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ABSTRACT

Quantizing the key-value (KV) cache is a promising strategy for improving the in-
ference efficiency of large language models (LLMs). However, aggressive quanti-
zation to very low precision (e.g., 2 bits) introduces significant errors in the stored
key and value tensors, which propagate through the dot-product attention mech-
anism and ultimately degrade generation quality. To address this, we propose
KVLinC, a framework to mitigate attention errors introduced by KV cache quan-
tization in the extreme low-precision regime. KVLinC combines a Hadamard ro-
tation, which reduces quantization error in values, with lightweight linear correc-
tion adapters that explicitly compensate for errors introduced by quantized keys.
Across extensive evaluations on the LLaMA, Qwen2.5, and Qwen3 model fami-
lies, KVLinC consistently matches or surpasses strong baselines while achieving
higher KV-cache compression. Furthermore, we implement a custom attention
kernel that results in upto 2.55× faster inference compared to Flash Attention
baseline, enabling efficient long-context LLM inference.

1 INTRODUCTION

Large Language Models (LLMs) (Meta, 2024a;b; Yang et al., 2024a; 2025) have achieved strong
performance across diverse NLP tasks, but their deployment remains costly due to heavy memory
and compute demands during inference. A major bottleneck is the key-value (KV) cache, which
stores past activations in every transformer layer to enable autoregressive decoding. Unlike model
parameters, which are fixed in size, the KV cache grows linearly with sequence length and batch
size, quickly dominating GPU memory and bandwidth. For example, in Llama-3-8B (Meta, 2024b)
with a sequence length of 8k and a batch size of 16, the KV cache alone consumes 16 GB, which is
comparable to the parameter footprint. As applications push toward longer contexts or larger batch
sizes, the KV cache quickly dominates memory and bandwidth requirements, limiting throughput
and inflating serving costs. Thus, reducing KV cache size while preserving accuracy is critical for
scaling LLMs to long-context and high-throughput settings.

Quantization of KV cache is a promising direction to reduce inference memory cost by representing
the key value tensors in lower precision formats (Hooper et al., 2024; Liu et al., 2024b; Ashkboos
et al., 2024). Recent work KIVI (Liu et al., 2024b) has demonstrated the feasibility of compressing
the KV cache to as few as 2-bits per entry. However, quantizing the KV cache to low precision
introduces quantization errors in the stored key and value tensors which propagate into the dot-
product attention mechanism and ultimately impair language generation ability. As sequence length
of a task increases, quantization errors accumulate across the stored key and value tokens, leading
to compounding distortions in attention distributions. Since each decoding step reuses the corrupted
representations, performance degradation becomes more severe with increasing sequence length
Kang et al. (2024).

QuaRot (Ashkboos et al., 2024) demonstrated that applying a rotation prior to quantization can sub-
stantially reduce quantization error compared to directly quantizing the raw tensor. Specifically,
QuaRot leverages Hadamard rotations to rotate the key and value tensors into a representation more
suitable for low-precision storage. While this approach has shown effectiveness at moderate preci-
sion levels, such as a 4-bit KV cache, its applicability under more aggressive quantization settings
remains unexplored. In contrast, another line of work focuses on compensating for quantization
error by preserving selected components of the KV cache in higher precision. For example, ResQ
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(Saxena et al., 2024b) retains critical channels in high precision, while Gear (Kang et al., 2024)
maintains a low-rank reconstruction of the quantization error. However, in both cases, the memory
cost of storing high-precision components grows proportionally with the KV cache. At long con-
text lengths, this overhead becomes non-negligible, limiting the overall compression benefits of KV
cache quantization.

To address this, we propose KVLinC, a framework explicitly designed to mitigate attention errors
introduced by KV cache quantization in the extreme low-precision regime. KVLinC combines com-
plementary strategies for keys and values that enable robust compression of the KV cache to 2-bit
while maintaining strong performance across both short and long context tasks. First, we revisit
rotation-based quantization methods and analyze their robustness at 2-bit precision. We explore dif-
ferent quantization axes — specifically, applying quantization along the channel axis or the token
axis when combined with Hadamard rotated keys and values. Our experiments reveal that optimal
performance is achieved by quantizing raw keys along the channel axis, while rotated values perform
best when quantized along the token axis.

Second, to further mitigate the impact of quantization error, we introduce linear correction adapters,
trainable modules that explicitly learn to track and compensate for distortions in the attention dis-
tribution caused by quantized keys. These adapters incur only a constant memory overhead that
does not grow with sequence length. Moreover, their computational cost is linear with sequence
length, in contrast to quadratic complexity of self-attention, making them both efficient and practi-
cal for long-context inference. Our design is motivated by linear attention methods (Zhang et al.,
2024; Lan et al., 2025), which discard most tokens and train adapters to recover the resulting error.
While effective for short contexts, such methods replace softmax with a lossy linear approximation,
leading to distortions that cannot be fully corrected. In contrast, our approach retains the full token
history and corrects only quantization-induced errors in keys which makes it an easier learning prob-
lem. This allows KVLinC to achieve effective compression while preserving the fidelity of softmax
attention, naturally scaling to long contexts. In summary, our contributions are as follows:

• We analyze the various design choices related to Hadamard rotation based KV cache quan-
tization and observe that quantizing keys along the channel axis and quantizing Hadamard
rotated values along the token axis is optimal.

• We introduce linear correction adapters which are trained to correct attention error intro-
duced by quantized KV cache.

• We evaluate KVLinC on various short and long context benchmarks for base and in-
struct models and show that KVLinC either matches or achieves superior performance with
higher KV cache compression.

• We develop a Triton (Tillet et al., 2019) based attention decoding kernel which along with
off-the-shelf quantization kernel achieves up to 2.55× faster inference and up to 3.5× larger
batch size with KVLinC.

2 BACKGROUND

(a) QT (X)

(b) QC(X)

Figure 1: Token-
wise and channel-
wise quantization
grouping.

Quantization. In asymmetric integer quantization, the full-precision tensor
Xr is first mapped to an integer representation XI as :

XI =

⌊
Xr − z

s

⌉
, s =

max(Xr)−min(Xr)

2N − 1
, z = min(Xr), (1)

and dequantized as : Q(X) = Xq = sXI + z, where XI ∈ [0, 2N − 1] are
N -bit integers, s is the scaling factor of quantization and z is the zero-point.
Quantization can be performed per tensor where s and z are scalars obtained
for the entire tensor or, group-wise where G consecutive entries share a scale
factor and zero-point. Group-wise quantization reduces quantization error
but requires storing multiple scale factors and zero-points. For X ∈ Rn×d,
channel-wise quantization (QC(X)) groups entries by column j and token-
wise (QT (X)) by row i as shown in Figure 1. For assymetic integer quanti-
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Values Keys Rotated Keys Rotated Values 

Figure 2: Distribution of key and values with and without Hadamard rotation for Qwen-2.5-3B layer
16 head 0.

zation, the quantization error is given by (Peters et al., 2023) :

E
[
(Q(X)−X)2

]
=

s2

12
(2)

Multi Head Attention. A typical LLM consists of L decoder layers with each layer containing a
multi head attention and a feed forward network module. The multi head attention module computes
attention per head in parallel with each attention head computing Y ∈ RN×d from inputs X ∈
RN×d (where N is sequence length and d is head dimension) with query, key and value weights
Wq,Wk,Wv ∈ Rd×d. First, we compute Q = XWq,K = XWk,V = XWv , before getting
attention weights A and attention outputs Y as

An,i =
exp

(
QnK

⊤
i /

√
d
)

∑n
i=1 exp

(
QnK⊤

i /
√
d
) , Yn =

n∑
i=1

An,iVi, for n in [1, . . . , N ] (3)

The final output is obtained by concatenating Y across h heads and using output projection matrix
Wo ∈ Rhd×hd to compute O = [Y 1, . . .Y h]Wo.

LLM Inference. LLM inference proceeds in two phases: prefill and decoding. In the prefill phase,
per-head token embeddings have shape Rnp×d, where np is the prompt length. The attention com-
putes queries, keys, and values for the prompt and caches the keys and values for subsequent steps.
During decoding, the model generates ng tokens autoregressively, one at a time. At each step t with
np < t ≤ np+ng , the model forms the new token embedding Xt, computes (Qt,Kt,Vt) ∈ R1×d,
and appends Kt and Vt to the cache, yielding [K0, . . . ,Kt] and [V0, . . . ,Vt]. Multi-head atten-
tion then uses Qt to attend over the cached keys/values. With KV cache quantization, the cache
stores quantized keys and values together with their scale and zero-point parameters, and these are
dequantized before the attention computation.

3 METHODOLOGY

In this section, we introduce KVLinC, a framework for mitigating attention errors due to low-
precision KV cache quantization. KVLinC integrates two complementary strategies: (i) Hadamard
rotation to reduce quantization error and (ii) lightweight linear correction adapters to compensate
attention distortions. We analyze axis and rotation choices for quantization, describe the design
and efficiency of correction adapters, and present a custom attention kernel for accelerated decod-
ing. These components together enable robust long-context inference at low precision with minimal
overhead.

3.1 HADAMARD ROTATION AND KV CACHE QUANTIZATION

Key and value tensors in the KV cache follow different statistics, motivating distinct quantization
schemes. As shown in Figure 2, keys contain channel-wise outliers with a few disproportionately
large magnitudes, whereas values do not. KIVI Liu et al. (2024b) addresses this by quantizing
keys channel-wise and values token-wise, yielding Kq = QC(K), ;Vq = QT (V ). This aligns the
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Figure 3: Wikitext perplexity under different 2-bit quantization configuration for key and values.
Perplexity values are clipped to 500. Quantizing raw keys channel-wise and quantizing Hadamard
rotated values token-wise achieves best performance (shown in red).

dynamic range per column, localizing key quantization error to individual channels and matching
the observed outlier structure. In contrast, QuaRot (Ashkboos et al., 2024) employs a Hadamard
rotation to suppress outliers and quantizes both keys and values token-wise. Denoting the Hadamard
matrix by H , the quantization configuration is Kq = QT (KH),Vq = QT (V H). As shown
in Figure 2, the Hadamard transform equalizes key and value distributions, eliminating outliers,
though its effectiveness under extreme low-precision remains untested. During dequantization, the
quantized tensors Kq and Vq must be multiplied by H⊤, the inverse of the orthogonal Hadamard
matrix, introducing additional computational overhead. While the overhead associated with values
can be eliminated by merging the rotation into the projection weight matrices, keys still require
online Hadamard transforms at inference time. QuaRot applies a Hadamard transform by post-
multiplying keys and values before quantization (KH , V H); we also consider pre-multiplication
(HK, HV ). This yields a two-dimensional design space: quantization axis (channel- vs. token-
wise) × Hadamard placement (pre vs. post). We ablate all combinations, quantizing K and V to
2-bit with group size 128, and evaluate Wikitext perplexity across three model families (Fig. 3). We
make the following observations:

Observation 1. Pre-multiplying keys and values with a Hadamard matrix almost always

 

                      

  
 

Figure 4: Layer-wise
scaling factor for differ-
ent quantization configu-
ration of keys.

yields worse performance compared to post-multiplication. A likely ex-
planation is that pre-multiplication mixes tokens prior to quantization,
which amplifies quantization noise and injects errors into the attention
logits. In contrast, post-multiplication only rotates channels within each
token, thereby preserving relative token alignment and resulting in sig-
nificantly more stable performance. We also provide layerwise attention
error in Figure 8.

Observation 2. At the low-precision regime under consideration, KIVI’s
quantization configuration consistently outperforms QuaRot’s. QuaRot
exhibits extremely high perplexity, suggesting that token-wise quantiza-
tion of keys therefore still incurs large errors. To analyze quantization
error (eq. 2), we analyze the scaling factor for different quantization
configuration of keys in Figure 4. It shows that although, Hadamard
rotation of keys reduces scaling factor and hence the quantization error
with token-wise quantization, it still is much higher than channel-wise
quantization of keys.

Observation 3. Quantizing raw keys channel-wise together with
Hadamard rotated values token-wise (Kq = QC(K),Vq = QT (V H))
emerges as the optimal configuration across all model families. This
even outperforms the Kq = QC(KH),Vq = QT (V H) quantization scheme. This is because
the application of Hadamard rotation to keys redistributes each outlier dimension, thereby increas-
ing the scaling factor of quantization leading to higher error (Figure 4). We therefore adopt this
configuration for KVLinC quantization. Importantly, this scheme is not only optimal in terms of
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accuracy but also practical, as it requires no additional computational overhead for quantization or
dequantization.

3.2 LINEAR CORRECTION ADAPTERS

To further mitigate the errors introduced in the attention operation by quantized keys, we propose
correction adapters which are lightweight, trainable modules that explicitly learn to compensate for
distortions in the attention distribution. Let the quantization error in keys be denoted by Ke =
K −Kq . We augment the standard attention formulation with additive correction terms in both the
numerator and denominator:

Ŷn =

∑n
i=1 exp

(
QnK

q⊤
i /

√
d
)
V q
i +

∑n
i=1 f(Qn,K

e
i )V

q
i∑n

i=1 exp
(
QnK

q⊤
i /

√
d
)
+

∑n
i=1 f(Qn,Ke

i )
. (4)

Given a query, these correction terms add residual attention weights corresponding to the er-
ror induced by quantization. By reparameterizing the correction term additively, we ob-
tain a lightweight approximation that captures the dominant error while remaining computa-
tionally efficient. Let the correction adapters ϕq, ϕk : Rd 7→ RD be the trainable fea-
ture maps. We define the correction term as the dot product of query and key error feature
maps: f(Qn,K

e
i ) = ϕq(Qn)ϕk(K

e
i )

⊤. This allows the numerator of the correction term
to be written as ϕ(Qn)

∑n
i=1 ϕk(K

e
i )

⊤V q
i , and the denominator as ϕq(Qn)

∑n
i=1 ϕk(K

e
i )

⊤.
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Figure 5: Layer-wise attention
error from KV-cache quantiza-
tion: (top) MSE between full-
precision and quantized atten-
tion weights; (bottom) MSE be-
tween outputs. KVLinC (blue)
consistently reduces error ver-
sus 2-bit KV (orange).

With S0 = 0 and P0 = 0, we compute attention as,

Ŷn =

∑n
i=1 exp

(
Qn(K

q
i )

⊤/
√
d
)
V q
i + ϕq(Qn)Sn∑n

i=1 exp
(
Qn(K

q
i )

⊤/
√
d
)
+ ϕq(Qn)Pn

, (5)

for Sn = Sn−1 + ϕk(K
e
n)

⊤Vn and Pn = Pn−1 + ϕn(K
e
n).

This recurrent formulation transforms the quadratic accumulation
of correction terms into linear-time updates, allowing error com-
pensation to scale efficiently with sequence length. The cost of
error correction is O(ndD) in time and memory during prefill,
and only O(dD) per step during decoding. At decoding time, the
cache stores the quantized keys and values along with the correc-
tion states Sn ∈ Rd×D and Pn ∈ RD. The additional memory
cost is constant with respect to sequence length, making the cor-
rection adapters highly efficient. Following LolCats Zhang et al.
(2024), we choose the feature maps ϕ as

ϕ(X) = [softmax(XW1), softmax(XW2)] ∈ RD (6)

with learnable weights W1,W2 ∈ Rd×D/2. The trainable fea-
ture maps add less than 1% parameter overhead. The weights are
trained such that the full-precision attention weights An,i (eq. 3)
match the corrected quantized attention weights Ân,i :

Ân,i =
exp

(
QnK

q⊤
i /

√
d
)
+ ϕq(Qn)ϕk(K

e
i )

⊤∑n
i=1 exp

(
QnK

q⊤
i /

√
d
)
+ ϕq(Qn)ϕk(Ke

i )
⊤

Using a calibration dataset, we optimize the feature map parameters to reduce the cross-entropy loss
between An,i and Ân,i. As shown in Figure 5, after training, the error between quantized attention
and full precision attention is minimized. Thus, correction adapters enable quantized attention to
closely match full-precision distributions.

3.3 SYSTEM LEVEL IMPLEMENTATION

Improving end-to-end performance with KV-cache quantization requires custom kernels to (1) quan-
tize the cache and (2) run attention directly on quantized operands. We adopt the quantization kernel
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Algorithm 1 KVLinC forward pass (single decode step)

Require: Q ∈ R1×d,KI ∈ RN/16×d,Zk,Sk ∈ RN/G×d,VI ∈ RN×d/16,Zv,Sv ∈ RN×d/G,
Cn,Cd ∈ R1×d, G (quantization group size).

Ensure: Output Y ∈ R1×d.
1: Divide KI ,Zk,Sk,VI ,Zv,Sv in T = ⌈N/G⌉ blocks: K1

I , . . . ,K
T
I of size G

16 × d each,
S1
k,Z

1
k . . . ,Z

T
k ,S

T
k of size 1×d each, V 1

I . . .V T
I of size G× d

16 each and S1
v ,Z

1
v . . .S

T
v ,Z

T
v

of size G× d
G each.

2: Create empty softmax state Ys ∈ RT×d, l,m ∈ RT

3: Load Q from HBM to SRAM.
4: parallel For j = 1 to T ▷ Parallelized across KV blocks
5: Load Kj

I ,S
j
k,Z

j
k,V

j
I ,S

j
v,Z

j
v from HBM to SRAM.

6: On chip, dequantize keys: Kj⊤
q = unpack(Kj⊤

I )⊙ Sj
k +Zj

k.
7: On chip, compute Sj = s ·QK⊤

q .
8: On chip, compute mj = rowmax(Sj), Ej = exp(Sj −m), lj = rowsum(Ej).

9: On chip, dequantize values : V j
q = unpack(V j

I )⊙ Sj
v +Zj

v .
10: On chip, compute : Y j

s = EjV j
q ∈ R1×d.

11: Write Y j
s , mj and lj to HBM.

12: end parallel For
13: w = exp(m−max(m))
14: n = rowsum(Ys ·w) +Cn, d = (l ·w) +Cd ▷ attention numerator and denominator
15: Y = n/d

from KIVI (Liu et al., 2024b), which quantizes the KV cache to 2 bits and bit-packs 16 elements
into a single 32-bit word. To accelerate decoding, we implement a custom attention kernel in Triton
(Tillet et al., 2019). In the spirit of FlashAttention (Dao, 2023), the kernel streams blocks of keys
and values from off-chip High Bandwidth Memory (HBM) to on-chip Static Random Access Mem-
ory (SRAM), performs dequantization and the attention computations on chip, and writes partial
outputs. Because the decoding phase exposes limited parallelism, we parallelize across KV blocks:
each block produces a partial sum of the attention output in parallel, the partial sums are reduced
to form the final attention output, and we then apply the KVLinC linear correction. Before running
attention, we compute the linear-correction states Cn and Cd for the numerator and denominator,
respectively: Cn = ϕq(Qn)Sn,Cd = ϕq(Qn)Pn. These states, together with the (de)quantized
attention operands, are passed to the decoding algorithm in Algorithm 1. Following KIVI Liu et al.
(2024b), we quantize the KV cache only after the attention computation; consequently, the prefill
phase remains floating-point and can be accelerated with FlashAttention itself.

4 EXPERIMENTS

In this section, we benchmark KVLinC against competitive baselines. First we provide results of the
algorithm and then we provide end to end hardware efficiency improvements provided by KVLinC.

4.1 SETUP

Models, tasks, datasets and baselines. We evaluate KVLinC on the Llama-3 (Meta, 2024a;b;
Touvron et al., 2023), Qwen-2.5 (Yang et al., 2024a), and Qwen-3 (Yang et al., 2025) model families,
chosen to test robustness of linear correction adapters under different architectural settings (Qwen-
2.5 uses bias in query/key projections; Qwen-3 applies layernorm after them). We compare against
KIVI (Liu et al., 2024b), QuaRot (Ashkboos et al., 2024), ResQ (Saxena et al., 2024b), and Gear
(Kang et al., 2024). Since ResQ and Gear retain portions of the KV cache in high precision, we
align their design point with KVLinC’s average precision: ResQ keeps 3.125% of channels in 16-bit,
and Gear uses rank-2 quantization error. All methods quantize the KV cache to 2-bits with group
size 128, while storing the most recent 128 tokens in full precision. We evaluate both base and
instruction-tuned models. For base models, we measure perplexity on Wikitext (Merity et al., 2016)
(2k sequence length, autoregressive generation with compressed KV cache), exact match accuracy
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Table 1: Results of base LLMs on Wikitext perplexity (2k sequence length), 5-shot GSM8K and
BBH. Average KV cache precision is computed considering the scaling factors and zero points
along with components used to compensate for quantization error. ↑ higher is better, ↓: lower is
better. *Upper bound performance.

KV Llama-2-7B Llama-3.2-3B Llama-3.1-8BMethod Cache Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑
FP16* 16 5.5 14.3 39.9 7.8 25.6 47.0 6.2 49.7 62.7
KIVI 2.46 5.9 10.6 30.5 11.0 11.8 25.0 7.8 34.1 44.2

Quarot 2.46 5.8 9.8 29.4 9.7 9.9 21.5 7.3 26.8 34.3
ResQ 2.91 5.7 10.8 32.6 8.7 14.1 31.5 6.8 36.2 42.7

Gear-L 2.96 5.8 10.8 30.0 10.0 16.4 28.3 7.3 38.8 46.7
KVLinC 2.71 5.7 11.0 31.1 9.4 16.4 32.7 7.1 40.9 48.6

KV Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7BMethod Cache Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑
FP16* 16 9.3 61.5 43.9 8.0 69.4 55.1 6.8 81.1 69.4
KIVI 2.46 16.5 26.9 17.9 9.7 46.1 32.7 11.2 71.0 45.3

Quarot 2.46 7268.2 0.1 0.0 783.0 0.0 0.0 3380.0 0.1 0.0
ResQ 2.91 13.2 10.6 22.1 9.1 47.2 39.2 10.6 35.6 47.9

Gear-L 2.96 14.0 32.2 21.7 9.3 47.4 34.1 10.6 71.8 49.5
KVLinC 2.71 13.0 36.3 23.6 8.9 47.6 35.3 10.5 71.2 50.1

KV Qwen3-1.7B-Base Qwen3-4B-Base Qwen3-8B-BaseMethod Cache Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑ Wikitext↓ GSM8K↑ BBH↑
FP16* 16 9.4 69.3 53.2 7.9 76.0 71.3 7.0 82.3 77.3
KIVI 2.46 11.2 48.4 30.5 9.1 67.5 49.9 7.7 78.6 58.6

Quarot 2.46 1963.3 0.0 0.0 755.3 0.1 0.0 202.3 17.5 20.8
ResQ 2.9 12.2 20.4 18.8 9.0 48.9 51.0 7.8 71.7 58.5

Gear-L 2.96 10.7 47.5 33.2 8.8 66.9 55.1 7.6 78.6 63.2
KVLinC 2.71 10.4 53.9 35.5 8.6 67.6 55.2 7.5 78.9 61.7

Table 2: Results of Instruct LLMs on long context and instruction following tasks. Taskwise accu-
racy can be found in Appendix A.2,A.3.*Upper bound performance.

RULER IF-EvalModel Method KV Cache 4k 8k LongBench inst-strict prompt-strict
FP16* 16 92.5 88.1 40.4 79.3 71.2
KIVI 2.46 76.7 70.3 39.4 74.6 64.9Llama-3.2-3B-Instruct

KVLinC 2.71 80.8 73.6 39.4 76.3 67.5
FP16* 16 90.3 85.0 31.4 68.9 58.8
KIVI 2.46 49.5 41.0 28.0 62.7 52.5Qwen-2.5-3B-Instruct

KVLinC 2.71 60.9 51.1 28.2 66.0 56.8
FP16* 16 92.7 88.6 31.9 47.6 33.6
KIVI 2.46 83.7 79.9 31.2 44.8 31.8Qwen-3-4B-Instruct

KVLinC 2.71 86.2 82.4 31.0 45.7 32.5

on 5-shot GSM8K (Cobbe et al., 2021), and average accuracy on Big-Bench Hard (BBH) (Suzgun
et al., 2022). For instruction-tuned models, we report results on long-context benchmarks: RULER
(Hsieh et al., 2024), LongBench (Bai et al., 2023), and IF-Eval (Zhou et al., 2023). LongBench
follows the setup in KIVI, while other benchmarks use the lm-evaluation-harness (Gao et al., 2024).

Implementation Details We implement KVLinC in PyTorch (Paszke et al., 2019) using Hugging-
Face Transformers (Wolf et al., 2020). We set rank of correction adapters as D = 256, adding < 1%
extra parameters to the LLM. For base models, adapters are trained on Alpaca dataset (Taori et al.,
2023) using Adam (Kingma & Ba, 2017) optimizer with learning rate 0.01, sequence length 3k,
batch size 24, for 500 steps. For instruction-tuned models, training uses RedPajama dataset (Weber
et al., 2024), sequence length 8k, batch size 8, for 1500 steps with Adam optimizer. Training Llama-
3.1-8B on Alpaca takes 2 hours, and Llama-3.2-3B on RedPajama takes 11 hours on 4×NVIDIA
H200 GPUs.

4.2 MAIN RESULTS

Results on Base Models. We evaluate the base LLMs of various sizes of Llama, Qwen-2.5, and
Qwen-3 model families on perplexity (PPL) on Wikitext at 2k sequence length, 5-shot GSM8K, and
BBH benchmark. The results are presented in Table 1. KVLinC manages to outperform or match the
performance of strong baselines at lower KV cache bitwidth. Compared to Gear, KVLinC achieves
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Table 3: Wikitext perplexity at 1-bit KV cache quantization. Quantization group size is kept at 64
and recent 128 tokens are kept in floating point.

Qwen2.5-1.5B Llama-3.2-3B Llama-3.1-8BMethod KV cache Wikitext ↓ Wikitext ↓ Wikitext ↓
KIVI 1.73 242.6 287.1 204.9

Gear-L 1.92 97.3 164.7 98.2
ResQ 1.92 90.2 70.2 65.3

KVLinC 1.92 81.0 65.7 60.8
Qwen3-1.7B-Base Qwen3-4B-Base Qwen3-8B-BaseMethod KV cache Wikitext ↓ Wikitext ↓ Wikitext ↓

KIVI 1.73 143.9 45.4 40.2
Gear-L 1.92 147.3 39.6 36.6
ResQ 1.92 80.2 39.8 38.2

KVLinC 1.92 24.5 19.0 15.1

Table 4: Evaluation of KVLinC quantization in combination with H2O KV cache sparsification.
Table shows Wikitext perplexity (lower is better) at varying KV cache sparsity levels.

KV cache sparsityModel Method 70% 75% 80% 85% 90% 95%
KIVI 11.6 11.7 11.9 12.2 12.8 14.1Qwen-3-1.7B-Base KVLinC 11.1 11.2 11.4 11.7 12.2 13.4
KIVI 9.2 9.3 9.4 9.6 9.9 10.8Qwen-3-4B-Base KVLinC 8.9 9.0 9.1 9.2 9.5 10.3
KIVI 7.8 7.8 7.9 8.0 8.2 8.8Qwen-3-8B-Base KVLinC 7.6 7.7 7.7 7.8 8.0 8.6

upto 6.4% improvements on GSM8K and upto 2.3% improvements on BBH benchmark. Greater
improvements are observed for smaller-sized models. For the Qwen-2.5 and Qwen-3 family of mod-
els, QuaRot fails to produce meaningful results, showcasing that per token quantization strategy for
both keys and values is sub-optimal. ResQ adopts the same quantization configuration as QuaRot but
keeps important channels in high precision, enabling improved results. Since calibration for ResQ
is done on Wikitext itself, it achieves surprisingly low Wikitext PPL on Llama models. KVLinC
instead involves calibration on out-of-domain Alpaca dataset and does not overfit to any evaluation
benchmarks.

Results at 1-bit KV cache. We also evaluate methods under extreme 1-bit KV-cache quantization,
using a group size of 64 and keeping the rest of the setup unchanged. Table 3 reports Wikitext
perplexity (lower is better) at a 2K sequence length. All techniques show a significant perplexity
drop at 1-bit; however, KVLinC still outperforms all baselines. Notably, on Qwen-3-1.7B, KVLinC
achieves 56 lower perplexity than the next best method, ResQ Saxena et al. (2024b).

Results on Instruct models. We evaluate the instruction tuned LLMs of Llama-3.1, Qwen-2.5 and
Qwen-3 model families on RULER (4k and 8k sequence length), LongBench and IF-eval bench-
marks. The results are presented in Table 2. KVLinC outperforms KIVI on all the presented models
on RULER and IF-eval tasks. For the Qwen-2.5-3B instruct model, KVLinC achieves more than
10% improvement on RULER tasks and upto 4.3% on IF-eval tasks. For LongBench, quantiza-
tion of KV cache impacts final accuracy by a small amount and the performance of both KIVI and
KVLinC is comparable.

Interaction with KV cache sparsification. KV cache sparsification is another widely used method
to reduce memory cost Zhang et al. (2023); Adnan et al. (2024). KVLinC is compatible with such
pruning strategies and can be combined with them for additional compression. To demonstrate this,
we pair H2O Zhang et al. (2023) with KVLinC: we train the adapter normally (without pruning), and
during inference keep only the H2O-selected tokens at 2-bit precision. The adapters then track quan-
tization error only for the retained tokens. As shown in Table 4, KVLinC consistently outperforms
KIVI across all sparsity levels, even up to 95%.

4.3 ANALYSIS

Impact of different components. Further, we analyse how the complementary strategies pre-
sented in KVLinC perform in isolation. To achieve this, we apply the linear correction states
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Table 5: Performance with applying
Hadamard rotation and linear correction
in isolation on Llama family. ↑ higher is
better, ↓: lower is better.

Model Method Wikitext↓ GSM8K↑

3.1-8B

KIVI 7.8 34.1
KIVI + LinC 7.3 38.4

QC(K), QT (V H) 7.2 36.9
KVLinC 7.1 40.9

3.2-3B

KIVI 11.0 11.8
KIVI + LinC 9.8 14.5

QC(K), QT (V H) 9.7 13.9
KVLinC 9.4 16.4

Table 6: Impact on wikitext PPL with apply-
ing KVLinC to different decoder layer blocks.
Applying KVLinC to earlier decoder layers pro-
vides greater improvements.

KVLinC Improvement over KIVI (%)
Layers Qwen-2.5-1.5B Qwen-3-1.7B-Base
[0-9] 7.96 3.03
[9-18] 4.35 2.44
[18-27] 2.73 1.20
[0-13] 10.55 3.75
[14-27] 4.29 2.33
[0-27] 16.82 5.27

to KIVI (KIVI+LinC) and compare with a baseline which does channel-wise quantization on
raw keys and token-wise quantization on hadamard rotated values. The results are presented in
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Figure 6: Linear correction
rank (D) vs. perplexity.

Table 5. For both Llama-3.1-8B and Llama-3.2-3B, applying linear
correction provides improvements in Wikitext perplexity and 5-shot
GSM8K accuracy. Similarly, opting for Hadamard based quantization
for values improves performance over KIVI. While combining the
two complementary techniques enables KVLinC to achieve further
gains in performance.

Layerwise insights. To better understand where KVLinC provides
the most benefit, we selectively apply it to different subsets of de-
coder layers while using KIVI’s quantization strategy for the remain-
ing layers. On Qwen-2.5-1.5B and Qwen-3-1.7B-Base (both with 28
decoder layers), we observe that applying KVLinC to earlier layers
yields greater improvements than applying it to the same number of
later layers. As shown in Table 6, the Wikitext perplexity improve-
ments (relative to KIVI) are consistently higher when KVLinC is applied to the initial layers. For
example, applying KVLinC to the first 10 decoder layers achieves an average 3.5% improvement
over applying it to the last 10 layers. This finding highlights a key insight: the initial decoder layers
play a more critical role under KV cache quantization.

Dimension of Linear correction states. The rank of the linear correction states D controls the
representational capacity of the feature maps, but higher ranks also increase overhead. As shown
in Figure 6, Wikitext perplexity improves with larger ranks up to D = 256, beyond which gains
saturate. We therefore select D = 256 as the optimal balance between accuracy and efficiency.

Impact of Calibration data We evaluate the sensitivity of KVLinC’s adapters to different calibra-
tion datasets. For this analysis we evaluate KVLinC’s downstream performance after calibration
on three datasets : Alpaca Taori et al. (2023), LongAlpaca Chen et al. (2023) and C4 Dodge et al.
(2021). As shown in Table 9, we find no clear consensus on the optimality of one particular dataset.
The performance results for different datasets show no significant fluctuations.

4.4 HARDWARE SPEEDUP

We evaluate the end-to-end speedup of KVLinC to highlight the combined impact of KV cache quan-
tization and our custom compute kernel. Specifically, we benchmark Llama-2-7B and Llama-3.1-8B
using a prompt length of 256 tokens and generating 1024 output tokens, progressively increasing
the batch size. Experiments are conducted on a single NVIDIA A40 (48 GB) GPU, measuring both
memory usage and throughput (tokens per second). We compare KVLinC against FlashAttention-2
Dao (2023) with a 16-bit floating-point KV cache. As shown in Figure 7, quantizing the KV cache
enables significantly larger batch sizes without exhausting memory. In particular, KVLinC supports
up to 3.1× more requests on Llama-3.1-8B and 3.5× more requests on Llama-2-7B. Moreover, for
Llama-2-7B, KVLinC delivers up to 2.55× faster inference at batch size 32, beyond which FlashAt-
tention becomes infeasible due to out-of-memory errors. For Llama-3.1-8B, the gains are more
modest, with KVLinC achieving 1.2× speedup at batch size 144. This discrepancy arises from ar-
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Figure 7: End to end memory usage and throughput (tokens/s) on NVIDIA-A40 with varying batch
sizes at prompt length of 256 and 1024 generated tokens for (a) Llama-2-7B and (b) Llama-3.1-8B.

chitectural differences: unlike Llama-3.1-8B, Llama-2-7B does not employ grouped query attention
(GQA), resulting in a substantially larger KV cache that amplifies the benefits of our method.

5 RELATED WORKS

KV Cache Quantization The dynamic nature of KV caching introduces unique challenges for
quantization, where both quantization and dequantization speed is critical. A variety of strategies
have been explored across different granularities. ZipCache (He et al., 2024) and WKVQuant (Yue
et al., 2024) adopt channel-separable, token-wise quantization, while KIVI (Liu et al., 2024b) ap-
plies channel-wise quantization to keys and token-wise quantization to values. In contrast, KVQuant
(Hooper et al., 2024) and PolarQuant (Han et al., 2025) use non-linear quantization schemes to re-
duce error. QJL (Zandieh et al., 2025) introduces a specialized Johnson–Lindenstrauss transform for
key tensors combined with per-token quantization of values. Other methods combine quantization
with decomposition: Palu (Chang et al., 2024) and EigenAttention (Saxena et al., 2024a) integrate
low-rank factorization with quantization. Several approaches further mitigate quantization error by
leveraging advanced transformations or error modeling. QuaRot (Ashkboos et al., 2024) and Spin-
Quant (Liu et al., 2024a) use Hadamard transforms to improve quantization robustness. ResQ (Sax-
ena et al., 2024b) preserves salient channels in higher precision, whereas GEAR (Kang et al., 2024)
maintains a low-rank approximation of the quantization error. Finally, MiKV (Yang et al., 2024b),
QAQ (Dong et al., 2024), and SKVQ (Duanmu et al., 2024) explore variable bit-width schemes to
balance accuracy with memory savings.

Linear Attention A large body of prior work has explored more efficient sequence modeling mod-
ules as alternatives to softmax attention in transformers, often by pretraining architectures from
scratch. Within this line, numerous linear attention approaches have been proposed Choromanski
et al. (2020); Katharopoulos et al. (2020); Xiong et al. (2021); Yang et al. (2023). More recently,
several efforts focus on post-training conversion of softmax-attention transformers into linear coun-
terparts. For example, Lolcats (Zhang et al., 2024) employs advanced linear feature map design
combined with attention distillation, while Liger (Lan et al., 2025) incorporates gated recurrence to
achieve this transition. Pushing further, LoLA (McDermott et al., 2025) and Based (Arora et al.,
2025) adopt hybrid strategies that combine linear attention with selective application of exact soft-
max attention on subsets of keys and values, thereby improving accuracy while retaining efficiency.

6 CONCLUSION

In this work, we introduced KVLinC, a framework designed to mitigate attention errors arising from
KV cache quantization. KVLinC integrates two complementary techniques to enable robust low-
precision caching. First, through a detailed analysis of Hadamard rotation based quantization strate-
gies, we showed that applying channel-wise quantization to raw keys and token-wise quantization to
Hadamard-transformed values minimizes quantization error. Second, to address residual errors from
quantized keys, we proposed lightweight linear correction adapters that explicitly learn to compen-
sate for distortions in attention. Extensive evaluation across the Llama, Qwen2.5, and Qwen3 model
families demonstrates that KVLinC consistently matches or surpasses strong baselines under ag-
gressive KV-cache compression. Finally, we developed a custom attention kernel that delivers up to
2.55× speedup over FlashAttention, enabling scalable, efficient, and long-context LLM inference.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have provided details about our proposed algorithm in Section 4.1. Additionally, we provide
codebase to reproduce results of our experiments and the baselines in supplementary materials.
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Figure 8: Attention error with pre- and post- Hadamard multiplication.
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A APPENDIX

A.1 ATTENTION ERROR WITH PRE- AND POST- HADAMARD MULTIPLICATION.

Figure 8 shows mean squared error in attention output under pre-multiplication and post-
multiplication of Hadamard rotation. pre-multiplication mixes tokens prior to quantization,
which amplifies quantization noise and injects errors into the attention logits. In contrast, post-
multiplication only rotates channels within each token, thereby preserving relative token alignment
and resulting in significantly more stable performance.

A.2 DETAILED RESULTS ON LONGBENCH TASKS

Here we show task-wise accuracy on various tasks within the LongBench benchmark Bai et al.
(2023). The results are presented in Table 7. We evaluate on 14 english language tasks on Long-
Bench. Both KIVI and KVLinC show comparable performance on various tasks.

Table 7: Taskwise accuracy on LongBench tasks.*Upper bound performance.

LongBench Tasks
Model Method KV

Cache Multi
News

Passage
Count Samsum MFQA Narrative

QA
Hotpot

QA Trec Qmsum Trivia
QA Qasper 2Wiki

Mqa Musique Gov
Report

Passage
Retrieval Avg.

FP16 16 26.2 3.5 42.5 51.1 26.3 30.3 71.0 22.7 88.9 40.6 28.0 13.7 33.5 86.8 40.4
KIVI 2.46 24.7 3.6 40.7 48.5 27.1 30.6 70.5 23.9 88.7 36.1 32.5 13.9 26.4 83.7 39.4

Llama-
3.2-3B

-Instruct KVLinC 2.71 26.2 2.5 41.7 47.6 26.7 29.0 70.5 24.2 87.6 36.3 31.4 14.4 29.9 84.3 39.4
FP16 16 24.8 3.0 44.2 38.7 10.9 19.9 68.5 23.4 87.1 16.4 15.2 12.4 32.4 42.8 31.4
KIVI 2.46 23.5 3.0 42.2 28.1 9.2 18.3 68.0 24.3 85.6 11.4 13.2 9.7 24.3 31.2 28.0

Qwen-
2.5-3B-
Instruct KVLinC 2.71 23.0 2.2 41.6 31.0 10.1 14.2 68.0 24.1 86.6 12.1 13.2 9.0 27.3 31.8 28.2

FP16 16 19.8 3.3 44.1 24.8 3.5 13.4 73.0 23.4 88.8 11.1 14.4 10.0 29.2 88.0 31.9
KIVI 2.46 22.9 4.6 42.0 21.3 3.7 13.1 73.0 22.4 87.8 10.7 13.6 7.9 26.2 87.5 31.2

Qwen
-3-4B-
Instruct KVLinC 2.71 22.7 3.2 41.9 21.8 4.3 12.8 73.0 23.2 88.3 11.0 12.9 8.9 27.1 83.6 31.0
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Table 8: Task-wise accuacy on RULER benchmark*Upper bound performance.

RULER Tasks
Model Seq-len Method KV

Cache niahm1 niahm2 niahm3 niah
multiq

niah
mltiV niahs1 niahs2 niahs3 cwe fwe hotpotqa squadqa vt Avg.

FP16 16 99.8 100.0 98.4 100.0 99.8 100.0 100.0 99.6 95.1 93.1 55.2 68.9 92.1 92.5
KIVI 2.46 98.8 89.0 20.2 91.6 90.6 99.0 99.6 53.0 79.2 86.5 52.0 66.4 70.6 76.74k

KVLinC 2.71 95.4 94.4 23.4 93.9 95.3 96.0 98.8 80.4 85.8 88.2 51.8 69.2 77.4 80.8
FP16 16 98.4 99.8 96.0 99.5 99.5 100.0 100.0 99.8 66.9 85.6 52.6 63.8 84.0 88.1
KIVI 2.46 97.0 82.8 5.6 90.1 92.0 99.4 99.0 55.2 38.9 74.3 51.2 56.3 72.0 70.3

Llama-
3.2-3B

-Instruct 8k
KVLinC 2.71 93.0 92.6 10.2 92.7 92.5 93.6 96.8 73.2 50.0 80.9 49.4 59.8 72.4 73.6

FP16 16 99.8 99.0 97.4 100.0 99.5 100.0 84.7 99.8 84.7 91.5 49.0 72.1 96.6 90.3
KIVI 2.46 65.0 47.6 0.0 58.5 44.7 66.0 56.6 2.4 65.3 79.9 43.0 62.3 51.9 49.54k

KVLinC 2.71 82.4 52.6 0.6 75.7 70.4 87.6 87.6 16.6 65.2 81.7 42.8 64.4 63.8 60.9
FP16 16 100.0 99.6 87.6 100.0 98.4 100.0 100.0 100.0 46.3 77.1 43.6 58.5 94.5 85.0
KIVI 2.46 57.8 26.4 0.0 55.3 39.7 69.0 56.6 3.8 34.2 61.4 34.8 45.3 49.6 41.1

Qwen
-2.5-3B-
Instruct 8k

KVLinC 2.71 75.8 34.6 0.0 69.9 64.4 85.6 81.2 21.6 29.6 65.3 36.4 48.0 52.4 51.1
FP16 16 97.4 100.0 99.8 99.6 98.3 100.0 100.0 99.8 94.7 88.1 54.8 72.1 100.0 92.7
KIVI 2.46 96.6 95.0 48.0 97.4 96.6 99.2 96.8 78.8 81.9 82.1 55.6 69.6 90.9 83.74k

KVLinC 2.71 97.4 96.6 63.6 98.1 98.0 99.0 97.8 84.6 81.2 83.1 56.0 71.3 94.4 86.2
FP16 16 97.8 99.0 99.4 99.3 96.2 100.0 100.0 100.0 66.7 83.6 50.6 59.8 99.2 88.6
KIVI 2.46 96.2 91.2 26.4 96.6 96.4 99.2 96.0 75.4 67.8 82.1 55.4 63.7 92.2 79.9

Qwen-
3-4B-

Instruct 8k
KVLinC 2.71 97.8 94.2 42.2 98.2 97.7 99.8 96.6 83.2 69.5 79.8 55.6 63.1 93.1 82.4

Table 9: Downstream performance of KVLinC with different calibration datasets.

Model Dataset Wiki ↓ Gsm8k ↑ (em) BBH ↑

Llama-3.2-3B
Alpaca 9.4 16.4 32.7

Long Alpaca 9.6 16.4 32.5
C4 9.5 16.6 33

Qwen2.3-3B
Alpaca 8.9 47.6 35.2

Long Alpaca 9 48 34.7
C4 8.7 46.4 35.4

Qwen3-4B-Base
Alpaca 8.6 67.6 55.2

Long Alpaca 8.8 66.6 55.5
C4 8.7 65.4 54.7

A.3 DETAILED RESULTS ON RULER TASKS

Additionally we also provide task wise breakdown in RULER benchmark in Table 8. The results are
presented for both 4k and 8k sequence length. As shown in Table 8, KVLinC outperforms KIVI on
most of the individual tasks across sequence lengths and models.

A.4 IMPACT OF CALIBRATION DATA

Table 9, shows downstream performance of KVLinC with adapters trained using different calibration
datasets. Table shows minimal performance variation, demonstrating the robustness of KVLinC’s
calibration

A.5 LLM USAGE

The authors of this paper used ChatGPT (https://chatgpt.com/) for polishing text within
this paper. The authors take full responsibility for the content within this paper.
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