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Abstract

Multiple instance learning (MIL) provides a weakly supervised framework for whole
slide image (WSI) classification, enabling slide-level prediction from gigapixel images with
only slide-level labels. However, WSI subtype classification in realistic settings is still
challenging. In this work, we propose ResGAT, a residual graph attention framework that
operates on patch graphs and models representations with stacked residual graph attention
blocks. ResGAT is evaluated on binary subtype classification task across a rare, class-
imbalanced appendiceal cancer cohort and two public TCGA datasets. It outperforms
SOTA MIL baselines on the appendiceal cancer cohort and remains competitive on the
TCGA datasets. We further assess cross-site generalization via few-shot adaptation under
source shift, showing that ResGAT adapts effectively to new domains with limited labels.
An ablation study is provided to assess the effectiveness of key architectural components
of our method.

Keywords: whole slide image classification, multiple instance learning, residual graph
attention framework, cross-site generalization

1. Introduction

As histopathology digitization becomes routine, incorporating computational models
into diagnostic workflows is becoming increasingly feasible (Hanna et al., 2019; Kumar



et al., 2020; Yilmaz et al., 2024). These computational models provide slide-level classifi-
cation results together with interpretable justifications, promoting consistent decisions and
transparent verification (Tizhoosh and Pantanowitz, 2018; Yilmaz et al., 2024). This is
particularly valuable for rare diseases, where expert diagnosticians are scarce. However, a
fundamental challenge lies in the gigapixel scale of whole-slide images (WSIs), which pre-
vents them from being processed as a single image. In practice, the standard approach
involves tiling tissue regions into thousands of patches, formulating the task as a Multiple
Instance Learning (MIL) problem.

The evolution of MIL for WSI classification has shifted from simple feature pooling to
sophisticated context modeling. Initial frameworks adopted static aggregation strategies,
such as max-pooling (Campanella et al., 2019) and mean-pooling. While computationally
efficient, these methods often lose critical contextual information by focusing only on the
extreme feature or diluting signals through averaging. The introduction of Attention-based
MIL (ABMIL) (Ilse et al., 2018) marked a pivotal advancement by using trainable weights
to rank instances. Subsequent research has sought to address overfitting and attention
concentration through advanced strategies: pseudo-bag augmentation and feature distilla-
tion methods like DTFD-MIL (Zhang et al., 2022); and attention-challenging frameworks
such as ACMIL (Zhang et al., 2024) and MHIM (Tang et al., 2023) that mitigate atten-
tion concentration by suppressing high-confidence instances to encourage the discovery of
comprehensive diagnostic patterns. Despite these improvements, the attention mechanisms
often treat instances as independent and identically distributed (i.i.d.). To explicitly cap-
ture inter-instance correlations, recent sequence-based works like TransMIL (Shao et al.,
2021) and the Mamba-based architecture (Yang et al., 2024) leverage self-attention and se-
lective scan mechanisms to explicitly model long-range dependencies, marking a paradigm
shift towards correlated feature learning.

Running parallel to sequence-based advancements, Graph Neural Networks (GNNs)
have emerged as a distinct paradigm focused on explicitly encoding the structural topol-
ogy of the tissue. By representing patches as nodes and their interactions as edges, these
methods avoid flattening the spatial structure into a sequence. Early implementations em-
ployed k-nearest neighbor (KNN) algorithms to construct spatial graphs, demonstrating
that explicitly modeling local neighborhoods enhances diagnostic accuracy (Chen et al.,
2021; Zheng et al., 2022). Subsequent research has explored more intricate graph construc-
tions, including hierarchical formulations for multi-resolution reasoning (Hou et al., 2022)
and heterogeneous graphs that distinguish between different tissue components (Chan et al.,
2023). However, the ”over-smoothing” phenomenon (Chen et al., 2020) is challenging for
graph-base MIL approaches. Stacking multiple message passing layers induce node represen-
tations to become homogenized, losing the discriminative power essential for classification.
This degradation poses an obstacle in realistic clinical settings, which are characterized by
extreme heterogeneity in tissue scale. In such diverse scenarios, applying standard read-
out functions to homogenized features yields inconsistent diagnostic profiles across varying
graph sizes will harm the reliability required for clinical deployment.

In this work, we propose a residual graph attention network (ResGAT), a weakly su-
pervised MIL framework tailored for whole slide image subtype classification. ResGAT
processes hybrid k-NN patch graphs with stacked residual graph attention blocks, where
each block combines a multi-head graph attention branch with a parallel linear projection



path. This design preserves individual patch information while updating node features via
graph attention, yielding representations that support effective slide-level aggregation across
graphs of varying sizes. Through comprehensive evaluation, our model achieves superior
performance on a rare, class-imbalanced appendiceal cancer cohort and remains competitive
on public TCGA benchmarks. We also introduce a benchmarking protocol to assess cross-
site generalization and few-shot adaptation, demonstrating that ResGAT maintains strong
performance when labeled data are limited in new domains. Ablation analyses confirm
that the hybrid graph connectivity strategy and graph normalization contribute positively
to performance and training stability. Furthermore, our framework supports qualitative
interpretation with prediction-related heatmaps that can aid diagnostic review.

2. Method

2.1. Problem Formulation
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Figure 1: Overview of the ResGAT pipeline for WSI classification. The pipeline consists of three
main stages: patch feature extraction, hybrid k-NN patch graph construction, and graph-based
slide-level prediction.

We treat each WSI as a bag of patch embeddings under the multiple instance learning
(MIL) setting. Given a slide s, we extract tissue patches at a fixed magnification and encode
each patch into a feature vector x; € RP using a pretrained encoder. This yields a set

Bs = {x1,...,xn}

with a bag-level label ys € {0,1} indicating the cancer subtype. Our goal is to learn a
permutation-invariant function fy : Bs — ys for subtype classification.

Following prior graph-based MIL methods, we represent each slide as a patch graph
Gs = (Vs, Es), which enables the model to incorporate spatial relationships and feature-level
associations among patches. Each node v; € V, corresponds to a patch embedding x;, and
edges in & are constructed based on both spatial proximity and feature similarity between
patches. ResGAT takes the graph as input, applies a stack of residual graph attention
blocks, then pools the updated node features into a bag-level representation, and passes



it through an MLP classifier to obtain the final prediction gs. Fig. 1 shows the overall
architecture of ResGAT.

2.2. Graph Construction

For each slide s, we construct edges using a hybrid k-NN procedure. Each node wvj; is
associated with a spatial coordinate p; € R? derived from the patch location on the WSI. We
first identify the d_neighbors nearest spatial neighbors of v; in Euclidean coordinate space,
and the f_neighbors nearest feature neighbors based on cosine distance. We then take
the intersection of these two neighbor sets and rank the intersected candidates by feature
similarity. The top k& nodes from this ranked list form the final adjacency of v;; when the
intersection is empty or insufficient, we fall back to up to three additional feature-nearest
neighbors (excluding those already in the intersection) to ensure connectivity.

In all experiments, we fix f_neighbors = 50 and k = 6, and treat the resulting patch
graph as undirected. The parameter d_neighbors is tuned as a hyperparameter based on
validation performance; Section 3.4.2 reports results for all the choices. Empirically, increas-
ing d_neighbors enlarges the size of the intersection, which in turn increases the average
node degree and yields denser patch graphs.

2.3. ResGAT Architecture and Training Objective

Node Updates. Given a patch graph Gs; with node features {h( NN } ', initialized from

X;. Let hl@ denote the feature of node ¢ at layer £. ResGAT applies a stack of L = 3
residual blocks to obtain updated node representations h,gL). Each residual block updates
node features through a linear projection in parallel with a GATv2Conv-based(Brody et al.,
2021) multi-head graph attention convolution. The combined update takes the form
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where ng), ng), W) ¢ Rde+1%de are learnable projections for head k, alk) ¢ Rde+1 g the
attention vector, o is the LeakyReLU activation, || denotes concatenation over K heads.
W%g € R+1%de i5 the linear projection on the residual path, GN(-) denotes GraphNorm,
and ¢ is the ELU non-linearity. GN(-) is applied separately to two branches. This update
is applied to all nodes for £ = 0,..., L—1, and naturally supports progressively decreasing
dimensions (e.g., 1024 — 512 — 256).

Graph Normalization. To stabilize training across slides with different graph sizes and
node statistics, we adopt GraphNorm (Cai et al., 2021) within each residual block. Given



node features {hl@ fi ; in a graph at layer ¢, GraphNorm normalizes each node as
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where () and (0'(6))2 are the mean and variance of {hl(-e)}ﬁ\il over nodes in the graph, and

~, B, a are learnable parameters shared across nodes. The operator ® denotes element-wise

multiplication. Intuitively, v and 3 provide a channel-wise affine re-parametrization of the

normalized features, while a modulates the strength of graph-level centering on each feature

dimension.

Pooling and Loss. After the residual blocks, we apply global mean pooling over nodes
to obtain a bag-level representation z, € R%. This vector is fed into an MLP classifier
to produce logit vector [ys0,9s1]. The predicted probabilities are obtained via a Softmax
function. We train the model using the standard cross-entropy loss. Given a slide-level
label y, € {0, 1}, we encode it as a one-hot vector ys € {0,1}2, the loss is

1 exp(¥s,1) exp(9s.0)
L=- E [y 1log . ———— + ys 0 log _ LA— 3
Sl ert ) exp(js0) +exp(gsn) exp(Js,0) + exp(Ys,1) ®)

The impact of this two-branch residual block design on overall performance is further
evaluated in Section 3.4.

2.4. Heatmap Visualization

To visualize which slide regions most strongly influence the model’s subtype prediction,
we generate patch-level heatmaps using Grad-CAM++. Given a target class ¢ and feature
maps {AF} from the final residual block, Grad-CAM++ computes node-wise importance
weights wj, from the gradients of the class logit with respect to AF and forms a class-specific
localization map

L, j) = ReLU( Y wid*(i,)), (4)
k
which highlights locations with positive contribution to the model’s score for class c.

3. Experiments
3.1. Dataset and Experimental Setup
3.1.1. DATASET

Appendiceal cancer cohort. The appendiceal cancer cohort consists of diagnostic
WSIs from 92 patients with low-grade appendiceal mucinous neoplasm (LAMN) and mu-
cinous adenocarcinoma (MAC). After quality control, the dataset exhibits significant class
imbalance (LAMN:MAC = 32:15), with 114 slides from Wake Forest Baptist Health (WF)
and 27 from Stanford Health (SF), presenting additional domain shift challenges. Clini-
cally, MAC is regarded as the more aggressive subtype with worse prognosis than LAMN,



so in our experiments MAC is treated as the positive class when computing AUC and the
reported F1l-score corresponds to the positive label.

TCGA cohorts. Two public cohorts were curated from The Cancer Genome Atlas
(TCGA) program (Tomczak et al.). The TCGA-NSCLC cohort contains diagnostic WSIs
from lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), while the
TCGA-ESCA cohort consists of esophageal adenocarcinoma (EAC) and esophageal squa-
mous cell carcinoma (ESCC). For evaluation, the clinically more aggressive subtype—LUSC
in NSCLC and ESCC in ESCA—was treated as the positive class when computing AUC.

Slide counts per subtype for all three cohorts are summarized in Table A in the Ap-
pendix. All tissue segmentation and patch extraction were performed at 20x magnification.

3.1.2. EVALUATION PROTOCOLS

For each cohort, we perform slide-level 5-fold cross-validation with patient-wise splits.
In each split, three folds are used for training, one for validation and one for testing, and
we report the mean and standard deviation of metrics over the five test folds. For the
appendiceal cancer cohort, which is highly imbalanced, we focus on balanced accuracy and
also report AUC and Fl-score with MAC as the positive class. For the TCGA-NSCLC and
TCGA-ESCA cohorts, overall accuracy and AUC are reported.

For the domain adaptation analysis on the appendiceal cancer cohort, WF slides form
the source domain and SF slides the target domain. The WF data are partitioned into
training, validation and test subsets in a 70/15/15 ratio for pre-training each model. For
the target domain, we define a fixed SF test set of 12 slides (10 LAMN and 2 MAC); this SF
test set is used for all zero-shot and few-shot evaluations. Zero-shot performance is obtained
by applying the WF-pretrained model directly to the SF test set. For few-shot adaptation,
we fine-tune the pretrained model on small labeled SF subsets with 3, 6 and 9 training slides
per class and separate validation sets of 3, 3 and 5 slides, respectively. After adaptation,
we report overall accuracy on the SF test set. We also compute backward transfer (BWT),
defined as the change in WF test accuracy before and after fine-tuning; large negative
BWT values indicate catastrophic forgetting. Forward transfer (FWT) is computed as the
improvement of SF test accuracy over the zero-shot baseline, where positive values indicate
successful adaptation.

See Appendix B for implementation details.

3.2. Comparison with state-of-the-art methods

We compare our method with eight strong MIL baselines that cover diverse design
paradigms: attention-based pooling MIL (CLAM-SB and CLAM-MB (Lu et al., 2021)),
transformer-based MIL (TransMIL (Shao et al., 2021)), dual-stream MIL (DSMIL (Li
et al., 2021)), distillation-based MIL (DTFD-MIL (Zhang et al., 2022)), graph-based MIL
(WIiKG (Li et al., 2024)), and hard-instance-mining MIL (MHIM-DSMIL and MHIM-
TransMIL (Tang et al., 2023, 2025)). All methods are evaluated with a shared UNI-based
feature extractor (Chen et al., 2024), which uses a ViT-L/16 backbone pretrained with
DINOvV2 on a large histopathology corpus to produce 1024-dimensional patch embeddings.
Table 1 reports mean and standard deviation over five folds for all metrics on the three
cohorts.



Table 1: Subtype classification performance (meangq, %) on three datasets: appendiceal cancer,
TCGA-NSCLC, and TCGA-ESCA, reported as balanced accuracy (BAcc), AUC, Fl-score, and
accuracy.

Method Appendiceal Cancer TCGA-NSCLC TCGA-ESCA
BAcc AUC F1 Accuracy AUC |Accuracy AUC
CLAM-SB 90.096.47 94.968.79 86.258.15 | 93.721.72 97.551.44 | 98.041.60 99.830.34
CLAM-MB 88.6210.68 96.824.13 85.3614.95 | 92.701.53 97.391.57| 96.113.16 100.009.00
DSMIL 78.9213.86 90.589.89 68.4494. 77 | 92.291.40 97.081.53| 95.424.45 97.72245
TransMIL 84.0710.71 9247764 76.8714.33 | 92.292.13 97.150.82| 93.514.08 99.390.52
WiKG 84.317.39 94.376.51 79.1611.19| 92.091.94 96.351.45| 93.483.59 99.630.74
DTFD-MIL 86.229. 56 93.2711.35 80.0813.02 | 93.611.75 97.41138| 96.113.16 99.390.65
MHIM-DSMIL 86.4219.74 97.032.72 81.1519.45 | 92.701.23 97.481.23| 94.82437 98.881.580
MHIM-TransMIL | 87.499 45 91.5911.69 84.9413.47 | 92.401.31 97.301.51| 94.824.37 99.730.22
ResGAT (ours) |92.566.36 96.411.04 90.987.9s| 93.510.75 97.151.47| 98.02162 99.910.17

Table 2: Domain adaptation performance comparison. Source refers to pre-trained test accuracy
from WF dataset. Zero-shot refers to SF test performance on two classes data separately without
adaptation. FWT measures forward transfer (target improvement), BWT measures backward trans-
fer (source performance retention). Class 0 and Class 1 represent LAMN and MAC respectively.

Method Source(WF) | Zero-shot (SF) 3-shot (SF) 6-shot (SF) 9-shot (SF)
Accuracy |class O class 1| Acc FWT BWT | Acc FWT BWT| Acc FWT BWT
WiKG 89.47 100 0 83.33 0 10.5 |83.33 0 5.26 [83.33 0 5.26
TransMIL 84.21 100 0 83.33 0 0 83.33 0 0 83.33 0 0
DSMIL 73.68 70 50 75.0 8.33 0 75.0 8.33 0 75.0 8.33 0
MHIM-DSMIL 84.21 90 0 75.0 0 5.26 | 75.0 0 5.26 [83.33 8.33 0
MHIM-TransMIL 89.47 100 0 8333 0 0 91.67 8.33 526 | 100 16.67 5.26
CLAM-MB 89.47 100 0 8333 0 0 8333 0 0 8333 0 5.26
CLAM-SB 94.74 90 0 75.0 0 0 75.0 0 0 75.0 0 0
DTFT-MIL 89.47 90 100 |91.67 O 0 100 8.33 0 100 8.33 5.26
ResGAT 92.86 100 50 100 8.33 0 100 8.33 0 100 8.33 0

Table 1 summarizes balanced accuracy, AUC, Fl-score and accuracy for binary subtype
classification on the appendiceal cancer, TCGA-NSCLC and TCGA-ESCA cohorts. On the
appendiceal cancer cohort, ResGAT achieves the highest balanced accuracy at 92.56+6.36%,
outperforming the best baseline CLAM-SB by roughly 2.5% and yielding the lowest standard
deviation across folds. It also attains the highest Fl-score and a high AUC, indicating
good detection of the clinically more aggressive MAC subtype while preserving good overall
discrimination between subtypes. On TCGA-NSCLC and TCGA-ESCA, CLAM-SB attains
the highest mean accuracy, while ResGAT remains competitive: its accuracy is only 0.21%
and 0.02% below CLAM-SB on TCGA-NSCLC and TCGA-ESCA, respectively. Notably,
ResGAT’s low standard deviations on TCGA cohorts shows stable performance across folds.
Overall, these results indicate that ResGAT performs well on the small, class-imbalanced
and label-noisy appendiceal cancer cohort, while remaining comparable to competitive MIL
baselines on the larger public datasets.

The results also highlight complementary strengths of other MIL approaches. On the two
TCGA cohorts, DTFD-MIL obtain the second highest accuracies and AUCs, with CLAM-



MB generally close behind. The MHIM variants (MHIM-DSMIL and MHIM-TransMIL)
consistently improve over their backbones, and show the effectiveness of the hard-instance
mining strategy. UNI features provide higher quality embeddings than ResNet50 used in
prior WSI classification studies, which is reflected in the higher general accuracy and AUC
across methods.

3.3. Domain Adaptation Analysis

In this experiment, we evaluate cross-site robustness on the appendiceal cancer cohort,
where WF and SF correspond to different acquisition sites (see Section 3.1.1 for details).
Such cross-site settings often introduce substantial distribution shift due to differences in
scanners, staining protocols and local practice, and models trained on a single site can expe-
rience a marked performance drop when deployed elsewhere(Liu et al., 2025; PoceviVCiute
et al., 2024). We therefore use this scenario to assess generalization ability of methods,
which is an important consideration for realistic clinical deployment. We first evaluate
zero-shot performance, where a model trained on the source site is directly applied to the
target site. Then we evaluate few-shot adaptation, where only a small number of labeled
SF slides are available for finetuning the source-trained model (see Section 3.1.2 for details).

3.3.1. CROSS-DOMAIN GENERALIZATION

Table 2 compares our method with the same eight MIL baselines as in the previous ex-
periment. Most MIL baselines achieve reasonably high accuracy on the WF source test set,
but their zero-shot performance on the SF target set is highly variable and often subtype-
imbalanced. Several baselines, including WiKG, TransMIL and the CLAM variants, rarely
predict MAC samples correctly, indicating a strong bias towards the majority subtype when
crossing sites. In the meanwhile, DTFD-MIL achieves the strongest zero-shot performance
on the SF test set, with per-class accuracies of 90% and 100%, suggesting good cross-site
generalization. ResGAT attains the second-highest source-domain accuracy on the WF
test set and provides competitive zero-shot accuracy on the SF test set, indicating good
performance on both sites.

3.3.2. FEW-SHOT ADAPTATION

In this experiment, we analyze how pre-trained models adapt target data when fine-
tuned on a small number of labeled SF slides. ResGAT reaches 100% accuracy on the SF
test set at the 3-shot setting and maintains this performance at 6-shot and 9-shot. Its
already high source test performance remains unchanged across all settings (BWT = 0),
showing that adaptation does not induce forgetting on the source domain. This result
suggests that ResGAT can be effectively adapted to a new site using only a small number
of labeled slides, which is especially valuable in rare-disease scenarios where annotation is
costly and limited.

DTFD-MIL attains strong zero-shot accuracy on SF and reaches 100% SF test accuracy
at 6-shot and 9-shot with positive BWT at 9-shot seeting. This pattern is consistent with
effective adaptation to the target domain without compromising the source domain. MHIM-
TransMIL also shows increased SF accuracy as more target slides are used, together with
positive BWT, indicating stable improvement under additional target supervision.



Table 3: Ablation on normalization layers for ResGAT. Values are meangqq over 5-fold cross-
validation (%).

. Appendiceal Cancer TCGA-NSCLC TCGA-ESCA
Normalization
BAcc AUC Accuracy AUC Accuracy AUC
InstanceNorm 89.237.70 95.842.19 93.510.66 97.181.41 | 98.021 .62 99.91¢.17
LayerNorm 81.3211.15 91.317.19 91.481.98 96.631.77 93.464.08 99.300.57
GraphNorm 92.566.36 96.411.94 93.51¢9.75 97.151.47 | 98.021.62 99.910.17

Table 4: Ablation on edge construction for ResGAT. Values are meangiq over 5-fold cross-validation

(%).

. Appendiceal Cancer TCGA-NSCLC TCGA-ESCA
Graph Variant
BAcc AUC Accuracy AUC |Accuracy AUC
Feature kNN 90.974.82 96.453 86 92.701.71 9721117 | 98.02162 99.91¢g.17
Spatial KNN 91.79¢.22 96.064.22 93.101.24 97.351.37 | 97.352.49 99.450 68

Hybrid (d=24) 92.564.36 96.411 94 92.601.56 97.650.090 | 98.021 62 99.91¢.17
Hybrid (d=15) 90.786.05 94.233 .69 93.510.75 97.157.47 | 98.02162 99.540.93
Disconnect 88.956.71 96.523 03 93.11g.59 97.94¢0.74 | 97.382.43 99.825 99
Node-permuted | 92.466.14 96.083 .53 92.800.99 97.701.00 | 98.02162 99.830.21

By contrast, CLAM-SB and CLAM-MB, despite their strong performance on general
subtype classification benchmarks, show little change in SF accuracy across the 3, 6, and
9-shot settings, suggesting that their architectures are less responsive to small amounts of
target supervision in our cross-site few-shot protocol.

3.4. Ablation Study
3.4.1. EFFECTIVENESS OF GRAPHNORM

Table 3 shows that GraphNorm provides the most favorable performance pattern within
ResGAT. On the appendiceal cancer cohort, it yields the best balanced accuracy and
AUC—improving BAcc by 3.3% over InstanceNorm and 11.2% over LayerNorm—with lower
variance. GraphNorm normalizes node representations per graph and includes learnable
affine parameters that control the scaling and shifting of normalized features; this design is
consistent with the improved stability observed on this small and noisy cohort. On TCGA-
NSCLC and TCGA-ESCA, GraphNorm’s performance is comparable to InstanceNorm and
above LayerNorm, supporting its use as the default normalization layer across datasets.

3.4.2. EFFECTIVENESS OF PROPOSED EDGE CONSTRUCTION

We evaluate a set of graph variants: Feature kNN (edges based on feature similarity),
Spatial kNN (edges based on spatial proximity), Hybrid (edges combining spatial and feature
criteria), Disconnected (only self-loop), and Node-permuted (hybrid adjacency with features
randomly reassigned to nodes). For all connected variants we use k = 6 neighbors per node;
in the hybrid case, we vary only the d_neighbors hyperparameter, while all other settings
are kept the same (see Section 2.2 for details).



As shown in Table 4, on the appendiceal cancer cohort, all connected graph vari-
ants outperform the disconnected (MLP-only) backbone; among them, the hybrid graph
(d_neighbors = 24) achieves the highest balanced accuracy and AUC, and exhibits the
lowest variance across folds. Feature-kNN and Spatial-kNN graphs perform worse than the
hybrid variant, indicating that edges relying only on feature similarity or spatial proximity
is insufficient under small-sample, noisy, and class-imbalanced conditions. This observation
suggests that combining both spatial and feature criteria improves the modeling for this
cohort. Moreover, the node-permuted variant — which retains the adjacency structure but
disrupts the alignment between node features and spatial positions — performs similarly to
other connected graphs and substantially better than the disconnected baseline. This result
supports the interpretation that the benefit of the graph-based branch in this setting stems
not strictly from preserving exact spatial-feature alignment, but from the graph inductive
bias imposed by graph connectivity and regularized neighborhood aggregation, which helps
stabilize learning and mitigate overfitting.

On the TCGA-NSCLC and TCGA-ESCA cohorts, performance differences across all
graph variants are small, but the hybrid graph consistently yields the best results among
them. These results indicate that, although specific graph construction has only a limited
effect on overall performance in these cohorts, our method still offers a modest advantage.

3.5. Qualitative Results

Using the Grad-CAM++ procedure described in Section 2.4, we compute patch-level
contribution maps and visualize them as WSI-level heatmaps. We show an example from
a MAC case (536) in the appendiceal cancer cohort (Appendix C), including the slide-
level heatmap and twelve selected patches from those with the highest contribution scores.
These visualizations highlight regions that ResGAT associates with the predicted subtype.
Although the highlighted areas do not fully satisfy pathologists’ diagnostic requirements and
tumour localization can be inaccurate, they provide a stable, prediction-related reference
that may assist slide review.

4. Conclusion

In this work, we propose ResGAT, a residual graph attention framework designed for
weakly supervised WSI subtype classification under challenging clinical settings. Com-
prehensive evaluations demonstrate that ResGAT outperforms strong state-of-the-art MIL
baselines on a rare appendiceal cancer cohort and remains competitive on two public TCGA
benchmarks. Furthermore, ResGAT shows promising cross-site generalization in few-shot
adaptation experiments, maintaining strong performance when limited labeled data are
available in target domains. Our ablation study shows that both the hybrid graph con-
nectivity strategy and the use of graph normalization contribute to improved performance
and more stable training. These findings highlight ResGAT as a robust and generalizable
approach for WSI classification tasks, especially in noise-prone and data-scarce medical
scenarios.
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Appendix A. Dataset Table

Table 5: Dataset statistics for Appendiceal Cancer, TCGA-NSCLC, and TCGA-ESCA.

Dataset Label | Diagnosis 15\11::;“ lo . Oéi}:zszls
Appendiceal Cancer ? Il\l/fAl\éN Ig 252
TCGA-NSCLC (1) Eggg igg)g
TCGA-ESCA ? gggc g?)

Appendix B. Implementation Details

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB memory.
For feature extraction, we adopted the CLAM (Lu et al., 2021) preprocessing pipeline
with HSV-based tissue segmentation and contour-based spatial sampling to identify tissue
regions. Features were extracted using UNI (Chen et al., 2024)(ViT-L/16 via DINOv2)
pretrained on the Mass-100K histopathology corpus, processing 224 x 224 patches to produce
1024-dimensional feature vectors with standard ImageNet normalization (Deng et al., 2009).

For ResGAT model, we trained for 30 epochs using Adam optimizer with learning rate
3 x 107* and weight decay 1 x 107*. To account for randomness, each experiment was
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repeated with two random seeds 3 and 3407; the best-performing run is reported. Following
standard MIL practice, we applied batch size of 1. For baseline methods, we used their
recommended hyperparameters from official implementations to ensure fair comparison.

Appendix C. Additional Results

Figure 2: Heatmap visualization on a MAC case (sample S36) from the appendiceal cancer cohort.
Left: Whole-slide image overlaid with patch-level contribution scores from ResGAT, where the
colour bar encodes normalized contribution values from 0 (blue, low) to 1 (red, high). Right:
Example image patches selected from those with the highest contribution scores, illustrating regions
that the model associates with the predicted subtype.

This figure presents the qualitative result discussed in Section 3.5.
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