Under review as a conference paper at ICLR 2026

KVLINC: KV CACHE QUANTIZATION WITH
HADAMARD ROTATION AND LINEAR CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantizing the key-value (KV) cache is a promising strategy for improving the in-
ference efficiency of large language models (LLMs). However, aggressive quanti-
zation to very low precision (e.g., 2 bits) introduces significant errors in the stored
key and value tensors, which propagate through the dot-product attention mech-
anism and ultimately degrade generation quality. To address this, we propose
KVLinC, a framework to mitigate attention errors introduced by KV cache quan-
tization in the extreme low-precision regime. KVLinC combines a Hadamard ro-
tation, which reduces quantization error in values, with lightweight linear correc-
tion adapters that explicitly compensate for errors introduced by quantized keys.
Across extensive evaluations on the LLaMA, Qwen2.5, and Qwen3 model fami-
lies, KVLinC consistently matches or surpasses strong baselines while achieving
higher KV-cache compression. Furthermore, we implement a custom attention
kernel that results in upto 2.55x faster inference compared to Flash Attention
baseline, enabling efficient long-context LLM inference.

1 INTRODUCTION

Large Language Models (LLMs) (Meta, 2024azb; [Yang et al.l 2024a}; [2025)) have achieved strong
performance across diverse NLP tasks, but their deployment remains costly due to heavy memory
and compute demands during inference. A major bottleneck is the key-value (KV) cache, which
stores past activations in every transformer layer to enable autoregressive decoding. Unlike model
parameters, which are fixed in size, the KV cache grows linearly with sequence length and batch
size, quickly dominating GPU memory and bandwidth. For example, in Llama-3-8B (Metal [2024b)
with a sequence length of 8k and a batch size of 16, the KV cache alone consumes 16 GB, which is
comparable to the parameter footprint. As applications push toward longer contexts or larger batch
sizes, the KV cache quickly dominates memory and bandwidth requirements, limiting throughput
and inflating serving costs. Thus, reducing KV cache size while preserving accuracy is critical for
scaling LL.Ms to long-context and high-throughput settings.

Quantization of KV cache is a promising direction to reduce inference memory cost by representing
the key value tensors in lower precision formats (Hooper et al., 2024; [Liu et al., 2024bj; |Ashkboos
et al.,|2024). Recent work KIVI (Liu et al.,|2024b) has demonstrated the feasibility of compressing
the KV cache to as few as 2-bits per entry. However, quantizing the KV cache to low precision
introduces quantization errors in the stored key and value tensors which propagate into the dot-
product attention mechanism and ultimately impair language generation ability. As sequence length
of a task increases, quantization errors accumulate across the stored key and value tokens, leading
to compounding distortions in attention distributions. Since each decoding step reuses the corrupted
representations, performance degradation becomes more severe with increasing sequence length
Kang et al.|(2024).

QuaRot (Ashkboos et al.||2024) demonstrated that applying a rotation prior to quantization can sub-
stantially reduce quantization error compared to directly quantizing the raw tensor. Specifically,
QuaRot leverages Hadamard rotations to rotate the key and value tensors into a representation more
suitable for low-precision storage. While this approach has shown effectiveness at moderate preci-
sion levels, such as a 4-bit KV cache, its applicability under more aggressive quantization settings
remains unexplored. In contrast, another line of work focuses on compensating for quantization
error by preserving selected components of the KV cache in higher precision. For example, ResQ

Under review as a conference paper at ICLR 2026

(Saxena et al., [2024b)) retains critical channels in high precision, while Gear (Kang et al. 2024)
maintains a low-rank reconstruction of the quantization error. However, in both cases, the memory
cost of storing high-precision components grows proportionally with the KV cache. At long con-
text lengths, this overhead becomes non-negligible, limiting the overall compression benefits of KV
cache quantization.

To address this, we propose KVLinC, a framework explicitly designed to mitigate attention errors
introduced by KV cache quantization in the extreme low-precision regime. KVLinC combines com-
plementary strategies for keys and values that enable robust compression of the KV cache to 2-bit
while maintaining strong performance across both short and long context tasks. First, we revisit
rotation-based quantization methods and analyze their robustness at 2-bit precision. We explore dif-
ferent quantization axes — specifically, applying quantization along the channel axis or the token
axis when combined with Hadamard rotated keys and values. Our experiments reveal that optimal
performance is achieved by quantizing raw keys along the channel axis, while rotated values perform
best when quantized along the token axis.

Second, to further mitigate the impact of quantization error, we introduce linear correction adapters,
trainable modules that explicitly learn to track and compensate for distortions in the attention dis-
tribution caused by quantized keys. These adapters incur only a constant memory overhead that
does not grow with sequence length. Moreover, their computational cost is linear with sequence
length, in contrast to quadratic complexity of self-attention, making them both efficient and practi-
cal for long-context inference. Our design is motivated by linear attention methods (Zhang et al.,
2024; Lan et al., [2025)), which discard most tokens and train adapters to recover the resulting error.
While effective for short contexts, such methods replace softmax with a lossy linear approximation,
leading to distortions that cannot be fully corrected. In contrast, our approach retains the full token
history and corrects only quantization-induced errors in keys which makes it an easier learning prob-
lem. This allows KVLinC to achieve effective compression while preserving the fidelity of softmax
attention, naturally scaling to long contexts. In summary, our contributions are as follows:

* We analyze the various design choices related to Hadamard rotation based KV cache quan-
tization and observe that quantizing keys along the channel axis and quantizing Hadamard
rotated values along the token axis is optimal.

* We introduce linear correction adapters which are trained to correct attention error intro-
duced by quantized KV cache.

* We evaluate KVLinC on various short and long context benchmarks for base and in-
struct models and show that KVLinC either matches or achieves superior performance with
higher KV cache compression.

* We develop a Triton (Tillet et al., 2019) based attention decoding kernel which along with
off-the-shelf quantization kernel achieves up to 2.55 x faster inference and up to 3.5 x larger
batch size with KVLinC.

d
2 BACKGROUND
Quantization. In asymmetric integer quantization, the full-precision tensor n X
X, is first mapped to an integer representation X as : I
X, —z max(X,) — min(X
X[_ r , s = (T’) (’f’)7 z:min(XT), (1) (a) QT(X)
s 2N —1 ==
1 1
and dequantized as : Q(X) = X, = s X + z, where X € [0,2" — 1] are Dot
N-bit integers, s is the scaling factor of quantization and z is the zero-point. X i i
Quantization can be performed per tensor where s and z are scalars obtained Lo
for the entire tensor or, group-wise where G consecutive entries share a scale s
factor and zero-point. Group-wise quantization reduces quantization error (b) Qe (X)

but requires storing multiple scale factors and zero-points. For X € R"*4, Figure 1: Token-
channel-wise quantization (Q¢ (X)) groups entries by column j and token- wise and channel-
wise (Q7 (X)) by row ¢ as shown in Figure [I} For assymetic integer quanti- wise quantization
zation, the quantization error is given by (Peters et al.,[2023) : grouping.

E[(Q(X) - X)?] = &

S

=1 2

Under review as a conference paper at ICLR 2026

Keys (K)

Values (V)

Rotated Keys (KH)

Rotated Values (VH)

’ Mi' R
0 5 0 P~ 200 o 0 5 o

60 oo 25100 «F 60

Sanpe, %120 0

~ 0
S 20
&

~ 100 «g¥ 40 6o

80
U"’”’?e/ 100, 0

Figure 2: Distribution of key and values with and without Hadamard rotation for Qwen-2.5-3B layer
16 head 0.

Multi Head Attention. A typical LLM consists of L decoder layers with each layer containing a
multi head attention and a feed forward network module. The multi head attention module computes
attention per head in parallel with each attention head computing Y € R™V*? from inputs X €
RY*4 (where N is sequence length and d is head dimension) with query, key and value weights
W,, Wi, W, € R¥ First, we compute Q = XW,, K = XW,,,V = XW,, before getting
attention weights A and attention outputs Y™ as

K /Vd "
exp (Q /) .Y, :ZAMVZ'? fornin[l,...,N] 3)
Z?zl exp (QnKzT/\/g) i=1

The final output is obtained by concatenating Y across h heads and using output projection matrix
W, € R*hd (o compute O = [Y'!,... YW,

LLM Inference. LLM inference proceeds in two phases: prefill and decoding. In the prefill phase,
per-head token embeddings have shape R"»*?, where n,, is the prompt length. The attention com-
putes queries, keys, and values for the prompt and caches the keys and values for subsequent steps.
During decoding, the model generates n, tokens autoregressively, one at a time. At each step ¢ with
nyp < t < ny, +ng, the model forms the new token embedding X, computes (Q:, K, Vi) € R1xd
and appends K; and V; to the cache, yielding [Ky, ..., K;] and [Vp, ..., V;]. Multi-head atten-
tion then uses @ to attend over the cached keys/values. With KV cache quantization, the cache
stores quantized keys and values together with their scale and zero-point parameters, and these are
dequantized before the attention computation.

Ani:

)

3 METHODOLOGY

In this section, we introduce KVLinC, a framework for mitigating attention errors due to low-
precision KV cache quantization. KVLinC integrates two complementary strategies: (i) Hadamard
rotation to reduce quantization error and (ii) lightweight linear correction adapters to compensate
attention distortions. We analyze axis and rotation choices for quantization, describe the design
and efficiency of correction adapters, and present a custom attention kernel for accelerated decod-
ing. These components together enable robust long-context inference at low precision with minimal
overhead.

3.1 HADAMARD ROTATION AND KV CACHE QUANTIZATION

Key and value tensors in the KV cache follow different statistics, motivating distinct quantization
schemes. As shown in Figure 2] keys contain channel-wise outliers with a few disproportionately
large magnitudes, whereas values do not. KIVI |Liu et al.| (2024b) addresses this by quantizing
keys channel-wise and values token-wise, yielding K, = Q¢ (K),; V; = Qr (V). This aligns the
dynamic range per column, localizing key quantization error to individual channels and matching
the observed outlier structure. In contrast, QuaRot (Ashkboos et al.,|2024) employs a Hadamard
rotation to suppress outliers and quantizes both keys and values token-wise. Denoting the Hadamard
matrix by H, the quantization configuration is K, = Qr(KH),V, = Qr(VH). As shown
in Figure 2} the Hadamard transform equalizes key and value distributions, eliminating outliers,
though its effectiveness under extreme low-precision remains untested. During dequantization, the

Under review as a conference paper at ICLR 2026

500

400

500.0

w
S
=3

500.0

o
5
Wikitext Perplexity

N
o
=3

o

500.0 | 500.0 | 500.0 | 500.0 | 500.0

<

5
<
g
S

5
=2
g
g

5
=2
g

<
<
g
g

%
<
S
g

:
<

Qr(HK) Qr(KH) Qr(K) Qc(HK) Qc(KH) Qc(K)
Qr(HK) Qr(KH) Qr(K) Qc(HK) Qc(KH) Qc(K)

Qc(V) Qc(VH) Qc(HV) Qr(V) Qr(VH) Qr(HV) Qc(V) Qc(VH) Qc(HV) Qr(V) Qr(VH) Qr(HV) Q) Qc(VH) Qc(HV) Qr(V) Qr(VH) Qr(HV)

(a) Llama-3.2-3B (b) Qwen-2.5-3B (c) Qwen-3-4B

Figure 3: Wikitext perplexity under different 2-bit quantization configuration for key and values.
Perplexity values are clipped to 500. Quantizing raw keys channel-wise and quantizing Hadamard
rotated values token-wise achieves best performance (shown in red).

quantized tensors K, and V,, must be multiplied by H T, the inverse of the orthogonal Hadamard
matrix, introducing additional computational overhead. While the overhead associated with values
can be eliminated by merging the rotation into the projection weight matrices, keys still require
online Hadamard transforms at inference time. QuaRot applies a Hadamard transform by post-
multiplying keys and values before quantization (K H, V H); we also consider pre-multiplication
(HK, HV). This yields a two-dimensional design space: quantization axis (channel- vs. token-
wise) x Hadamard placement (pre vs. post). We ablate all combinations, quantizing K and V' to
2-bit with group size 128, and evaluate Wikitext perplexity across three model families (Fig.[3). We
make the following observations:

Observation 1. Pre-multiplying keys and values with a Hadamard matrix almost always
yields worse performance compared to post-multiplication. A likely ex-

planation is that pre-multiplication mixes tokens prior to quantization, 0r(K) Qr(KH) Qc(K) Qc(KH)
which amplifies quantization noise and injects errors into the attention s
logits. In contrast, post-multiplication only rotates channels within each
token, thereby preserving relative token alignment and resulting in sig-
nificantly more stable performance.

o
?.
—
<
e
—

Observation 2. At the low-precision regime under consideration, KIVI’s
quantization configuration consistently outperforms QuaRot’s. QuaRot
exhibits extremely high perplexity, suggesting that token-wise quantiza- 21
tion of keys therefore still incurs large errors. To analyze quantization y
error (eq. [J), we analyze the scaling factor for different quantization 0 10 20
configuration of keys in Figure] It shows that although, Hadamard Layer ID
rotation of keys reduces scaling factor and hence the quantization error

with token-wise quantization, it still is much higher than channel-wise Figure 4: Layer-wise
quantization of keys. scaling factor for differ-
ent quantization configu-
ration of keys.

Scale factor (s)

Observation 3. Quantizing raw keys channel-wise together with
Hadamard rotated values token-wise (K, = Q¢(K),V, = Qr(VH))
emerges as the optimal configuration across all model families. This even outperforms the K, =
Qc(KH),V, = Qr(V H) quantization scheme. This is because the application of Hadamard
rotation to keys redistributes each outlier dimension, thereby increasing the scaling factor of quan-
tization leading to higher error (Figure). We therefore adopt this configuration for KVLinC quan-
tization. Importantly, this scheme is not only optimal in terms of accuracy but also practical, as it
requires no additional computational overhead for quantization or dequantization.

3.2 LINEAR CORRECTION ADAPTERS

To further mitigate the errors introduced in the attention operation by quantized keys, we propose
correction adapters which are lightweight, trainable modules that explicitly learn to compensate for
distortions in the attention distribution. Let the quantization error in keys be denoted by K¢ =
K — K. We augment the standard attention formulation with additive correction terms in both the

Under review as a conference paper at ICLR 2026

numerator and denominator:

. Shiew (QuE!T/VA) VI + S (Qu KV

Y, = .
Siyexp (QuK!T V) + S f(Qu KY)

Given a query, these correction terms add residual attention weights corresponding to the er-
ror induced by quantization. By reparameterizing the correction term additively, we ob-
tain a lightweight approximation that captures the dominant error while remaining computa-
tionally efficient. Let the correction adapters ¢q, ¢ : R? +—+ RP be the trainable fea-
ture maps. We define the correction term as the dot product of query and key error feature
maps: f(Qn, K{) = ¢4(Qn)ér(K¢)T. This allows the numerator of the correction term
to be written as ¢(Q,) > 1, ¢r(K¢) TV, and the denominator as ¢, (@)Y i, dr(KS) .
With Sy = 0 and Py, = 0, we compute attention as,

e (QuKDT/VA) Vi +6,(Qu)S,
Sy exp (Qu(KDT/VA) +64(Qu) P
for Sn = Sn,—l + ¢k(K:L)T‘/n and Pn = Pn—l + ¢7L(K:1> 00

This recurrent formulation transforms the quadratic accumulation 2.0
of correction terms into linear-time updates, allowing error com- s i
1.0 './

“4)

le-3
820 === KVLINC

2-bit KV
1.5

1.0

0.5

Error attn weigh

pensation to scale efficiently with sequence length. The cost of
error correction is O(ndD) in time and memory during prefill,

Error attn output

4
and only O(dD) per step during decoding. At decoding time, the el IPY)e-" g ,‘,/\I
cache stores the quantized keys and values along with the correc- 0.0
tion states S,, € R¥™P and P,, € RP. The additional memory C e

cost is constant with respect to sequence length, making the cor-
rection adapters highly efficient. Following LolCats |[Zhang et al.
(2024), we choose the feature maps ¢ as

Figure 5: Layer-wise attention

error from KV-cache quantiza-

tion: (top) MSE between full-

¢(X) = [softmax(X W), softmax(X W>)] € RP (6) precision and quantized atten-

tion weights; (bottom) MSE be-

with learnable weights Wy, W, € R%*P/2. The trainable fea- tween outputs. KVLinC (blue)

ture maps add less than 1% parameter overhead. The weights are consistently reduces error ver-
trained such that the full-precision attention weights A,, ; (eq.[3) sus 2-bit KV (orange).

match the corrected quantized attention weights A, ; :
: exp (QuEK! V) +6,(Qu)on(KE)T
Sy exp (QuKT V) + 64(Qu)or(K)T

Using a calibration dataset, we optimize the feature map parameters to reduce the cross-entropy loss
between A,, ; and Anl As shown in Figure after training, the error between quantized attention
and full precision attention is minimized. Thus, correction adapters enable quantized attention to
closely match full-precision distributions.

n,i

3.3 SYSTEM LEVEL IMPLEMENTATION

Improving end-to-end performance with KV-cache quantization requires custom kernels to (1) quan-
tize the cache and (2) run attention directly on quantized operands. We adopt the quantization kernel
from KIVI (Liu et al, 2024b), which quantizes the KV cache to 2 bits and bit-packs 16 elements
into a single 32-bit word. To accelerate decoding, we implement a custom attention kernel in Triton
(Tillet et al., 2019). In the spirit of FlashAttention (Dao, 2023), the kernel streams blocks of keys
and values from off-chip High Bandwidth Memory (HBM) to on-chip Static Random Access Mem-
ory (SRAM), performs dequantization and the attention computations on chip, and writes partial
outputs. Because the decoding phase exposes limited parallelism, we parallelize across KV blocks:
each block produces a partial sum of the attention output in parallel, the partial sums are reduced
to form the final attention output, and we then apply the KVLinC linear correction. Before running
attention, we compute the linear-correction states C,, and C; for the numerator and denominator,

Under review as a conference paper at ICLR 2026

Algorithm 1 KVLinC forward pass (single decode step)

Require: Q € R4 K; € RN/16xd 7, 8§, ¢ RN/Gxd vy, ¢ RNxd/16 7§ e RN*d/G
C,,Cy € R4 @G (quantization group size).
Ensure: Output Y € R'¥9,

1: Divide Ky, Zy, Sk, Vi, Z,,S, in T = [N/G] blocks: K},..., KT of size % x d each,
SL.Z} ..., ZL, ST of size 1 x deach, V' ... VT of size G x T‘éeaehandS},,Z&...SﬁZg
of size G x % each.

Create empty softmax state Y, € R7”*4 1, m ¢ RT
Load @ from HBM to SRAM.
parallel For j = 1to T > Parallelized across KV blocks
Load K7, S}, Z], V7, SJ, Z] from HBM to SRAM.
On chip, dequantize keys: KT = unpack(K7') @ S} + Z].
On chip, compute §7 = 5 - QK .
On chip, compute m? = rowmax(S?), EJ =exp(S? —m), 7 =rowsum(E7).
On chip, dequantize values : V:]j = unpack(VIj)© SI+ Z7.
On chip, compute : Y = E7VJ € R'*4.
Write Y/, m? and I to HBM.
: end parallel For
: w = exp(m — max(m))
:n =rowsum(Y; - w) +C,, d= (1 -w)+Cy > attention numerator and denominator
Y =n/d

R A A R

— = = = = =

respectively: C,, = ¢4(Q1)Sn, Cy = ¢4(Qy) P, These states, together with the (de)quantized
attention operands, are passed to the decoding algorithm in Algorithm [I] Following KIVI|Liu et al.
(2024b)), we quantize the KV cache only after the attention computation; consequently, the prefill
phase remains floating-point and can be accelerated with FlashAttention itself.

4 EXPERIMENTS

In this section, we benchmark KVLinC against competitive baselines. First we provide results of the
algorithm and then we provide end to end hardware efficiency improvements provided by KVLinC.

4.1 SETUP

Models, tasks, datasets and baselines. We evaluate KVLinC on the Llama-3 (Metal [2024aib;,
Touvron et al.||2023)), Qwen-2.5 (Yang et al.| 2024al)), and Qwen-3 (Yang et al.,|2025) model families,
chosen to test robustness of linear correction adapters under different architectural settings (Qwen-
2.5 uses bias in query/key projections; Qwen-3 applies layernorm after them). We compare against
KIVI (Liu et al.l 2024b), QuaRot (Ashkboos et al., [2024), ResQ (Saxena et al.l 2024b), and Gear
(Kang et al., 2024). Since ResQ and Gear retain portions of the KV cache in high precision, we
align their design point with KVLinC’s average precision: ResQ keeps 3.125% of channels in 16-bit,
and Gear uses rank-2 quantization error. All methods quantize the KV cache to 2-bits with group
size 128, while storing the most recent 128 tokens in full precision. We evaluate both base and
instruction-tuned models. For base models, we measure perplexity on Wikitext (Merity et al.,[2016)
(2k sequence length, autoregressive generation with compressed KV cache), exact match accuracy
on 5-shot GSMSK (Cobbe et al., [2021)), and average accuracy on Big-Bench Hard (BBH) (Suzgun
et al.l 2022)). For instruction-tuned models, we report results on long-context benchmarks: RULER
(Hsieh et al), [2024), LongBench (Bai et al., |2023), and IF-Eval (Zhou et al., [2023). LongBench
follows the setup in KIVI, while other benchmarks use the Im-evaluation-harness (Gao et al.| [2024)).

Implementation Details We implement KVLinC in PyTorch (Paszke et al, |2019) using Hugging-
Face Transformers (Wolf et al.,[2020). We set rank of correction adapters as D = 256, adding < 1%
extra parameters to the LLM. For base models, adapters are trained on Alpaca dataset (Taori et al.,
2023)) using Adam (Kingma & Bal 2017)) optimizer with learning rate 0.01, sequence length 3k,
batch size 24, for 500 steps. For instruction-tuned models, training uses RedPajama dataset (Weber
et al.,|2024), sequence length 8k, batch size 8, for 1500 steps with Adam optimizer. Training Llama-

Under review as a conference paper at ICLR 2026

Table 1: Results of base LLMs on Wikitext perplexity (2k sequence length), 5-shot GSM8K and
BBH. Average KV cache precision is computed considering the scaling factors and zero points
along with components used to compensate for quantization error. 71 higher is better, |: lower is
better. “Upper bound performance.

Method KV Llama-2-7B Llama-3.2-3B Llama-3.1-8B
Cache | Wikitext] GSM8KT BBHT | Wikitext] GSMS8KT BBHT | Wikitext] GSMS8KT BBHT
FP16 16 5.5 14.3 39.9 7.8 25.6 47.0 6.2 49.7 62.7
KIVI 2.46 5.9 10.6 30.5 11.0 11.8 25.0 7.8 34.1 44.2
Quarot 2.46 5.8 9.8 29.4 9.7 9.9 21.5 7.3 26.8 343
ResQ 291 5.7 10.8 32.6 8.7 14.1 31.5 6.8 36.2 42.7
Gear-L 2.96 5.8 10.8 30.0 10.0 16.4 28.3 7.3 38.8 46.7
KVLinC | 2.71 5.7 11.0 31.1 9.4 16.4 32.7 7.1 40.9 48.6
Method KV Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B
Cache | Wikitext] GSMS8KT BBHT | Wikitext] GSMS8K?T BBHT | Wikitext] GSM8KT BBHT
FP16 16 9.3 61.5 439 8.0 69.4 55.1 6.8 81.1 69.4
KIVI 2.46 16.5 26.9 17.9 9.7 46.1 327 11.2 71.0 453
Quarot 2.46 7268.2 0.1 0.0 783.0 0.0 0.0 3380.0 0.1 0.0
ResQ 291 13.2 10.6 22.1 9.1 47.2 39.2 10.6 35.6 479
Gear-L 2.96 14.0 322 21.7 9.3 474 34.1 10.6 71.8 49.5
KVLinC | 2.71 13.0 36.3 23.6 8.9 47.6 35.3 10.5 71.2 50.1
Method KV Qwen3-1.7B-Base Qwen3-4B-Base Qwen3-8B-Base
Cache | Wikitext] GSM8KT BBHT | Wikitext] GSMS8KT BBHT | Wikitext] GSMS8KT BBHT
FP16" 16 9.4 69.3 53.2 79 76.0 71.3 7.0 82.3 77.3
KIVI 2.46 11.2 48.4 30.5 9.1 67.5 499 7.7 78.6 58.6
Quarot 2.46 1963.3 0.0 0.0 755.3 0.1 0.0 202.3 17.5 20.8
ResQ 29 12.2 20.4 18.8 9.0 48.9 51.0 7.8 71.7 58.5
Gear-L 2.96 10.7 47.5 332 8.8 66.9 55.1 7.6 78.6 63.2
KVLinC | 2.71 104 53.9 35.5 8.6 67.6 55.2 7.5 78.9 61.7

Table 2: Results of Instruct LLMs on long context and instruction following tasks. Taskwise accu-
racy can be found in Appendix |A.1[[A.2| “Upper bound performance.

RULER TF-Eval
Model Method | KV Cache iR sk LongBench Tnststfct prompi-strict

FP16° 6 %5 88.1 304 793 712
Llama-3.2-3B-Instruct |y pyy 246 | 767 703 | 394 74.6 64.9
KVLinC | 271 | 808 736 | 394 76.3 67.5

FPI6" 16 903 850 | 314 68.9 58.8
Qwen-2.5-3B-Instruct | vy 246 | 495 410 | 280 62.7 525
KVLinC | 271 | 609 s1.1| 282 66.0 56.8

, FP16" 16 927 86| 319 476 36
Qwen-3-4B-Instruct | gy 246 | 837 799 | 312 44.8 318
KVLinC | 271 |82 824| 310 457 325

3.1-8B on Alpaca takes 2 hours, and Llama-3.2-3B on RedPajama takes 11 hours on 4xNVIDIA
H200 GPUs.

4.2 MAIN RESULTS

Results on Base Models. We evaluate the base LLMs of various sizes of Llama, Qwen-2.5, and
Qwen-3 model families on perplexity (PPL) on Wikitext at 2k sequence length, 5-shot GSM8K, and
BBH benchmark. The results are presented in Table[I] KVLinC manages to outperform or match the
performance of strong baselines at lower KV cache bitwidth. Compared to Gear, KVLinC achieves
upto 6.4% improvements on GSM8K and upto 2.3% improvements on BBH benchmark. Greater
improvements are observed for smaller-sized models. For the Qwen-2.5 and Qwen-3 family of mod-
els, QuaRot fails to produce meaningful results, showcasing that per token quantization strategy for
both keys and values is sub-optimal. ResQ adopts the same quantization configuration as QuaRot but
keeps important channels in high precision, enabling improved results. Since calibration for ResQ
is done on Wikitext itself, it achieves surprisingly low Wikitext PPL on Llama models. KVLinC
instead involves calibration on out-of-domain Alpaca dataset and does not overfit to any evaluation
benchmarks.

Results on Instruct models. We evaluate the instruction tuned LLMs of Llama-3.1, Qwen-2.5 and
Qwen-3 model families on RULER (4k and 8k sequence length), LongBench and IF-eval bench-

Under review as a conference paper at ICLR 2026

Table 3: Performance with applying Table 4: Impact on wikitext PPL with apply-

Hadamard rotation and linear correction ing KVLinC to different decoder layer blocks.
in isolation on Llama family. 1 higher is Applying KVLinC to earlier decoder layers pro-
better, |: lower is better. vides greater improvements.
Model Method Wikitext| GSM8K? KVLinC Improvement over KIVI (%)
KIVI 7.8 34.1 Layers Qwen-2.5-1.5B | Qwen-3-1.7B-Base
31-8B KIVI + LinC 73 38.4 [0-9] 796 3.03
: Qc(K), Vp(VH) 72 36.9 [9-18] 435 > a4
KVLinC 7.1 40.9 ‘ ’
KV 1o 118 [18-27] 2.73 1.20
s0ap KIVI+LinC 9.8 145 [0-13] 10.55 3.75
: Qc(K),Vi(VH) 9.7 13.9 [14-27] 4.29 2.33
KVLinC 9.4 16.4 [0-27] 16.82 5.27

marks. The results are presented in Table[2] KVLinC outperforms KIVT on all the presented models
on RULER and IF-eval tasks. For the Qwen-2.5-3B instruct model, KVLinC achieves more than
10% improvement on RULER tasks and upto 4.3% on IF-eval tasks. For LongBench, quantiza-
tion of KV cache impacts final accuracy by a small amount and the performance of both KIVI and
KVLinC is comparable.

4.3 ANALYSIS

N
=

Impact of different components. Further, we analyse how the
complementary strategies presented in KVLinC perform in isola-
tion. To achieve this, we apply the linear correction states to KIVI
(KIVI+LinC) and compare with a baseline which does channel-wise
quantization on raw keys and token-wise quantization on hadamard
rotated values. The results are presented in Table [3] For both Llama-
3.1-8B and Llama-3.2-3B, applying linear correction provides im- 0 B0 o0 or0 e
provements in Wikitext perplexity and 5-shot GSM8K accuracy. Sim-

ilarly, opting for Hadamard based quantization for values improves
performance over KIVI. While combining the two complementary
techniques enables KVLinC to achieve further gains in performance.

Wikitext Perplexity
o2 NN
o @ o N

=
S

o g—o———o

Figure 6: Linear correction
rank (D) vs. perplexity.

Layerwise insights. To better understand where KVLinC provides the most benefit, we selec-
tively apply it to different subsets of decoder layers while using KIVI’s quantization strategy for
the remaining layers. On Qwen-2.5-1.5B and Qwen-3-1.7B-Base (both with 28 decoder layers), we
observe that applying KVLinC to earlier layers yields greater improvements than applying it to the
same number of later layers. As shown in Table[d} the Wikitext perplexity improvements (relative to
KIVI) are consistently higher when KVLinC is applied to the initial layers. For example, applying
KVLinC to the first 10 decoder layers achieves an average 3.5% improvement over applying it to
the last 10 layers. This finding highlights a key insight: the initial decoder layers play a more critical
role under KV cache quantization.

Dimension of Linear correction states. The rank of the linear correction states D controls the
representational capacity of the feature maps, but higher ranks also increase overhead. As shown
in Figure [6] Wikitext perplexity improves with larger ranks up to D = 256, beyond which gains
saturate. We therefore select D = 256 as the optimal balance between accuracy and efficiency.

4.4 HARDWARE SPEEDUP

We evaluate the end-to-end speedup of KVLinC to highlight the combined impact of KV cache quan-
tization and our custom compute kernel. Specifically, we benchmark Llama-2-7B and Llama-3.1-8B
using a prompt length of 256 tokens and generating 1024 output tokens, progressively increasing
the batch size. Experiments are conducted on a single NVIDIA A40 (48 GB) GPU, measuring both
memory usage and throughput (tokens per second). We compare KVLinC against FlashAttention-2
Dao| (2023)) with a 16-bit floating-point KV cache. As shown in Figure[7] quantizing the KV cache
enables significantly larger batch sizes without exhausting memory. In particular, KVLinC supports
up to 3.1x more requests on Llama-3.1-8B and 3.5x more requests on Llama-2-7B. Moreover, for
Llama-2-7B, KVLinC delivers up to 2.55x faster inference at batch size 32, beyond which FlashAt-
tention becomes infeasible due to out-of-memory errors. For Llama-3.1-8B, the gains are more
modest, with KVLinC achieving 1.2x speedup at batch size 144. This discrepancy arises from ar-

Under review as a conference paper at ICLR 2026

@ 2 000 o @
Ca 8 40 e
o ~~" X 800 p— © . S goo
& 30 o g — 239 P S
g ~ g 600 ~ g - < 600 #
~ / E
E‘ 20 g .c: 400 4 2 201 -E: 400 !
§wo FP16 3 200 / FP16 £ 10 FP16 3 200 | FP16
s == KVLINC ',S == KVLINC b == KVLINC & == KVLINC
0 0 = 0
0 25 50 75 100 0 25 50 75 100 90 100 200 300 400 500 0 100 200 300 400 500
Batch size (# requests) Batch size (# requests) Batch size (# requests) Batch size (# requests)
(a) Llama-2-7B (b) Llama-3.1-8B

Figure 7: End to end memory usage and throughput (tokens/s) on NVIDIA-A40 with varying batch
sizes at prompt length of 256 and 1024 generated tokens for (a) Llama-2-7B and (b) Llama-3.1-8B.

chitectural differences: unlike Llama-3.1-8B, Llama-2-7B does not employ grouped query attention
(GQA), resulting in a substantially larger KV cache that amplifies the benefits of our method.

5 RELATED WORKS

KV Cache Quantization The dynamic nature of KV caching introduces unique challenges for
quantization, where both quantization and dequantization speed is critical. A variety of strategies
have been explored across different granularities. ZipCache (He et al.; [2024)) and WKV Quant (Yue
et al.,2024) adopt channel-separable, token-wise quantization, while KIVI (Liu et al., 2024b) ap-
plies channel-wise quantization to keys and token-wise quantization to values. In contrast, KVQuant
(Hooper et al.,|2024) and PolarQuant (Han et al.l 2025) use non-linear quantization schemes to re-
duce error. QJL (Zandieh et al.,|2025) introduces a specialized Johnson-Lindenstrauss transform for
key tensors combined with per-token quantization of values. Other methods combine quantization
with decomposition: Palu (Chang et al.,|2024) and EigenAttention (Saxena et al., 2024a) integrate
low-rank factorization with quantization. Several approaches further mitigate quantization error by
leveraging advanced transformations or error modeling. QuaRot (Ashkboos et al., [2024) and Spin-
Quant (Liu et al.||2024a) use Hadamard transforms to improve quantization robustness. ResQ (Sax-
ena et al.,[2024b)) preserves salient channels in higher precision, whereas GEAR (Kang et al., [2024)
maintains a low-rank approximation of the quantization error. Finally, MiKV (Yang et al., 2024b),
QAQ (Dong et al.} 2024), and SKVQ (Duanmu et al., [2024)) explore variable bit-width schemes to
balance accuracy with memory savings.

Linear Attention A large body of prior work has explored more efficient sequence modeling mod-
ules as alternatives to softmax attention in transformers, often by pretraining architectures from
scratch. Within this line, numerous linear attention approaches have been proposed |(Choromanski
et al.[(2020); Katharopoulos et al.| (2020); |Xiong et al.| (2021); |Yang et al.| (2023). More recently,
several efforts focus on post-training conversion of softmax-attention transformers into linear coun-
terparts. For example, Lolcats (Zhang et al., |2024) employs advanced linear feature map design
combined with attention distillation, while Liger (Lan et al., 2025) incorporates gated recurrence to
achieve this transition. Pushing further, LoLA (McDermott et al., [2025) and Based (Arora et al.,
2025)) adopt hybrid strategies that combine linear attention with selective application of exact soft-
max attention on subsets of keys and values, thereby improving accuracy while retaining efficiency.

6 CONCLUSION

In this work, we introduced KVLinC, a framework designed to mitigate attention errors arising from
KV cache quantization. KVLinC integrates two complementary techniques to enable robust low-
precision caching. First, through a detailed analysis of Hadamard rotation based quantization strate-
gies, we showed that applying channel-wise quantization to raw keys and token-wise quantization to
Hadamard-transformed values minimizes quantization error. Second, to address residual errors from
quantized keys, we proposed lightweight linear correction adapters that explicitly learn to compen-
sate for distortions in attention. Extensive evaluation across the Llama, Qwen2.5, and Qwen3 model
families demonstrates that KVLinC consistently matches or surpasses strong baselines under ag-
gressive KV-cache compression. Finally, we developed a custom attention kernel that delivers up to
2.55x speedup over FlashAttention, enabling scalable, efficient, and long-context LLM inference.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have provided details about our proposed algorithm in Section Additionally, we provide
codebase to reproduce results of our experiments and the baselines in supplementary materials.

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff, 2025. URL https://arxiv.org/abs/2402.18668,

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. arXiv preprint arXiv:2403.04643, 2024.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Insu Han, Praneeth Kacham, Amin Karbasi, Vahab Mirrokni, and Amir Zandieh. Polarquant: Quan-
tizing kv caches with polar transformation. arXiv preprint arXiv:2502.02617, 2025.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache: Ac-
curate and efficient kv cache quantization with salient token identification. Advances in Neural
Information Processing Systems, 37:68287-68307, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

10

https://arxiv.org/abs/2402.18668
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
Ilm, 2024. URL https://arxiv.org/abs/2403.05527.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Disen Lan, Weigao Sun, Jiaxi Hu, Jusen Du, and Yu Cheng. Liger: Linearizing large language
models to gated recurrent structures. arXiv preprint arXiv:2503.01496, 2025.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. arXiv preprint arXiv:2405.16406, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Luke McDermott, Robert W. Heath Jr., and Rahul Parhi. Lola: Low-rank linear attention with sparse
caching, 2025. URL https://arxiv.org/abs/2505.23666,

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL |https://arxiv.org/abs/1609.07843.

Meta. Llama 3.2: Revolutionizing edge Al and vision with open, cus-
tomizable models, 2024a. URL https://ai.meta.com/blog/
llama—3-2-connect-2024-vision—-edge—-mobile—-devices/.

Meta. Introducing Meta Llama 3: The most capable openly available LLM to date., 2024b. URL
https://ai.meta.com/blog/meta-1llama—-3/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jorn Peters, Marios Fournarakis, Markus Nagel, Mart Van Baalen, and Tijmen Blankevoort. Qbitopt:
Fast and accurate bitwidth reallocation during training. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 1282-1291, 2023.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024a.

Utkarsh Saxena, Sayeh Sharify, Kaushik Roy, and Xin Wang. Resq: Mixed-precision quantization
of large language models with low-rank residuals. arXiv preprint arXiv:2412.14363, 2024b.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10-19, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

11

https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2505.23666
https://arxiv.org/abs/1609.07843
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/meta-llama-3/

Under review as a conference paper at ICLR 2026

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
training large language models. Advances in neural information processing systems, 37:116462—
116492, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv:1910.03771, 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nystromformer: A nystrom-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 14138-14148, 2021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv:2412.15115,
2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024b.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqgiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quan-
tization with zero overhead. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25805-25813, 2025.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal,
Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large language models.
arXiv preprint arXiv:2410.10254, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny

Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

A APPENDIX

A.1 DETAILED RESULTS ON LONGBENCH TASKS
Here we show task-wise accuracy on various tasks within the LongBench benchmark Bai et al.

(2023). The results are presented in Table[5] We evaluate on 14 english language tasks on Long-
Bench. Both KIVI and KVLinC show comparable performance on various tasks.

12

https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Table 5: Taskwise accuracy on LongBench tasks. Upper bound performance.

KV] LongBench Tasks _
1SS » g
Model Method Cache II:]/[:\B: Péirng[e Samsum MFQA Nag'j\me HSXOL Trec Qmsum TSVAM Qasper 2}\\’4\2 !:l Musique R‘ejs(\)ln lf;ﬁ?t:l Avg.
Llama- FP16 16 262 35 4235 511 263 303 710 227 88.9 40.6 28.0 137 335 86.8 40.4
3.2-3B KIVI 2.46 24.7 3.6 40.7 48.5 27.1 30.6 70.5 239 88.7 36.1 325 13.9 26.4 83.7 394
-Instruct | KVLinC | 2.71 26.2 2.5 41.7 47.6 26.7 29.0 70.5 242 87.6 36.3 314 14.4 29.9 84.3 394
Qwen- FP16 16 2438 3.0 44.2 38.7 10.9 19.9 68.5 234 87.1 16.4 152 12.4 324 428 314
2.5-3B- KIVI 2.46 235 3.0 42.2 28.1 9.2 18.3 68.0 243 85.6 11.4 13.2 9.7 243 31.2 28.0
Instruct | KVLinC | 2.71 23.0 22 41.6 31.0 10.1 142 68.0 241 86.6 12.1 13.2 9.0 273 318 282
Qwen FP16 16 19.8 33 44.1 248 35 134 73.0 234 88.8 11T 14.4 10.0 29.2 88.0 31.9
-3-4B- KIVI 2.46 229 4.6 42.0 21.3 3.7 13.1 73.0 224 87.8 10.7 13.6 79 26.2 87.5 31.2
Instruct | KVLinC | 2.71 22.7 32 419 21.8 43 12.8 73.0 232 88.3 11.0 12.9 8.9 27.1 83.6 31.0

Table 6: Task-wise accuacy on RULER benchmark“Upper bound performance.

KV]] RULER Tasks
Model | Seq-len | Method Cache | niahml niahm2 niahm3 n;]é‘ll:q [:i;}{, niahsl niahs2 niahs3 cwe fwe hotpotqa squadqa vt Avg.
FP16 16 99.8 100.0 98.4 1000 998 1000 100.0 99.6 951 93.1 552 68.9 92.1 | 92.5
Llama- 4k KIVI 2.46 98.8 89.0 20.2 91.6 90.6 99.0 99.6 53.0 792 865 52.0 66.4 70.6 | 76.7
3938 KVLinC | 271 954 94.4 234 93.9 953 96.0 98.8 804 858 882 51.8 69.2 774 | 80.8
Tnstruct FPI6 16 98.4 99.8 96.0 99.5 99.5 1000 100.0 998 669 856 526 63.8 840 | 8.1
8k KIVI 2.46 97.0 82.8 5.6 90.1 92.0 99.4 99.0 552 389 743 51.2 56.3 72.0 | 70.3
KVLinC | 2.71 93.0 92.6 10.2 92.7 925 93.6 96.8 732 500 80.9 49.4 59.8 724 | 73.6
FPI6 16 99.8 99.0 97.4 1000 995 1000 847 998 847 915 49.0 72.1 96.6 | 90.3
Qwen 4k KIVI 2.46 65.0 47.6 0.0 585 447 66.0 56.6 24 653 799 43.0 62.3 519 | 495
25.3B- KVLinC | 2.71 824 52.6 0.6 75.7 704 876 87.6 16.6 652 817 42.8 64.4 63.8 | 60.9
Instruct FPI6 16 100.0 99.6 87.6 1000 984 1000 100.0 100.0 463 77.1 43.6 585 945 | 85.0
> 8k KIVI 2.46 57.8 264 0.0 55.3 39.7 69.0 56.6 3.8 342 614 34.8 453 49.6 | 41.1
KVLinC | 2.71 758 34.6 0.0 69.9 644 856 81.2 21.6 296 653 36.4 48.0 524 | 511
FP16 16 974 100.0 99.8 99.6 983 1000 100.0 99.8 947 88.1 548 72.1 100.0 | 92.7
Qwen- 4k KIVI 2.46 96.6 95.0 48.0 97.4 96.6 99.2 96.8 788 819 821 55.6 69.6 90.9 | 83.7
3-4B- KVLinC | 271 97.4 96.6 63.6 98.1 98.0 99.0 97.8 846 812 831 56.0 71.3 944 | 86.2
Instruct FPI6 16 978 99.0 99.4 99.3 962 1000 100.0 1000 66.7 83.6 50.6 59.8 992 | 886
8k KIVI 2.46 96.2 91.2 26.4 96.6 96.4 99.2 96.0 754 67.8 821 554 63.7 922 | 79.9
KVLinC | 271 97.8 94.2 22 98.2 97.7 99.8 96.6 832 695 798 55.6 63.1 93.1 | 824

A.2 DETAILED RESULTS ON RULER TASKS
Additionally we also provide task wise breakdown in RULER benchmark in Table[6] The results are

presented for both 4k and 8k sequence length. As shown in Table [6] KVLinC outperforms KIVI on
most of the individual tasks across sequence lengths and models.

A.3 LLM USAGE

The authors of this paper used ChatGPT (https://chatgpt.com/) for polishing text within
this paper. The authors take full responsibility for the content within this paper.

13

https://chatgpt.com/

	Introduction
	Background
	Methodology
	Hadamard Rotation and KV Cache Quantization
	Linear Correction Adapters
	System Level Implementation

	Experiments
	Setup
	Main Results
	Analysis
	Hardware Speedup

	Related Works
	Conclusion
	Appendix
	Detailed Results on LongBench tasks
	Detailed Results on RULER tasks
	LLM Usage

