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ABSTRACT

In spatially resolved transcriptomics (SRT) research, gene expression profiling
with spatial context has enabled spatial domain identification within single tissue
samples. Extending these analyses to multiple biological samples presents addi-
tional challenges, including cross-sample variability and batch effects. Method de-
velopment has been limited by the lack of datasets that combine multi-subject co-
horts with expert-derived annotations. We present MOCHA (Multi-sample Omics
Cohorts with Human Annotation), a curated resource for developing and evalu-
ating multi-sample SRT methods. MOCHA integrates molecular profiles, spa-
tial profiles, and high-resolution Hematoxylin and Eosin (H&E) images across
multiple subjects, with each sample paired with domain annotations from expert
pathologists. For algorithm development and evaluation, MOCHA provides stan-
dardized data organization, efficient storage formats for large-scale processing,
and protocols for handling batch effects in multi-sample integration.

1 INTRODUCTION

Spatially resolved transcriptomics (SRT) links gene expression profiles to precise tissue coordinates,
enabling quantitative analysis of microanatomy and cellular organization at high resolution. Mul-
tiple platforms now make SRT broadly accessible, including sequencing-based assays such as 10x
Genomics Visium and Slide-seq (Stahl et al., 2016} [Tian et al., [2023)) and imaging-based assays
such as MERFISH (Chen et al.l [2015) and STARmap (Wang et al., |2018)). The resolution of these
technologies varies from multi-cellular spots to near single-cell measurements, but all require com-
putational approaches that can identify coherent tissue domains by combining molecular profiles
with spatial information.

Several repositories have been developed to organize publicly available datasets, including SORC
for cancer research (Zhou et al., [2024)), Aquila for cross-disease analyses (Zheng et al., [2023)), and
others such as SODB (Yuan et al.,[2023)), STOmicsDB (Xu et al., [2022)), and SpatialDB (Fan et al.,
2020). Despite this progress, multi-subject datasets with expert-generated spatial annotations remain
limited. This gap constrains systematic method development for multi-sample integration—an es-
sential setting for cohort-level studies that must model biological heterogeneity alongside technical
variation.

Methodological advances underscore this need. Early work emphasized single-sample domain iden-
tification, including Bayesian modeling approaches such as BayesSpace (Zhao et al., |2021) and
deep learning methods that integrate histology, including iIMPACT (Jiang et al., [2024). More re-
cent approaches—such as BASS (Li & Zhou, 2022), BayeSmart (Guo et al.,[2024), and graph-based
methods like STAGATE (Dong & Zhang, |2022)—extend analysis to multiple samples using distinct
strategies, from clustering across tissues to learning shared representations. Additional challenges,
such as deconvolution of mixed spots (Chen et al.| 2022; 2023 [Luo et al., [2024)) and correction
for batch effects, reinforce the importance of datasets that provide aligned molecular, spatial, and
histological information together with expert annotations.

We introduce MOCHA, a Multi-sample Omics Cohorts with Human Annotation database for train-
ing and evaluation of multi-sample SRT methods. MOCHA aggregates multi-subject datasets that
each include a gene expression matrix, spatial coordinates, and a co-registered high-resolution
Hematoxylin and Eosin (H&E) image (Chan, 2014). Each sample is accompanied by spatial domain
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labels produced by an expert pathologist, enabling evaluation of domain delineation and represen-
tation learning in multi-sample contexts. To promote reproducibility and accessibility, MOCHA is
released in formats readily usable with Python and R and distributed for integration into existing
pipelines.

2 DATASETS

To assemble a resource for multi-sample spatial domain identification, we curated a set of publicly
available SRT datasets. Following an approach similar to that in the STimage-1K4M review |Chen
et al.| (2024), we systematically searched repositories including 10x Genomics, Gene Expression
Omnibus (GEO), and Spatial Research. Our selection criteria required each study to provide a cell-
by-gene expression count matrix, a spatial coordinate matrix, and cellular annotations delineated by
a pathologist using the corresponding H&E images.

This search yielded 10 distinct cohorts, summarized in Table E} Cancer-related datasets in-
clude HER2-positive breast cancer (BC_HER2+) (Andersson et al., 2021), high-plasticity subtypes
(BC_HP) (Coutant & et al.l [2023), recurrent neoplastic heterogeneity (BC_NP) (Wu et al. |2021)),
triple-negative breast cancer (BC_TNBC) (Wang et al., |2024)), colorectal cancer consensus molecu-
lar subtypes (CRC_CMS) (Valdeolivas et al.,[2024), kidney cancer with tertiary lymphoid structures
(KC_TLS) (Dawo et al., 2023), lung cancer with tertiary lymphoid structures (LC_TLS) (Dawo
et al [2023), and renal cell carcinoma with tertiary lymphoid structures (RCC_TLS) (Meylan &
et al., 2022), along with human dorsolateral prefrontal cortex (DLPFC) (Maynard et al., [2021)) and
mouse olfactory bulb (MOB) (Stahl & et al., [2016).

Table 1: A summary of the SRT datasets. (BC: Breast cancer; CRC: Colorectal cancer; DLPFC:
Dorsolateral prefrontal cortex; KC: Kidney cancer; LC: Lung cancer; MOB: Mouse olfactory bulb;
RCC: Renal cell carcinoma)

Cohort Tissue Technology Subjects Samples

BC_HER2+_10x| HER2-positive (HER2+) 10x Visium 8 8
breast cancer

BC_HP_10x High-plasticity (HP) breast 10x Visium 12 14
cancer subtypes

BC_NP_10x Recurrent neoplastic (NP)  10x Visium 6 6
cell heterogeneity in breast
cancer

BC_TNBC_ST Triple-negative breast can- ST 94 94
cer (TNBC)

CRC_CMS_10x|  Colorectal cancer consen- 10x Visium 11 14
sus molecular subtypes
(CMS)

DLPFC_10x Dorsolateral prefrontal cor-  10x Visium 3 12
tex

KC_TLS_10x Kidney cancer with tertiary ~ 10x Visium 3 3
lymphoid structures (TLS)

LC_TLS_10x Lung cancer with tertiary 10x Visium 5 5
lymphoid structures (TLS)

MOB_ST Mouse olfactory bulb ST 1 12

RCC_TLS-10x Tertiary lymphoid struc-  10x Visium 23 23
tures (TLS) in renal cell
carcinoma

These cohorts span a wide range of tissue types and disease contexts, encompassing both human and
mouse studies, and multiple technological platforms (10x Genomics Visium and ST). The scale also
varies substantially, with BC_TNBC including 94 subjects and 94 samples, while smaller datasets
such as KC_TLS and LC_TLS consist of only three and five samples, respectively. Together, these
datasets enable evaluation of multi-sample spatial domain identification methods. A summary of
molecular characteristics, including the number of spots, genes, and data sparsity for each cohort, is
presented in Figure
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Figure 1: A summary of the molecular profiles for each cohort.

3 PRE-PROCESSING AND BATCH EFFECT CORRECTION

A standard pipeline for preprocessing multi-sample SRT data starts by concatenating the raw gene
expression matrices from each sample over a set of common genes, followed by library size nor-
malization to correct for variability in sequencing depth. This adjustment can be performed using
packages such as scater and scran, which implement techniques such as the trimmed mean of
M-values (TMM), relative log expression (RLE), and upper-quartile scaling (Robinson & Oshlack,
2010} [Anders & Huber, 2010} Bullard et al., 2010; [McCarthy et al., 2017). Alternatively, frame-
works such as Seurat and scanpy apply a global-scaling approach in which counts for each cell
are divided by the total count, rescaled to a fixed scaling factor (e.g., 10,000), and log-transformed

to stabilize variance (Hao et al.| 2023} [Wolf et al.,[2018).

Following normalization, dimensionality reduction can be performed through feature selection or
projection methods. Feature selection can involve identifying spatially variable genes (SVGs) using
methods such as SPARK-X (Zhu et al.} 2021} [Zhao et al}, 2021}, Jiang et al.,[2024)), or highly variable
genes (HVGs), which are generally preferred in studies involving multiple subjects to reduce inter-
subject variability 2022). Dimensionality reduction can also be achieved by projecting
the data into a lower-dimensional space using techniques such as PCA, t-SNE, UMAP, or graph
attention autoencoders as implemented in STAGATE (van der Maaten & Hintonl, 2008} [Becht et al

2019; [Dong & Zhang}, [2022).

Batch correction can be subsequently performed to adjust for systematic variation between samples.
One common approach is to operate on reduced feature spaces using techniques such as Harmony
(Korsunsky et al 2019} [Li & Zhoul 2022} [Guo et al, 2024). An overview of this batch effect
correction, and feature selection, workflow is demonstrated in Figurem

An alternative pipeline for batch correction is implemented in Crescendo, which avoids transfor-
mation to a reduced-dimensional space and instead models the raw, integer-valued counts directly
(Millard et al.} [2025)). This approach employs a generalized linear mixed model (GLMM) in which
the batch is included as a random effect, preserving the discrete structure of the data. Crescendo can
extend single-sample spatial clustering models such as BayesCafe, which relies on the zero-inflated
negative binomial (ZINB) distribution 2024), to multi-sample settings by integrating batch
correction directly within the generative hierarchy.
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Figure 2: AA standard pipeline for feature selection with HVGs and batch effect correction using
Harmony, illustrated with the KC_TLS_10x cohort (Dawo et all,2023).

4 MULTI-SAMPLE SPATIAL CLUSTERING METHODS

Recent advances in computational modeling have led to methods that extend spatial transcriptomics
analysis from single-sample to multi-sample settings. These approaches are designed to integrate
spatial and molecular information across subjects while accounting for technical and biological vari-
ability.

As summarized in Table [2} BayeSMART is a Bayesian framework for multi-sample spatial clus-
tering that integrates reconstructed single-cell information from histology images with spatial gene
expression 2024). BASS is a hierarchical Bayesian model that jointly performs cell
type clustering and spatial domain identification across samples (Li & Zhou, 2022). STAGATE
is a graph attention autoencoder that generates low-dimensional embeddings by combining spatial
neighborhood structure with molecular profiles (Dong & Zhang}, [2022)).

Table 2: A summary of the existing multi-sample spatial clustering methods. These Bayesian
(Bayes) or deep learning (DL) approaches use Principal Component Analysis (PCA) or autoen-
coders (AE) for dimension reduction. Additionally, BayeSMART integrates information from H&E
images.

Method Dimension reduction H&E Approach Language Year
BayeSMART ~ PCA v Bayes R/C++ 2024
BASS PCA Bayes R/C++ 2022
STAGATE AE DL Python 2022

In a majority of the cancer studies included in MOCHA, the detailed pathologist annotations can be
grouped into four broad categories: immune, stroma, tumor, and normal. These groupings, described
in the Supplementary Material, provide a consistent reference structure for applying multi-sample
spatial clustering methods while accommodating variability across cohorts.
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