostic, KG-agnostic,
and task-agnostic framework for enhancing language model
representations with factual knowledge from KGs. It can be
used to enhance any PLM, with any injected KGs, on any
downstream task. Besides the two Q&A-related MRC tasks
we mentioned in the main text, we also evaluate KELM on

COPA8 and SQuAD 1.19 based on BERTlarge, results are
presented in Appendix D and Appendix F, respectively.
To demonstrate KELM is a model-agnostic framework, we
also implement KELM based on RoBERTalarge and evaluate
it on ReCoRD. The experiment is presented in Appendix
E. Improvements achieved by KELM over all vanilla base
PLM models indicate the effectiveness of injecting external
knowledge.

However, the improvements of KELM over RoBERTa
on ReCoRD and BERT on SQuAD 1.1 are marginal com-
pared with the ones on ReCoRD/MultiRC/COPA (BERTlarge
based). The reason behind this is that pretraining model
on in-domain unlabeled data could boost performance on
downstream tasks. Passages in ReCoRD are collected from
articles in CNN/Daily Mail, while BERT is pre-trained on
BookCorpus and English Wikipedia. RoBERTa not only
uses the corpus that used in BERT (16 GB), but also an
additional corpus collected from the CommonCrawl News
dataset (76 GB). ReCoRD is in-domain for RoBERTa but
is out-of-domain for BERT. Similarly, SQuAD 1.1 is cre-
ated from Wikipedia, it is an in-domain downstream task
for both BERT and RoBERTa. This partially explains why
RoBERTa achieves a much larger improvement over BERT
on the result of ReCoRD (71.3 → 88.4 in EM on test set)
than the one on SQuAD 1.1 (84.1 → 88.9). A similar anal-
ysis can be also found in T5 (Raffel et al. 2020). From our
empirical results, we can summarize that general KG (e.g.
WordNet) can not help too much for the PLMs pretrained
on in-domain data. But it can still improve the performance
of the model when the downstream tasks are out-of-domain.
Further detailed analysis can be found in our appendix.

Finding a popular NLP task/dataset that is not related to
the training corpus of modern PLMs is difficult. Pre-training
on large-scale corpus is always good if we have unlim-
ited computational resources and plenty of in-domain cor-
pus. It has been evident that the simple finetuning of PLM
is not sufficient for domain-specific applications. KELM
can provide people another choice when they do not have
such a large-scale in-domain corpus and want to incorpo-
rate incremental domain-related structural knowledge into
the domain-specific applications.

Conclusion
In this paper, we have proposed KELM for MRC, which
enhances PLM representations with structured knowledge
from KGs based on the fine-tuning process. Via a uni-
fied knowledge-enhanced text graph, KELM can embed the
injected knowledge dynamically, and select relevant men-
tioned entities in the input KGs. In the empirical analysis,
KELM shows the effectiveness of fusing external knowl-
edge into representations of PLM and demonstrates the abil-
ity to avoid knowledge ambiguity issue. Injecting emerging
factual knowledge into PLM during finetuning without re-
pretraining the whole model is quite important in the ap-
plication of PLMs and is still barely investigated. Improve-
ments achieved by KELM over vanilla baselines indicate a

8A commonsense causal reasoning task in SuperGLUE
9An extractive-style MRC task.



potential direction for future research.

Appendix A
Datatset Details

ReCoRD (an acronym for the Reading Comprehension with
Commonsense Reasoning Dataset) is a large-scale dataset
for extractive-style MRC requiring commonsense reasoning.
There are 100,730, 10,000, and 10,000 examples in the train-
ing, development (dev), and test set, respectively. An exam-
ple of the ReCoRD consists of three parts: passage, question,
and answer. The passage is formed by the first few para-
graphs of an article from CNN or Daily Mail, with named
entities recognized and marked. The question is a sentence
from the rest of the article, with a missing entity specified
as the golden answer. The model needs to find the golden
answer among the entities marked in the passage. Questions
that can be easily answered by pattern matching are filtered
out. By the design of the process of data collection, one can
see that to answer the questions, external background knowl-
edge and ability of reasoning are required.
MultiRC (Multi-Sentence Reading Comprehension) is a
multiple-response-items-style MRC dataset of short para-
graphs and multi-sentence questions that can be answered
from the content of the paragraph. Each example of MultiRC
includes a question that associates with several choices for
answer-options, and the number of correct answer-options
is not pre-specified. The correct answer is not required to
be a span in the text. The dataset consists of 10K ques-
tions ( 6k multiple-sentence questions), about 60% of this
data make training/dev data. Paragraphs in the dataset have
diverse provenance by being extracted from 7 different do-
mains such as news, fiction, historical text etc., and hence are
expected to be more complicated in their contents as com-
pared to single-domain datasets.

Appendix B
Implementation Details

Our implementation is based on HuggingFace (Wolf et al.
2020) and DGL (Wang et al. 2020b). For all three settings
of KELM, parameters of the encoding layer of BERTlarge are
initialized with pre-trained model released by Google. Other
trainable parameters in HMP are randomly initialized. The
total number of trainable parameters of KELM is 340.4M
(Roughly the same as BERTlarge, which has 340M parame-
ters). Since including all neighbors around mentioned enti-
ties of WordNet is not efficient, for simplicity, we use top 3
most common relations in WordNet in our experiment (i.e.
hyponym, hypernym, derivationally related form). For both
datasets, we use a “two stage” fine-tune strategy to achieve
our best performance, the FullTokenizer built in BERT is
used to segment input words into wordpieces.

For ReCoRD, the maximum length of answer during in-
ference is set to 30, and the maximum length of question
is set to 64. Questions longer than that are truncated. The
maximum length of input sequence T 10 is set to 384. Input
sequences longer than that are segmented into chunks with

10Refer to the PLM Encoding Module of Methodology Section.

a stride of 128. Fine-tuning our model on ReCoRD costs
about 18 hours on 4 V100 GPU with a batch size of 48. We
freeze parameters of BERT and use Adam optimizer with a
learning rate of 1e-3 to train our knowledge module in the
first stage. The maximum number of training epochs of the
first stage is 10. The purpose of this is to provide a good
weight initialization for our HMP. For the second stage, the
pre-trained BERT parameters and our HMP part will be fine-
tuned together. The max number of training epochs is cho-
sen from {4, 6, 8}. The learning rate is set to be 2e-5 with
a warmup over the first 6% of max steps, and linear decay
until up to max epochs. For both two stages, early stopping
is applied according to the best EM+F1 score on the dev set
every 500 steps.

For MultiRC, the maximum length of input sequence T
is set to 256. The summation of length of question (Q) and
length of candidate answer (A) is not limited. Paragraph (P )
is truncated to fit the maximum length of input sequence.
Fine-tuning KELM on MultiRC needs about 12 hours on 4
V100 GPU with a batch size of 48. For the first stage fine-
tuning, learning rate is 1e-4 and the maximum number of
training epochs is 10. For the second stage, the max num-
ber of training steps is chosen from {10000, 15000, 20000}.
The learning rate is set to be 2e-5 with a warmup over the
first 10% of max steps.

Appendix C
Supplementation of the Case Study Section

We provide definitions of the top 3 most relevant mentioned
entities in WordNet that correspond to the word examples
mentioned in Case Study Section. Descriptions are ob-
tained by using NLTK (Loper and Bird 2002). By compre-
hending the motivating example in the case study section,
we can see that KELM can correctly select the most relevant
mentioned entities in the KG.

Appendix D
Experiment on Commonsense Causal

Reasoning Task
To further explore the generalization ability of KELM, we
also evaluate our method on COPA (Roemmele, Bejan, and
Gordon 2011) (Choice of Plausible Alternatives), which is
also a benchmark dataset in SuperGLUE and can be used for
evaluating progress in open-domain commonsense causal
reasoning. COPA consists of 1000 questions, split equally
into development and test sets of 500 questions each. Each
question is composed of a premise and two alternatives,
where the task is to select the alternative that more plau-
sibly has a causal relation with the premise. Similar to the
previous two MRC tasks, the development set is publicly
available, but the test set is hidden. One has to submit the
predicted results for the test set to SuperGLUE to retrieve
the final test score. Since the implementation of KELM is
based on BERTlarge, we use it as our baseline for the com-
parison. The result of BERTlarge is directly taken from the
leaderboard of SuperGLUE. Table 6 shows the experiment
results. The injected KG is WordNet here, and we use accu-
racy as the evaluation metric.



Word in text
(prototype)

Mentioned entity
in WordNet Definition

ban
ban.n.04 (0.72) an official prohibition or edict against something
ban.v.02 (0.21) prohibit especially by legal means or social pressure
ban.v.01 (0.06) forbid the public distribution of ( a movie or a newspaper)

ford

ford.n.05 (0.56)
38th President of the United States;
appointed vice president and succeeded
Nixon when Nixon resigned (1913-)

ford.n.07 (0.24) a shallow area in a stream that can be forded
ford.v.01 (0.08) cross a river where it’s shallow

pardon
pardon.v.02 (0.86) a warrant granting release from punishment for an offense

sentinel (0.10) -
pardon.n.02 (0.04) grant a pardon to

nixon
nixon.n.01 (0.74)

vice president under Eisenhower and 37th President
of the United States; resigned after the Watergate
scandal in 1974 (1913-1994)

sentinel (0.26) -

lead
lead.v.03 (0.73) tend to or result in
lead.n.03 (0.12) evidence pointing to a possible solution
lead.v.04 (0.05) travel in front of; go in advance of others

outrage outrage.n.02 (0.62) a wantonly cruel act
sentinel (0.38) -

Table 5: Definitions of mentioned entities in WordNet cor-
responding to the word examples in the case study. The im-
portance of mentioned entities is provided in the parenthesis.
“sentinel” is meaningless, which is used to avoid knowledge
noise.

Model dev test

BERTlarge - 70.6

KELM
BERTlarge
WordNet 76.1 78.0

Table 6: Performance comparison on COPA. The effective-
ness of injecting knowledge (WordNet) are shown.

The huge improvement over the baseline in this task
demonstrates that knowledge in WordNet is indeed helpful
for BERT to improve the generalization ability to the out-of-
domain downstream task.

Appendix E
KELM: A framework of finetune-based

model-agnostic knowledge-enhanced PLM
We implement KELM based on the RoBERTalarge, which
has a similar number of trainable parameters as BERTlarge
but uses nearly 10 times of training corpus than BERTlarge.
Since the performances of RoBEATa on the leaderboard
of SuperGLUE are based on ensembling, we also fine-
tune RoBERTalarge on ReCoRD to produce the results of
a single model. Comparisons of the results can be found
in Table 7, where you can also see an improvement there.
However, that improvement is not as significant as we ob-
served in BERTlarge. Reasons are two-fold: (1) Passages in
ReCoRD are collected from articles in CNN/Daily Mail,
while BERT is pre-trained on BookCorpus and English
Wikipedia. RoBERTa not only uses the corpus that used in
BERT (16 GB), but also an additional corpus collected from
the CommonCrawl News dataset (76 GB). ReCoRD dataset
is in-domain for RoBERTa but is out-of-domain for BERT.
It seems that the improvements of KELM with inject-

ing general KGs (e.g. WordNet) on the in-domain down-
stream tasks are not as large as the out-of-domain down-
stream tasks. A similar phenomenon can be also observed
in the experiment of SQuAD 1.1 (Refer to Appendix E).
(2) The same external knowledge (WordNet, NELL) can not
help RoBERTalarge too much, since RoBERTa is pre-trained
on a much larger corpus than BERT, knowledge in Word-
Net/NELL has been learned in RoBERTa.

Dev Test
Model EM F1 EM F1

PLM w/o
external knowledge

BERTlarge 70.2 72.2 71.3 72.0
RoBERTa∗large 87.9 88.4 88.4 88.9

knowledge enhanced PLM
(finetune-based)

KELM
BERTlarge
Both 75.1 75.6 76.2 76.7

KELM
RoBERTalarge
Both 88.2 88.7 89.1 89.6

knowledge enhanced PLM
(pretrain-based)

LUKE 90.8 91.4 90.6 91.2

Table 7: Comparison of the effectiveness of injecting exter-
nal knowledge between BERT and RoBERTa. [*] Results
are from our implementation.

We also list the results of LUKE (Yamada et al. 2020)
in Table 7. LUKE is a pretrain-based knowledge en-
hanced PLM and uses Wiki-related golden entities (one-to-
one mapping) as the injected knowledge source (about 500k
entities11). It has more 128 M parameters than the total num-
ber of parameters of the vanilla RoBERTa. As we summa-
rized in Table 1 in the main text, the pre-training task is also
different compared with RoBERTa. Although LUKE gets
better results compared with vanilla RoBERTa and KELM,
it needs 16 NVIDIA Tesla V100 GPUs and the training takes
approximately 30 days. Relying on hyperlinks in Wikipedia
as golden entity annotations, lacking the flexibility to adapt
the external knowledge of other domains, and needing re-
pretraining when incorporating knowledge, these limitations
hinder the abilities of applications.

Appendix F
Experiment on SQuaD 1.1

SQuAD1.1 (Rajpurkar et al. 2016) is a well known
extractive-style MRC dataset that consists of questions cre-
ated by crowdworkers for Wikipedia articles. It contains
100,000+ question-answer pairs on 536 articles. We imple-
ment KELM based on the BERTlarge, and compare our re-
sults on the development set of SQuAD 1.1 with KT-NET
(Best result of KT-NET is based on injecting WordNet only).
Results are shown in Table 8

Results on KELM show an improvement over vanilla
BERT. Both BERT and RoBERTa use English Wikipedia
as the corpus for pretraining. Since SQuAD is also created
from Wikipedia, it is an in-domain downstream task for both
BERT and RoBERTa (while ReCoRD dataset is in-domain

11For KELM, we only use 40943 entities in WordNet and 258
concepts in NELL.



Dev
Model EM F1

PLM w/o external knowledge BERTlarge 84.4 91.2

knowledge enhanced PLM
(finetune-based)

KT-NET
BERTlarge
WordNet 85.1 91.7

KELM
BERTlarge
WordNet 84.7 91.5

Table 8: Performance comparison on the development set of
SQuAD 1.1.

for RoBERTa but is out-of-domain for BERT). This ex-
plains why RoBERTa achieves a much larger improvement
over BERT on the result of ReCoRD (71.3→ 88.4 in EM on
test set) than the one on SQuAD 1.1 (84.1→ 88.9). The rest
of the improvement is because RoBERTa uses 10 times of
training corpus than BERT and different pre-training strate-
gies they used.

Interestingly, we find the performance of KELM on
SQuAD 1.1 is sub-optimal compared with KT-NET. As we
mentioned in the last paragraph of the Related Work Sec-
tion, KT-NET treats all synsets of entity mentions within
the WN18 as candidate KB concepts. Via a specially de-
signed attention mechanism, KT-NET can directly use all 1-
hop neighbors of the mentioned entities. Although this limits
the ability of KT-NET to select the most relevant mentioned
entities (as we discussed in Case Study Section), informa-
tion of these neighbors can be directly considered. Using
neighbors of the mentioned entities indirectly via the HMP
mechanism makes it possible for KELM to dynamically em-
bed injected knowledge and to select semantics-related men-
tioned entities. However, SQuAD is an in-domain down-
stream task for BERT, the problem of ambiguous meanings
of words can be alleviated by pretraining model on the in-
domain corpus. Compared with KT-NET, a longer message
passing path in KELM may lead to sub-optimal improve-
ment on the in-domain task.

Appendix G
Further Discussions About the Novelty

w.r.t SKG/KT-NET
UKET defined in KELM consists of three subgraphs in a
hierarchical structure, each subgraph corresponds to one
sub-process of our proposed HMP mechanism and solves
one problem presented in the Hierarchical Knowledge En-
hancement Module part of Methodology Section. SKG
only uses GNN to dynamically encode the extracted KG
which corresponds to the first part of UKET, it can not
solve the knowledge ambiguity issue and forbids interac-
tions among knowledge-enriched tokens. KT-NET defines
a similar graph as the third part of UKET. However, the
first and second subgraphs of UKET are absent. The sec-
ond subgraph of UKET is independent of ideas of KT-NET
and SKG, thus KELM is not a simple combination of these
two methods. We are the first to unify text and KG into
a graph and to propose this hierarchical message passing
framework to incorporate two heterogeneous information.
SKG/KT-NET can be interpreted as parts of the ablation

study of components of KELM. The result of SKG is ab-
lation with the component only related to the first subgraph
of UKET. While KT-NET only contains the third subgraph
with a modified knowledge integration module.

Appendix H
Limitations and Further Improvements

of KELM
Limitations for KELM are two-fold: (1) Meanings of men-
tioned entities in different KGs that share the same entity
mentions in the text may conflict with each other. Although
HMP can help to select the most relevant mentioned entities
in a single KG, there’s no mechanism to guarantee the selec-
tions across different KGs; (2) Note the knowledge-enriched
representation in Eq.3 is obtained by simple concatenation
of the embeddings from different KGs. Too much knowl-
edge incorporation may divert the sentence from its correct
meaning (Knowledge noise issue). We expect these two po-
tential improvements to be a promising avenue for future
research.
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