
LOOK-M: Look-Once Optimization in KV Cache
for Efficient Multimodal Long-Context Inference

Anonymous ACL submission

Abstract001

Long-context Multimodal Large Language002
Models (MLLMs) demand substantial compu-003
tational resources for inference as the growth of004
their multimodal Key-Value (KV) cache, in re-005
sponse to increasing input lengths, challenges006
memory and time efficiency. Unlike single-007
modality LLMs that manage only textual con-008
texts, the KV cache of long-context MLLMs009
includes representations from multiple images010
with temporal and spatial relationships and re-011
lated textual contexts. The predominance of012
image tokens means traditional optimizations013
for LLMs’ KV caches are unsuitable for multi-014
modal long-context settings, and no prior works015
have addressed this challenge. In this work,016
we introduce LOOK-M, a pioneering, fine-017
tuning-free approach that efficiently reduces018
the multimodal KV cache size while maintain-019
ing performance comparable to a full cache.020
We observe that during prompt prefilling phase,021
the model prioritizes more textual attention022
over image features, and based on the multi-023
modal interaction observation, a new proposed024
text-prior method is explored to compress the025
KV cache. Furthermore, to mitigate the degra-026
dation of image contextual information, we pro-027
pose several compensatory strategies using KV028
pairs merging. LOOK-M1 demonstrates that029
with a significant reduction in KV Cache mem-030
ory usage, such as reducing it by 80% in some031
cases, it not only achieves approximately 1.3x032
faster decoding but also maintains or even en-033
hances performance across a variety of long034
context multimodal tasks.035

1 Introduction036

Large language models (LLMs) (Achiam et al.,037

2023; Meta, 2024; Jiang et al., 2023; Wan et al.,038

2023) are progressively evolving into multimodal039

large language models (MLLMs) (Yang et al.,040

2023; Yin et al., 2023), making significant ad-041

vances in the processing of extensive multimodal042

1The source code will be made publicly available.

Instruction: Your objective is the main goal. Evaluate your current environment

and your past decisions, and decide your immediate course of action.

Question: Your Main Goal: Put a warm slice of bread on the counter. Step

Details: <image1>Step#1: Turn around and walk to the counter top above the

dishwasher, just past the refrigerator. <image2>Step#2: Pick up the loaf of bread

to the right of the toaster. <image3>Step#3: Move over to your right so that you

are directly in front of the knife's on the counter. <image4>Step#4: Place the

bread on the counter to the left of the knife’s. <image5>Current Step:

GroundTruth：Pick up the knife closest to the fork on the right, located on the

counter.

Figure 1: A multimodal long-context sample contains mul-
tiple images from MileBench (Song et al., 2024) showing
comprehensive spatial relationships.

contexts such as GPT-4V. Despite the impressive 043

capabilities of MLLMs, they still face significant 044

challenges when dealing with long multimodal con- 045

text inputs, such as temporal multi-image tasks 046

and semantic multi-image tasks (Song et al., 2024), 047

or multi-turn multimodal dialogues (Team et al., 048

2023) in real-world applications. Specifically, mul- 049

timodal KV caches hinder the efficient processing 050

of long multimodal inputs. During inference, the 051

increased lengths of inputs linearly slow down the 052

decoding process due to the attention computations 053

across past multimodal KVs. 054

Furthermore, as depicted in Figure 1, in con- 055

trast to text-only LLMs’ KV cache eviction meth- 056

ods (Zhang et al., 2023; Wan et al., 2023), long 057

multimodal inputs typically include multiple in- 058

terrelated images, along with definitions or back- 059

ground descriptions relevant to the task. Directly 060

applying traditional text-centric KV cache eviction 061

strategies (Zhang et al., 2023; Ge et al., 2023a; 062

Ren and Zhu, 2024a; Li et al., 2024) to MLLMs 063

overlooks the potential interactions between multi- 064

modal representations (Team et al., 2023). Specif- 065

ically, Figure 2 shows the attention visualization 066

for multimodal long-context, the model exhibits 067

greater attention to the textual components during 068

the multimodal prompt encoding process. This 069

1

𝐗𝑇

𝐗𝐼
𝐗𝑇

𝐗𝐼

attention weight(3 images) attention weight(5 images)

Figure 2: Visualization of attention in multimodal prompt
encoding phase, where XT represents a text sentence and XI

denotes a subsequent image, showcasing the interleaved input
of text and images in multimodal long-context scenarios.

observation demonstrates that the model tends to070

understand global visual content through textual071

knowledge, highlighting the necessity of preserv-072

ing textual features and selectively pruning redun-073

dant image tokens in the multimodal KV cache to074

maintain the integrity of the multimodal context.075

In this paper, we introduce LOOK-M, a pio-076

neering and efficient framework that marks the first077

effort to compress KV caches specifically for mul-078

timodal long-context scenarios. The term Look-079

Once in our method implies that pruning occurs080

only once during multimodal long prompt encod-081

ing, and the model effectively sees the full image082

just once. LOOK-M utilizes a text-prior technique083

that prioritizes the retention of textual KV pairs dur-084

ing the prompt encoding phase, given the insight085

from Figure 2. For visual representation, inspired086

by attention-based eviction strategies (Zhang et al.,087

2024b), our method prunes redundant visual KV088

pairs that show sparse patterns in attention visu-089

alizations, utilizing the metric of attention scores.090

Furthermore, to preserve global contextual informa-091

tion in the compressed cache, we develop several092

merging strategies to merge the evicted KV tokens093

into conserved ones, addressing potential halluci-094

nations and contextual inconsistencies (Yang et al.,095

2024) during the decoding process.096

Remarkably, LOOK-M does not require any097

fine-tuning and can be applied in a plug-and-098

play manner with a look-once KV cache com-099

pression strategy. We evaluate our LOOK-M100

with several strategies over four recent MLLM101

backbones LLaVA-v1.5-7B/13B (Liu et al., 2023),102

MobileVLM-v2 (Chu et al., 2024a) and InternVL-103

v1.5 (Chen et al., 2023) across several multimodal104

long-context tasks from MileBench (Song et al.,105

2024): temporal multi-image tasks, semantic multi-106

image tasks, needle in a haystack task, and image107

retrieval tasks, respectively. Compared to baselines, 108

LOOK-M achieves minimal performance drop with 109

a fixed KV cache budget and improves the model 110

inference decoding latency by 1.3x to 1.5x and re- 111

duces KV Cache memory footprint by 80% to 95% 112

while still maintaining performance on long con- 113

text multimodal tasks, and even showing improved 114

performance across various tasks. Our analysis 115

validates that combining text-prior and proposed 116

merging strategies contributes to the multimodal 117

KV cache compression effectiveness of LOOK-M. 118

2 Related work 119

Vision Token Compression For MLLMs. 120

Classical works in this category, including 121

MobileVLM (Chu et al., 2024b), LLaVA- 122

Prumerge (Shang et al., 2024), MADTP (Cao et al., 123

2024), and FastV (Chen et al., 2024), focus on 124

reducing the number of image tokens, which con- 125

stitute the majority of total tokens. These meth- 126

ods enhance inference speed by eliminating redun- 127

dant image tokens. Specifically, MobileVLM (Chu 128

et al., 2024b) employs a lightweight projector ar- 129

chitecture featuring an average pooling layer to 130

significantly compress the number of visual to- 131

kens. LLaVA-Prumerge (Shang et al., 2024) and 132

MADTP (Cao et al., 2024) introduce adaptive ap- 133

proaches to visual token reduction, effectively de- 134

creasing their count while maintaining model per- 135

formance. FastV (Chen et al., 2024) introduces 136

a versatile plug-and-play method that optimizes 137

computational efficiency through adaptive atten- 138

tion patterns in early layers and visual token prun- 139

ing in later stages, achieving up to a 45% reduc- 140

tion in computational costs while preserving perfor- 141

mance. Unlike these methods, which focus solely 142

on optimizing VIT output tokens and require fine- 143

tuning, LOOK-M specifically targets multimodal 144

token compression within the KV cache without 145

necessitating additional fine-tuning. 146

147

KV Cache Compression For LLMs. KV cache 148

compression primarily encompasses three strate- 149

gies: Eviction, Quantization, and Trainable Com- 150

pression. In eviction, techniques like Mistral- 151

7B (Jiang et al., 2023) and StreamingLLM (Xiao 152

et al., 2023) only preserve key tokens for effi- 153

cient sequence generation, while approaches like 154

H2O(Zhang et al., 2024b) and SnapKV (Li et al., 155

2024) focus on maintaining a small, influential set 156

of tokens to enhance performance, though risk los- 157

2

Step#1:
Turn left

and….

Current
Step:

VIT

Proj

LLM Layer Prefill Merge LLM Layer’s KV Cache

··· ···

Text prior token

··· ···

Visual token

Visual Evicted token

Recent kept tokens

Pick up the mug that's in front of you at the coffee maker.

Visual important token

VIT

Proj

Generation

Merge

Figure 3: Pipeline of LOOK-M’s KV cache optimization strategy. ‘Prefill’ denotes prompt encoding.

ing context with evicted KVs. Quantization strate-158

gies such as KIVI (Liu et al., 2024) and Gear (Kang159

et al., 2024) reduce cache memory through ad-160

vanced quantization techniques, balancing memory161

efficiency with precision. In trainable Compres-162

sion, methods like LESS (Dong et al., 2024) and163

DMC (Nawrot et al., 2024) adapt LLMs to com-164

press KV caches by training on selected datasets,165

although they face challenges in generalization.166

However, our LOOK-M utilizes a plug-and-play167

approach that does not require additional training,168

ensuring wider applicability without the necessity169

for tuning specific to multimodal datasets. There-170

fore, different from these text-centric KV cache171

compression methods, our LOOK-M specifically172

targets long multimodal text scenarios and seeks173

to leverage attention map interactions between text174

and images to guide KV cache pruning.175

Token Merging. Unlike token pruning (Tang176

et al., 2023; Kong et al., 2021; Song et al., 2022;177

Yun et al., 2024) in encoder-based backbones like178

ViT (Dosovitskiy et al., 2021) or Bert (Devlin et al.,179

2019), which discards less significant tokens, token180

merging (Bolya et al., 2022) consolidates tokens181

into fewer, more meaningful units, preserving in-182

formation integrity. Consequently, token merging183

has become preferred over token pruning to re-184

duce token count. Existing methods like TPS (Wei185

et al., 2023), MG-ViT (Zhang et al., 2024a), and186

PuMer (Cao et al., 2023) have explored token merg-187

ing and pruning techniques, primarily in computer188

vision tasks. In contrast, LOOK-M is a pioneering189

effort to adapt token merging within the multimodal190

KV cache in long-context scenarios, enhancing ef-191

ficiency for auto-regressive tasks in MLLMs.192

3 Methodology 193

In Section 3.1, we first review the basic imple- 194

mentation of generative inference utilizing a multi- 195

modal KV cache. Subsequently, as shown in Fig- 196

ure 3, we detail the principal components of the 197

LOOK-M model, which includes text-prior KV 198

pairs eviction strategy to facilitate precise pruning, 199

discussed in Section 3.2, and various strategies for 200

merging KV pairs, such as averaged, pivotal, and 201

weighted merging in Section 3.3. 202

3.1 Preliminary: Generative Inference with 203

Multimodal KV Cache 204

A typical generative inference process for MLLMs 205

involves encoding multimodal prompts and gener- 206

ating tokens. 207

Multimodal Prompt Encoding. During the 208

prompt encoding phase, a sequence of prompts 209

is used to construct a KV cache for each trans- 210

former layer in MLLMs. Consider the input 211

prompt tensor X ∈ RLprompt×D, represented as 212

X = {XT
1 ,X

I
1, . . . ,X

T
N ,XI

M}, where XT and 213

XI denote textual and visual embeddings, and M 214

and N represent the number of image and text rep- 215

resentations, respectively. Here, Lprompt indicates 216

the prompt length and D is the model’s hidden di- 217

mension. In most long multimodal context settings, 218

XT and XI are interleaved as inputs. For sim- 219

plicity, the indices for heads and layers have been 220

omitted. The key and value tensors are derived as 221

follows: 222

K = XWK ,V = XWV , (1) 223

With WK ,WV ∈ RD×D representing the weights 224

for the key and value layers, respectively, K and V 225

3

are computed and subsequently stored in the KV226

cache to aid in token generation.227

Token Generation. During the Token Generation228

phase, the KV cache is employed and updated to229

sequentially generate tokens. At each time step230

t, keys and values are computed only for the new231

token xi, while those for x<i are retrieved from the232

cache. Concatenation is denoted as [·]. Following233

this, the cache is updated, and the output for the234

newly generated token is given as:235

K = [K,xtWK],V = [V,xtWV], (2)236
237

xt,out = Softmax
(
qtK

⊤/
√
D
)
V,qt = xtWQ,

(3)238

where WQ ∈ RD×D is the weight matrix of the239

query layer, the linear growth of the multimodal240

KV cache with each new token notably heightens241

memory consumption and latency, especially with242

longer prompts or during token generation, high-243

lighting the need for cache compression.244

3.2 Text-Prior KV Pairs Eviction245

The key idea of KV pair eviction during the prompt246

prefilling phase is to dynamically update the KV247

cache using cumulative attention scores. This pro-248

cess strategically excludes the least essential KV249

pairs to maintain a compact cache size, thereby250

ensuring that only the most valuable tokens are pre-251

served for efficient inference. However, contrary252

to the traditional accumulation-based approach253

(Zhang et al., 2024b) that will indiscriminately254

treat all tokens, our method prioritizes the reten-255

tion of text-based KV pairs and performs eviction256

of image-based KV pairs, guided by the patterns257

observed in the attention visualizations shown in258

Figure 2, and then integrating them within a recent259

window with size M . Let T denotes the indices260

of textual tokens, Tp denotes text-prior value, the261

attention score As is formulated as follows:262

As =

Lprompt∑
i=0

Ap[i, :], Ap = Attn
(
QpK

⊤
p

)
, (4)263

264
As[T] = As[T] + Tp, Tp = Max(As), (5)265

where Ap denotes the attention weight of prompt266

encoding, Qp,Kp ∈ RLprompt×D. We set Tp as the267

maximum value of As to prioritize text tokens for268

preservation. After calculating the current cumula-269

tive attention scores, we preserve the most recent270

window of size M . Subsequently, from the remain-271

ing KV cache, the top N important tokens with the272

highest scores are selected to finalize the eviction. 273

The process is defined as follows: 274

Kc = [K[I, :],K[−M :, :]], (6) 275
276

Vc = [V[I, :],V[−M :, :]], (7) 277
278

and I = TopN (As[: −M], N) , (8) 279

where TopN (·, N) selects the indices of top N 280

important tokens in AttnScore, I denotes the union 281

of textual token indices T and the Top N tokens. 282

(Kc,Vc) is the conserved KV cache after eviction. 283

Therefore, the compressed multimodal KV cache 284

size is S = N +M . 285

3.3 KV Pairs Merging Strategies 286

To mitigate the loss of context information follow- 287

ing the eviction of multimodal KV pairs, we ex- 288

plore various merging strategies during the prompt 289

encoding phase. Given the eviction set Ke = 290

K−Kc, we deploy a many-to-one nearest-neighbor 291

matching algorithm (Dang et al., 2021) to derive 292

the similarity matrix S between Ke and Kc. Con- 293

sidering the alignment properties of KV-pairs in 294

MLLMs, we only compute the similarity matrix 295

on the key’s tokens and share the similarity matrix 296

and weighted merging weights with the value’s to- 297

kens. More specifically, Ie and Ic represent the 298

indices, and Le and Lc signify the token lengths 299

in Ke and Kc, respectively. Within the matrix S, 300

each element si,j captures the interaction required 301

for matching tokens, where i ∈ Ie and j ∈ Ic. 302

The process starts by identifying the nearest to- 303

ken kclosest within Kc for each token ki from the 304

evicted set. The respective formulas are as follows: 305

kclosest
Kc→Ke

= Argmax
j∈Ic

(si,j) , si,j =
k⊤
i kj

∥ki∥ ∥kj∥
,

(9) 306

We utilize cosine similarity where | · | denotes the 307

norm, and matrix S ∈ RLe×Lc
.. Subsequently, we 308

introduce three novel merging strategies for inte- 309

grating evicted and conserved KV tokens, namely 310

averaged merging, pivotal merging, and weighted 311

merging. 312

313

Averaged Merging We begin by exploring a 314

straightforward averaged merging strategy. After 315

computing the similarity matrix S and obtaining 316

the maximum value from each row to identify the 317

kclosest
Kc→Ke

, we observe that each kc may have a cor- 318

responding maximum similarity set ksim from Ke, 319

since the relationship between the evicted tokens 320

4

Evicted TokenConserved Token

(a) Similarity Matrix

✔

✔

✔

✔

✔

✔

Max

1 2 3
4

5

6

7

8

9

Ke 4 5 6 7 8 9Kc 1 2 3

1

2

4

5

6

9

3 7 8

Mean+ +

(b) Averaged Merging

1

4 1

+
6 1

++ + Mean

2

5 2

+
9 2

++ +

...

(c) Pivotal Merging (d) Weighted Merging

1 4 6 Mean+ +×
✔ ✔

×

2 5 9+ +× ×

3 7 8+ +× ×

✔ ✔

✔ ✔

✔ Max Similarity Value

+

+

+

+

Figure 4: A simple similarity matrix example and Four merging strategies of LOOK-M: Averaged Merging, Pivotal Merging,
and Weighted Merging.

Ke and the conserved tokens Kc is one-to-many.321

As demonstrated in Figure 4 (b), given the results322

from the similarity matrix, the maximum similarity323

set for token 1 includes tokens 4 and 8. We em-324

ploy the most direct method of averaging for the325

merging:326

kc =
1

Lsim + 1
(kc +

Lsim∑
i=0

ksim[i]), ksim ∈ Ke,

(10)327

where Lsim denotes the number of Ke tokens.328

329

Pivotal Merging Unlike averaged merging, the330

pivotal merging approach emphasizes the weight331

proportion for the conserved tokens Kc during the332

merging process. As illustrated in Figure 4 (c), we333

initially perform an average fusion between each ke334

and its corresponding kclosest
Kc→Ke

. The merged tokens335

are designated as ’pivotal tokens’. Subsequently,336

we average merge each kc with its corresponding337

pivotal token, as formulated below:338

kc =
1

Lsim + 1
{kc +

1

2

Lsim∑
i=0

(ksim[i] + kclosest)},

(11)339

340

Weighted Merging Contrast to the static weight341

allocation strategies used in averaged and pivotal342

merging, we propose a similarity-based weighted343

merging method that dynamically allocates weights344

based on the information in the similarity matrix.345

Specifically, for each kc and its corresponding max-346

imum similarity set ksim, weights for the elements347

in ksim are dynamically assigned according to the348

entries in the similarity matrix S, as illustrated349

in Figure 4 (d). Consequently, the formula for350

weighted merging is as follows:351

kc =
1

Lsim + 1
{kc+

Lsim∑
i=0

(ksim[i]·S[x][y])}, (12)352

where x, y represent specific coordinates of each 353

element in ksim relative to corresponding ksim. 354

4 Experiments Setting 355

4.1 Datasets and Metrics 356

MileBench is recognized as the first comprehen- 357

sive benchmark developed to evaluate Multimodal 358

Long-Length Models (MLLMs) across dimensions 359

of multi-image and extended context, designed to 360

cover a broad spectrum of general scenarios. In 361

this section, we scrutinize the effectiveness of our 362

diverse KV Cache compression strategies across all 363

subtasks of MileBench. The benchmark organizes 364

these into four primary task classifications, denoted 365

as T, S, N, and I, each encompassing a series of 366

specialized sub-tasks: 367

T: Temporal Multi-image Tasks, which include 368

four distinct tasks from T-1 to T-4. 369

S: Semantic Multi-image Tasks, comprising five 370

sub-tasks, spanning from S-1 to S-5. 371

N: Needle in a Haystack Tasks, featuring two spe- 372

cific sub-tasks, N-1 and N-2. 373

I: Image Retrieval Tasks, which consists of a single, 374

focused sub-task. 375

The sub-tasks within MileBench are further di- 376

vided across various datasets, and we employ eval- 377

uation metrics such as Accuracy and ROUGE-L to 378

assess performance. The scores for each sub-task 379

are calculated from the average values of these met- 380

rics across the datasets included in that sub-task. 381

For specific details regarding the datasets and their 382

associated metrics, please refer to the Appendix A, 383

Table 5. 384

4.2 Baselines 385

To compare the benefits of LOOK-M, we employ 386

the latest KV cache eviction methods as baselines: 387

H2O (Zhang et al., 2024b), which relies on cumu- 388

lative attention scores; SnapKV (Li et al., 2024), 389

using a pooling strategy; and RoCo (Ren and Zhu, 390

5

Table 1: Performance metrics of various KV Cache Strategy on LLaVA-v1.5-7B/13B on MileBench’s tasks with
recent ratio α1 = 0.1 and important ratio α2 = 0.1. A-Merge, W-Merge, P-Merge denote averaged merging,
weighted merging and pivotal merging, respectively. TR represents text-prior KV pairs eviction.

Method T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

LLaVA-v1.5-7B

Full Cache 40.0 46.0 32.2 37.8 56.9 33.3 12.6 23.4 60.5 4.7 4.3

H2O (Zhang et al., 2023) 40.2 46.0 31.8 38.5 55.0 33.8 12.6 22.8 60.0 1.4 3.7
SnapKV (Li et al., 2024) 40.0 46.0 31.5 40.6 54.6 33.5 13.0 21.9 60.0 1.4 3.7
RoCo (Ren and Zhu, 2024a) 40.2 46.0 31.8 38.5 55.0 33.8 12.6 22.8 60.0 1.4 3.7

LOOK-M (A-Merge) 40.3 46.1 32.2 39.1 54.9 34.0 12.9 21.4 60.5 1.6 3.7
LOOK-M (W-Merge) 40.3 46.1 31.8 39.1 55.0 34.0 13.2 22.4 60.5 1.4 3.7
LOOK-M (P-Merge) 40.2 46.1 32.5 39.8 55.1 33.8 12.9 22.5 60.5 1.7 3.5
LOOK-M (TP + A-Merge) 40.2 46.1 31.8 39.2 56.1 33.7 12.9 22.6 60.0 4.9 3.7
LOOK-M (TP + W-Merge) 40.2 46.1 32.0 39.0 56.5 33.8 12.9 23.1 60.0 5.1 3.5
LOOK-M (TP + P-Merge) 40.3 46.1 32.5 39.9 57.0 34.0 12.8 23.9 60.5 5.3 3.8

LLaVA-v1.5-13B

Full Cache 39.8 46.2 30.8 48.1 64.8 48.5 13.6 28.4 60.0 12.0 1.0

H2O (Zhang et al., 2023) 39.5 45.9 30.4 47.9 64.1 48.7 13.9 25.1 59.7 3.6 0.0
SnapKV (Li et al., 2024) 39.6 46.0 30.6 47.8 64.2 48.2 13.4 22.9 59.8 4.2 1.0
RoCo (Ren and Zhu, 2024a) 39.7 45.9 30.5 48.0 64.3 48.3 13.8 24.9 59.7 3.5 0.0

LOOK-M (A-Merge) 39.7 46.1 30.7 48.0 64.6 48.0 13.3 22.1 59.8 4.6 1.0
LOOK-M (W-Merge) 39.6 46.1 30.6 47.9 64.5 48.4 13.4 23.4 59.9 4.7 1.0
LOOK-M (P-Merge) 39.7 46.0 30.6 48.0 64.6 48.1 13.3 25.7 59.8 5.1 1.0
LOOK-M (TP + A-Merge) 39.7 46.2 30.7 48.0 65.4 48.3 13.7 26.6 60.0 11.2 1.0
LOOK-M (TP + W-Merge) 39.8 46.1 30.7 48.1 64.8 48.2 13.9 26.9 60.0 11.4 1.0
LOOK-M (TP + P-Merge) 39.8 46.2 30.8 48.1 65.2 48.5 14.1 26.6 60.0 11.7 1.0

2024b), based on mean attention scores. Notably,391

these methods are exclusively text-based KV cache392

compression methods. We utilize their default con-393

figurations and adapt them for fair comparison in394

multimodal long-context scenarios.395

4.3 Implementation Details396

We conducted experiments on NVIDIA A100397

(80GB) and RTX 3090 (24GB) GPUs, employing398

nine variants of our method to compress the KV399

Cache of LLaVA-v1.5-7B/13B on ten tasks from400

MileBench. For all methods, the number of recent401

tokens size M is α1 × input_length. In addition402

to the recent tokens, we also retain a number of im-403

portant token sizes N equal to α2× input_length,404

ensuring that at the start of the decoding phase,405

the memory overhead is (α1 + α2) proportion that406

of the original decoding phase, where α1 and α2407

are recent and important ratios. Additionally, our408

testing process aligns with MileBench’s, using the409

default batch size settings for each dataset.410

5 Experiment Results411

In this section, we present experimental results412

demonstrating the effectiveness of our LOOK-M413

strategy for KV cache optimization on the LLaVA-414

v1.5-7B and 13B (Liu et al., 2023), InternVL- 415

v1.5-7B (Chen et al., 2023), and MobileVLM_V2- 416

3B (Chu et al., 2024b) models. These models were 417

tested across various subtasks of the MileBench 418

dataset (Song et al., 2024), highlighting the advan- 419

tages of our approach in multimodal long-context 420

scenarios. We also examine the impact of KV 421

cache compression on different model architec- 422

tures, establishing its efficacy across diverse struc- 423

tures. Additionally, we explore how varying KV 424

cache budgets and compression ratios (α1 and α2) 425

affect model performance. Finally, we assess the 426

computational efficiency of our method by mea- 427

suring the time and computational load during the 428

decoding phase of compressed models. 429

5.1 Main Results on MileBench 430

We evaluate the LOOK-M model on the LLaVA- 431

v1.5 7B and 13B using MileBench, as shown in 432

Table 1. To ensure a fair comparison, we set the 433

recent token ratio α1 and the important token ra- 434

tio α2 both at 10%. The results demonstrate that 435

LOOK-M not only manages multimodal KV cache 436

compression effectively with minimal accuracy im- 437

pact but also surpasses Full Cache when integrating 438

text-prior and merging strategies, significantly en- 439

6

hancing reasoning accuracy by pruning irrelevant440

tokens from visual representations. Notably, TP +441

P-Merge outperforms text-based KV cache eviction442

baselines such as H2O, SnapKV, and RoCo, indicat-443

ing that considering attention disparities between444

text and vision leads to better retention of key infor-445

mation. Moreover, this approach achieves superior446

outcomes compared to other merging strategies,447

highlighting the benefits of allocating more weight448

to conserved tokens in preserving critical informa-449

tion under multimodal KV cache compression.450

Since the TP + P-Merge strategy achieves the451

best performance, we use it as the default merging452

strategy in the following experiments.453

Table 2: Performance on InternVL-v1.5-7B.

Method T-2 S-4 NH IR

Full Cache 19.2 19.1 11.1 0.0

H2O 20.0 19.6 3.9 0.5
SnapKV 19.9 19.4 4.1 0.2
RoCo 20.0 19.6 3.9 0.5

LOOK-M 22.0 22.9 10.9 0.5

Table 3: Performance on MobileVLM_V2-3B.

Method T-2 S-4 NH IR

Full Cache 46.2 33.0 10.6 4.7

H2O 46.4 28.2 4.2 4.5
SnapKV 46.4 27.2 4.4 4.7
RoCo 46.6 28.9 4.2 4.7

LOOK-M 47.0 32.8 10.3 4.8

5.2 Performance on Different Architectures454

To validate the effectiveness of the LOOK-M455

method across various architectures, we tested its456

performance not only on the LLaVA architecture457

but also on mobileVLM and InternVL. We selected458

several representative multimodal long-context sub-459

tasks from MileBench, including T2 (Temporal460

Multi-image), S-4 (Semantic Multi-image), NH461

(Needle in a Haystack), and I (Image Retrieval).462

From the results presented in Tables 2 and 3,463

LOOK-M consistently outperformed traditional464

eviction-based methods, including H2O, SnapKV,465

and RoCo. Notably, in both architectures, LOOK-466

M demonstrated significant advantages over other467

baselines in Needle in a Haystack, the multimodal468

long-context retrieval task. This confirms that469

LOOK-M’s pivotal merging strategy effectively470

preserves key multimodal representations while471

compressing the KV cache for accurate information 472

retrieval, with minimal information loss compared 473

to Full Cache. 474

5.3 Influence of Various Cache Budgets 475

In this section, we assess the efficiency of the 476

LOOK-M strategy under varying KV cache bud- 477

gets by conducting standardized tests on the 478

LLaVA-v1.5-7B model and four subtasks: CLEVR- 479

Change, Spot-the-Diff, TextNiH, and MMCoQA. 480

As depicted in Figure 5, LOOK-M approaches 481

Full Cache performance even with an extreme KV 482

cache compression of 5%, especially using the text- 483

prior pivotal merging strategy. Particularly in the 484

TextNiH and MMCoQA tasks, it consistently out- 485

performs the baselines regardless of compression 486

rate. These results demonstrate that, despite the 487

redundancy of tokens within the multimodal long- 488

context KV cache, traditional algorithms’ maximal 489

compression often results in considerable loss of 490

information. Conversely, LOOK-M effectively pre- 491

serves critical information with a minimal KV bud- 492

get, with its merging strategy significantly reducing 493

context loss. 494

5.4 Hyperparameter Analysis on α1 and α2 495

To evaluate the impact of varying the recent token 496

ratio (α1) and important token ratio (α2) on model 497

performance, we conducted tests across four dif- 498

ferent datasets using the LLaVA-v1.5-7B model. 499

As shown in Figure 6, LOOK-M consistently out- 500

performed other baselines under different settings 501

of α1 : α2 ratios, particularly showing signifi- 502

cant advantages in the StateChange and MMCoQA 503

datasets at every ratio. Furthermore, we observed 504

that for LOOK-M, a higher important token ratio 505

α2 correlates with improved performance, suggest- 506

ing that when less context information is discarded, 507

the merging strategy is more effective. 508

5.5 Efficiency Analysis 509

In this section, we analyze the efficiency of our pro- 510

posed LOOK-M method, as illustrated in Table 4. 511

We compare the decoding speed and memory usage 512

of model inference with and without our LOOK-M 513

method. To ensure the robustness of our results, 514

the tests for decoding latency and GPU memory 515

usage were specifically conducted on 20 randomly 516

selected data entries from the MileBench dataset. 517

Additionally, the speed tests were performed using 518

RTX 3090 × 1. 519

7

Figure 5: Influence of Various Cache Budgets on Performance.

Figure 6: Impact of Different Compression Ratio Proportion.

Table 4: Model Speed and KV Cache GPU Memory
Usage.

Method Budge Decoding Latency GPU Memory

Full Cache 100% 28.16 ms/token 1.52 GiB
LOOK-M 20% 20.98 ms/token 0.32 GiB
LOOK-M 5% 18.22 ms/token 0.13 GiB

As we can observe from Table 4, the decoding520

latency of our compressed model is significantly521

lower than that of the model retaining the full cache,522

with the advantage becoming more pronounced in523

the generation of long texts. This highlights the ef-524

ficiency of our method in tasks involving long text525

generation. Additionally, we analyzed the speed526

and GPU memory usage of the KV Cache under527

two budget scenarios: 20% and 5%, based on the528

mean values from the inference process of 20 ran-529

domly sampled data points (as illustrated in Table530

4, Our findings indicate that the average GPU mem-531

ory consumption is nearly proportional to the cache532

budget. At a 20% KV Cache budget, memory us-533

age during the decode stage is reduced by approx-534

imately 80% compared to a Full Cache scenario.535

Furthermore, an increase in the compression ratio536

significantly reduces decoding latency, thus enhanc-537

ing the decode stage’s efficiency and demonstrating538

the effectiveness of our compression method. 539

6 Conclusion 540

In this work, we propose Look-Once Optimization 541

in KV for Efficient Multimodal long-context in- 542

ference (LOOK-M), the first framework is specifi- 543

cally designed to manage multimodal KV caches in 544

multimodal large language models (MLLMs) effi- 545

ciently. LOOK-M integrates a novel KV cache evic- 546

tion strategy with innovative merging techniques, 547

such as averaged, weighted, and pivotal merging, 548

to maintain essential contextual information with- 549

out the need for fine-tuning. Our findings reveal 550

that the framework not only preserves the quality 551

of generation in multimodal long-text scenarios but 552

also ensures robust performance under significant 553

KV cache compression. Observations indicate that 554

LOOK-M prioritizes text over visual inputs during 555

prompt prefilling, leading to the development of a 556

text-prior method that further optimizes KV cache 557

compression. Looking ahead, we plan to expand 558

LOOK-M’s capabilities by incorporating additional 559

compression techniques like quantization, distilla- 560

tion, and efficient attention mechanisms to enhance 561

both efficiency and efficacy. 562

8

7 Limitation563

The constraints of our work lie in the fact that we564

have used plain multimodal large language models565

(MLLMs) without incorporating advanced com-566

pression techniques such as quantization, distilla-567

tion, and efficient attention mechanisms. In our568

future research, we plan to explore methods to569

achieve the most extreme level of KV cache com-570

pression. Furthermore, due to the absence of pub-571

licly available source code for the contemporary572

text-based KV eviction method, FastGen (Ge et al.,573

2023b), we have been unable to conduct a thor-574

ough comparative analysis between our approach575

and FastGen.576

References577

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama578
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,579
Diogo Almeida, Janko Altenschmidt, Sam Altman,580
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.581
arXiv preprint arXiv:2303.08774.582

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao583
Zhang, Christoph Feichtenhofer, and Judy Hoffman.584
2022. Token merging: Your vit but faster. arXiv585
preprint arXiv:2210.09461.586

Jianjian Cao, Peng Ye, Shengze Li, Chong Yu, Yansong587
Tang, Jiwen Lu, and Tao Chen. 2024. Madtp: Mul-588
timodal alignment-guided dynamic token pruning589
for accelerating vision-language transformer. ArXiv,590
abs/2403.02991.591

Qingqing Cao, Bhargavi Paranjape, and Hannaneh Ha-592
jishirzi. 2023. Pumer: Pruning and merging to-593
kens for efficient vision language models. ArXiv,594
abs/2305.17530.595

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-596
yang Lin, Chang Zhou, and Baobao Chang. 2024.597
An image is worth 1/2 tokens after layer 2: Plug-and-598
play inference acceleration for large vision-language599
models. ArXiv, abs/2403.06764.600

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo601
Chen, Sen Xing, Zhong Muyan, Qinglong Zhang,602
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,603
Yu Qiao, and Jifeng Dai. 2023. Internvl: Scaling up604
vision foundation models and aligning for generic605
visual-linguistic tasks. ArXiv, abs/2312.14238.606

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang607
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,608
Xinyang Lin, Bo Zhang, and Chunhua Shen. 2024a.609
Mobilevlm v2: Faster and stronger baseline for vision610
language model. ArXiv, abs/2402.03766.611

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang612
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,613
Xinyang Lin, Bo Zhang, et al. 2024b. Mobilevlm614

v2: Faster and stronger baseline for vision language 615
model. arXiv preprint arXiv:2402.03766. 616

Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and 617
Heng Huang. 2021. Nearest neighbor matching for 618
deep clustering. In Proceedings of the IEEE/CVF 619
conference on computer vision and pattern recogni- 620
tion, pages 13693–13702. 621

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 622
Kristina Toutanova. 2019. Bert: Pre-training of deep 623
bidirectional transformers for language understand- 624
ing. In North American Chapter of the Association 625
for Computational Linguistics. 626

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang 627
Wang, Yuejie Chi, and Beidi Chen. 2024. Get 628
more with less: Synthesizing recurrence with kv 629
cache compression for efficient llm inference. arXiv 630
preprint arXiv:2402.09398. 631

Alexey Dosovitskiy, Lucas Beyer, Alexander 632
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 633
Thomas Unterthiner, Mostafa Dehghani, Matthias 634
Minderer, Georg Heigold, Sylvain Gelly, Jakob 635
Uszkoreit, and Neil Houlsby. 2021. An image 636
is worth 16x16 words: Transformers for image 637
recognition at scale. In ICLR. OpenReview.net. 638

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 639
Jiawei Han, and Jianfeng Gao. 2023a. Model tells 640
you what to discard: Adaptive kv cache compression 641
for llms. ArXiv, abs/2310.01801. 642

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 643
Jiawei Han, and Jianfeng Gao. 2023b. Model tells 644
you what to discard: Adaptive kv cache compression 645
for llms. arXiv preprint arXiv:2310.01801. 646

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 647
sch, Chris Bamford, Devendra Singh Chaplot, Diego 648
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 649
laume Lample, Lucile Saulnier, et al. 2023. Mistral 650
7b. arXiv preprint arXiv:2310.06825. 651

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa 652
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. 653
2024. Gear: An efficient kv cache compression 654
recipefor near-lossless generative inference of llm. 655
arXiv preprint arXiv:2403.05527. 656

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, 657
Wei Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao 658
Tang, and Yanzhi Wang. 2021. Spvit: Enabling faster 659
vision transformers via latency-aware soft token prun- 660
ing. In European Conference on Computer Vision. 661

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 662
Venkitesh, Acyr F. Locatelli, Hanchen Ye, Tianle Cai, 663
Patrick Lewis, and Deming Chen. 2024. Snapkv: 664
Llm knows what you are looking for before genera- 665
tion. ArXiv, abs/2404.14469. 666

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 667
Lee. 2023. Visual instruction tuning. ArXiv, 668
abs/2304.08485. 669

9

https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:258959382
https://api.semanticscholar.org/CorpusID:258959382
https://api.semanticscholar.org/CorpusID:258959382
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:267500104
https://api.semanticscholar.org/CorpusID:267500104
https://api.semanticscholar.org/CorpusID:267500104
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:258179774

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,670
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,671
and Xia Hu. 2024. Kivi: A tuning-free asymmet-672
ric 2bit quantization for kv cache. arXiv preprint673
arXiv:2402.02750.674

AI Meta. 2024. Introducing meta llama 3: The most675
capable openly available llm to date. Meta AI.676

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,677
David Tarjan, and Edoardo M Ponti. 2024. Dynamic678
memory compression: Retrofitting llms for acceler-679
ated inference. arXiv preprint arXiv:2403.09636.680

Siyu Ren and Kenny Q. Zhu. 2024a. On the efficacy of681
eviction policy for key-value constrained generative682
language model inference. ArXiv, abs/2402.06262.683

Siyu Ren and Kenny Q. Zhu. 2024b. On the efficacy of684
eviction policy for key-value constrained generative685
language model inference. CoRR, abs/2402.06262.686

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee,687
and Yan Yan. 2024. Llava-prumerge: Adaptive to-688
ken reduction for efficient large multimodal models.689
ArXiv, abs/2403.15388.690

Dingjie Song, Shunian Chen, Guiming Hardy Chen,691
Fei Yu, Xiang Wan, and Benyou Wang. 2024.692
Milebench: Benchmarking mllms in long context.693
ArXiv, abs/2404.18532.694

Zhuoran Song, Yihong Xu, Zhezhi He, Li Jiang,695
Naifeng Jing, and Xiaoyao Liang. 2022. Cp-vit:696
Cascade vision transformer pruning via progressive697
sparsity prediction. ArXiv, abs/2203.04570.698

Quan Tang, Bowen Zhang, Jiajun Liu, Fagui Liu, and699
Yifan Liu. 2023. Dynamic token pruning in plain700
vision transformers for semantic segmentation. 2023701
IEEE/CVF International Conference on Computer702
Vision (ICCV), pages 777–786.703

Gemini Team, Rohan Anil, Sebastian Borgeaud,704
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,705
Radu Soricut, Johan Schalkwyk, Andrew M Dai,706
Anja Hauth, et al. 2023. Gemini: a family of707
highly capable multimodal models. arXiv preprint708
arXiv:2312.11805.709

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,710
Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu711
Zhang, Mosharaf Chowdhury, et al. 2023. Efficient712
large language models: A survey. arXiv preprint713
arXiv:2312.03863, 1.714

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and715
Jiajun Liang. 2023. Joint token pruning and squeez-716
ing towards more aggressive compression of vision717
transformers. In Proceedings of the IEEE/CVF Con-718
ference on Computer Vision and Pattern Recognition,719
pages 2092–2101.720

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song721
Han, and Mike Lewis. 2023. Efficient stream-722
ing language models with attention sinks. ArXiv,723
abs/2309.17453.724

June Yong Yang, Byeongwook Kim, Jeongin Bae, 725
Beomseok Kwon, Gunho Park, Eunho Yang, 726
Se Jung Kwon, and Dongsoo Lee. 2024. No to- 727
ken left behind: Reliable kv cache compression 728
via importance-aware mixed precision quantization. 729
ArXiv, abs/2402.18096. 730

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, 731
Chung-Ching Lin, Zicheng Liu, and Lijuan Wang. 732
2023. The dawn of lmms: Preliminary explorations 733
with gpt-4v(ision). ArXiv, abs/2309.17421. 734

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing 735
Sun, Tong Xu, and Enhong Chen. 2023. A sur- 736
vey on multimodal large language models. ArXiv, 737
abs/2306.13549. 738

Jungmin Yun, Mihyeon Kim, and Youngbin Kim. 2024. 739
Focus on the core: Efficient attention via pruned to- 740
ken compression for document classification. In Con- 741
ference on Empirical Methods in Natural Language 742
Processing. 743

Yu Zhang, Yepeng Liu, Duoqian Miao, Qi Zhang, Yi- 744
wei Shi, and Liang Hu. 2024a. Mg-vit: A multi- 745
granularity method for compact and efficient vision 746
transformers. Advances in Neural Information Pro- 747
cessing Systems, 36. 748

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 749
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 750
dong Tian, Christopher Ré, Clark Barrett, et al. 2024b. 751
H2o: Heavy-hitter oracle for efficient generative in- 752
ference of large language models. Advances in Neu- 753
ral Information Processing Systems, 36. 754

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian- 755
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, 756
Yuandong Tian, Christopher Ré, Clark W. Barrett, 757
Zhangyang Wang, and Beidi Chen. 2023. H2o: 758
Heavy-hitter oracle for efficient generative inference 759
of large language models. ArXiv, abs/2306.14048. 760

10

https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:268667281
https://api.semanticscholar.org/CorpusID:268667281
https://api.semanticscholar.org/CorpusID:268667281
https://api.semanticscholar.org/CorpusID:269449774
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:260379178
https://api.semanticscholar.org/CorpusID:260379178
https://api.semanticscholar.org/CorpusID:260379178
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:259243718
https://api.semanticscholar.org/CorpusID:259243718
https://api.semanticscholar.org/CorpusID:259243718
https://api.semanticscholar.org/CorpusID:266167105
https://api.semanticscholar.org/CorpusID:266167105
https://api.semanticscholar.org/CorpusID:266167105
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947

A Appendix761

A.1 Details of MileBench762

MileBench (Song et al., 2024) dataset is the763

first benchmark specifically designed to test the764

Multimodal Long-context capabilities of MLLMs.765

Milebench primarily includes 6,440 multimodal766

long-text samples, which are composed of 21 exist-767

ing or self-constructed datasets, with an average of768

15.2 images and 422.3 words per sample. It com-769

posed of two primary subsets: Realistic Evaluation770

and Diagnostic Evaluation.771

Realistic Evaluation component challenges772

MLLMs to manage tasks within multimodal773

long-context situations, underscoring the models’774

ability to understand and reason through prolonged775

multimodal contexts.776

Diagnostic Evaluation requires MLLMs to extract777

information from the given context, accentuating778

the models’ skills in long-distance information re-779

trieval and the removal of distractors.780

The comprehensive classification of Milebench781

is presented in Table 5.782

A.2 Performance under extreme compression783

ratio784

We evaluate the performance of various KV Cache785

compression strategies at compression ratios ex-786

ceeding 80%, as detailed in the main text. Notably,787

Table 6 reveals that at an extreme compression788

ratio of 99%, our method, LOOK-M, exhibits a789

significant advantage over competing methods. It790

consistently maintains performance across the vast791

majority of sub-tasks, closely matching the results792

achieved using a Full Cache. This outcome not793

only underscores the robustness of our method at794

high compression ratios but also its superior ability795

to sustain performance relative to other approaches.796

11

Table 5: Detailed Taxonomy of MileBench. (Song et al., 2024)

Category Task Dataset Metric

Realistic Evaluation

Action Understanding and Action Localization Accuracy
Prediction (T-1) Action Prediction Accuracy

Action Sequence Accuracy

Object and Scene Object Existence Accuracy
Understanding (T-2) Object Interaction Accuracy

Temporal Moving Attribute Accuracy
Multi-image Object Shuffle Accuracy

Visual Navigation and Egocentric Navigation Accuracy
Spatial Localization (T-3) Moving Direction Accuracy

Counterfactual Reasoning Counterfactual Inference Accuracy
and State Change (T-4) State Change Accuracy

Character Order Accuracy
Scene Transition Accuracy

Knowledge Grounded QA (S-1) Webpage QA Accuracy
Textbook QA Accuracy

Complex Multimodal QA Accuracy
Long Text with Images QA Accuracy

Text-Rich Images QA (S-2) Slide QA Accuracy
Semantic OCR QA Accuracy
Multi-image Document QA Accuracy

Visual Relation Inference (S-3) Visual Change Captioning ROUGE-L
Visual Relationship Expressing ROUGE-L

Dialogue (S-4) Multimodal Dialogue Accuracy
Conversational Embodied Dialogue ROUGE-L

Space Understanding (S-5) Space Understanding Accuracy

Diagnostic Evaluation

Needle In Text Needle (N-1) Text Needle In A Haystack Accuracy

A Haystack Image Needle (N-2) Image Needle In A Haystack Accuracy

Image Retrieval Image Retrieval (I-1) Image Retrieval Accuracy

Table 6: Comparative Performance of Different Strategies at Maximum Compression Rate(99%) on LLaVA-v1.5-7B

Method T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

Full Cache 40.0 46.0 32.2 37.8 56.9 33.3 12.6 23.4 60.5 4.7 4.3

H2O 36.5 46.0 25.0 31.5 36.4 23.0 9.4 9.4 51.5 0.0 3.3
SnapKV 38.8 45.1 26.5 34.1 38.4 26.0 0.0 9.6 58.0 0.0 3.5
RoCo 36.5 46.1 25.2 32.5 36.4 23.0 9.4 9.2 52.5 0.0 3.1

LOOK-M 40.3 46.1 32.5 40.0 57.0 33.7 12.8 24.0 60.0 5.3 3.7

12

	Introduction
	Related work
	Methodology
	Preliminary: Generative Inference with Multimodal KV Cache
	Text-Prior KV Pairs Eviction
	KV Pairs Merging Strategies

	Experiments Setting
	Datasets and Metrics
	Baselines
	Implementation Details

	Experiment Results
	Main Results on MileBench
	Performance on Different Architectures
	Influence of Various Cache Budgets
	Hyperparameter Analysis on 1 and 2
	Efficiency Analysis

	Conclusion
	Limitation
	Appendix
	Details of MileBench
	Performance under extreme compression ratio

